1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR 2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 [LOCKDOWN_NONE] = "none",
46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 [LOCKDOWN_HIBERNATION] = "hibernation",
51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 [LOCKDOWN_IOPORT] = "raw io port access",
53 [LOCKDOWN_MSR] = "raw MSR access",
54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 [LOCKDOWN_DEBUGFS] = "debugfs access",
60 [LOCKDOWN_XMON_WR] = "xmon write access",
61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
63 [LOCKDOWN_KCORE] = "/proc/kcore access",
64 [LOCKDOWN_KPROBES] = "use of kprobes",
65 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
66 [LOCKDOWN_PERF] = "unsafe use of perf",
67 [LOCKDOWN_TRACEFS] = "use of tracefs",
68 [LOCKDOWN_XMON_RW] = "xmon read and write access",
69 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
70 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
71 };
72
73 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
75
76 static struct kmem_cache *lsm_file_cache;
77 static struct kmem_cache *lsm_inode_cache;
78
79 char *lsm_names;
80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
81
82 /* Boot-time LSM user choice */
83 static __initdata const char *chosen_lsm_order;
84 static __initdata const char *chosen_major_lsm;
85
86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
87
88 /* Ordered list of LSMs to initialize. */
89 static __initdata struct lsm_info **ordered_lsms;
90 static __initdata struct lsm_info *exclusive;
91
92 static __initdata bool debug;
93 #define init_debug(...) \
94 do { \
95 if (debug) \
96 pr_info(__VA_ARGS__); \
97 } while (0)
98
is_enabled(struct lsm_info * lsm)99 static bool __init is_enabled(struct lsm_info *lsm)
100 {
101 if (!lsm->enabled)
102 return false;
103
104 return *lsm->enabled;
105 }
106
107 /* Mark an LSM's enabled flag. */
108 static int lsm_enabled_true __initdata = 1;
109 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)110 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
111 {
112 /*
113 * When an LSM hasn't configured an enable variable, we can use
114 * a hard-coded location for storing the default enabled state.
115 */
116 if (!lsm->enabled) {
117 if (enabled)
118 lsm->enabled = &lsm_enabled_true;
119 else
120 lsm->enabled = &lsm_enabled_false;
121 } else if (lsm->enabled == &lsm_enabled_true) {
122 if (!enabled)
123 lsm->enabled = &lsm_enabled_false;
124 } else if (lsm->enabled == &lsm_enabled_false) {
125 if (enabled)
126 lsm->enabled = &lsm_enabled_true;
127 } else {
128 *lsm->enabled = enabled;
129 }
130 }
131
132 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)133 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
134 {
135 struct lsm_info **check;
136
137 for (check = ordered_lsms; *check; check++)
138 if (*check == lsm)
139 return true;
140
141 return false;
142 }
143
144 /* Append an LSM to the list of ordered LSMs to initialize. */
145 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
147 {
148 /* Ignore duplicate selections. */
149 if (exists_ordered_lsm(lsm))
150 return;
151
152 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
153 return;
154
155 /* Enable this LSM, if it is not already set. */
156 if (!lsm->enabled)
157 lsm->enabled = &lsm_enabled_true;
158 ordered_lsms[last_lsm++] = lsm;
159
160 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
161 is_enabled(lsm) ? "en" : "dis");
162 }
163
164 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)165 static bool __init lsm_allowed(struct lsm_info *lsm)
166 {
167 /* Skip if the LSM is disabled. */
168 if (!is_enabled(lsm))
169 return false;
170
171 /* Not allowed if another exclusive LSM already initialized. */
172 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
173 init_debug("exclusive disabled: %s\n", lsm->name);
174 return false;
175 }
176
177 return true;
178 }
179
lsm_set_blob_size(int * need,int * lbs)180 static void __init lsm_set_blob_size(int *need, int *lbs)
181 {
182 int offset;
183
184 if (*need > 0) {
185 offset = *lbs;
186 *lbs += *need;
187 *need = offset;
188 }
189 }
190
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
192 {
193 if (!needed)
194 return;
195
196 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
197 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
198 /*
199 * The inode blob gets an rcu_head in addition to
200 * what the modules might need.
201 */
202 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
203 blob_sizes.lbs_inode = sizeof(struct rcu_head);
204 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
205 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
206 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
207 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
208 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209 }
210
211 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)212 static void __init prepare_lsm(struct lsm_info *lsm)
213 {
214 int enabled = lsm_allowed(lsm);
215
216 /* Record enablement (to handle any following exclusive LSMs). */
217 set_enabled(lsm, enabled);
218
219 /* If enabled, do pre-initialization work. */
220 if (enabled) {
221 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222 exclusive = lsm;
223 init_debug("exclusive chosen: %s\n", lsm->name);
224 }
225
226 lsm_set_blob_sizes(lsm->blobs);
227 }
228 }
229
230 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)231 static void __init initialize_lsm(struct lsm_info *lsm)
232 {
233 if (is_enabled(lsm)) {
234 int ret;
235
236 init_debug("initializing %s\n", lsm->name);
237 ret = lsm->init();
238 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239 }
240 }
241
242 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)243 static void __init ordered_lsm_parse(const char *order, const char *origin)
244 {
245 struct lsm_info *lsm;
246 char *sep, *name, *next;
247
248 /* LSM_ORDER_FIRST is always first. */
249 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250 if (lsm->order == LSM_ORDER_FIRST)
251 append_ordered_lsm(lsm, "first");
252 }
253
254 /* Process "security=", if given. */
255 if (chosen_major_lsm) {
256 struct lsm_info *major;
257
258 /*
259 * To match the original "security=" behavior, this
260 * explicitly does NOT fallback to another Legacy Major
261 * if the selected one was separately disabled: disable
262 * all non-matching Legacy Major LSMs.
263 */
264 for (major = __start_lsm_info; major < __end_lsm_info;
265 major++) {
266 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267 strcmp(major->name, chosen_major_lsm) != 0) {
268 set_enabled(major, false);
269 init_debug("security=%s disabled: %s\n",
270 chosen_major_lsm, major->name);
271 }
272 }
273 }
274
275 sep = kstrdup(order, GFP_KERNEL);
276 next = sep;
277 /* Walk the list, looking for matching LSMs. */
278 while ((name = strsep(&next, ",")) != NULL) {
279 bool found = false;
280
281 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282 if (lsm->order == LSM_ORDER_MUTABLE &&
283 strcmp(lsm->name, name) == 0) {
284 append_ordered_lsm(lsm, origin);
285 found = true;
286 }
287 }
288
289 if (!found)
290 init_debug("%s ignored: %s\n", origin, name);
291 }
292
293 /* Process "security=", if given. */
294 if (chosen_major_lsm) {
295 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296 if (exists_ordered_lsm(lsm))
297 continue;
298 if (strcmp(lsm->name, chosen_major_lsm) == 0)
299 append_ordered_lsm(lsm, "security=");
300 }
301 }
302
303 /* Disable all LSMs not in the ordered list. */
304 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305 if (exists_ordered_lsm(lsm))
306 continue;
307 set_enabled(lsm, false);
308 init_debug("%s disabled: %s\n", origin, lsm->name);
309 }
310
311 kfree(sep);
312 }
313
314 static void __init lsm_early_cred(struct cred *cred);
315 static void __init lsm_early_task(struct task_struct *task);
316
317 static int lsm_append(const char *new, char **result);
318
ordered_lsm_init(void)319 static void __init ordered_lsm_init(void)
320 {
321 struct lsm_info **lsm;
322
323 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324 GFP_KERNEL);
325
326 if (chosen_lsm_order) {
327 if (chosen_major_lsm) {
328 pr_info("security= is ignored because it is superseded by lsm=\n");
329 chosen_major_lsm = NULL;
330 }
331 ordered_lsm_parse(chosen_lsm_order, "cmdline");
332 } else
333 ordered_lsm_parse(builtin_lsm_order, "builtin");
334
335 for (lsm = ordered_lsms; *lsm; lsm++)
336 prepare_lsm(*lsm);
337
338 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
339 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
340 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
341 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
342 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
343 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
344 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
345
346 /*
347 * Create any kmem_caches needed for blobs
348 */
349 if (blob_sizes.lbs_file)
350 lsm_file_cache = kmem_cache_create("lsm_file_cache",
351 blob_sizes.lbs_file, 0,
352 SLAB_PANIC, NULL);
353 if (blob_sizes.lbs_inode)
354 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
355 blob_sizes.lbs_inode, 0,
356 SLAB_PANIC, NULL);
357
358 lsm_early_cred((struct cred *) current->cred);
359 lsm_early_task(current);
360 for (lsm = ordered_lsms; *lsm; lsm++)
361 initialize_lsm(*lsm);
362
363 kfree(ordered_lsms);
364 }
365
early_security_init(void)366 int __init early_security_init(void)
367 {
368 int i;
369 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
370 struct lsm_info *lsm;
371
372 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
373 i++)
374 INIT_HLIST_HEAD(&list[i]);
375
376 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
377 if (!lsm->enabled)
378 lsm->enabled = &lsm_enabled_true;
379 prepare_lsm(lsm);
380 initialize_lsm(lsm);
381 }
382
383 return 0;
384 }
385
386 /**
387 * security_init - initializes the security framework
388 *
389 * This should be called early in the kernel initialization sequence.
