1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
6  *
7  *  Pentium III FXSR, SSE support
8  *	Gareth Hughes <gareth@valinux.com>, May 2000
9  */
10 
11 /*
12  * Handle hardware traps and faults.
13  */
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/kdebug.h>
17 #include <linux/sched/debug.h>
18 #include <linux/nmi.h>
19 #include <linux/debugfs.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/ratelimit.h>
23 #include <linux/slab.h>
24 #include <linux/export.h>
25 #include <linux/atomic.h>
26 #include <linux/sched/clock.h>
27 
28 #include <asm/cpu_entry_area.h>
29 #include <asm/traps.h>
30 #include <asm/mach_traps.h>
31 #include <asm/nmi.h>
32 #include <asm/x86_init.h>
33 #include <asm/reboot.h>
34 #include <asm/cache.h>
35 #include <asm/nospec-branch.h>
36 #include <asm/sev.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/nmi.h>
40 
41 struct nmi_desc {
42 	raw_spinlock_t lock;
43 	struct list_head head;
44 };
45 
46 static struct nmi_desc nmi_desc[NMI_MAX] =
47 {
48 	{
49 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
50 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
51 	},
52 	{
53 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
54 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
55 	},
56 	{
57 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
58 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
59 	},
60 	{
61 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
62 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
63 	},
64 
65 };
66 
67 struct nmi_stats {
68 	unsigned int normal;
69 	unsigned int unknown;
70 	unsigned int external;
71 	unsigned int swallow;
72 };
73 
74 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
75 
76 static int ignore_nmis __read_mostly;
77 
78 int unknown_nmi_panic;
79 /*
80  * Prevent NMI reason port (0x61) being accessed simultaneously, can
81  * only be used in NMI handler.
82  */
83 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
84 
setup_unknown_nmi_panic(char * str)85 static int __init setup_unknown_nmi_panic(char *str)
86 {
87 	unknown_nmi_panic = 1;
88 	return 1;
89 }
90 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
91 
92 #define nmi_to_desc(type) (&nmi_desc[type])
93 
94 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
95 
nmi_warning_debugfs(void)96 static int __init nmi_warning_debugfs(void)
97 {
98 	debugfs_create_u64("nmi_longest_ns", 0644,
99 			arch_debugfs_dir, &nmi_longest_ns);
100 	return 0;
101 }
102 fs_initcall(nmi_warning_debugfs);
103 
nmi_check_duration(struct nmiaction * action,u64 duration)104 static void nmi_check_duration(struct nmiaction *action, u64 duration)
105 {
106 	int remainder_ns, decimal_msecs;
107 
108 	if (duration < nmi_longest_ns || duration < action->max_duration)
109 		return;
110 
111 	action->max_duration = duration;
112 
113 	remainder_ns = do_div(duration, (1000 * 1000));
114 	decimal_msecs = remainder_ns / 1000;
115 
116 	printk_ratelimited(KERN_INFO
117 		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
118 		action->handler, duration, decimal_msecs);
119 }
120 
nmi_handle(unsigned int type,struct pt_regs * regs)121 static int nmi_handle(unsigned int type, struct pt_regs *regs)
122 {
123 	struct nmi_desc *desc = nmi_to_desc(type);
124 	struct nmiaction *a;
125 	int handled=0;
126 
127 	rcu_read_lock();
128 
129 	/*
130 	 * NMIs are edge-triggered, which means if you have enough
131 	 * of them concurrently, you can lose some because only one
132 	 * can be latched at any given time.  Walk the whole list
133 	 * to handle those situations.
134 	 */
135 	list_for_each_entry_rcu(a, &desc->head, list) {
136 		int thishandled;
137 		u64 delta;
138 
139 		delta = sched_clock();
140 		thishandled = a->handler(type, regs);
141 		handled += thishandled;
142 		delta = sched_clock() - delta;
143 		trace_nmi_handler(a->handler, (int)delta, thishandled);
144 
145 		nmi_check_duration(a, delta);
146 	}
147 
148 	rcu_read_unlock();
149 
150 	/* return total number of NMI events handled */
151 	return handled;
152 }
153 NOKPROBE_SYMBOL(nmi_handle);
154 
__register_nmi_handler(unsigned int type,struct nmiaction * action)155 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
156 {
157 	struct nmi_desc *desc = nmi_to_desc(type);
158 	unsigned long flags;
159 
160 	if (!action->handler)
161 		return -EINVAL;
162 
163 	raw_spin_lock_irqsave(&desc->lock, flags);
164 
165 	/*
166 	 * Indicate if there are multiple registrations on the
167 	 * internal NMI handler call chains (SERR and IO_CHECK).
