1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 /**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95 #ifndef CONFIG_NUMA
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110
111 struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
121
122 .bottom_up = false,
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124 };
125
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132 };
133 #endif
134
135 /*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
143 #define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
148 #define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159
choose_memblock_flags(void)160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168 return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170
171 /*
172 * Address comparison utilities
173 */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 phys_addr_t base2, phys_addr_t size2)
176 {
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 phys_addr_t base, phys_addr_t size)
182 {
183 unsigned long i;
184
185 memblock_cap_size(base, &size);
186
187 for (i = 0; i < type->cnt; i++)
188 if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 type->regions[i].size))
190 break;
191 return i < type->cnt;
192 }
193
194 /**
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
196 * @start: start of candidate range
197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198 * %MEMBLOCK_ALLOC_ACCESSIBLE
199 * @size: size of free area to find
200 * @align: alignment of free area to find
201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202 * @flags: pick from blocks based on memory attributes
203 *
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205 *
206 * Return:
207 * Found address on success, 0 on failure.
208 */
209 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211 phys_addr_t size, phys_addr_t align, int nid,
212 enum memblock_flags flags)
213 {
214 phys_addr_t this_start, this_end, cand;
215 u64 i;
216
217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218 this_start = clamp(this_start, start, end);
219 this_end = clamp(this_end, start, end);
220
221 cand = round_up(this_start, align);
222 if (cand < this_end && this_end - cand >= size)
223 return cand;
224 }
225
226 return 0;
227 }
228
229 /**
230 * __memblock_find_range_top_down - find free area utility, in top-down
231 * @start: start of candidate range
232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233 * %MEMBLOCK_ALLOC_ACCESSIBLE
234 * @size: size of free area to find
235 * @align: alignment of free area to find
236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237 * @flags: pick from blocks based on memory attributes
238 *
239 * Utility called from memblock_find_in_range_node(), find free area top-down.
240 *
241 * Return:
242 * Found address on success, 0 on failure.
243 */
244 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246 phys_addr_t size, phys_addr_t align, int nid,
247 enum memblock_flags flags)
248 {
249 phys_addr_t this_start, this_end, cand;
250 u64 i;
251
252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253 NULL) {
254 this_start = clamp(this_start, start, end);
255 this_end = clamp(this_end, start, end);
256
257 if (this_end < size)
258 continue;
259
260 cand = round_down(this_end - size, align);
261 if (cand >= this_start)
262 return cand;
263 }
264
265 return 0;
266 }
267
268 /**
269 * memblock_find_in_range_node - find free area in given range and node
270 * @size: size of free area to find
271 * @align: alignment of free area to find
272 * @start: start of candidate range
273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274 * %MEMBLOCK_ALLOC_ACCESSIBLE
275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276 * @flags: pick from blocks based on memory attributes
277 *
278 * Find @size free area aligned to @align in the specified range and node.
279 *
280 * Return:
281 * Found address on success, 0 on failure.
282 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284 phys_addr_t align, phys_addr_t start,
285 phys_addr_t end, int nid,
286 enum memblock_flags flags)
287 {
288 /* pump up @end */
289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
291 end = memblock.current_limit;
292
293 /* avoid allocating the first page */
294 start = max_t(phys_addr_t, start, PAGE_SIZE);
295 end = max(start, end);
296
297 if (memblock_bottom_up())
298 return __memblock_find_range_bottom_up(start, end, size, align,
299 nid, flags);
300 else
301 return __memblock_find_range_top_down(start, end, size, align,
302 nid, flags);
303 }
304
305 /**
306 * memblock_find_in_range - find free area in given range
307 * @start: start of candidate range
308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309 * %MEMBLOCK_ALLOC_ACCESSIBLE
310 * @size: size of free area to find
311 * @align: alignment of free area to find
312 *
313 * Find @size free area aligned to @align in the specified range.
314 *
315 * Return:
316 * Found address on success, 0 on failure.