390 */
security_init(void)391 int __init security_init(void)
392 {
393 struct lsm_info *lsm;
394
395 pr_info("Security Framework initializing\n");
396
397 /*
398 * Append the names of the early LSM modules now that kmalloc() is
399 * available
400 */
401 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
402 if (lsm->enabled)
403 lsm_append(lsm->name, &lsm_names);
404 }
405
406 /* Load LSMs in specified order. */
407 ordered_lsm_init();
408
409 return 0;
410 }
411
412 /* Save user chosen LSM */
choose_major_lsm(char * str)413 static int __init choose_major_lsm(char *str)
414 {
415 chosen_major_lsm = str;
416 return 1;
417 }
418 __setup("security=", choose_major_lsm);
419
420 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)421 static int __init choose_lsm_order(char *str)
422 {
423 chosen_lsm_order = str;
424 return 1;
425 }
426 __setup("lsm=", choose_lsm_order);
427
428 /* Enable LSM order debugging. */
enable_debug(char * str)429 static int __init enable_debug(char *str)
430 {
431 debug = true;
432 return 1;
433 }
434 __setup("lsm.debug", enable_debug);
435
match_last_lsm(const char * list,const char * lsm)436 static bool match_last_lsm(const char *list, const char *lsm)
437 {
438 const char *last;
439
440 if (WARN_ON(!list || !lsm))
441 return false;
442 last = strrchr(list, ',');
443 if (last)
444 /* Pass the comma, strcmp() will check for '\0' */
445 last++;
446 else
447 last = list;
448 return !strcmp(last, lsm);
449 }
450
lsm_append(const char * new,char ** result)451 static int lsm_append(const char *new, char **result)
452 {
453 char *cp;
454
455 if (*result == NULL) {
456 *result = kstrdup(new, GFP_KERNEL);
457 if (*result == NULL)
458 return -ENOMEM;
459 } else {
460 /* Check if it is the last registered name */
461 if (match_last_lsm(*result, new))
462 return 0;
463 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
464 if (cp == NULL)
465 return -ENOMEM;
466 kfree(*result);
467 *result = cp;
468 }
469 return 0;
470 }
471
472 /**
473 * security_add_hooks - Add a modules hooks to the hook lists.
474 * @hooks: the hooks to add
475 * @count: the number of hooks to add
476 * @lsm: the name of the security module
477 *
478 * Each LSM has to register its hooks with the infrastructure.
479 */
security_add_hooks(struct security_hook_list * hooks,int count,char * lsm)480 void __init security_add_hooks(struct security_hook_list *hooks, int count,
481 char *lsm)
482 {
483 int i;
484
485 for (i = 0; i < count; i++) {
486 hooks[i].lsm = lsm;
487 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
488 }
489
490 /*
491 * Don't try to append during early_security_init(), we'll come back
492 * and fix this up afterwards.
493 */
494 if (slab_is_available()) {
495 if (lsm_append(lsm, &lsm_names) < 0)
496 panic("%s - Cannot get early memory.\n", __func__);
497 }
498 }
499
call_blocking_lsm_notifier(enum lsm_event event,void * data)500 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
501 {
502 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
503 event, data);
504 }
505 EXPORT_SYMBOL(call_blocking_lsm_notifier);
506
register_blocking_lsm_notifier(struct notifier_block * nb)507 int register_blocking_lsm_notifier(struct notifier_block *nb)
508 {
509 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
510 nb);
511 }
512 EXPORT_SYMBOL(register_blocking_lsm_notifier);
513
unregister_blocking_lsm_notifier(struct notifier_block * nb)514 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
515 {
516 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
517 nb);
518 }
519 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
520
521 /**
522 * lsm_cred_alloc - allocate a composite cred blob
523 * @cred: the cred that needs a blob
524 * @gfp: allocation type
525 *
526 * Allocate the cred blob for all the modules
527 *
528 * Returns 0, or -ENOMEM if memory can't be allocated.
529 */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)530 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
531 {
532 if (blob_sizes.lbs_cred == 0) {
533 cred->security = NULL;
534 return 0;
535 }
536
537 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
538 if (cred->security == NULL)
539 return -ENOMEM;
540 return 0;
541 }
542
543 /**
544 * lsm_early_cred - during initialization allocate a composite cred blob
545 * @cred: the cred that needs a blob
546 *
547 * Allocate the cred blob for all the modules
548 */
lsm_early_cred(struct cred * cred)549 static void __init lsm_early_cred(struct cred *cred)
550 {
551 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
552
553 if (rc)
554 panic("%s: Early cred alloc failed.\n", __func__);
555 }
556
557 /**
558 * lsm_file_alloc - allocate a composite file blob
559 * @file: the file that needs a blob
560 *
561 * Allocate the file blob for all the modules
562 *
563 * Returns 0, or -ENOMEM if memory can't be allocated.
564 */
lsm_file_alloc(struct file * file)565 static int lsm_file_alloc(struct file *file)
566 {
567 if (!lsm_file_cache) {
568 file->f_security = NULL;
569 return 0;
570 }
571
572 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
573 if (file->f_security == NULL)
574 return -ENOMEM;
575 return 0;
576 }
577
578 /**
579 * lsm_inode_alloc - allocate a composite inode blob
580 * @inode: the inode that needs a blob
581 *
582 * Allocate the inode blob for all the modules
583 *
584 * Returns 0, or -ENOMEM if memory can't be allocated.
585 */
lsm_inode_alloc(struct inode * inode)586 int lsm_inode_alloc(struct inode *inode)
587 {
588 if (!lsm_inode_cache) {
589 inode->i_security = NULL;
590 return 0;
591 }
592
593 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
594 if (inode->i_security == NULL)
595 return -ENOMEM;
596 return 0;
597 }
598
599 /**
600 * lsm_task_alloc - allocate a composite task blob
601 * @task: the task that needs a blob
602 *
603 * Allocate the task blob for all the modules
604 *
605 * Returns 0, or -ENOMEM if memory can't be allocated.
606 */
lsm_task_alloc(struct task_struct * task)607 static int lsm_task_alloc(struct task_struct *task)
608 {
609 if (blob_sizes.lbs_task == 0) {
610 task->security = NULL;
611 return 0;
612 }
613
614 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
615 if (task->security == NULL)
616 return -ENOMEM;
617 return 0;
618 }
619
620 /**
621 * lsm_ipc_alloc - allocate a composite ipc blob
622 * @kip: the ipc that needs a blob
623 *
624 * Allocate the ipc blob for all the modules
625 *
626 * Returns 0, or -ENOMEM if memory can't be allocated.
627 */
lsm_ipc_alloc(struct kern_ipc_perm * kip)628 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
629 {
630 if (blob_sizes.lbs_ipc == 0) {
631 kip->security = NULL;
632 return 0;
633 }
634
635 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
636 if (kip->security == NULL)
637 return -ENOMEM;
638 return 0;
639 }
640
641 /**
642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
643 * @mp: the msg_msg that needs a blob
644 *
645 * Allocate the ipc blob for all the modules
646 *
647 * Returns 0, or -ENOMEM if memory can't be allocated.
648 */
lsm_msg_msg_alloc(struct msg_msg * mp)649 static int lsm_msg_msg_alloc(struct msg_msg *mp)
650 {
651 if (blob_sizes.lbs_msg_msg == 0) {
652 mp->security = NULL;
653 return 0;
654 }
655
656 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
657 if (mp->security == NULL)
658 return -ENOMEM;
659 return 0;
660 }
661
662 /**
663 * lsm_early_task - during initialization allocate a composite task blob
664 * @task: the task that needs a blob
665 *
666 * Allocate the task blob for all the modules
667 */
lsm_early_task(struct task_struct * task)668 static void __init lsm_early_task(struct task_struct *task)
669 {
670 int rc = lsm_task_alloc(task);
671
672 if (rc)
673 panic("%s: Early task alloc failed.\n", __func__);
674 }
675
676 /**
677 * lsm_superblock_alloc - allocate a composite superblock blob
678 * @sb: the superblock that needs a blob
679 *
680 * Allocate the superblock blob for all the modules
681 *
682 * Returns 0, or -ENOMEM if memory can't be allocated.
683 */
lsm_superblock_alloc(struct super_block * sb)684 static int lsm_superblock_alloc(struct super_block *sb)
685 {
686 if (blob_sizes.lbs_superblock == 0) {
687 sb->s_security = NULL;
688 return 0;
689 }
690
691 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
692 if (sb->s_security == NULL)
693 return -ENOMEM;
694 return 0;
695 }
696
697 /*
698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
699 * can be accessed with:
700 *
701 * LSM_RET_DEFAULT(<hook_name>)
702 *
703 * The macros below define static constants for the default value of each
704 * LSM hook.
705 */
706 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
707 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
708 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
709 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
710 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
711 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
712
713 #include <linux/lsm_hook_defs.h>
714 #undef LSM_HOOK
715
716 /*
717 * Hook list operation macros.
718 *
719 * call_void_hook:
720 * This is a hook that does not return a value.
721 *
722 * call_int_hook:
723 * This is a hook that returns a value.
