1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright 2017 - Free Electrons
4 *
5 * Authors:
6 * Boris Brezillon <boris.brezillon@free-electrons.com>
7 * Peter Pan <peterpandong@micron.com>
8 */
9
10 #ifndef __LINUX_MTD_NAND_H
11 #define __LINUX_MTD_NAND_H
12
13 #include <linux/mtd/mtd.h>
14
15 /**
16 * struct nand_memory_organization - Memory organization structure
17 * @bits_per_cell: number of bits per NAND cell
18 * @pagesize: page size
19 * @oobsize: OOB area size
20 * @pages_per_eraseblock: number of pages per eraseblock
21 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
22 * @planes_per_lun: number of planes per LUN
23 * @luns_per_target: number of LUN per target (target is a synonym for die)
24 * @ntargets: total number of targets exposed by the NAND device
25 */
26 struct nand_memory_organization {
27 unsigned int bits_per_cell;
28 unsigned int pagesize;
29 unsigned int oobsize;
30 unsigned int pages_per_eraseblock;
31 unsigned int eraseblocks_per_lun;
32 unsigned int planes_per_lun;
33 unsigned int luns_per_target;
34 unsigned int ntargets;
35 };
36
37 #define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt) \
38 { \
39 .bits_per_cell = (bpc), \
40 .pagesize = (ps), \
41 .oobsize = (os), \
42 .pages_per_eraseblock = (ppe), \
43 .eraseblocks_per_lun = (epl), \
44 .planes_per_lun = (ppl), \
45 .luns_per_target = (lpt), \
46 .ntargets = (nt), \
47 }
48
49 /**
50 * struct nand_row_converter - Information needed to convert an absolute offset
51 * into a row address
52 * @lun_addr_shift: position of the LUN identifier in the row address
53 * @eraseblock_addr_shift: position of the eraseblock identifier in the row
54 * address
55 */
56 struct nand_row_converter {
57 unsigned int lun_addr_shift;
58 unsigned int eraseblock_addr_shift;
59 };
60
61 /**
62 * struct nand_pos - NAND position object
63 * @target: the NAND target/die
64 * @lun: the LUN identifier
65 * @plane: the plane within the LUN
66 * @eraseblock: the eraseblock within the LUN
67 * @page: the page within the LUN
68 *
69 * These information are usually used by specific sub-layers to select the
70 * appropriate target/die and generate a row address to pass to the device.
71 */
72 struct nand_pos {
73 unsigned int target;
74 unsigned int lun;
75 unsigned int plane;
76 unsigned int eraseblock;
77 unsigned int page;
78 };
79
80 /**
81 * struct nand_page_io_req - NAND I/O request object
82 * @pos: the position this I/O request is targeting
83 * @dataoffs: the offset within the page
84 * @datalen: number of data bytes to read from/write to this page
85 * @databuf: buffer to store data in or get data from
86 * @ooboffs: the OOB offset within the page
87 * @ooblen: the number of OOB bytes to read from/write to this page
88 * @oobbuf: buffer to store OOB data in or get OOB data from
89 * @mode: one of the %MTD_OPS_XXX mode
90 *
91 * This object is used to pass per-page I/O requests to NAND sub-layers. This
92 * way all useful information are already formatted in a useful way and
93 * specific NAND layers can focus on translating these information into
94 * specific commands/operations.
95 */
96 struct nand_page_io_req {
97 struct nand_pos pos;
98 unsigned int dataoffs;
99 unsigned int datalen;
100 union {
101 const void *out;
102 void *in;
103 } databuf;
104 unsigned int ooboffs;
105 unsigned int ooblen;
106 union {
107 const void *out;
108 void *in;
109 } oobbuf;
110 int mode;
111 };
112
113 /**
114 * struct nand_ecc_req - NAND ECC requirements
115 * @strength: ECC strength
116 * @step_size: ECC step/block size
117 */
118 struct nand_ecc_req {
119 unsigned int strength;
120 unsigned int step_size;
121 };
122
123 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
124
125 /**
126 * struct nand_bbt - bad block table object
127 * @cache: in memory BBT cache
128 */
129 struct nand_bbt {
130 unsigned long *cache;
131 };
132
133 struct nand_device;
134
135 /**
136 * struct nand_ops - NAND operations
137 * @erase: erase a specific block. No need to check if the block is bad before
138 * erasing, this has been taken care of by the generic NAND layer
139 * @markbad: mark a specific block bad. No need to check if the block is
140 * already marked bad, this has been taken care of by the generic
141 * NAND layer. This method should just write the BBM (Bad Block
142 * Marker) so that future call to struct_nand_ops->isbad() return
143 * true
144 * @isbad: check whether a block is bad or not. This method should just read
145 * the BBM and return whether the block is bad or not based on what it
146 * reads
147 *
148 * These are all low level operations that should be implemented by specialized
149 * NAND layers (SPI NAND, raw NAND, ...).