317 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319 phys_addr_t end, phys_addr_t size,
320 phys_addr_t align)
321 {
322 phys_addr_t ret;
323 enum memblock_flags flags = choose_memblock_flags();
324
325 again:
326 ret = memblock_find_in_range_node(size, align, start, end,
327 NUMA_NO_NODE, flags);
328
329 if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331 &size);
332 flags &= ~MEMBLOCK_MIRROR;
333 goto again;
334 }
335
336 return ret;
337 }
338
memblock_remove_region(struct memblock_type * type,unsigned long r)339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
340 {
341 type->total_size -= type->regions[r].size;
342 memmove(&type->regions[r], &type->regions[r + 1],
343 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
344 type->cnt--;
345
346 /* Special case for empty arrays */
347 if (type->cnt == 0) {
348 WARN_ON(type->total_size != 0);
349 type->cnt = 1;
350 type->regions[0].base = 0;
351 type->regions[0].size = 0;
352 type->regions[0].flags = 0;
353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
354 }
355 }
356
357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
358 /**
359 * memblock_discard - discard memory and reserved arrays if they were allocated
360 */
memblock_discard(void)361 void __init memblock_discard(void)
362 {
363 phys_addr_t addr, size;
364
365 if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 addr = __pa(memblock.reserved.regions);
367 size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 memblock.reserved.max);
369 memblock_free_late(addr, size);
370 }
371
372 if (memblock.memory.regions != memblock_memory_init_regions) {
373 addr = __pa(memblock.memory.regions);
374 size = PAGE_ALIGN(sizeof(struct memblock_region) *
375 memblock.memory.max);
376 memblock_free_late(addr, size);
377 }
378
379 memblock_memory = NULL;
380 }
381 #endif
382
383 /**
384 * memblock_double_array - double the size of the memblock regions array
385 * @type: memblock type of the regions array being doubled
386 * @new_area_start: starting address of memory range to avoid overlap with
387 * @new_area_size: size of memory range to avoid overlap with
388 *
389 * Double the size of the @type regions array. If memblock is being used to
390 * allocate memory for a new reserved regions array and there is a previously
391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
392 * waiting to be reserved, ensure the memory used by the new array does
393 * not overlap.
394 *
395 * Return:
396 * 0 on success, -1 on failure.
397 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)398 static int __init_memblock memblock_double_array(struct memblock_type *type,
399 phys_addr_t new_area_start,
400 phys_addr_t new_area_size)
401 {
402 struct memblock_region *new_array, *old_array;
403 phys_addr_t old_alloc_size, new_alloc_size;
404 phys_addr_t old_size, new_size, addr, new_end;
405 int use_slab = slab_is_available();
406 int *in_slab;
407
408 /* We don't allow resizing until we know about the reserved regions
409 * of memory that aren't suitable for allocation
410 */
411 if (!memblock_can_resize)
412 return -1;
413
414 /* Calculate new doubled size */
415 old_size = type->max * sizeof(struct memblock_region);
416 new_size = old_size << 1;
417 /*
418 * We need to allocated new one align to PAGE_SIZE,
419 * so we can free them completely later.
420 */
421 old_alloc_size = PAGE_ALIGN(old_size);
422 new_alloc_size = PAGE_ALIGN(new_size);
423
424 /* Retrieve the slab flag */
425 if (type == &memblock.memory)
426 in_slab = &memblock_memory_in_slab;
427 else
428 in_slab = &memblock_reserved_in_slab;
429
430 /* Try to find some space for it */
431 if (use_slab) {
432 new_array = kmalloc(new_size, GFP_KERNEL);
433 addr = new_array ? __pa(new_array) : 0;
434 } else {
435 /* only exclude range when trying to double reserved.regions */
436 if (type != &memblock.reserved)
437 new_area_start = new_area_size = 0;
438
439 addr = memblock_find_in_range(new_area_start + new_area_size,
440 memblock.current_limit,
441 new_alloc_size, PAGE_SIZE);
442 if (!addr && new_area_size)
443 addr = memblock_find_in_range(0,
444 min(new_area_start, memblock.current_limit),
445 new_alloc_size, PAGE_SIZE);
446
447 new_array = addr ? __va(addr) : NULL;
448 }
449 if (!addr) {
450 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
451 type->name, type->max, type->max * 2);
452 return -1;
453 }
454
455 new_end = addr + new_size - 1;
456 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
457 type->name, type->max * 2, &addr, &new_end);
458
459 /*
460 * Found space, we now need to move the array over before we add the
461 * reserved region since it may be our reserved array itself that is
462 * full.