724 */
725
726 #define call_void_hook(FUNC, ...) \
727 do { \
728 struct security_hook_list *P; \
729 \
730 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
731 P->hook.FUNC(__VA_ARGS__); \
732 } while (0)
733
734 #define call_int_hook(FUNC, IRC, ...) ({ \
735 int RC = IRC; \
736 do { \
737 struct security_hook_list *P; \
738 \
739 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
740 RC = P->hook.FUNC(__VA_ARGS__); \
741 if (RC != 0) \
742 break; \
743 } \
744 } while (0); \
745 RC; \
746 })
747
748 /* Security operations */
749
security_binder_set_context_mgr(const struct cred * mgr)750 int security_binder_set_context_mgr(const struct cred *mgr)
751 {
752 return call_int_hook(binder_set_context_mgr, 0, mgr);
753 }
754
security_binder_transaction(const struct cred * from,const struct cred * to)755 int security_binder_transaction(const struct cred *from,
756 const struct cred *to)
757 {
758 return call_int_hook(binder_transaction, 0, from, to);
759 }
760
security_binder_transfer_binder(const struct cred * from,const struct cred * to)761 int security_binder_transfer_binder(const struct cred *from,
762 const struct cred *to)
763 {
764 return call_int_hook(binder_transfer_binder, 0, from, to);
765 }
766
security_binder_transfer_file(const struct cred * from,const struct cred * to,struct file * file)767 int security_binder_transfer_file(const struct cred *from,
768 const struct cred *to, struct file *file)
769 {
770 return call_int_hook(binder_transfer_file, 0, from, to, file);
771 }
772
security_ptrace_access_check(struct task_struct * child,unsigned int mode)773 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
774 {
775 return call_int_hook(ptrace_access_check, 0, child, mode);
776 }
777
security_ptrace_traceme(struct task_struct * parent)778 int security_ptrace_traceme(struct task_struct *parent)
779 {
780 return call_int_hook(ptrace_traceme, 0, parent);
781 }
782
security_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)783 int security_capget(struct task_struct *target,
784 kernel_cap_t *effective,
785 kernel_cap_t *inheritable,
786 kernel_cap_t *permitted)
787 {
788 return call_int_hook(capget, 0, target,
789 effective, inheritable, permitted);
790 }
791
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)792 int security_capset(struct cred *new, const struct cred *old,
793 const kernel_cap_t *effective,
794 const kernel_cap_t *inheritable,
795 const kernel_cap_t *permitted)
796 {
797 return call_int_hook(capset, 0, new, old,
798 effective, inheritable, permitted);
799 }
800
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)801 int security_capable(const struct cred *cred,
802 struct user_namespace *ns,
803 int cap,
804 unsigned int opts)
805 {
806 return call_int_hook(capable, 0, cred, ns, cap, opts);
807 }
808
security_quotactl(int cmds,int type,int id,struct super_block * sb)809 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
810 {
811 return call_int_hook(quotactl, 0, cmds, type, id, sb);
812 }
813
security_quota_on(struct dentry * dentry)814 int security_quota_on(struct dentry *dentry)
815 {
816 return call_int_hook(quota_on, 0, dentry);
817 }
818
security_syslog(int type)819 int security_syslog(int type)
820 {
821 return call_int_hook(syslog, 0, type);
822 }
823
security_settime64(const struct timespec64 * ts,const struct timezone * tz)824 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
825 {
826 return call_int_hook(settime, 0, ts, tz);
827 }
828
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)829 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
830 {
831 struct security_hook_list *hp;
832 int cap_sys_admin = 1;
833 int rc;
834
835 /*
836 * The module will respond with a positive value if
837 * it thinks the __vm_enough_memory() call should be
838 * made with the cap_sys_admin set. If all of the modules
839 * agree that it should be set it will. If any module
840 * thinks it should not be set it won't.
841 */
842 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
843 rc = hp->hook.vm_enough_memory(mm, pages);
844 if (rc <= 0) {
845 cap_sys_admin = 0;
846 break;
847 }
848 }
849 return __vm_enough_memory(mm, pages, cap_sys_admin);
850 }
851
security_bprm_creds_for_exec(struct linux_binprm * bprm)852 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
853 {
854 return call_int_hook(bprm_creds_for_exec, 0, bprm);
855 }
856
security_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)857 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
858 {
859 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
860 }
861
security_bprm_check(struct linux_binprm * bprm)862 int security_bprm_check(struct linux_binprm *bprm)
863 {
864 int ret;
865
866 ret = call_int_hook(bprm_check_security, 0, bprm);
867 if (ret)
868 return ret;
869 return ima_bprm_check(bprm);
870 }
871
security_bprm_committing_creds(struct linux_binprm * bprm)872 void security_bprm_committing_creds(struct linux_binprm *bprm)
873 {
874 call_void_hook(bprm_committing_creds, bprm);
875 }
876
security_bprm_committed_creds(struct linux_binprm * bprm)877 void security_bprm_committed_creds(struct linux_binprm *bprm)
878 {
879 call_void_hook(bprm_committed_creds, bprm);
880 }
881
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)882 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
883 {
884 return call_int_hook(fs_context_dup, 0, fc, src_fc);
885 }
886
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)887 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
888 {
889 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
890 }
891
security_sb_alloc(struct super_block * sb)892 int security_sb_alloc(struct super_block *sb)
893 {
894 int rc = lsm_superblock_alloc(sb);
895
896 if (unlikely(rc))
897 return rc;
898 rc = call_int_hook(sb_alloc_security, 0, sb);
899 if (unlikely(rc))
900 security_sb_free(sb);
901 return rc;
902 }
903
security_sb_delete(struct super_block * sb)904 void security_sb_delete(struct super_block *sb)
905 {
906 call_void_hook(sb_delete, sb);
907 }
908
security_sb_free(struct super_block * sb)909 void security_sb_free(struct super_block *sb)
910 {
911 call_void_hook(sb_free_security, sb);
912 kfree(sb->s_security);
913 sb->s_security = NULL;
914 }
915
security_free_mnt_opts(void ** mnt_opts)916 void security_free_mnt_opts(void **mnt_opts)
917 {
918 if (!*mnt_opts)
919 return;
920 call_void_hook(sb_free_mnt_opts, *mnt_opts);
921 *mnt_opts = NULL;
922 }
923 EXPORT_SYMBOL(security_free_mnt_opts);
924
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)925 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
926 {
927 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
928 }
929 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
930
security_sb_mnt_opts_compat(struct super_block * sb,void * mnt_opts)931 int security_sb_mnt_opts_compat(struct super_block *sb,
932 void *mnt_opts)
933 {
934 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
935 }
936 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
937
security_sb_remount(struct super_block * sb,void * mnt_opts)938 int security_sb_remount(struct super_block *sb,
939 void *mnt_opts)
940 {
941 return call_int_hook(sb_remount, 0, sb, mnt_opts);
942 }
943 EXPORT_SYMBOL(security_sb_remount);
944
security_sb_kern_mount(struct super_block * sb)945 int security_sb_kern_mount(struct super_block *sb)
946 {
947 return call_int_hook(sb_kern_mount, 0, sb);
948 }
949
security_sb_show_options(struct seq_file * m,struct super_block * sb)950 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
951 {
952 return call_int_hook(sb_show_options, 0, m, sb);
953 }
954
security_sb_statfs(struct dentry * dentry)955 int security_sb_statfs(struct dentry *dentry)
956 {
957 return call_int_hook(sb_statfs, 0, dentry);
958 }
959
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)960 int security_sb_mount(const char *dev_name, const struct path *path,
961 const char *type, unsigned long flags, void *data)
962 {
963 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
964 }
965
security_sb_umount(struct vfsmount * mnt,int flags)966 int security_sb_umount(struct vfsmount *mnt, int flags)
967 {
968 return call_int_hook(sb_umount, 0, mnt, flags);
969 }
970
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)971 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
972 {
973 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
974 }
975
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)976 int security_sb_set_mnt_opts(struct super_block *sb,
977 void *mnt_opts,
978 unsigned long kern_flags,
979 unsigned long *set_kern_flags)
980 {
981 return call_int_hook(sb_set_mnt_opts,
982 mnt_opts ? -EOPNOTSUPP : 0, sb,
983 mnt_opts, kern_flags, set_kern_flags);
984 }
985 EXPORT_SYMBOL(security_sb_set_mnt_opts);
986
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)987 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
988 struct super_block *newsb,
989 unsigned long kern_flags,
990 unsigned long *set_kern_flags)
991 {
992 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
993 kern_flags, set_kern_flags);
994 }
995 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
996
security_add_mnt_opt(const char * option,const char * val,int len,void ** mnt_opts)997 int security_add_mnt_opt(const char *option, const char *val, int len,
998 void **mnt_opts)
999 {
1000 return call_int_hook(sb_add_mnt_opt, -EINVAL,
1001 option, val, len, mnt_opts);
1002 }
1003 EXPORT_SYMBOL(security_add_mnt_opt);
1004
security_move_mount(const struct path * from_path,const struct path * to_path)1005 int security_move_mount(const struct path *from_path, const struct path *to_path)
1006 {
1007 return call_int_hook(move_mount, 0, from_path, to_path);
1008 }
1009
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)1010 int security_path_notify(const struct path *path, u64 mask,
1011 unsigned int obj_type)
1012 {
1013 return call_int_hook(path_notify, 0, path, mask, obj_type);
1014 }
1015
security_inode_alloc(struct inode * inode)1016 int security_inode_alloc(struct inode *inode)
1017 {
1018 int rc = lsm_inode_alloc(inode);
1019
1020 if (unlikely(rc))
1021 return rc;
1022 rc = call_int_hook(inode_alloc_security, 0, inode);
1023 if (unlikely(rc))
1024 security_inode_free(inode);
1025 return rc;
1026 }
1027
inode_free_by_rcu(struct rcu_head * head)1028 static void inode_free_by_rcu(struct rcu_head *head)
1029 {
1030 /*
1031 * The rcu head is at the start of the inode blob
1032 */
1033 kmem_cache_free(lsm_inode_cache, head);
1034 }
1035
security_inode_free(struct inode * inode)1036 void security_inode_free(struct inode *inode)
1037 {
1038 integrity_inode_free(inode);
1039 call_void_hook(inode_free_security, inode);
1040 /*
1041 * The inode may still be referenced in a path walk and
1042 * a call to security_inode_permission() can be made
1043 * after inode_free_security() is called. Ideally, the VFS
1044 * wouldn't do this, but fixing that is a much harder
1045 * job. For now, simply free the i_security via RCU, and
1046 * leave the current inode->i_security pointer intact.
