1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <errno.h>
10 #include <string.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <common/bl_common.h>
15 #include <common/debug.h>
16 #include <context.h>
17 #include <denver.h>
18 #include <lib/el3_runtime/context_mgmt.h>
19 #include <lib/mmio.h>
20 
21 #include <mce.h>
22 #include <mce_private.h>
23 #include <t18x_ari.h>
24 #include <tegra_def.h>
25 #include <tegra_platform.h>
26 
27 /* NVG functions handlers */
28 static arch_mce_ops_t nvg_mce_ops = {
29 	.enter_cstate = nvg_enter_cstate,
30 	.update_cstate_info = nvg_update_cstate_info,
31 	.update_crossover_time = nvg_update_crossover_time,
32 	.read_cstate_stats = nvg_read_cstate_stats,
33 	.write_cstate_stats = nvg_write_cstate_stats,
34 	.call_enum_misc = ari_enumeration_misc,
35 	.is_ccx_allowed = nvg_is_ccx_allowed,
36 	.is_sc7_allowed = nvg_is_sc7_allowed,
37 	.online_core = nvg_online_core,
38 	.cc3_ctrl = nvg_cc3_ctrl,
39 	.update_reset_vector = ari_reset_vector_update,
40 	.roc_flush_cache = ari_roc_flush_cache,
41 	.roc_flush_cache_trbits = ari_roc_flush_cache_trbits,
42 	.roc_clean_cache = ari_roc_clean_cache,
43 	.read_write_mca = ari_read_write_mca,
44 	.update_ccplex_gsc = ari_update_ccplex_gsc,
45 	.enter_ccplex_state = ari_enter_ccplex_state,
46 	.read_write_uncore_perfmon = ari_read_write_uncore_perfmon,
47 	.misc_ccplex = ari_misc_ccplex
48 };
49 
50 /* ARI functions handlers */
51 static arch_mce_ops_t ari_mce_ops = {
52 	.enter_cstate = ari_enter_cstate,
53 	.update_cstate_info = ari_update_cstate_info,
54 	.update_crossover_time = ari_update_crossover_time,
55 	.read_cstate_stats = ari_read_cstate_stats,
56 	.write_cstate_stats = ari_write_cstate_stats,
57 	.call_enum_misc = ari_enumeration_misc,
58 	.is_ccx_allowed = ari_is_ccx_allowed,
59 	.is_sc7_allowed = ari_is_sc7_allowed,
60 	.online_core = ari_online_core,
61 	.cc3_ctrl = ari_cc3_ctrl,
62 	.update_reset_vector = ari_reset_vector_update,
63 	.roc_flush_cache = ari_roc_flush_cache,
64 	.roc_flush_cache_trbits = ari_roc_flush_cache_trbits,
65 	.roc_clean_cache = ari_roc_clean_cache,
66 	.read_write_mca = ari_read_write_mca,
67 	.update_ccplex_gsc = ari_update_ccplex_gsc,
68 	.enter_ccplex_state = ari_enter_ccplex_state,
69 	.read_write_uncore_perfmon = ari_read_write_uncore_perfmon,
70 	.misc_ccplex = ari_misc_ccplex
71 };
72 
73 typedef struct {
74 	uint32_t ari_base;
75 	arch_mce_ops_t *ops;
76 } mce_config_t;
77 
78 /* Table to hold the per-CPU ARI base address and function handlers */
79 static mce_config_t mce_cfg_table[MCE_ARI_APERTURES_MAX] = {
80 	{
81 		/* A57 Core 0 */
82 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_0_OFFSET,
83 		.ops = &ari_mce_ops,
84 	},
85 	{
86 		/* A57 Core 1 */
87 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_1_OFFSET,
88 		.ops = &ari_mce_ops,
89 	},
90 	{
91 		/* A57 Core 2 */
92 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_2_OFFSET,
93 		.ops = &ari_mce_ops,
94 	},
95 	{
96 		/* A57 Core 3 */
97 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_3_OFFSET,
98 		.ops = &ari_mce_ops,
99 	},
100 	{
101 		/* D15 Core 0 */
102 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_4_OFFSET,
103 		.ops = &nvg_mce_ops,
104 	},
105 	{
106 		/* D15 Core 1 */
107 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_5_OFFSET,
108 		.ops = &nvg_mce_ops,
109 	}
110 };
111 
mce_get_curr_cpu_ari_base(void)112 static uint32_t mce_get_curr_cpu_ari_base(void)
113 {
114 	uint64_t mpidr = read_mpidr();
115 	uint64_t cpuid = mpidr & MPIDR_CPU_MASK;
116 	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
117 
118 	/*
119 	 * T186 has 2 CPU clusters, one with Denver CPUs and the other with
120 	 * ARM CortexA-57 CPUs. Each cluster consists of 4 CPUs and the CPU
121 	 * numbers start from 0. In order to get the proper arch_mce_ops_t
122 	 * struct, we have to convert the Denver CPU ids to the corresponding
123 	 * indices in the mce_ops_table array.