463 */
464 memcpy(new_array, type->regions, old_size);
465 memset(new_array + type->max, 0, old_size);
466 old_array = type->regions;
467 type->regions = new_array;
468 type->max <<= 1;
469
470 /* Free old array. We needn't free it if the array is the static one */
471 if (*in_slab)
472 kfree(old_array);
473 else if (old_array != memblock_memory_init_regions &&
474 old_array != memblock_reserved_init_regions)
475 memblock_free(old_array, old_alloc_size);
476
477 /*
478 * Reserve the new array if that comes from the memblock. Otherwise, we
479 * needn't do it
480 */
481 if (!use_slab)
482 BUG_ON(memblock_reserve(addr, new_alloc_size));
483
484 /* Update slab flag */
485 *in_slab = use_slab;
486
487 return 0;
488 }
489
490 /**
491 * memblock_merge_regions - merge neighboring compatible regions
492 * @type: memblock type to scan
493 *
494 * Scan @type and merge neighboring compatible regions.
495 */
memblock_merge_regions(struct memblock_type * type)496 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
497 {
498 int i = 0;
499
500 /* cnt never goes below 1 */
501 while (i < type->cnt - 1) {
502 struct memblock_region *this = &type->regions[i];
503 struct memblock_region *next = &type->regions[i + 1];
504
505 if (this->base + this->size != next->base ||
506 memblock_get_region_node(this) !=
507 memblock_get_region_node(next) ||
508 this->flags != next->flags) {
509 BUG_ON(this->base + this->size > next->base);
510 i++;
511 continue;
512 }
513
514 this->size += next->size;
515 /* move forward from next + 1, index of which is i + 2 */
516 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
517 type->cnt--;
518 }
519 }
520
521 /**
522 * memblock_insert_region - insert new memblock region
523 * @type: memblock type to insert into
524 * @idx: index for the insertion point
525 * @base: base address of the new region
526 * @size: size of the new region
527 * @nid: node id of the new region
528 * @flags: flags of the new region
529 *
530 * Insert new memblock region [@base, @base + @size) into @type at @idx.
531 * @type must already have extra room to accommodate the new region.
532 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)533 static void __init_memblock memblock_insert_region(struct memblock_type *type,
534 int idx, phys_addr_t base,
535 phys_addr_t size,
536 int nid,
537 enum memblock_flags flags)
538 {
539 struct memblock_region *rgn = &type->regions[idx];
540
541 BUG_ON(type->cnt >= type->max);
542 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
543 rgn->base = base;
544 rgn->size = size;
545 rgn->flags = flags;
546 memblock_set_region_node(rgn, nid);
547 type->cnt++;
548 type->total_size += size;
549 }
550
551 /**
552 * memblock_add_range - add new memblock region
553 * @type: memblock type to add new region into
554 * @base: base address of the new region
555 * @size: size of the new region
556 * @nid: nid of the new region
557 * @flags: flags of the new region
558 *
559 * Add new memblock region [@base, @base + @size) into @type. The new region
560 * is allowed to overlap with existing ones - overlaps don't affect already
561 * existing regions. @type is guaranteed to be minimal (all neighbouring
562 * compatible regions are merged) after the addition.
563 *
564 * Return:
565 * 0 on success, -errno on failure.
566 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)567 static int __init_memblock memblock_add_range(struct memblock_type *type,
568 phys_addr_t base, phys_addr_t size,
569 int nid, enum memblock_flags flags)
570 {
571 bool insert = false;
572 phys_addr_t obase = base;
573 phys_addr_t end = base + memblock_cap_size(base, &size);
574 int idx, nr_new;
575 struct memblock_region *rgn;
576
577 if (!size)
578 return 0;
579
580 /* special case for empty array */
581 if (type->regions[0].size == 0) {
582 WARN_ON(type->cnt != 1 || type->total_size);
583 type->regions[0].base = base;
584 type->regions[0].size = size;
585 type->regions[0].flags = flags;
586 memblock_set_region_node(&type->regions[0], nid);
587 type->total_size = size;
588 return 0;
589 }
590 repeat:
591 /*
592 * The following is executed twice. Once with %false @insert and
593 * then with %true. The first counts the number of regions needed
594 * to accommodate the new area. The second actually inserts them.