150 */
151 struct nand_ops {
152 int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
153 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
154 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
155 };
156
157 /**
158 * struct nand_device - NAND device
159 * @mtd: MTD instance attached to the NAND device
160 * @memorg: memory layout
161 * @eccreq: ECC requirements
162 * @rowconv: position to row address converter
163 * @bbt: bad block table info
164 * @ops: NAND operations attached to the NAND device
165 *
166 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
167 * should declare their own NAND object embedding a nand_device struct (that's
168 * how inheritance is done).
169 * struct_nand_device->memorg and struct_nand_device->eccreq should be filled
170 * at device detection time to reflect the NAND device
171 * capabilities/requirements. Once this is done nanddev_init() can be called.
172 * It will take care of converting NAND information into MTD ones, which means
173 * the specialized NAND layers should never manually tweak
174 * struct_nand_device->mtd except for the ->_read/write() hooks.
175 */
176 struct nand_device {
177 struct mtd_info *mtd;
178 struct nand_memory_organization memorg;
179 struct nand_ecc_req eccreq;
180 struct nand_row_converter rowconv;
181 struct nand_bbt bbt;
182 const struct nand_ops *ops;
183 };
184
185 /**
186 * struct nand_io_iter - NAND I/O iterator
187 * @req: current I/O request
188 * @oobbytes_per_page: maximum number of OOB bytes per page
189 * @dataleft: remaining number of data bytes to read/write
190 * @oobleft: remaining number of OOB bytes to read/write
191 *
192 * Can be used by specialized NAND layers to iterate over all pages covered
193 * by an MTD I/O request, which should greatly simplifies the boiler-plate
194 * code needed to read/write data from/to a NAND device.
195 */
196 struct nand_io_iter {
197 struct nand_page_io_req req;
198 unsigned int oobbytes_per_page;
199 unsigned int dataleft;
200 unsigned int oobleft;
201 };
202
203 /**
204 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
205 * @mtd: MTD instance
206 *
207 * Return: the NAND device embedding @mtd.
208 */
mtd_to_nanddev(struct mtd_info * mtd)209 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
210 {
211 return mtd->priv;
212 }
213
214 /**
215 * nanddev_to_mtd() - Get the MTD device attached to a NAND device
216 * @nand: NAND device
217 *
218 * Return: the MTD device embedded in @nand.
219 */
nanddev_to_mtd(struct nand_device * nand)220 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
221 {
222 return nand->mtd;
223 }
224
225 /*
226 * nanddev_bits_per_cell() - Get the number of bits per cell
227 * @nand: NAND device
228 *
229 * Return: the number of bits per cell.
230 */
nanddev_bits_per_cell(const struct nand_device * nand)231 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
232 {
233 return nand->memorg.bits_per_cell;
234 }
235
236 /**
237 * nanddev_page_size() - Get NAND page size
238 * @nand: NAND device
239 *
240 * Return: the page size.
241 */
nanddev_page_size(const struct nand_device * nand)242 static inline size_t nanddev_page_size(const struct nand_device *nand)
243 {
244 return nand->memorg.pagesize;
245 }
246
247 /**
248 * nanddev_per_page_oobsize() - Get NAND OOB size
249 * @nand: NAND device
250 *
251 * Return: the OOB size.
252 */
253 static inline unsigned int
nanddev_per_page_oobsize(const struct nand_device * nand)254 nanddev_per_page_oobsize(const struct nand_device *nand)
255 {
256 return nand->memorg.oobsize;
257 }
258
259 /**
260 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
261 * @nand: NAND device
262 *
263 * Return: the number of pages per eraseblock.