168 	 */
169 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
170 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
171 
172 	/*
173 	 * some handlers need to be executed first otherwise a fake
174 	 * event confuses some handlers (kdump uses this flag)
175 	 */
176 	if (action->flags & NMI_FLAG_FIRST)
177 		list_add_rcu(&action->list, &desc->head);
178 	else
179 		list_add_tail_rcu(&action->list, &desc->head);
180 
181 	raw_spin_unlock_irqrestore(&desc->lock, flags);
182 	return 0;
183 }
184 EXPORT_SYMBOL(__register_nmi_handler);
185 
unregister_nmi_handler(unsigned int type,const char * name)186 void unregister_nmi_handler(unsigned int type, const char *name)
187 {
188 	struct nmi_desc *desc = nmi_to_desc(type);
189 	struct nmiaction *n;
190 	unsigned long flags;
191 
192 	raw_spin_lock_irqsave(&desc->lock, flags);
193 
194 	list_for_each_entry_rcu(n, &desc->head, list) {
195 		/*
196 		 * the name passed in to describe the nmi handler
197 		 * is used as the lookup key
198 		 */
199 		if (!strcmp(n->name, name)) {
200 			WARN(in_nmi(),
201 				"Trying to free NMI (%s) from NMI context!\n", n->name);
202 			list_del_rcu(&n->list);
203 			break;
204 		}
205 	}
206 
207 	raw_spin_unlock_irqrestore(&desc->lock, flags);
208 	synchronize_rcu();
209 }
210 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
211 
212 static void
pci_serr_error(unsigned char reason,struct pt_regs * regs)213 pci_serr_error(unsigned char reason, struct pt_regs *regs)
214 {
215 	/* check to see if anyone registered against these types of errors */
216 	if (nmi_handle(NMI_SERR, regs))
217 		return;
218 
219 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
220 		 reason, smp_processor_id());
221 
222 	if (panic_on_unrecovered_nmi)
223 		nmi_panic(regs, "NMI: Not continuing");
224 
225 	pr_emerg("Dazed and confused, but trying to continue\n");
226 
227 	/* Clear and disable the PCI SERR error line. */
228 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
229 	outb(reason, NMI_REASON_PORT);
230 }
231 NOKPROBE_SYMBOL(pci_serr_error);
232 
233 static void
io_check_error(unsigned char reason,struct pt_regs * regs)234 io_check_error(unsigned char reason, struct pt_regs *regs)
235 {
236 	unsigned long i;
237 
238 	/* check to see if anyone registered against these types of errors */
239 	if (nmi_handle(NMI_IO_CHECK, regs))
240 		return;
241 
242 	pr_emerg(
243 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
244 		 reason, smp_processor_id());
245 	show_regs(regs);
246 
247 	if (panic_on_io_nmi) {
248 		nmi_panic(regs, "NMI IOCK error: Not continuing");
249 
250 		/*
251 		 * If we end up here, it means we have received an NMI while
252 		 * processing panic(). Simply return without delaying and
253 		 * re-enabling NMIs.
254 		 */
255 		return;
256 	}
257 
258 	/* Re-enable the IOCK line, wait for a few seconds */
259 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
260 	outb(reason, NMI_REASON_PORT);
261 
262 	i = 20000;
263 	while (--i) {
264 		touch_nmi_watchdog();
265 		udelay(100);
266 	}
267 
268 	reason &= ~NMI_REASON_CLEAR_IOCHK;
269 	outb(reason, NMI_REASON_PORT);
270 }
271 NOKPROBE_SYMBOL(io_check_error);
272 
273 static void
unknown_nmi_error(unsigned char reason,struct pt_regs * regs)274 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
275 {
276 	int handled;
277 
278 	/*
279 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
280 	 * Of course this makes having multiple 'unknown' handlers useless
281 	 * as only the first one is ever run (unless it can actually determine
282 	 * if it caused the NMI)
283 	 */
284 	handled = nmi_handle(NMI_UNKNOWN, regs);
285 	if (handled) {
286 		__this_cpu_add(nmi_stats.unknown, handled);
287 		return;
288 	}
289 
290 	__this_cpu_add(nmi_stats.unknown, 1);
291 
292 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
293 		 reason, smp_processor_id());
294 
295 	pr_emerg("Do you have a strange power saving mode enabled?\n");
296 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
297 		nmi_panic(regs, "NMI: Not continuing");
298 
299 	pr_emerg("Dazed and confused, but trying to continue\n");
300 }
301 NOKPROBE_SYMBOL(unknown_nmi_error);
302 
303 static DEFINE_PER_CPU(bool, swallow_nmi);
304 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
305 
default_do_nmi(struct pt_regs * regs)306 static noinstr void default_do_nmi(struct pt_regs *regs)
307 {
308 	unsigned char reason = 0;
309 	int handled;
310 	bool b2b = false;
311 
312 	/*
313 	 * CPU-specific NMI must be processed before non-CPU-specific
314 	 * NMI, otherwise we may lose it, because the CPU-specific
315 	 * NMI can not be detected/processed on other CPUs.