595 */
596 base = obase;
597 nr_new = 0;
598
599 for_each_memblock_type(idx, type, rgn) {
600 phys_addr_t rbase = rgn->base;
601 phys_addr_t rend = rbase + rgn->size;
602
603 if (rbase >= end)
604 break;
605 if (rend <= base)
606 continue;
607 /*
608 * @rgn overlaps. If it separates the lower part of new
609 * area, insert that portion.
610 */
611 if (rbase > base) {
612 #ifdef CONFIG_NUMA
613 WARN_ON(nid != memblock_get_region_node(rgn));
614 #endif
615 WARN_ON(flags != rgn->flags);
616 nr_new++;
617 if (insert)
618 memblock_insert_region(type, idx++, base,
619 rbase - base, nid,
620 flags);
621 }
622 /* area below @rend is dealt with, forget about it */
623 base = min(rend, end);
624 }
625
626 /* insert the remaining portion */
627 if (base < end) {
628 nr_new++;
629 if (insert)
630 memblock_insert_region(type, idx, base, end - base,
631 nid, flags);
632 }
633
634 if (!nr_new)
635 return 0;
636
637 /*
638 * If this was the first round, resize array and repeat for actual
639 * insertions; otherwise, merge and return.
640 */
641 if (!insert) {
642 while (type->cnt + nr_new > type->max)
643 if (memblock_double_array(type, obase, size) < 0)
644 return -ENOMEM;
645 insert = true;
646 goto repeat;
647 } else {
648 memblock_merge_regions(type);
649 return 0;
650 }
651 }
652
653 /**
654 * memblock_add_node - add new memblock region within a NUMA node
655 * @base: base address of the new region
656 * @size: size of the new region
657 * @nid: nid of the new region
658 * @flags: flags of the new region
659 *
660 * Add new memblock region [@base, @base + @size) to the "memory"
661 * type. See memblock_add_range() description for mode details
662 *
663 * Return:
664 * 0 on success, -errno on failure.
665 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)666 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
667 int nid, enum memblock_flags flags)
668 {
669 phys_addr_t end = base + size - 1;
670
671 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
672 &base, &end, nid, flags, (void *)_RET_IP_);
673
674 return memblock_add_range(&memblock.memory, base, size, nid, flags);
675 }
676
677 /**
678 * memblock_add - add new memblock region
679 * @base: base address of the new region
680 * @size: size of the new region
681 *
682 * Add new memblock region [@base, @base + @size) to the "memory"
683 * type. See memblock_add_range() description for mode details
684 *
685 * Return:
686 * 0 on success, -errno on failure.
687 */
memblock_add(phys_addr_t base,phys_addr_t size)688 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
689 {
690 phys_addr_t end = base + size - 1;
691
692 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
693 &base, &end, (void *)_RET_IP_);
694
695 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
696 }
697
698 /**
699 * memblock_isolate_range - isolate given range into disjoint memblocks
700 * @type: memblock type to isolate range for
701 * @base: base of range to isolate
702 * @size: size of range to isolate
703 * @start_rgn: out parameter for the start of isolated region
704 * @end_rgn: out parameter for the end of isolated region
705 *
706 * Walk @type and ensure that regions don't cross the boundaries defined by
707 * [@base, @base + @size). Crossing regions are split at the boundaries,
708 * which may create at most two more regions. The index of the first
709 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
710 *
711 * Return:
712 * 0 on success, -errno on failure.