124 	 */
125 	if (impl == DENVER_IMPL) {
126 		cpuid |= 0x4U;
127 	}
128 
129 	return mce_cfg_table[cpuid].ari_base;
130 }
131 
mce_get_curr_cpu_ops(void)132 static arch_mce_ops_t *mce_get_curr_cpu_ops(void)
133 {
134 	uint64_t mpidr = read_mpidr();
135 	uint64_t cpuid = mpidr & MPIDR_CPU_MASK;
136 	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) &
137 			MIDR_IMPL_MASK;
138 
139 	/*
140 	 * T186 has 2 CPU clusters, one with Denver CPUs and the other with
141 	 * ARM CortexA-57 CPUs. Each cluster consists of 4 CPUs and the CPU
142 	 * numbers start from 0. In order to get the proper arch_mce_ops_t
143 	 * struct, we have to convert the Denver CPU ids to the corresponding
144 	 * indices in the mce_ops_table array.
145 	 */
146 	if (impl == DENVER_IMPL) {
147 		cpuid |= 0x4U;
148 	}
149 
150 	return mce_cfg_table[cpuid].ops;
151 }
152 
153 /*******************************************************************************
154  * Common handler for all MCE commands
155  ******************************************************************************/
mce_command_handler(uint64_t cmd,uint64_t arg0,uint64_t arg1,uint64_t arg2)156 int32_t mce_command_handler(uint64_t cmd, uint64_t arg0, uint64_t arg1,
157 			uint64_t arg2)
158 {
159 	const arch_mce_ops_t *ops;
160 	gp_regs_t *gp_regs = get_gpregs_ctx(cm_get_context(NON_SECURE));
161 	uint32_t cpu_ari_base;
162 	uint64_t ret64 = 0, arg3, arg4, arg5;
163 	int32_t ret = 0;
164 
165 	assert(gp_regs != NULL);
166 
167 	/* get a pointer to the CPU's arch_mce_ops_t struct */
168 	ops = mce_get_curr_cpu_ops();
169 
170 	/* get the CPU's ARI base address */
171 	cpu_ari_base = mce_get_curr_cpu_ari_base();
172 
173 	switch (cmd) {
174 	case (uint64_t)MCE_CMD_ENTER_CSTATE:
175 		ret = ops->enter_cstate(cpu_ari_base, arg0, arg1);
176 
177 		break;
178 
179 	case (uint64_t)MCE_CMD_UPDATE_CSTATE_INFO:
180 		/*
181 		 * get the parameters required for the update cstate info
182 		 * command
183 		 */
184 		arg3 = read_ctx_reg(gp_regs, CTX_GPREG_X4);
185 		arg4 = read_ctx_reg(gp_regs, CTX_GPREG_X5);
186 		arg5 = read_ctx_reg(gp_regs, CTX_GPREG_X6);
187 
188 		ret = ops->update_cstate_info(cpu_ari_base, (uint32_t)arg0,
189 				(uint32_t)arg1, (uint32_t)arg2, (uint8_t)arg3,