316 	 */
317 
318 	/*
319 	 * Back-to-back NMIs are interesting because they can either
320 	 * be two NMI or more than two NMIs (any thing over two is dropped
321 	 * due to NMI being edge-triggered).  If this is the second half
322 	 * of the back-to-back NMI, assume we dropped things and process
323 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
324 	 */
325 	if (regs->ip == __this_cpu_read(last_nmi_rip))
326 		b2b = true;
327 	else
328 		__this_cpu_write(swallow_nmi, false);
329 
330 	__this_cpu_write(last_nmi_rip, regs->ip);
331 
332 	instrumentation_begin();
333 
334 	handled = nmi_handle(NMI_LOCAL, regs);
335 	__this_cpu_add(nmi_stats.normal, handled);
336 	if (handled) {
337 		/*
338 		 * There are cases when a NMI handler handles multiple
339 		 * events in the current NMI.  One of these events may
340 		 * be queued for in the next NMI.  Because the event is
341 		 * already handled, the next NMI will result in an unknown
342 		 * NMI.  Instead lets flag this for a potential NMI to
343 		 * swallow.
344 		 */
345 		if (handled > 1)
346 			__this_cpu_write(swallow_nmi, true);
347 		goto out;
348 	}
349 
350 	/*
351 	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
352 	 *
353 	 * Another CPU may be processing panic routines while holding
354 	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
355 	 * and if so, call its callback directly.  If there is no CPU preparing
356 	 * crash dump, we simply loop here.
357 	 */
358 	while (!raw_spin_trylock(&nmi_reason_lock)) {
359 		run_crash_ipi_callback(regs);
360 		cpu_relax();
361 	}
362 
363 	reason = x86_platform.get_nmi_reason();
364 
365 	if (reason & NMI_REASON_MASK) {
366 		if (reason & NMI_REASON_SERR)
367 			pci_serr_error(reason, regs);
368 		else if (reason & NMI_REASON_IOCHK)
369 			io_check_error(reason, regs);
370 #ifdef CONFIG_X86_32
371 		/*
372 		 * Reassert NMI in case it became active
373 		 * meanwhile as it's edge-triggered:
374 		 */
375 		reassert_nmi();
376 #endif
377 		__this_cpu_add(nmi_stats.external, 1);
378 		raw_spin_unlock(&nmi_reason_lock);
379 		goto out;
380 	}
381 	raw_spin_unlock(&nmi_reason_lock);
382 
383 	/*
384 	 * Only one NMI can be latched at a time.  To handle
385 	 * this we may process multiple nmi handlers at once to
386 	 * cover the case where an NMI is dropped.  The downside
387 	 * to this approach is we may process an NMI prematurely,
388 	 * while its real NMI is sitting latched.  This will cause
389 	 * an unknown NMI on the next run of the NMI processing.
390 	 *
391 	 * We tried to flag that condition above, by setting the
392 	 * swallow_nmi flag when we process more than one event.
393 	 * This condition is also only present on the second half
394 	 * of a back-to-back NMI, so we flag that condition too.
395 	 *
396 	 * If both are true, we assume we already processed this
397 	 * NMI previously and we swallow it.  Otherwise we reset
398 	 * the logic.
399 	 *
400 	 * There are scenarios where we may accidentally swallow
401 	 * a 'real' unknown NMI.  For example, while processing
402 	 * a perf NMI another perf NMI comes in along with a
403 	 * 'real' unknown NMI.  These two NMIs get combined into
404 	 * one (as described above).  When the next NMI gets
405 	 * processed, it will be flagged by perf as handled, but
406 	 * no one will know that there was a 'real' unknown NMI sent
407 	 * also.  As a result it gets swallowed.  Or if the first
408 	 * perf NMI returns two events handled then the second
409 	 * NMI will get eaten by the logic below, again losing a
410 	 * 'real' unknown NMI.  But this is the best we can do
411 	 * for now.
412 	 */
413 	if (b2b && __this_cpu_read(swallow_nmi))
414 		__this_cpu_add(nmi_stats.swallow, 1);
415 	else
416 		unknown_nmi_error(reason, regs);
417 
418 out:
419 	instrumentation_end();
420 }
421 
422 /*
423  * NMIs can page fault or hit breakpoints which will cause it to lose
424  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
425  *
426  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
427  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
428  * if the outer NMI came from kernel mode, but we can still nest if the
429  * outer NMI came from user mode.