713 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)714 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
715 phys_addr_t base, phys_addr_t size,
716 int *start_rgn, int *end_rgn)
717 {
718 phys_addr_t end = base + memblock_cap_size(base, &size);
719 int idx;
720 struct memblock_region *rgn;
721
722 *start_rgn = *end_rgn = 0;
723
724 if (!size)
725 return 0;
726
727 /* we'll create at most two more regions */
728 while (type->cnt + 2 > type->max)
729 if (memblock_double_array(type, base, size) < 0)
730 return -ENOMEM;
731
732 for_each_memblock_type(idx, type, rgn) {
733 phys_addr_t rbase = rgn->base;
734 phys_addr_t rend = rbase + rgn->size;
735
736 if (rbase >= end)
737 break;
738 if (rend <= base)
739 continue;
740
741 if (rbase < base) {
742 /*
743 * @rgn intersects from below. Split and continue
744 * to process the next region - the new top half.
745 */
746 rgn->base = base;
747 rgn->size -= base - rbase;
748 type->total_size -= base - rbase;
749 memblock_insert_region(type, idx, rbase, base - rbase,
750 memblock_get_region_node(rgn),
751 rgn->flags);
752 } else if (rend > end) {
753 /*
754 * @rgn intersects from above. Split and redo the
755 * current region - the new bottom half.
756 */
757 rgn->base = end;
758 rgn->size -= end - rbase;
759 type->total_size -= end - rbase;
760 memblock_insert_region(type, idx--, rbase, end - rbase,
761 memblock_get_region_node(rgn),
762 rgn->flags);
763 } else {
764 /* @rgn is fully contained, record it */
765 if (!*end_rgn)
766 *start_rgn = idx;
767 *end_rgn = idx + 1;
768 }
769 }
770
771 return 0;
772 }
773
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)774 static int __init_memblock memblock_remove_range(struct memblock_type *type,
775 phys_addr_t base, phys_addr_t size)
776 {
777 int start_rgn, end_rgn;
778 int i, ret;
779
780 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
781 if (ret)
782 return ret;
783
784 for (i = end_rgn - 1; i >= start_rgn; i--)
785 memblock_remove_region(type, i);
786 return 0;
787 }
788
memblock_remove(phys_addr_t base,phys_addr_t size)789 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
790 {
791 phys_addr_t end = base + size - 1;
792
793 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
794 &base, &end, (void *)_RET_IP_);
795
796 return memblock_remove_range(&memblock.memory, base, size);
797 }
798
799 /**
800 * memblock_free - free boot memory allocation
801 * @ptr: starting address of the boot memory allocation
802 * @size: size of the boot memory block in bytes
803 *
804 * Free boot memory block previously allocated by memblock_alloc_xx() API.
805 * The freeing memory will not be released to the buddy allocator.
806 */
memblock_free(void * ptr,size_t size)807 void __init_memblock memblock_free(void *ptr, size_t size)
808 {
809 if (ptr)
810 memblock_phys_free(__pa(ptr), size);
811 }
812
813 /**
814 * memblock_phys_free - free boot memory block
815 * @base: phys starting address of the boot memory block
816 * @size: size of the boot memory block in bytes
817 *
818 * Free boot memory block previously allocated by memblock_alloc_xx() API.
819 * The freeing memory will not be released to the buddy allocator.
820 */
memblock_phys_free(phys_addr_t base,phys_addr_t size)821 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
822 {
823 phys_addr_t end = base + size - 1;
824
825 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
826 &base, &end, (void *)_RET_IP_);
827
828 kmemleak_free_part_phys(base, size);
829 return memblock_remove_range(&memblock.reserved, base, size);
830 }
831
memblock_reserve(phys_addr_t base,phys_addr_t size)832 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
833 {
834 phys_addr_t end = base + size - 1;
835
836 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
837 &base, &end, (void *)_RET_IP_);
838
839 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
840 }
841
842 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)843 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
844 {
845 phys_addr_t end = base + size - 1;
846
847 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
848 &base, &end, (void *)_RET_IP_);
849
850 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
851 }
852 #endif
853
854 /**
855 * memblock_setclr_flag - set or clear flag for a memory region
856 * @base: base address of the region
857 * @size: size of the region
858 * @set: set or clear the flag
859 * @flag: the flag to update
860 *
861 * This function isolates region [@base, @base + @size), and sets/clears flag
862 *
863 * Return: 0 on success, -errno on failure.