264 */
265 static inline unsigned int
nanddev_pages_per_eraseblock(const struct nand_device * nand)266 nanddev_pages_per_eraseblock(const struct nand_device *nand)
267 {
268 return nand->memorg.pages_per_eraseblock;
269 }
270
271 /**
272 * nanddev_per_page_oobsize() - Get NAND erase block size
273 * @nand: NAND device
274 *
275 * Return: the eraseblock size.
276 */
nanddev_eraseblock_size(const struct nand_device * nand)277 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
278 {
279 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
280 }
281
282 /**
283 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
284 * @nand: NAND device
285 *
286 * Return: the number of eraseblocks per LUN.
287 */
288 static inline unsigned int
nanddev_eraseblocks_per_lun(const struct nand_device * nand)289 nanddev_eraseblocks_per_lun(const struct nand_device *nand)
290 {
291 return nand->memorg.eraseblocks_per_lun;
292 }
293
294 /**
295 * nanddev_target_size() - Get the total size provided by a single target/die
296 * @nand: NAND device
297 *
298 * Return: the total size exposed by a single target/die in bytes.
299 */
nanddev_target_size(const struct nand_device * nand)300 static inline u64 nanddev_target_size(const struct nand_device *nand)
301 {
302 return (u64)nand->memorg.luns_per_target *
303 nand->memorg.eraseblocks_per_lun *
304 nand->memorg.pages_per_eraseblock *
305 nand->memorg.pagesize;
306 }
307
308 /**
309 * nanddev_ntarget() - Get the total of targets
310 * @nand: NAND device
311 *
312 * Return: the number of targets/dies exposed by @nand.
313 */
nanddev_ntargets(const struct nand_device * nand)314 static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
315 {
316 return nand->memorg.ntargets;
317 }
318
319 /**
320 * nanddev_neraseblocks() - Get the total number of erasablocks
321 * @nand: NAND device
322 *
323 * Return: the total number of eraseblocks exposed by @nand.
324 */
nanddev_neraseblocks(const struct nand_device * nand)325 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
326 {
327 return (u64)nand->memorg.luns_per_target *
328 nand->memorg.eraseblocks_per_lun *
329 nand->memorg.pages_per_eraseblock;
330 }
331
332 /**
333 * nanddev_size() - Get NAND size
334 * @nand: NAND device
335 *
336 * Return: the total size (in bytes) exposed by @nand.
337 */
nanddev_size(const struct nand_device * nand)338 static inline u64 nanddev_size(const struct nand_device *nand)
339 {
340 return nanddev_target_size(nand) * nanddev_ntargets(nand);
341 }
342
343 /**
344 * nanddev_get_memorg() - Extract memory organization info from a NAND device
345 * @nand: NAND device
346 *
347 * This can be used by the upper layer to fill the memorg info before calling
348 * nanddev_init().
349 *
350 * Return: the memorg object embedded in the NAND device.
351 */
352 static inline struct nand_memory_organization *
nanddev_get_memorg(struct nand_device * nand)353 nanddev_get_memorg(struct nand_device *nand)
354 {
355 return &nand->memorg;
356 }
357
358 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
359 struct module *owner);
360 void nanddev_cleanup(struct nand_device *nand);
361
362 /**
363 * nanddev_register() - Register a NAND device
364 * @nand: NAND device
365 *
366 * Register a NAND device.
367 * This function is just a wrapper around mtd_device_register()
368 * registering the MTD device embedded in @nand.
369 *
370 * Return: 0 in case of success, a negative error code otherwise.
371 */
nanddev_register(struct nand_device * nand)372 static inline int nanddev_register(struct nand_device *nand)
373 {
374 return mtd_device_register(nand->mtd, NULL, 0);
375 }
376
377 /**
378 * nanddev_unregister() - Unregister a NAND device
379 * @nand: NAND device
380 *
381 * Unregister a NAND device.
382 * This function is just a wrapper around mtd_device_unregister()
383 * unregistering the MTD device embedded in @nand.
384 *
385 * Return: 0 in case of success, a negative error code otherwise.