1047 * The inode will be freed after the RCU grace period too.
1048 */
1049 if (inode->i_security)
1050 call_rcu((struct rcu_head *)inode->i_security,
1051 inode_free_by_rcu);
1052 }
1053
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,const char ** xattr_name,void ** ctx,u32 * ctxlen)1054 int security_dentry_init_security(struct dentry *dentry, int mode,
1055 const struct qstr *name,
1056 const char **xattr_name, void **ctx,
1057 u32 *ctxlen)
1058 {
1059 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1060 name, xattr_name, ctx, ctxlen);
1061 }
1062 EXPORT_SYMBOL(security_dentry_init_security);
1063
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)1064 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1065 struct qstr *name,
1066 const struct cred *old, struct cred *new)
1067 {
1068 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1069 name, old, new);
1070 }
1071 EXPORT_SYMBOL(security_dentry_create_files_as);
1072
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1073 int security_inode_init_security(struct inode *inode, struct inode *dir,
1074 const struct qstr *qstr,
1075 const initxattrs initxattrs, void *fs_data)
1076 {
1077 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1078 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1079 int ret;
1080
1081 if (unlikely(IS_PRIVATE(inode)))
1082 return 0;
1083
1084 if (!initxattrs)
1085 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1086 dir, qstr, NULL, NULL, NULL);
1087 memset(new_xattrs, 0, sizeof(new_xattrs));
1088 lsm_xattr = new_xattrs;
1089 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1090 &lsm_xattr->name,
1091 &lsm_xattr->value,
1092 &lsm_xattr->value_len);
1093 if (ret)
1094 goto out;
1095
1096 evm_xattr = lsm_xattr + 1;
1097 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1098 if (ret)
1099 goto out;
1100 ret = initxattrs(inode, new_xattrs, fs_data);
1101 out:
1102 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1103 kfree(xattr->value);
1104 return (ret == -EOPNOTSUPP) ? 0 : ret;
1105 }
1106 EXPORT_SYMBOL(security_inode_init_security);
1107
security_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)1108 int security_inode_init_security_anon(struct inode *inode,
1109 const struct qstr *name,
1110 const struct inode *context_inode)
1111 {
1112 return call_int_hook(inode_init_security_anon, 0, inode, name,
1113 context_inode);
1114 }
1115
security_old_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const char ** name,void ** value,size_t * len)1116 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1117 const struct qstr *qstr, const char **name,
1118 void **value, size_t *len)
1119 {
1120 if (unlikely(IS_PRIVATE(inode)))
1121 return -EOPNOTSUPP;
1122 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1123 qstr, name, value, len);
1124 }
1125 EXPORT_SYMBOL(security_old_inode_init_security);
1126
1127 #ifdef CONFIG_SECURITY_PATH
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1128 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1129 unsigned int dev)
1130 {
1131 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1132 return 0;
1133 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1134 }
1135 EXPORT_SYMBOL(security_path_mknod);
1136
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1137 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1138 {
1139 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1140 return 0;
1141 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1142 }
1143 EXPORT_SYMBOL(security_path_mkdir);
1144
security_path_rmdir(const struct path * dir,struct dentry * dentry)1145 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1146 {
1147 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1148 return 0;
1149 return call_int_hook(path_rmdir, 0, dir, dentry);
1150 }
1151
security_path_unlink(const struct path * dir,struct dentry * dentry)1152 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1153 {
1154 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1155 return 0;
1156 return call_int_hook(path_unlink, 0, dir, dentry);
1157 }
1158 EXPORT_SYMBOL(security_path_unlink);
1159
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1160 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1161 const char *old_name)
1162 {
1163 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1164 return 0;
1165 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1166 }
1167
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1168 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1169 struct dentry *new_dentry)
1170 {
1171 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1172 return 0;
1173 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1174 }
1175
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)1176 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1177 const struct path *new_dir, struct dentry *new_dentry,
1178 unsigned int flags)
1179 {
1180 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1181 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1182 return 0;
1183
1184 if (flags & RENAME_EXCHANGE) {
1185 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1186 old_dir, old_dentry);
1187 if (err)
1188 return err;
1189 }
1190
1191 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1192 new_dentry);
1193 }
1194 EXPORT_SYMBOL(security_path_rename);
1195
security_path_truncate(const struct path * path)1196 int security_path_truncate(const struct path *path)
1197 {
1198 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1199 return 0;
1200 return call_int_hook(path_truncate, 0, path);
1201 }
1202
security_path_chmod(const struct path * path,umode_t mode)1203 int security_path_chmod(const struct path *path, umode_t mode)
1204 {
1205 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1206 return 0;
1207 return call_int_hook(path_chmod, 0, path, mode);
1208 }
1209
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)1210 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1211 {
1212 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1213 return 0;
1214 return call_int_hook(path_chown, 0, path, uid, gid);
1215 }
1216
security_path_chroot(const struct path * path)1217 int security_path_chroot(const struct path *path)
1218 {
1219 return call_int_hook(path_chroot, 0, path);
1220 }
1221 #endif
1222
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)1223 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1224 {
1225 if (unlikely(IS_PRIVATE(dir)))
1226 return 0;
1227 return call_int_hook(inode_create, 0, dir, dentry, mode);
1228 }
1229 EXPORT_SYMBOL_GPL(security_inode_create);
1230
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)1231 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1232 struct dentry *new_dentry)
1233 {
1234 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1235 return 0;
1236 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1237 }
1238
security_inode_unlink(struct inode * dir,struct dentry * dentry)1239 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1240 {
1241 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1242 return 0;
1243 return call_int_hook(inode_unlink, 0, dir, dentry);
1244 }
1245
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)1246 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1247 const char *old_name)
1248 {
1249 if (unlikely(IS_PRIVATE(dir)))
1250 return 0;
1251 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1252 }
1253
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1254 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1255 {
1256 if (unlikely(IS_PRIVATE(dir)))
1257 return 0;
1258 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1259 }
1260 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1261
security_inode_rmdir(struct inode * dir,struct dentry * dentry)1262 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1263 {
1264 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1265 return 0;
1266 return call_int_hook(inode_rmdir, 0, dir, dentry);
1267 }
1268
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1269 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1270 {
1271 if (unlikely(IS_PRIVATE(dir)))
1272 return 0;
1273 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1274 }
1275
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1276 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1277 struct inode *new_dir, struct dentry *new_dentry,
1278 unsigned int flags)
1279 {
1280 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1281 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1282 return 0;
1283
1284 if (flags & RENAME_EXCHANGE) {
1285 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1286 old_dir, old_dentry);
1287 if (err)
1288 return err;
1289 }
1290
1291 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1292 new_dir, new_dentry);
1293 }
1294
security_inode_readlink(struct dentry * dentry)1295 int security_inode_readlink(struct dentry *dentry)
1296 {
1297 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1298 return 0;
1299 return call_int_hook(inode_readlink, 0, dentry);
1300 }
1301
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)1302 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1303 bool rcu)
1304 {
1305 if (unlikely(IS_PRIVATE(inode)))
1306 return 0;
1307 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1308 }
1309
security_inode_permission(struct inode * inode,int mask)1310 int security_inode_permission(struct inode *inode, int mask)
1311 {
1312 if (unlikely(IS_PRIVATE(inode)))
1313 return 0;
1314 return call_int_hook(inode_permission, 0, inode, mask);
1315 }
1316
security_inode_setattr(struct dentry * dentry,struct iattr * attr)1317 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1318 {
1319 int ret;
1320
1321 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1322 return 0;
1323 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1324 if (ret)
1325 return ret;
1326 return evm_inode_setattr(dentry, attr);
1327 }
1328 EXPORT_SYMBOL_GPL(security_inode_setattr);
1329
security_inode_getattr(const struct path * path)1330 int security_inode_getattr(const struct path *path)
1331 {
1332 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1333 return 0;
1334 return call_int_hook(inode_getattr, 0, path);
1335 }
1336
security_inode_setxattr(struct user_namespace * mnt_userns,struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1337 int security_inode_setxattr(struct user_namespace *mnt_userns,
1338 struct dentry *dentry, const char *name,
1339 const void *value, size_t size, int flags)
1340 {
1341 int ret;
1342
1343 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1344 return 0;
1345 /*
1346 * SELinux and Smack integrate the cap call,
1347 * so assume that all LSMs supplying this call do so.
1348 */
1349 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1350 size, flags);
1351
1352 if (ret == 1)
1353 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1354 if (ret)
1355 return ret;
1356 ret = ima_inode_setxattr(dentry, name, value, size);
1357 if (ret)
1358 return ret;
1359 return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1360 }
1361
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1362 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1363 const void *value, size_t size, int flags)
1364 {
1365 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1366 return;
1367 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1368 evm_inode_post_setxattr(dentry, name, value, size);
1369 }
1370
security_inode_getxattr(struct dentry * dentry,const char * name)1371 int security_inode_getxattr(struct dentry *dentry, const char *name)
1372 {
1373 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1374 return 0;
1375 return call_int_hook(inode_getxattr, 0, dentry, name);
1376 }
1377
security_inode_listxattr(struct dentry * dentry)1378 int security_inode_listxattr(struct dentry *dentry)
1379 {
1380 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1381 return 0;
1382 return call_int_hook(inode_listxattr, 0, dentry);
1383 }
1384
security_inode_removexattr(struct user_namespace * mnt_userns,struct dentry * dentry,const char * name)1385 int security_inode_removexattr(struct user_namespace *mnt_userns,
1386 struct dentry *dentry, const char *name)
1387 {
1388 int ret;
1389
1390 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1391 return 0;
1392 /*
1393 * SELinux and Smack integrate the cap call,
1394 * so assume that all LSMs supplying this call do so.