864 */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)865 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
866 phys_addr_t size, int set, int flag)
867 {
868 struct memblock_type *type = &memblock.memory;
869 int i, ret, start_rgn, end_rgn;
870
871 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
872 if (ret)
873 return ret;
874
875 for (i = start_rgn; i < end_rgn; i++) {
876 struct memblock_region *r = &type->regions[i];
877
878 if (set)
879 r->flags |= flag;
880 else
881 r->flags &= ~flag;
882 }
883
884 memblock_merge_regions(type);
885 return 0;
886 }
887
888 /**
889 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
890 * @base: the base phys addr of the region
891 * @size: the size of the region
892 *
893 * Return: 0 on success, -errno on failure.
894 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)895 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
896 {
897 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
898 }
899
900 /**
901 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
902 * @base: the base phys addr of the region
903 * @size: the size of the region
904 *
905 * Return: 0 on success, -errno on failure.
906 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)907 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
908 {
909 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
910 }
911
912 /**
913 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
914 * @base: the base phys addr of the region
915 * @size: the size of the region
916 *
917 * Return: 0 on success, -errno on failure.
918 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)919 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
920 {
921 system_has_some_mirror = true;
922
923 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
924 }
925
926 /**
927 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
928 * @base: the base phys addr of the region
929 * @size: the size of the region
930 *
931 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
932 * direct mapping of the physical memory. These regions will still be
933 * covered by the memory map. The struct page representing NOMAP memory
934 * frames in the memory map will be PageReserved()
935 *
936 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
937 * memblock, the caller must inform kmemleak to ignore that memory
938 *
939 * Return: 0 on success, -errno on failure.
940 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)941 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
942 {
943 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
944 }
945
946 /**
947 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
948 * @base: the base phys addr of the region
949 * @size: the size of the region
950 *
951 * Return: 0 on success, -errno on failure.
952 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)953 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
954 {
955 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
956 }
957
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)958 static bool should_skip_region(struct memblock_type *type,
959 struct memblock_region *m,
960 int nid, int flags)
961 {
962 int m_nid = memblock_get_region_node(m);
963
964 /* we never skip regions when iterating memblock.reserved or physmem */
965 if (type != memblock_memory)
966 return false;
967
968 /* only memory regions are associated with nodes, check it */
969 if (nid != NUMA_NO_NODE && nid != m_nid)
970 return true;
971
972 /* skip hotpluggable memory regions if needed */
973 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
974 !(flags & MEMBLOCK_HOTPLUG))
975 return true;
976
977 /* if we want mirror memory skip non-mirror memory regions */
978 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
979 return true;
980
981 /* skip nomap memory unless we were asked for it explicitly */
982 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
983 return true;
984
985 /* skip driver-managed memory unless we were asked for it explicitly */
986 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
987 return true;
988
989 return false;
990 }
991
992 /**
993 * __next_mem_range - next function for for_each_free_mem_range() etc.
994 * @idx: pointer to u64 loop variable
995 * @nid: node selector, %NUMA_NO_NODE for all nodes
996 * @flags: pick from blocks based on memory attributes
997 * @type_a: pointer to memblock_type from where the range is taken
998 * @type_b: pointer to memblock_type which excludes memory from being taken
999 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1000 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1001 * @out_nid: ptr to int for nid of the range, can be %NULL
1002 *
1003 * Find the first area from *@idx which matches @nid, fill the out
1004 * parameters, and update *@idx for the next iteration. The lower 32bit of
1005 * *@idx contains index into type_a and the upper 32bit indexes the
1006 * areas before each region in type_b. For example, if type_b regions
1007 * look like the following,
1008 *
1009 * 0:[0-16), 1:[32-48), 2:[128-130)
1010 *
1011 * The upper 32bit indexes the following regions.
1012 *
1013 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1014 *
1015 * As both region arrays are sorted, the function advances the two indices
1016 * in lockstep and returns each intersection.