386 */
nanddev_unregister(struct nand_device * nand)387 static inline int nanddev_unregister(struct nand_device *nand)
388 {
389 return mtd_device_unregister(nand->mtd);
390 }
391
392 #ifndef __UBOOT__
393 /**
394 * nanddev_set_of_node() - Attach a DT node to a NAND device
395 * @nand: NAND device
396 * @np: DT node
397 *
398 * Attach a DT node to a NAND device.
399 */
nanddev_set_of_node(struct nand_device * nand,const struct device_node * np)400 static inline void nanddev_set_of_node(struct nand_device *nand,
401 const struct device_node *np)
402 {
403 mtd_set_of_node(nand->mtd, np);
404 }
405
406 /**
407 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
408 * @nand: NAND device
409 *
410 * Return: the DT node attached to @nand.
411 */
nanddev_get_of_node(struct nand_device * nand)412 static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand)
413 {
414 return mtd_get_of_node(nand->mtd);
415 }
416 #else
417 /**
418 * nanddev_set_of_node() - Attach a DT node to a NAND device
419 * @nand: NAND device
420 * @node: ofnode
421 *
422 * Attach a DT node to a NAND device.
423 */
nanddev_set_ofnode(struct nand_device * nand,ofnode node)424 static inline void nanddev_set_ofnode(struct nand_device *nand, ofnode node)
425 {
426 mtd_set_ofnode(nand->mtd, node);
427 }
428 #endif /* __UBOOT__ */
429
430 /**
431 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
432 * @nand: NAND device
433 * @offs: absolute NAND offset (usually passed by the MTD layer)
434 * @pos: a NAND position object to fill in
435 *
436 * Converts @offs into a nand_pos representation.
437 *
438 * Return: the offset within the NAND page pointed by @pos.
439 */
nanddev_offs_to_pos(struct nand_device * nand,loff_t offs,struct nand_pos * pos)440 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
441 loff_t offs,
442 struct nand_pos *pos)
443 {
444 unsigned int pageoffs;
445 u64 tmp = offs;
446
447 pageoffs = do_div(tmp, nand->memorg.pagesize);
448 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
449 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
450 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
451 pos->lun = do_div(tmp, nand->memorg.luns_per_target);
452 pos->target = tmp;
453
454 return pageoffs;
455 }
456
457 /**
458 * nanddev_pos_cmp() - Compare two NAND positions
459 * @a: First NAND position
460 * @b: Second NAND position
461 *
462 * Compares two NAND positions.
463 *
464 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
465 */
nanddev_pos_cmp(const struct nand_pos * a,const struct nand_pos * b)466 static inline int nanddev_pos_cmp(const struct nand_pos *a,
467 const struct nand_pos *b)
468 {
469 if (a->target != b->target)
470 return a->target < b->target ? -1 : 1;
471
472 if (a->lun != b->lun)
473 return a->lun < b->lun ? -1 : 1;
474
475 if (a->eraseblock != b->eraseblock)
476 return a->eraseblock < b->eraseblock ? -1 : 1;
477
478 if (a->page != b->page)
479 return a->page < b->page ? -1 : 1;
480
481 return 0;
482 }
483
484 /**
485 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
486 * @nand: NAND device
487 * @pos: the NAND position to convert
488 *
489 * Converts @pos NAND position into an absolute offset.
490 *
491 * Return: the absolute offset. Note that @pos points to the beginning of a
492 * page, if one wants to point to a specific offset within this page
493 * the returned offset has to be adjusted manually.
494 */
nanddev_pos_to_offs(struct nand_device * nand,const struct nand_pos * pos)495 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
496 const struct nand_pos *pos)
497 {
498 unsigned int npages;
499
500 npages = pos->page +
501 ((pos->eraseblock +
502 (pos->lun +
503 (pos->target * nand->memorg.luns_per_target)) *
504 nand->memorg.eraseblocks_per_lun) *
505 nand->memorg.pages_per_eraseblock);
506
507 return (loff_t)npages * nand->memorg.pagesize;
508 }
509
510 /**
511 * nanddev_pos_to_row() - Extract a row address from a NAND position
512 * @nand: NAND device
513 * @pos: the position to convert
514 *
515 * Converts a NAND position into a row address that can then be passed to the
516 * device.