190 				(uint32_t)arg4, (uint8_t)arg5);
191 
192 		write_ctx_reg(gp_regs, CTX_GPREG_X4, (0ULL));
193 		write_ctx_reg(gp_regs, CTX_GPREG_X5, (0ULL));
194 		write_ctx_reg(gp_regs, CTX_GPREG_X6, (0ULL));
195 
196 		break;
197 
198 	case (uint64_t)MCE_CMD_UPDATE_CROSSOVER_TIME:
199 		ret = ops->update_crossover_time(cpu_ari_base, arg0, arg1);
200 
201 		break;
202 
203 	case (uint64_t)MCE_CMD_READ_CSTATE_STATS:
204 		ret64 = ops->read_cstate_stats(cpu_ari_base, arg0);
205 
206 		/* update context to return cstate stats value */
207 		write_ctx_reg(gp_regs, CTX_GPREG_X1, (ret64));
208 		write_ctx_reg(gp_regs, CTX_GPREG_X2, (ret64));
209 
210 		break;
211 
212 	case (uint64_t)MCE_CMD_WRITE_CSTATE_STATS:
213 		ret = ops->write_cstate_stats(cpu_ari_base, arg0, arg1);
214 
215 		break;
216 
217 	case (uint64_t)MCE_CMD_IS_CCX_ALLOWED:
218 		ret = ops->is_ccx_allowed(cpu_ari_base, arg0, arg1);
219 
220 		/* update context to return CCx status value */
221 		write_ctx_reg(gp_regs, CTX_GPREG_X1, (uint64_t)(ret));
222 
223 		break;
224 
225 	case (uint64_t)MCE_CMD_IS_SC7_ALLOWED:
226 		ret = ops->is_sc7_allowed(cpu_ari_base, arg0, arg1);
227 
228 		/* update context to return SC7 status value */
229 		write_ctx_reg(gp_regs, CTX_GPREG_X1, (uint64_t)(ret));
230 		write_ctx_reg(gp_regs, CTX_GPREG_X3, (uint64_t)(ret));
231 
232 		break;
233 
234 	case (uint64_t)MCE_CMD_ONLINE_CORE:
235 		ret = ops->online_core(cpu_ari_base, arg0);
236 
237 		break;
238 
239 	case (uint64_t)MCE_CMD_CC3_CTRL:
240 		ret = ops->cc3_ctrl(cpu_ari_base, arg0, arg1, arg2);
241 
242 		break;
243 
244 	case (uint64_t)MCE_CMD_ECHO_DATA:
245 		ret64 = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_ECHO,
246 				arg0);
247 
248 		/* update context to return if echo'd data matched source */
249 		write_ctx_reg(gp_regs, CTX_GPREG_X1, ((ret64 == arg0) ?
250 			      1ULL : 0ULL));
251 		write_ctx_reg(gp_regs, CTX_GPREG_X2, ((ret64 == arg0) ?
252 			      1ULL : 0ULL));
253 
254 		break;
255 
256 	case (uint64_t)MCE_CMD_READ_VERSIONS:
257 		ret64 = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_VERSION,
258 			arg0);
259 
260 		/*
261 		 * version = minor(63:32) | major(31:0). Update context
262 		 * to return major and minor version number.