1017 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1018 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1019 struct memblock_type *type_a,
1020 struct memblock_type *type_b, phys_addr_t *out_start,
1021 phys_addr_t *out_end, int *out_nid)
1022 {
1023 int idx_a = *idx & 0xffffffff;
1024 int idx_b = *idx >> 32;
1025
1026 if (WARN_ONCE(nid == MAX_NUMNODES,
1027 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1028 nid = NUMA_NO_NODE;
1029
1030 for (; idx_a < type_a->cnt; idx_a++) {
1031 struct memblock_region *m = &type_a->regions[idx_a];
1032
1033 phys_addr_t m_start = m->base;
1034 phys_addr_t m_end = m->base + m->size;
1035 int m_nid = memblock_get_region_node(m);
1036
1037 if (should_skip_region(type_a, m, nid, flags))
1038 continue;
1039
1040 if (!type_b) {
1041 if (out_start)
1042 *out_start = m_start;
1043 if (out_end)
1044 *out_end = m_end;
1045 if (out_nid)
1046 *out_nid = m_nid;
1047 idx_a++;
1048 *idx = (u32)idx_a | (u64)idx_b << 32;
1049 return;
1050 }
1051
1052 /* scan areas before each reservation */
1053 for (; idx_b < type_b->cnt + 1; idx_b++) {
1054 struct memblock_region *r;
1055 phys_addr_t r_start;
1056 phys_addr_t r_end;
1057
1058 r = &type_b->regions[idx_b];
1059 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1060 r_end = idx_b < type_b->cnt ?
1061 r->base : PHYS_ADDR_MAX;
1062
1063 /*
1064 * if idx_b advanced past idx_a,
1065 * break out to advance idx_a
1066 */
1067 if (r_start >= m_end)
1068 break;
1069 /* if the two regions intersect, we're done */
1070 if (m_start < r_end) {
1071 if (out_start)
1072 *out_start =
1073 max(m_start, r_start);
1074 if (out_end)
1075 *out_end = min(m_end, r_end);
1076 if (out_nid)
1077 *out_nid = m_nid;
1078 /*
1079 * The region which ends first is
1080 * advanced for the next iteration.
1081 */
1082 if (m_end <= r_end)
1083 idx_a++;
1084 else
1085 idx_b++;
1086 *idx = (u32)idx_a | (u64)idx_b << 32;
1087 return;
1088 }
1089 }
1090 }
1091
1092 /* signal end of iteration */
1093 *idx = ULLONG_MAX;
1094 }
1095
1096 /**
1097 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1098 *
1099 * @idx: pointer to u64 loop variable
1100 * @nid: node selector, %NUMA_NO_NODE for all nodes
1101 * @flags: pick from blocks based on memory attributes
1102 * @type_a: pointer to memblock_type from where the range is taken
1103 * @type_b: pointer to memblock_type which excludes memory from being taken
1104 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1105 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1106 * @out_nid: ptr to int for nid of the range, can be %NULL
1107 *
1108 * Finds the next range from type_a which is not marked as unsuitable
1109 * in type_b.
1110 *
1111 * Reverse of __next_mem_range().
1112 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1113 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1114 enum memblock_flags flags,
1115 struct memblock_type *type_a,
1116 struct memblock_type *type_b,
1117 phys_addr_t *out_start,
1118 phys_addr_t *out_end, int *out_nid)
1119 {
1120 int idx_a = *idx & 0xffffffff;
1121 int idx_b = *idx >> 32;
1122
1123 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1124 nid = NUMA_NO_NODE;
1125
1126 if (*idx == (u64)ULLONG_MAX) {
1127 idx_a = type_a->cnt - 1;
1128 if (type_b != NULL)
1129 idx_b = type_b->cnt;
1130 else
1131 idx_b = 0;
1132 }
1133
1134 for (; idx_a >= 0; idx_a--) {
1135 struct memblock_region *m = &type_a->regions[idx_a];
1136
1137 phys_addr_t m_start = m->base;
1138 phys_addr_t m_end = m->base + m->size;
1139 int m_nid = memblock_get_region_node(m);
1140
1141 if (should_skip_region(type_a, m, nid, flags))
1142 continue;
1143
1144 if (!type_b) {
1145 if (out_start)
1146 *out_start = m_start;
1147 if (out_end)
1148 *out_end = m_end;
1149 if (out_nid)
1150 *out_nid = m_nid;
1151 idx_a--;
1152 *idx = (u32)idx_a | (u64)idx_b << 32;
1153 return;
1154 }
1155
1156 /* scan areas before each reservation */
1157 for (; idx_b >= 0; idx_b--) {
1158 struct memblock_region *r;
1159 phys_addr_t r_start;
1160 phys_addr_t r_end;
1161
1162 r = &type_b->regions[idx_b];
1163 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1164 r_end = idx_b < type_b->cnt ?