517 *
518 * Return: the row address extracted from @pos.
519 */
nanddev_pos_to_row(struct nand_device * nand,const struct nand_pos * pos)520 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
521 const struct nand_pos *pos)
522 {
523 return (pos->lun << nand->rowconv.lun_addr_shift) |
524 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
525 pos->page;
526 }
527
528 /**
529 * nanddev_pos_next_target() - Move a position to the next target/die
530 * @nand: NAND device
531 * @pos: the position to update
532 *
533 * Updates @pos to point to the start of the next target/die. Useful when you
534 * want to iterate over all targets/dies of a NAND device.
535 */
nanddev_pos_next_target(struct nand_device * nand,struct nand_pos * pos)536 static inline void nanddev_pos_next_target(struct nand_device *nand,
537 struct nand_pos *pos)
538 {
539 pos->page = 0;
540 pos->plane = 0;
541 pos->eraseblock = 0;
542 pos->lun = 0;
543 pos->target++;
544 }
545
546 /**
547 * nanddev_pos_next_lun() - Move a position to the next LUN
548 * @nand: NAND device
549 * @pos: the position to update
550 *
551 * Updates @pos to point to the start of the next LUN. Useful when you want to
552 * iterate over all LUNs of a NAND device.
553 */
nanddev_pos_next_lun(struct nand_device * nand,struct nand_pos * pos)554 static inline void nanddev_pos_next_lun(struct nand_device *nand,
555 struct nand_pos *pos)
556 {
557 if (pos->lun >= nand->memorg.luns_per_target - 1)
558 return nanddev_pos_next_target(nand, pos);
559
560 pos->lun++;
561 pos->page = 0;
562 pos->plane = 0;
563 pos->eraseblock = 0;
564 }
565
566 /**
567 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
568 * @nand: NAND device
569 * @pos: the position to update
570 *
571 * Updates @pos to point to the start of the next eraseblock. Useful when you
572 * want to iterate over all eraseblocks of a NAND device.
573 */
nanddev_pos_next_eraseblock(struct nand_device * nand,struct nand_pos * pos)574 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
575 struct nand_pos *pos)
576 {
577 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
578 return nanddev_pos_next_lun(nand, pos);
579
580 pos->eraseblock++;
581 pos->page = 0;
582 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
583 }
584
585 /**
586 * nanddev_pos_next_eraseblock() - Move a position to the next page
587 * @nand: NAND device
588 * @pos: the position to update
589 *
590 * Updates @pos to point to the start of the next page. Useful when you want to
591 * iterate over all pages of a NAND device.
592 */
nanddev_pos_next_page(struct nand_device * nand,struct nand_pos * pos)593 static inline void nanddev_pos_next_page(struct nand_device *nand,
594 struct nand_pos *pos)
595 {
596 if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
597 return nanddev_pos_next_eraseblock(nand, pos);
598
599 pos->page++;
600 }
601
602 /**
603 * nand_io_iter_init - Initialize a NAND I/O iterator
604 * @nand: NAND device
605 * @offs: absolute offset
606 * @req: MTD request
607 * @iter: NAND I/O iterator
608 *
609 * Initializes a NAND iterator based on the information passed by the MTD
610 * layer.
611 */
nanddev_io_iter_init(struct nand_device * nand,loff_t offs,struct mtd_oob_ops * req,struct nand_io_iter * iter)612 static inline void nanddev_io_iter_init(struct nand_device *nand,
613 loff_t offs, struct mtd_oob_ops *req,
614 struct nand_io_iter *iter)
615 {
616 struct mtd_info *mtd = nanddev_to_mtd(nand);
617
618 iter->req.mode = req->mode;
619 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
620 iter->req.ooboffs = req->ooboffs;
621 iter->oobbytes_per_page = mtd_oobavail(mtd, req);
622 iter->dataleft = req->len;
623 iter->oobleft = req->ooblen;
624 iter->req.databuf.in = req->datbuf;
625 iter->req.datalen = min_t(unsigned int,
626 nand->memorg.pagesize - iter->req.dataoffs,
627 iter->dataleft);
628 iter->req.oobbuf.in = req->oobbuf;
629 iter->req.ooblen = min_t(unsigned int,
630 iter->oobbytes_per_page - iter->req.ooboffs,
631 iter->oobleft);
632 }
633
634 /**
635 * nand_io_iter_next_page - Move to the next page
636 * @nand: NAND device
637 * @iter: NAND I/O iterator
638 *
639 * Updates the @iter to point to the next page.