430  *
431  * To handle these nested NMIs, we have three states:
432  *
433  *  1) not running
434  *  2) executing
435  *  3) latched
436  *
437  * When no NMI is in progress, it is in the "not running" state.
438  * When an NMI comes in, it goes into the "executing" state.
439  * Normally, if another NMI is triggered, it does not interrupt
440  * the running NMI and the HW will simply latch it so that when
441  * the first NMI finishes, it will restart the second NMI.
442  * (Note, the latch is binary, thus multiple NMIs triggering,
443  *  when one is running, are ignored. Only one NMI is restarted.)
444  *
445  * If an NMI executes an iret, another NMI can preempt it. We do not
446  * want to allow this new NMI to run, but we want to execute it when the
447  * first one finishes.  We set the state to "latched", and the exit of
448  * the first NMI will perform a dec_return, if the result is zero
449  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
450  * dec_return would have set the state to NMI_EXECUTING (what we want it
451  * to be when we are running). In this case, we simply jump back to
452  * rerun the NMI handler again, and restart the 'latched' NMI.
453  *
454  * No trap (breakpoint or page fault) should be hit before nmi_restart,
455  * thus there is no race between the first check of state for NOT_RUNNING
456  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
457  * at this point.
458  *
459  * In case the NMI takes a page fault, we need to save off the CR2
460  * because the NMI could have preempted another page fault and corrupt
461  * the CR2 that is about to be read. As nested NMIs must be restarted
462  * and they can not take breakpoints or page faults, the update of the
463  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
464  * Otherwise, there would be a race of another nested NMI coming in
465  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
466  */
467 enum nmi_states {
468 	NMI_NOT_RUNNING = 0,
469 	NMI_EXECUTING,
470 	NMI_LATCHED,
471 };
472 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
473 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
474 static DEFINE_PER_CPU(unsigned long, nmi_dr7);
475 
DEFINE_IDTENTRY_RAW(exc_nmi)476 DEFINE_IDTENTRY_RAW(exc_nmi)
477 {
478 	irqentry_state_t irq_state;
479 
480 	/*
481 	 * Re-enable NMIs right here when running as an SEV-ES guest. This might
482 	 * cause nested NMIs, but those can be handled safely.
483 	 */
484 	sev_es_nmi_complete();
485 
486 	if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id()))
487 		return;
488 
489 	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
490 		this_cpu_write(nmi_state, NMI_LATCHED);
491 		return;
492 	}
493 	this_cpu_write(nmi_state, NMI_EXECUTING);
494 	this_cpu_write(nmi_cr2, read_cr2());
495 nmi_restart:
496 
497 	/*
498 	 * Needs to happen before DR7 is accessed, because the hypervisor can
499 	 * intercept DR7 reads/writes, turning those into #VC exceptions.
500 	 */
501 	sev_es_ist_enter(regs);
502 
503 	this_cpu_write(nmi_dr7, local_db_save());
504 
505 	irq_state = irqentry_nmi_enter(regs);
506 
507 	inc_irq_stat(__nmi_count);
508 
509 	if (!ignore_nmis)
510 		default_do_nmi(regs);
511 
512 	irqentry_nmi_exit(regs, irq_state);
513 
514 	local_db_restore(this_cpu_read(nmi_dr7));
515 
516 	sev_es_ist_exit();
517 
518 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
519 		write_cr2(this_cpu_read(nmi_cr2));
520 	if (this_cpu_dec_return(nmi_state))
521 		goto nmi_restart;
522 
523 	if (user_mode(regs))
524 		mds_user_clear_cpu_buffers();
525 }
526 
527 #if defined(CONFIG_X86_64) && IS_ENABLED(CONFIG_KVM_INTEL)
DEFINE_IDTENTRY_RAW(exc_nmi_noist)528 DEFINE_IDTENTRY_RAW(exc_nmi_noist)
529 {
530 	exc_nmi(regs);
531 }
532 #endif
533 #if IS_MODULE(CONFIG_KVM_INTEL)
534 EXPORT_SYMBOL_GPL(asm_exc_nmi_noist);
535 #endif
536 
stop_nmi(void)537 void stop_nmi(void)
538 {
539 	ignore_nmis++;
540 }
541 
restart_nmi(void)542 void restart_nmi(void)
543 {
544 	ignore_nmis--;
545 }
546 
547 /* reset the back-to-back NMI logic */
local_touch_nmi(void)548 void local_touch_nmi(void)
549 {
550 	__this_cpu_write(last_nmi_rip, 0);
551 }
552 EXPORT_SYMBOL_GPL(local_touch_nmi);
553