1395 */
1396 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1397 if (ret == 1)
1398 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1399 if (ret)
1400 return ret;
1401 ret = ima_inode_removexattr(dentry, name);
1402 if (ret)
1403 return ret;
1404 return evm_inode_removexattr(mnt_userns, dentry, name);
1405 }
1406
security_inode_need_killpriv(struct dentry * dentry)1407 int security_inode_need_killpriv(struct dentry *dentry)
1408 {
1409 return call_int_hook(inode_need_killpriv, 0, dentry);
1410 }
1411
security_inode_killpriv(struct user_namespace * mnt_userns,struct dentry * dentry)1412 int security_inode_killpriv(struct user_namespace *mnt_userns,
1413 struct dentry *dentry)
1414 {
1415 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1416 }
1417
security_inode_getsecurity(struct user_namespace * mnt_userns,struct inode * inode,const char * name,void ** buffer,bool alloc)1418 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1419 struct inode *inode, const char *name,
1420 void **buffer, bool alloc)
1421 {
1422 struct security_hook_list *hp;
1423 int rc;
1424
1425 if (unlikely(IS_PRIVATE(inode)))
1426 return LSM_RET_DEFAULT(inode_getsecurity);
1427 /*
1428 * Only one module will provide an attribute with a given name.
1429 */
1430 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1431 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1432 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1433 return rc;
1434 }
1435 return LSM_RET_DEFAULT(inode_getsecurity);
1436 }
1437
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)1438 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1439 {
1440 struct security_hook_list *hp;
1441 int rc;
1442
1443 if (unlikely(IS_PRIVATE(inode)))
1444 return LSM_RET_DEFAULT(inode_setsecurity);
1445 /*
1446 * Only one module will provide an attribute with a given name.
1447 */
1448 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1449 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1450 flags);
1451 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1452 return rc;
1453 }
1454 return LSM_RET_DEFAULT(inode_setsecurity);
1455 }
1456
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)1457 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1458 {
1459 if (unlikely(IS_PRIVATE(inode)))
1460 return 0;
1461 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1462 }
1463 EXPORT_SYMBOL(security_inode_listsecurity);
1464
security_inode_getsecid(struct inode * inode,u32 * secid)1465 void security_inode_getsecid(struct inode *inode, u32 *secid)
1466 {
1467 call_void_hook(inode_getsecid, inode, secid);
1468 }
1469
security_inode_copy_up(struct dentry * src,struct cred ** new)1470 int security_inode_copy_up(struct dentry *src, struct cred **new)
1471 {
1472 return call_int_hook(inode_copy_up, 0, src, new);
1473 }
1474 EXPORT_SYMBOL(security_inode_copy_up);
1475
security_inode_copy_up_xattr(const char * name)1476 int security_inode_copy_up_xattr(const char *name)
1477 {
1478 struct security_hook_list *hp;
1479 int rc;
1480
1481 /*
1482 * The implementation can return 0 (accept the xattr), 1 (discard the
1483 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1484 * any other error code incase of an error.
1485 */
1486 hlist_for_each_entry(hp,
1487 &security_hook_heads.inode_copy_up_xattr, list) {
1488 rc = hp->hook.inode_copy_up_xattr(name);
1489 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1490 return rc;
1491 }
1492
1493 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1494 }
1495 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1496
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)1497 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1498 struct kernfs_node *kn)
1499 {
1500 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1501 }
1502
security_file_permission(struct file * file,int mask)1503 int security_file_permission(struct file *file, int mask)
1504 {
1505 int ret;
1506
1507 ret = call_int_hook(file_permission, 0, file, mask);
1508 if (ret)
1509 return ret;
1510
1511 return fsnotify_perm(file, mask);
1512 }
1513
security_file_alloc(struct file * file)1514 int security_file_alloc(struct file *file)
1515 {
1516 int rc = lsm_file_alloc(file);
1517
1518 if (rc)
1519 return rc;
1520 rc = call_int_hook(file_alloc_security, 0, file);
1521 if (unlikely(rc))
1522 security_file_free(file);
1523 return rc;
1524 }
1525
security_file_free(struct file * file)1526 void security_file_free(struct file *file)
1527 {
1528 void *blob;
1529
1530 call_void_hook(file_free_security, file);
1531
1532 blob = file->f_security;
1533 if (blob) {
1534 file->f_security = NULL;
1535 kmem_cache_free(lsm_file_cache, blob);
1536 }
1537 }
1538
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1539 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1540 {
1541 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1542 }
1543 EXPORT_SYMBOL_GPL(security_file_ioctl);
1544
mmap_prot(struct file * file,unsigned long prot)1545 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1546 {
1547 /*
1548 * Does we have PROT_READ and does the application expect
1549 * it to imply PROT_EXEC? If not, nothing to talk about...
1550 */
1551 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1552 return prot;
1553 if (!(current->personality & READ_IMPLIES_EXEC))
1554 return prot;
1555 /*
1556 * if that's an anonymous mapping, let it.
1557 */
1558 if (!file)
1559 return prot | PROT_EXEC;
1560 /*
1561 * ditto if it's not on noexec mount, except that on !MMU we need
1562 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1563 */
1564 if (!path_noexec(&file->f_path)) {
1565 #ifndef CONFIG_MMU
1566 if (file->f_op->mmap_capabilities) {
1567 unsigned caps = file->f_op->mmap_capabilities(file);
1568 if (!(caps & NOMMU_MAP_EXEC))
1569 return prot;
1570 }
1571 #endif
1572 return prot | PROT_EXEC;
1573 }
1574 /* anything on noexec mount won't get PROT_EXEC */
1575 return prot;
1576 }
1577
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)1578 int security_mmap_file(struct file *file, unsigned long prot,
1579 unsigned long flags)
1580 {
1581 int ret;
1582 ret = call_int_hook(mmap_file, 0, file, prot,
1583 mmap_prot(file, prot), flags);
1584 if (ret)
1585 return ret;
1586 return ima_file_mmap(file, prot);
1587 }
1588
security_mmap_addr(unsigned long addr)1589 int security_mmap_addr(unsigned long addr)
1590 {
1591 return call_int_hook(mmap_addr, 0, addr);
1592 }
1593
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)1594 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1595 unsigned long prot)
1596 {
1597 int ret;
1598
1599 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1600 if (ret)
1601 return ret;
1602 return ima_file_mprotect(vma, prot);
1603 }
1604
security_file_lock(struct file * file,unsigned int cmd)1605 int security_file_lock(struct file *file, unsigned int cmd)
1606 {
1607 return call_int_hook(file_lock, 0, file, cmd);
1608 }
1609
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1610 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1611 {
1612 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1613 }
1614
security_file_set_fowner(struct file * file)1615 void security_file_set_fowner(struct file *file)
1616 {
1617 call_void_hook(file_set_fowner, file);
1618 }
1619
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)1620 int security_file_send_sigiotask(struct task_struct *tsk,
1621 struct fown_struct *fown, int sig)
1622 {
1623 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1624 }
1625
security_file_receive(struct file * file)1626 int security_file_receive(struct file *file)
1627 {
1628 return call_int_hook(file_receive, 0, file);
1629 }
1630
security_file_open(struct file * file)1631 int security_file_open(struct file *file)
1632 {
1633 int ret;
1634
1635 ret = call_int_hook(file_open, 0, file);
1636 if (ret)
1637 return ret;
1638
1639 return fsnotify_perm(file, MAY_OPEN);
1640 }
1641
security_task_alloc(struct task_struct * task,unsigned long clone_flags)1642 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1643 {
1644 int rc = lsm_task_alloc(task);
1645
1646 if (rc)
1647 return rc;
1648 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1649 if (unlikely(rc))
1650 security_task_free(task);
1651 return rc;
1652 }
1653
security_task_free(struct task_struct * task)1654 void security_task_free(struct task_struct *task)
1655 {
1656 call_void_hook(task_free, task);
1657
1658 kfree(task->security);
1659 task->security = NULL;
1660 }
1661
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)1662 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1663 {
1664 int rc = lsm_cred_alloc(cred, gfp);
1665
1666 if (rc)
1667 return rc;
1668
1669 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1670 if (unlikely(rc))
1671 security_cred_free(cred);
1672 return rc;
1673 }
1674
security_cred_free(struct cred * cred)1675 void security_cred_free(struct cred *cred)
1676 {
1677 /*
1678 * There is a failure case in prepare_creds() that
1679 * may result in a call here with ->security being NULL.