640 */
nanddev_io_iter_next_page(struct nand_device * nand,struct nand_io_iter * iter)641 static inline void nanddev_io_iter_next_page(struct nand_device *nand,
642 struct nand_io_iter *iter)
643 {
644 nanddev_pos_next_page(nand, &iter->req.pos);
645 iter->dataleft -= iter->req.datalen;
646 iter->req.databuf.in += iter->req.datalen;
647 iter->oobleft -= iter->req.ooblen;
648 iter->req.oobbuf.in += iter->req.ooblen;
649 iter->req.dataoffs = 0;
650 iter->req.ooboffs = 0;
651 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
652 iter->dataleft);
653 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
654 iter->oobleft);
655 }
656
657 /**
658 * nand_io_iter_end - Should end iteration or not
659 * @nand: NAND device
660 * @iter: NAND I/O iterator
661 *
662 * Check whether @iter has reached the end of the NAND portion it was asked to
663 * iterate on or not.
664 *
665 * Return: true if @iter has reached the end of the iteration request, false
666 * otherwise.
667 */
nanddev_io_iter_end(struct nand_device * nand,const struct nand_io_iter * iter)668 static inline bool nanddev_io_iter_end(struct nand_device *nand,
669 const struct nand_io_iter *iter)
670 {
671 if (iter->dataleft || iter->oobleft)
672 return false;
673
674 return true;
675 }
676
677 /**
678 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
679 * request
680 * @nand: NAND device
681 * @start: start address to read/write from
682 * @req: MTD I/O request
683 * @iter: NAND I/O iterator
684 *
685 * Should be used for iterate over pages that are contained in an MTD request.
686 */
687 #define nanddev_io_for_each_page(nand, start, req, iter) \
688 for (nanddev_io_iter_init(nand, start, req, iter); \
689 !nanddev_io_iter_end(nand, iter); \
690 nanddev_io_iter_next_page(nand, iter))
691
692 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
693 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
694 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
695 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
696
697 /* BBT related functions */
698 enum nand_bbt_block_status {
699 NAND_BBT_BLOCK_STATUS_UNKNOWN,
700 NAND_BBT_BLOCK_GOOD,
701 NAND_BBT_BLOCK_WORN,
702 NAND_BBT_BLOCK_RESERVED,
703 NAND_BBT_BLOCK_FACTORY_BAD,
704 NAND_BBT_BLOCK_NUM_STATUS,
705 };
706
707 int nanddev_bbt_init(struct nand_device *nand);
708 void nanddev_bbt_cleanup(struct nand_device *nand);
709 int nanddev_bbt_update(struct nand_device *nand);
710 int nanddev_bbt_get_block_status(const struct nand_device *nand,
711 unsigned int entry);
712 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
713 enum nand_bbt_block_status status);
714 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
715
716 /**
717 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
718 * @nand: NAND device
719 * @pos: the NAND position we want to get BBT entry for
720 *
721 * Return the BBT entry used to store information about the eraseblock pointed
722 * by @pos.
723 *
724 * Return: the BBT entry storing information about eraseblock pointed by @pos.
725 */
nanddev_bbt_pos_to_entry(struct nand_device * nand,const struct nand_pos * pos)726 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
727 const struct nand_pos *pos)
728 {
729 return pos->eraseblock +
730 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
731 nand->memorg.eraseblocks_per_lun);
732 }
733
734 /**
735 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
736 * @nand: NAND device
737 *
738 * Return: true if the BBT has been initialized, false otherwise.
739 */
nanddev_bbt_is_initialized(struct nand_device * nand)740 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
741 {
742 return !!nand->bbt.cache;
743 }
744
745 /* MTD -> NAND helper functions. */
746 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
747
748 #endif /* __LINUX_MTD_NAND_H */
749