263 		 */
264 		write_ctx_reg(gp_regs, CTX_GPREG_X1, (ret64));
265 		write_ctx_reg(gp_regs, CTX_GPREG_X2, (ret64 >> 32ULL));
266 
267 		break;
268 
269 	case (uint64_t)MCE_CMD_ENUM_FEATURES:
270 		ret64 = ops->call_enum_misc(cpu_ari_base,
271 				TEGRA_ARI_MISC_FEATURE_LEAF_0, arg0);
272 
273 		/* update context to return features value */
274 		write_ctx_reg(gp_regs, CTX_GPREG_X1, (ret64));
275 
276 		break;
277 
278 	case (uint64_t)MCE_CMD_ROC_FLUSH_CACHE_TRBITS:
279 		ret = ops->roc_flush_cache_trbits(cpu_ari_base);
280 
281 		break;
282 
283 	case (uint64_t)MCE_CMD_ROC_FLUSH_CACHE:
284 		ret = ops->roc_flush_cache(cpu_ari_base);
285 
286 		break;
287 
288 	case (uint64_t)MCE_CMD_ROC_CLEAN_CACHE:
289 		ret = ops->roc_clean_cache(cpu_ari_base);
290 
291 		break;
292 
293 	case (uint64_t)MCE_CMD_ENUM_READ_MCA:
294 		ret64 = ops->read_write_mca(cpu_ari_base, arg0, &arg1);
295 
296 		/* update context to return MCA data/error */
297 		write_ctx_reg(gp_regs, CTX_GPREG_X1, (ret64));
298 		write_ctx_reg(gp_regs, CTX_GPREG_X2, (arg1));
299 		write_ctx_reg(gp_regs, CTX_GPREG_X3, (ret64));
300 
301 		break;
302 
303 	case (uint64_t)MCE_CMD_ENUM_WRITE_MCA:
304 		ret64 = ops->read_write_mca(cpu_ari_base, arg0, &arg1);
305 
306 		/* update context to return MCA error */
307 		write_ctx_reg(gp_regs, CTX_GPREG_X1, (ret64));
308 		write_ctx_reg(gp_regs, CTX_GPREG_X3, (ret64));
309 
310 		break;
311 
312 #if ENABLE_CHIP_VERIFICATION_HARNESS
313 	case (uint64_t)MCE_CMD_ENABLE_LATIC:
314 		/*
315 		 * This call is not for production use. The constant value,
316 		 * 0xFFFF0000, is specific to allowing for enabling LATIC on
317 		 * pre-production parts for the chip verification harness.
318 		 *
319 		 * Enabling LATIC allows S/W to read the MINI ISPs in the
320 		 * CCPLEX. The ISMs are used for various measurements relevant
321 		 * to particular locations in the Silicon. They are small
322 		 * counters which can be polled to determine how fast a
323 		 * particular location in the Silicon is.
324 		 */
325 		ops->enter_ccplex_state(mce_get_curr_cpu_ari_base(),
326 			0xFFFF0000);
327 
328 		break;
329 #endif
330 
331 	case (uint64_t)MCE_CMD_UNCORE_PERFMON_REQ:
332 		ret = ops->read_write_uncore_perfmon(cpu_ari_base, arg0, &arg1);
333 
334 		/* update context to return data */
335 		write_ctx_reg(gp_regs, CTX_GPREG_X1, (arg1));
336 		break;
337 
338 	case (uint64_t)MCE_CMD_MISC_CCPLEX:
339 		ops->misc_ccplex(cpu_ari_base, arg0, arg1);
340 
341 		break;
342 
343 	default:
344 		ERROR("unknown MCE command (%llu)\n", cmd);
345 		ret = EINVAL;
346 		break;
347 	}
348 
349 	return ret;
350 }
351 
352 /*******************************************************************************
353  * Handler to update the reset vector for CPUs
354  ******************************************************************************/
mce_update_reset_vector(void)355 int32_t mce_update_reset_vector(void)
356 {
357 	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
358 
359 	ops->update_reset_vector(mce_get_curr_cpu_ari_base());
360 
361 	return 0;
362 }
363 
mce_update_ccplex_gsc(tegra_ari_gsc_index_t gsc_idx)364 static int32_t mce_update_ccplex_gsc(tegra_ari_gsc_index_t gsc_idx)
365 {
366 	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
367 
368 	ops->update_ccplex_gsc(mce_get_curr_cpu_ari_base(), gsc_idx);
369 
370 	return 0;
371 }
372 
373 /*******************************************************************************
374  * Handler to update carveout values for Video Memory Carveout region
375  ******************************************************************************/