1680 */
1681 if (unlikely(cred->security == NULL))
1682 return;
1683
1684 call_void_hook(cred_free, cred);
1685
1686 kfree(cred->security);
1687 cred->security = NULL;
1688 }
1689
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)1690 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1691 {
1692 int rc = lsm_cred_alloc(new, gfp);
1693
1694 if (rc)
1695 return rc;
1696
1697 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1698 if (unlikely(rc))
1699 security_cred_free(new);
1700 return rc;
1701 }
1702
security_transfer_creds(struct cred * new,const struct cred * old)1703 void security_transfer_creds(struct cred *new, const struct cred *old)
1704 {
1705 call_void_hook(cred_transfer, new, old);
1706 }
1707
security_cred_getsecid(const struct cred * c,u32 * secid)1708 void security_cred_getsecid(const struct cred *c, u32 *secid)
1709 {
1710 *secid = 0;
1711 call_void_hook(cred_getsecid, c, secid);
1712 }
1713 EXPORT_SYMBOL(security_cred_getsecid);
1714
security_kernel_act_as(struct cred * new,u32 secid)1715 int security_kernel_act_as(struct cred *new, u32 secid)
1716 {
1717 return call_int_hook(kernel_act_as, 0, new, secid);
1718 }
1719
security_kernel_create_files_as(struct cred * new,struct inode * inode)1720 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1721 {
1722 return call_int_hook(kernel_create_files_as, 0, new, inode);
1723 }
1724
security_kernel_module_request(char * kmod_name)1725 int security_kernel_module_request(char *kmod_name)
1726 {
1727 int ret;
1728
1729 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1730 if (ret)
1731 return ret;
1732 return integrity_kernel_module_request(kmod_name);
1733 }
1734
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)1735 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1736 bool contents)
1737 {
1738 int ret;
1739
1740 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1741 if (ret)
1742 return ret;
1743 return ima_read_file(file, id, contents);
1744 }
1745 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1746
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)1747 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1748 enum kernel_read_file_id id)
1749 {
1750 int ret;
1751
1752 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1753 if (ret)
1754 return ret;
1755 return ima_post_read_file(file, buf, size, id);
1756 }
1757 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1758
security_kernel_load_data(enum kernel_load_data_id id,bool contents)1759 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1760 {
1761 int ret;
1762
1763 ret = call_int_hook(kernel_load_data, 0, id, contents);
1764 if (ret)
1765 return ret;
1766 return ima_load_data(id, contents);
1767 }
1768 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1769
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)1770 int security_kernel_post_load_data(char *buf, loff_t size,
1771 enum kernel_load_data_id id,
1772 char *description)
1773 {
1774 int ret;
1775
1776 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1777 description);
1778 if (ret)
1779 return ret;
1780 return ima_post_load_data(buf, size, id, description);
1781 }
1782 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1783
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1784 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1785 int flags)
1786 {
1787 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1788 }
1789
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)1790 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1791 int flags)
1792 {
1793 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1794 }
1795
security_task_setpgid(struct task_struct * p,pid_t pgid)1796 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1797 {
1798 return call_int_hook(task_setpgid, 0, p, pgid);
1799 }
1800
security_task_getpgid(struct task_struct * p)1801 int security_task_getpgid(struct task_struct *p)
1802 {
1803 return call_int_hook(task_getpgid, 0, p);
1804 }
1805
security_task_getsid(struct task_struct * p)1806 int security_task_getsid(struct task_struct *p)
1807 {
1808 return call_int_hook(task_getsid, 0, p);
1809 }
1810
security_task_getsecid_subj(struct task_struct * p,u32 * secid)1811 void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1812 {
1813 *secid = 0;
1814 call_void_hook(task_getsecid_subj, p, secid);
1815 }
1816 EXPORT_SYMBOL(security_task_getsecid_subj);
1817
security_task_getsecid_obj(struct task_struct * p,u32 * secid)1818 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1819 {
1820 *secid = 0;
1821 call_void_hook(task_getsecid_obj, p, secid);
1822 }
1823 EXPORT_SYMBOL(security_task_getsecid_obj);
1824
security_task_setnice(struct task_struct * p,int nice)1825 int security_task_setnice(struct task_struct *p, int nice)
1826 {
1827 return call_int_hook(task_setnice, 0, p, nice);
1828 }
1829
security_task_setioprio(struct task_struct * p,int ioprio)1830 int security_task_setioprio(struct task_struct *p, int ioprio)
1831 {
1832 return call_int_hook(task_setioprio, 0, p, ioprio);
1833 }
1834
security_task_getioprio(struct task_struct * p)1835 int security_task_getioprio(struct task_struct *p)
1836 {
1837 return call_int_hook(task_getioprio, 0, p);
1838 }
1839
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)1840 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1841 unsigned int flags)
1842 {
1843 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1844 }
1845
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)1846 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1847 struct rlimit *new_rlim)
1848 {
1849 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1850 }
1851
security_task_setscheduler(struct task_struct * p)1852 int security_task_setscheduler(struct task_struct *p)
1853 {
1854 return call_int_hook(task_setscheduler, 0, p);
1855 }
1856
security_task_getscheduler(struct task_struct * p)1857 int security_task_getscheduler(struct task_struct *p)
1858 {
1859 return call_int_hook(task_getscheduler, 0, p);
1860 }
1861
security_task_movememory(struct task_struct * p)1862 int security_task_movememory(struct task_struct *p)
1863 {
1864 return call_int_hook(task_movememory, 0, p);
1865 }
1866
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)1867 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1868 int sig, const struct cred *cred)
1869 {
1870 return call_int_hook(task_kill, 0, p, info, sig, cred);
1871 }
1872
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1873 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1874 unsigned long arg4, unsigned long arg5)
1875 {
1876 int thisrc;
1877 int rc = LSM_RET_DEFAULT(task_prctl);
1878 struct security_hook_list *hp;
1879
1880 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1881 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1882 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1883 rc = thisrc;
1884 if (thisrc != 0)
1885 break;
1886 }
1887 }
1888 return rc;
1889 }
1890
security_task_to_inode(struct task_struct * p,struct inode * inode)1891 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1892 {
1893 call_void_hook(task_to_inode, p, inode);
1894 }
1895
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)1896 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1897 {
1898 return call_int_hook(ipc_permission, 0, ipcp, flag);
1899 }
1900
security_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)1901 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1902 {
1903 *secid = 0;
1904 call_void_hook(ipc_getsecid, ipcp, secid);
1905 }
1906
security_msg_msg_alloc(struct msg_msg * msg)1907 int security_msg_msg_alloc(struct msg_msg *msg)
1908 {
1909 int rc = lsm_msg_msg_alloc(msg);
1910
1911 if (unlikely(rc))
1912 return rc;
1913 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1914 if (unlikely(rc))
1915 security_msg_msg_free(msg);
1916 return rc;
1917 }
1918
security_msg_msg_free(struct msg_msg * msg)1919 void security_msg_msg_free(struct msg_msg *msg)
1920 {
1921 call_void_hook(msg_msg_free_security, msg);
1922 kfree(msg->security);
1923 msg->security = NULL;
1924 }
1925
security_msg_queue_alloc(struct kern_ipc_perm * msq)1926 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1927 {
1928 int rc = lsm_ipc_alloc(msq);
1929
1930 if (unlikely(rc))
1931 return rc;
1932 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1933 if (unlikely(rc))
1934 security_msg_queue_free(msq);
1935 return rc;
1936 }
1937
security_msg_queue_free(struct kern_ipc_perm * msq)1938 void security_msg_queue_free(struct kern_ipc_perm *msq)
1939 {
1940 call_void_hook(msg_queue_free_security, msq);
1941 kfree(msq->security);
1942 msq->security = NULL;
1943 }
1944
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)1945 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1946 {
1947 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1948 }
1949
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)1950 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1951 {
1952 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1953 }
1954
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)1955 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1956 struct msg_msg *msg, int msqflg)
1957 {
1958 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1959 }
1960
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)1961 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1962 struct task_struct *target, long type, int mode)
1963 {
1964 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1965 }
1966
security_shm_alloc(struct kern_ipc_perm * shp)1967 int security_shm_alloc(struct kern_ipc_perm *shp)
1968 {
1969 int rc = lsm_ipc_alloc(shp);
1970
1971 if (unlikely(rc))
1972 return rc;
1973 rc = call_int_hook(shm_alloc_security, 0, shp);
1974 if (unlikely(rc))
1975 security_shm_free(shp);
1976 return rc;
1977 }
1978
security_shm_free(struct kern_ipc_perm * shp)1979 void security_shm_free(struct kern_ipc_perm *shp)
1980 {
1981 call_void_hook(shm_free_security, shp);
1982 kfree(shp->security);
1983 shp->security = NULL;
1984 }
1985
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)1986 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1987 {
1988 return call_int_hook(shm_associate, 0, shp, shmflg);
1989 }
1990
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)1991 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1992 {
1993 return call_int_hook(shm_shmctl, 0, shp, cmd);
1994 }
1995
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)1996 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1997 {
1998 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1999 }
2000
security_sem_alloc(struct kern_ipc_perm * sma)2001 int security_sem_alloc(struct kern_ipc_perm *sma)
2002 {
2003 int rc = lsm_ipc_alloc(sma);
2004
2005 if (unlikely(rc))
2006 return rc;
2007 rc = call_int_hook(sem_alloc_security, 0, sma);
2008 if (unlikely(rc))
2009 security_sem_free(sma);
2010 return rc;
2011 }
2012
security_sem_free(struct kern_ipc_perm * sma)2013 void security_sem_free(struct kern_ipc_perm *sma)
2014 {
2015 call_void_hook(sem_free_security, sma);
2016 kfree(sma->security);
2017 sma->security = NULL;
2018 }
2019
security_sem_associate(struct kern_ipc_perm * sma,int semflg)2020 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2021 {
2022 return call_int_hook(sem_associate, 0, sma, semflg);
2023 }
2024
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)2025 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2026 {
2027 return call_int_hook(sem_semctl, 0, sma, cmd);
2028 }
2029
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)2030 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2031 unsigned nsops, int alter)
2032 {
2033 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2034 }
2035
security_d_instantiate(struct dentry * dentry,struct inode * inode)2036 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2037 {
2038 if (unlikely(inode && IS_PRIVATE(inode)))
2039 return;
2040 call_void_hook(d_instantiate, dentry, inode);
2041 }
2042 EXPORT_SYMBOL(security_d_instantiate);
2043
security_getprocattr(struct task_struct * p,const char * lsm,char * name,char ** value)2044 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2045 char **value)
2046 {
2047 struct security_hook_list *hp;
2048
2049 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2050 if (lsm != NULL && strcmp(lsm, hp->lsm))
2051 continue;
2052 return hp->hook.getprocattr(p, name, value);
2053 }
2054 return LSM_RET_DEFAULT(getprocattr);
2055 }
2056
security_setprocattr(const char * lsm,const char * name,void * value,size_t size)2057 int security_setprocattr(const char *lsm, const char *name, void *value,
2058 size_t size)
2059 {
2060 struct security_hook_list *hp;
2061
2062 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2063 if (lsm != NULL && strcmp(lsm, hp->lsm))
2064 continue;
2065 return hp->hook.setprocattr(name, value, size);
2066 }
2067 return LSM_RET_DEFAULT(setprocattr);
2068 }
2069
security_netlink_send(struct sock * sk,struct sk_buff * skb)2070 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2071 {
2072 return call_int_hook(netlink_send, 0, sk, skb);
2073 }
2074
security_ismaclabel(const char * name)2075 int security_ismaclabel(const char *name)
2076 {
2077 return call_int_hook(ismaclabel, 0, name);
2078 }
2079 EXPORT_SYMBOL(security_ismaclabel);
2080
security_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)2081 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2082 {
2083 struct security_hook_list *hp;
2084 int rc;
2085
2086 /*
2087 * Currently, only one LSM can implement secid_to_secctx (i.e this
2088 * LSM hook is not "stackable").
2089 */
2090 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2091 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2092 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2093 return rc;
2094 }
2095
2096 return LSM_RET_DEFAULT(secid_to_secctx);
2097 }
2098 EXPORT_SYMBOL(security_secid_to_secctx);
2099
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)2100 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2101 {
2102 *secid = 0;
2103 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2104 }
2105 EXPORT_SYMBOL(security_secctx_to_secid);
2106
security_release_secctx(char * secdata,u32 seclen)2107 void security_release_secctx(char *secdata, u32 seclen)
2108 {
2109 call_void_hook(release_secctx, secdata, seclen);
2110 }
2111 EXPORT_SYMBOL(security_release_secctx);
2112
security_inode_invalidate_secctx(struct inode * inode)2113 void security_inode_invalidate_secctx(struct inode *inode)
2114 {
2115 call_void_hook(inode_invalidate_secctx, inode);
2116 }
2117 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2118
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)2119 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2120 {
2121 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2122 }
2123 EXPORT_SYMBOL(security_inode_notifysecctx);
2124
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)2125 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2126 {
2127 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2128 }
2129 EXPORT_SYMBOL(security_inode_setsecctx);
2130
security_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)2131 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2132 {
2133 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2134 }
2135 EXPORT_SYMBOL(security_inode_getsecctx);
2136
2137 #ifdef CONFIG_WATCH_QUEUE
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)2138 int security_post_notification(const struct cred *w_cred,
2139 const struct cred *cred,
2140 struct watch_notification *n)
2141 {
2142 return call_int_hook(post_notification, 0, w_cred, cred, n);
2143 }
2144 #endif /* CONFIG_WATCH_QUEUE */
2145
2146 #ifdef CONFIG_KEY_NOTIFICATIONS
security_watch_key(struct key * key)2147 int security_watch_key(struct key *key)
2148 {
2149 return call_int_hook(watch_key, 0, key);
2150 }
2151 #endif
2152
2153 #ifdef CONFIG_SECURITY_NETWORK
2154
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)2155 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2156 {
2157 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2158 }
2159 EXPORT_SYMBOL(security_unix_stream_connect);
2160
security_unix_may_send(struct socket * sock,struct socket * other)2161 int security_unix_may_send(struct socket *sock, struct socket *other)
2162 {
2163 return call_int_hook(unix_may_send, 0, sock, other);
2164 }
2165 EXPORT_SYMBOL(security_unix_may_send);
2166
security_socket_create(int family,int type,int protocol,int kern)2167 int security_socket_create(int family, int type, int protocol, int kern)
2168 {
2169 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2170 }
2171
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)2172 int security_socket_post_create(struct socket *sock, int family,
2173 int type, int protocol, int kern)
2174 {
2175 return call_int_hook(socket_post_create, 0, sock, family, type,
2176 protocol, kern);
2177 }
2178
security_socket_socketpair(struct socket * socka,struct socket * sockb)2179 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2180 {
2181 return call_int_hook(socket_socketpair, 0, socka, sockb);
2182 }
2183 EXPORT_SYMBOL(security_socket_socketpair);
2184
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)2185 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2186 {
2187 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2188 }
2189
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)2190 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2191 {
2192 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2193 }
2194
security_socket_listen(struct socket * sock,int backlog)2195 int security_socket_listen(struct socket *sock, int backlog)
2196 {
2197 return call_int_hook(socket_listen, 0, sock, backlog);
2198 }
2199
security_socket_accept(struct socket * sock,struct socket * newsock)2200 int security_socket_accept(struct socket *sock, struct socket *newsock)
2201 {
2202 return call_int_hook(socket_accept, 0, sock, newsock);
2203 }
2204
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)2205 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2206 {
2207 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2208 }
2209
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)2210 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2211 int size, int flags)
2212 {
2213 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2214 }
2215
security_socket_getsockname(struct socket * sock)2216 int security_socket_getsockname(struct socket *sock)
2217 {
2218 return call_int_hook(socket_getsockname, 0, sock);
2219 }
2220
security_socket_getpeername(struct socket * sock)2221 int security_socket_getpeername(struct socket *sock)
2222 {
2223 return call_int_hook(socket_getpeername, 0, sock);
2224 }
2225
security_socket_getsockopt(struct socket * sock,int level,int optname)2226 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2227 {
2228 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2229 }
2230
security_socket_setsockopt(struct socket * sock,int level,int optname)2231 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2232 {
2233 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2234 }
2235
security_socket_shutdown(struct socket * sock,int how)2236 int security_socket_shutdown(struct socket *sock, int how)
2237 {
2238 return call_int_hook(socket_shutdown, 0, sock, how);
2239 }
2240
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)2241 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2242 {
2243 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2244 }
2245 EXPORT_SYMBOL(security_sock_rcv_skb);
2246
security_socket_getpeersec_stream(struct socket * sock,char __user * optval,int __user * optlen,unsigned len)2247 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2248 int __user *optlen, unsigned len)
2249 {
2250 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2251 optval, optlen, len);
2252 }
2253
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)2254 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2255 {
2256 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2257 skb, secid);
2258 }
2259 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2260
security_sk_alloc(struct sock * sk,int family,gfp_t priority)2261 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2262 {
2263 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2264 }
2265
security_sk_free(struct sock * sk)2266 void security_sk_free(struct sock *sk)
2267 {
2268 call_void_hook(sk_free_security, sk);
2269 }
2270
security_sk_clone(const struct sock * sk,struct sock * newsk)2271 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2272 {
2273 call_void_hook(sk_clone_security, sk, newsk);
2274 }
2275 EXPORT_SYMBOL(security_sk_clone);
2276
security_sk_classify_flow(struct sock * sk,struct flowi_common * flic)2277 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2278 {
2279 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2280 }
2281 EXPORT_SYMBOL(security_sk_classify_flow);
2282
security_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)2283 void security_req_classify_flow(const struct request_sock *req,
2284 struct flowi_common *flic)
2285 {
2286 call_void_hook(req_classify_flow, req, flic);
2287 }
2288 EXPORT_SYMBOL(security_req_classify_flow);
2289
security_sock_graft(struct sock * sk,struct socket * parent)2290 void security_sock_graft(struct sock *sk, struct socket *parent)
2291 {
2292 call_void_hook(sock_graft, sk, parent);
2293 }
2294 EXPORT_SYMBOL(security_sock_graft);
2295
security_inet_conn_request(const struct sock * sk,struct sk_buff * skb,struct request_sock * req)2296 int security_inet_conn_request(const struct sock *sk,
2297 struct sk_buff *skb, struct request_sock *req)
2298 {
2299 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2300 }
2301 EXPORT_SYMBOL(security_inet_conn_request);
2302
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)2303 void security_inet_csk_clone(struct sock *newsk,
2304 const struct request_sock *req)
2305 {
2306 call_void_hook(inet_csk_clone, newsk, req);
2307 }
2308
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)2309 void security_inet_conn_established(struct sock *sk,
2310 struct sk_buff *skb)
2311 {
2312 call_void_hook(inet_conn_established, sk, skb);
2313 }
2314 EXPORT_SYMBOL(security_inet_conn_established);
2315
security_secmark_relabel_packet(u32 secid)2316 int security_secmark_relabel_packet(u32 secid)
2317 {
2318 return call_int_hook(secmark_relabel_packet, 0, secid);
2319 }
2320 EXPORT_SYMBOL(security_secmark_relabel_packet);
2321
security_secmark_refcount_inc(void)2322 void security_secmark_refcount_inc(void)
2323 {
2324 call_void_hook(secmark_refcount_inc);
2325 }
2326 EXPORT_SYMBOL(security_secmark_refcount_inc);
2327
security_secmark_refcount_dec(void)2328 void security_secmark_refcount_dec(void)
2329 {
2330 call_void_hook(secmark_refcount_dec);
2331 }
2332 EXPORT_SYMBOL(security_secmark_refcount_dec);
2333
security_tun_dev_alloc_security(void ** security)2334 int security_tun_dev_alloc_security(void **security)
2335 {
2336 return call_int_hook(tun_dev_alloc_security, 0, security);
2337 }
2338 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2339
security_tun_dev_free_security(void * security)2340 void security_tun_dev_free_security(void *security)
2341 {
2342 call_void_hook(tun_dev_free_security, security);
2343 }
2344 EXPORT_SYMBOL(security_tun_dev_free_security);
2345
security_tun_dev_create(void)2346 int security_tun_dev_create(void)
2347 {
2348 return call_int_hook(tun_dev_create, 0);
2349 }
2350 EXPORT_SYMBOL(security_tun_dev_create);
2351
security_tun_dev_attach_queue(void * security)2352 int security_tun_dev_attach_queue(void *security)
2353 {
2354 return call_int_hook(tun_dev_attach_queue, 0, security);
2355 }
2356 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2357
security_tun_dev_attach(struct sock * sk,void * security)2358 int security_tun_dev_attach(struct sock *sk, void *security)