mce_update_gsc_videomem(void)376 int32_t mce_update_gsc_videomem(void)
377 {
378 	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_VPR_IDX);
379 }
380 
381 /*******************************************************************************
382  * Handler to update carveout values for TZDRAM aperture
383  ******************************************************************************/
mce_update_gsc_tzdram(void)384 int32_t mce_update_gsc_tzdram(void)
385 {
386 	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_TZ_DRAM_IDX);
387 }
388 
389 /*******************************************************************************
390  * Handler to shutdown/reset the entire system
391  ******************************************************************************/
mce_enter_ccplex_state(uint32_t state_idx)392 __dead2 void mce_enter_ccplex_state(uint32_t state_idx)
393 {
394 	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
395 
396 	/* sanity check state value */
397 	if ((state_idx != TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) &&
398 	    (state_idx != TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT)) {
399 		panic();
400 	}
401 
402 	ops->enter_ccplex_state(mce_get_curr_cpu_ari_base(), state_idx);
403 
404 	/* wait till the CCPLEX powers down */
405 	for (;;) {
406 		;
407 	}
408 
409 }
410 
411 /*******************************************************************************
412  * Handler to issue the UPDATE_CSTATE_INFO request
413  ******************************************************************************/
mce_update_cstate_info(const mce_cstate_info_t * cstate)414 void mce_update_cstate_info(const mce_cstate_info_t *cstate)
415 {
416 	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
417 
418 	/* issue the UPDATE_CSTATE_INFO request */
419 	ops->update_cstate_info(mce_get_curr_cpu_ari_base(), cstate->cluster,
420 		cstate->ccplex, cstate->system, cstate->system_state_force,
421 		cstate->wake_mask, cstate->update_wake_mask);
422 }
423 
424 /*******************************************************************************
425  * Handler to read the MCE firmware version and check if it is compatible
426  * with interface header the BL3-1 was compiled against
427  ******************************************************************************/
mce_verify_firmware_version(void)428 void mce_verify_firmware_version(void)
429 {
430 	const arch_mce_ops_t *ops;
431 	uint32_t cpu_ari_base;
432 	uint64_t version;
433 	uint32_t major, minor;
434 
435 	/*
436 	 * MCE firmware is not supported on simulation platforms.
437 	 */
438 	if (tegra_platform_is_emulation()) {
439 
440 		INFO("MCE firmware is not supported\n");
441 
442 	} else {
443 		/* get a pointer to the CPU's arch_mce_ops_t struct */
444 		ops = mce_get_curr_cpu_ops();
445 
446 		/* get the CPU's ARI base address */
447 		cpu_ari_base = mce_get_curr_cpu_ari_base();
448 
449 		/*
450 		 * Read the MCE firmware version and extract the major and minor
451 		 * version fields
452 		 */
453 		version = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_VERSION, 0);
454 		major = (uint32_t)version;
455 		minor = (uint32_t)(version >> 32);
456 
457 		INFO("MCE Version - HW=%d:%d, SW=%d:%d\n", major, minor,
458 			TEGRA_ARI_VERSION_MAJOR, TEGRA_ARI_VERSION_MINOR);
459 
460 		/*
461 		 * Verify that the MCE firmware version and the interface header
462 		 * match
463 		 */
464 		if (major != TEGRA_ARI_VERSION_MAJOR) {
465 			ERROR("ARI major version mismatch\n");
466 			panic();
467 		}
468 
469 		if (minor < TEGRA_ARI_VERSION_MINOR) {
470 			ERROR("ARI minor version mismatch\n");
471 			panic();
472 		}
473 	}
474 }
475