2359 {
2360 return call_int_hook(tun_dev_attach, 0, sk, security);
2361 }
2362 EXPORT_SYMBOL(security_tun_dev_attach);
2363
security_tun_dev_open(void * security)2364 int security_tun_dev_open(void *security)
2365 {
2366 return call_int_hook(tun_dev_open, 0, security);
2367 }
2368 EXPORT_SYMBOL(security_tun_dev_open);
2369
security_sctp_assoc_request(struct sctp_association * asoc,struct sk_buff * skb)2370 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2371 {
2372 return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2373 }
2374 EXPORT_SYMBOL(security_sctp_assoc_request);
2375
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)2376 int security_sctp_bind_connect(struct sock *sk, int optname,
2377 struct sockaddr *address, int addrlen)
2378 {
2379 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2380 address, addrlen);
2381 }
2382 EXPORT_SYMBOL(security_sctp_bind_connect);
2383
security_sctp_sk_clone(struct sctp_association * asoc,struct sock * sk,struct sock * newsk)2384 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2385 struct sock *newsk)
2386 {
2387 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2388 }
2389 EXPORT_SYMBOL(security_sctp_sk_clone);
2390
2391 #endif /* CONFIG_SECURITY_NETWORK */
2392
2393 #ifdef CONFIG_SECURITY_INFINIBAND
2394
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)2395 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2396 {
2397 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2398 }
2399 EXPORT_SYMBOL(security_ib_pkey_access);
2400
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)2401 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2402 {
2403 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2404 }
2405 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2406
security_ib_alloc_security(void ** sec)2407 int security_ib_alloc_security(void **sec)
2408 {
2409 return call_int_hook(ib_alloc_security, 0, sec);
2410 }
2411 EXPORT_SYMBOL(security_ib_alloc_security);
2412
security_ib_free_security(void * sec)2413 void security_ib_free_security(void *sec)
2414 {
2415 call_void_hook(ib_free_security, sec);
2416 }
2417 EXPORT_SYMBOL(security_ib_free_security);
2418 #endif /* CONFIG_SECURITY_INFINIBAND */
2419
2420 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2421
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)2422 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2423 struct xfrm_user_sec_ctx *sec_ctx,
2424 gfp_t gfp)
2425 {
2426 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2427 }
2428 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2429
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)2430 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2431 struct xfrm_sec_ctx **new_ctxp)
2432 {
2433 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2434 }
2435
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)2436 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2437 {
2438 call_void_hook(xfrm_policy_free_security, ctx);
2439 }
2440 EXPORT_SYMBOL(security_xfrm_policy_free);
2441
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)2442 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2443 {
2444 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2445 }
2446
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)2447 int security_xfrm_state_alloc(struct xfrm_state *x,
2448 struct xfrm_user_sec_ctx *sec_ctx)
2449 {
2450 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2451 }
2452 EXPORT_SYMBOL(security_xfrm_state_alloc);
2453
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)2454 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2455 struct xfrm_sec_ctx *polsec, u32 secid)
2456 {
2457 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2458 }
2459
security_xfrm_state_delete(struct xfrm_state * x)2460 int security_xfrm_state_delete(struct xfrm_state *x)
2461 {
2462 return call_int_hook(xfrm_state_delete_security, 0, x);
2463 }
2464 EXPORT_SYMBOL(security_xfrm_state_delete);
2465
security_xfrm_state_free(struct xfrm_state * x)2466 void security_xfrm_state_free(struct xfrm_state *x)
2467 {
2468 call_void_hook(xfrm_state_free_security, x);
2469 }
2470
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid)2471 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2472 {
2473 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2474 }
2475
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)2476 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2477 struct xfrm_policy *xp,
2478 const struct flowi_common *flic)
2479 {
2480 struct security_hook_list *hp;
2481 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2482
2483 /*
2484 * Since this function is expected to return 0 or 1, the judgment
2485 * becomes difficult if multiple LSMs supply this call. Fortunately,
2486 * we can use the first LSM's judgment because currently only SELinux
2487 * supplies this call.
2488 *
2489 * For speed optimization, we explicitly break the loop rather than
2490 * using the macro
2491 */
2492 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2493 list) {
2494 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2495 break;
2496 }
2497 return rc;
2498 }
2499
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)2500 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2501 {
2502 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2503 }
2504
security_skb_classify_flow(struct sk_buff * skb,struct flowi_common * flic)2505 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2506 {
2507 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2508 0);
2509
2510 BUG_ON(rc);
2511 }
2512 EXPORT_SYMBOL(security_skb_classify_flow);
2513
2514 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2515
2516 #ifdef CONFIG_KEYS
2517
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)2518 int security_key_alloc(struct key *key, const struct cred *cred,
2519 unsigned long flags)
2520 {
2521 return call_int_hook(key_alloc, 0, key, cred, flags);
2522 }
2523
security_key_free(struct key * key)2524 void security_key_free(struct key *key)
2525 {
2526 call_void_hook(key_free, key);
2527 }
2528
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)2529 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2530 enum key_need_perm need_perm)
2531 {
2532 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2533 }
2534
security_key_getsecurity(struct key * key,char ** _buffer)2535 int security_key_getsecurity(struct key *key, char **_buffer)
2536 {
2537 *_buffer = NULL;
2538 return call_int_hook(key_getsecurity, 0, key, _buffer);
2539 }
2540
2541 #endif /* CONFIG_KEYS */
2542
2543 #ifdef CONFIG_AUDIT
2544
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule)2545 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2546 {
2547 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2548 }
2549
security_audit_rule_known(struct audit_krule * krule)2550 int security_audit_rule_known(struct audit_krule *krule)
2551 {
2552 return call_int_hook(audit_rule_known, 0, krule);
2553 }
2554
security_audit_rule_free(void * lsmrule)2555 void security_audit_rule_free(void *lsmrule)
2556 {
2557 call_void_hook(audit_rule_free, lsmrule);
2558 }
2559
security_audit_rule_match(u32 secid,u32 field,u32 op,void * lsmrule)2560 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2561 {
2562 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2563 }
2564 #endif /* CONFIG_AUDIT */
2565
2566 #ifdef CONFIG_BPF_SYSCALL
security_bpf(int cmd,union bpf_attr * attr,unsigned int size)2567 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2568 {
2569 return call_int_hook(bpf, 0, cmd, attr, size);
2570 }
security_bpf_map(struct bpf_map * map,fmode_t fmode)2571 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2572 {
2573 return call_int_hook(bpf_map, 0, map, fmode);
2574 }
security_bpf_prog(struct bpf_prog * prog)2575 int security_bpf_prog(struct bpf_prog *prog)
2576 {
2577 return call_int_hook(bpf_prog, 0, prog);
2578 }
security_bpf_map_alloc(struct bpf_map * map)2579 int security_bpf_map_alloc(struct bpf_map *map)
2580 {
2581 return call_int_hook(bpf_map_alloc_security, 0, map);
2582 }
security_bpf_prog_alloc(struct bpf_prog_aux * aux)2583 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2584 {
2585 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2586 }
security_bpf_map_free(struct bpf_map * map)2587 void security_bpf_map_free(struct bpf_map *map)
2588 {
2589 call_void_hook(bpf_map_free_security, map);
2590 }
security_bpf_prog_free(struct bpf_prog_aux * aux)2591 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2592 {
2593 call_void_hook(bpf_prog_free_security, aux);
2594 }
2595 #endif /* CONFIG_BPF_SYSCALL */
2596
security_locked_down(enum lockdown_reason what)2597 int security_locked_down(enum lockdown_reason what)
2598 {
2599 return call_int_hook(locked_down, 0, what);
2600 }
2601 EXPORT_SYMBOL(security_locked_down);
2602
2603 #ifdef CONFIG_PERF_EVENTS
security_perf_event_open(struct perf_event_attr * attr,int type)2604 int security_perf_event_open(struct perf_event_attr *attr, int type)
2605 {
2606 return call_int_hook(perf_event_open, 0, attr, type);
2607 }
2608
security_perf_event_alloc(struct perf_event * event)2609 int security_perf_event_alloc(struct perf_event *event)
2610 {
2611 return call_int_hook(perf_event_alloc, 0, event);
2612 }
2613
security_perf_event_free(struct perf_event * event)2614 void security_perf_event_free(struct perf_event *event)
2615 {
2616 call_void_hook(perf_event_free, event);
2617 }
2618
security_perf_event_read(struct perf_event * event)2619 int security_perf_event_read(struct perf_event *event)
2620 {
2621 return call_int_hook(perf_event_read, 0, event);
2622 }
2623
security_perf_event_write(struct perf_event * event)2624 int security_perf_event_write(struct perf_event *event)
2625 {
2626 return call_int_hook(perf_event_write, 0, event);
2627 }
2628 #endif /* CONFIG_PERF_EVENTS */
2629
2630 #ifdef CONFIG_IO_URING
security_uring_override_creds(const struct cred * new)2631 int security_uring_override_creds(const struct cred *new)
2632 {
2633 return call_int_hook(uring_override_creds, 0, new);
2634 }
2635
security_uring_sqpoll(void)2636 int security_uring_sqpoll(void)
2637 {
2638 return call_int_hook(uring_sqpoll, 0);
2639 }
2640 #endif /* CONFIG_IO_URING */
2641