1165 r->base : PHYS_ADDR_MAX;
1166 /*
1167 * if idx_b advanced past idx_a,
1168 * break out to advance idx_a
1169 */
1170
1171 if (r_end <= m_start)
1172 break;
1173 /* if the two regions intersect, we're done */
1174 if (m_end > r_start) {
1175 if (out_start)
1176 *out_start = max(m_start, r_start);
1177 if (out_end)
1178 *out_end = min(m_end, r_end);
1179 if (out_nid)
1180 *out_nid = m_nid;
1181 if (m_start >= r_start)
1182 idx_a--;
1183 else
1184 idx_b--;
1185 *idx = (u32)idx_a | (u64)idx_b << 32;
1186 return;
1187 }
1188 }
1189 }
1190 /* signal end of iteration */
1191 *idx = ULLONG_MAX;
1192 }
1193
1194 /*
1195 * Common iterator interface used to define for_each_mem_pfn_range().
1196 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1197 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1198 unsigned long *out_start_pfn,
1199 unsigned long *out_end_pfn, int *out_nid)
1200 {
1201 struct memblock_type *type = &memblock.memory;
1202 struct memblock_region *r;
1203 int r_nid;
1204
1205 while (++*idx < type->cnt) {
1206 r = &type->regions[*idx];
1207 r_nid = memblock_get_region_node(r);
1208
1209 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1210 continue;
1211 if (nid == MAX_NUMNODES || nid == r_nid)
1212 break;
1213 }
1214 if (*idx >= type->cnt) {
1215 *idx = -1;
1216 return;
1217 }
1218
1219 if (out_start_pfn)
1220 *out_start_pfn = PFN_UP(r->base);
1221 if (out_end_pfn)
1222 *out_end_pfn = PFN_DOWN(r->base + r->size);
1223 if (out_nid)
1224 *out_nid = r_nid;
1225 }
1226
1227 /**
1228 * memblock_set_node - set node ID on memblock regions
1229 * @base: base of area to set node ID for
1230 * @size: size of area to set node ID for
1231 * @type: memblock type to set node ID for
1232 * @nid: node ID to set
1233 *
1234 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1235 * Regions which cross the area boundaries are split as necessary.
1236 *
1237 * Return:
1238 * 0 on success, -errno on failure.
1239 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1240 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1241 struct memblock_type *type, int nid)
1242 {
1243 #ifdef CONFIG_NUMA
1244 int start_rgn, end_rgn;
1245 int i, ret;
1246
1247 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1248 if (ret)
1249 return ret;
1250
1251 for (i = start_rgn; i < end_rgn; i++)
1252 memblock_set_region_node(&type->regions[i], nid);
1253
1254 memblock_merge_regions(type);
1255 #endif
1256 return 0;
1257 }
1258
1259 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1260 /**
1261 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1262 *
1263 * @idx: pointer to u64 loop variable
1264 * @zone: zone in which all of the memory blocks reside
1265 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1266 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1267 *
1268 * This function is meant to be a zone/pfn specific wrapper for the
1269 * for_each_mem_range type iterators. Specifically they are used in the
1270 * deferred memory init routines and as such we were duplicating much of
1271 * this logic throughout the code. So instead of having it in multiple
1272 * locations it seemed like it would make more sense to centralize this to
1273 * one new iterator that does everything they need.
1274 */
1275 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1276 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1277 unsigned long *out_spfn, unsigned long *out_epfn)
1278 {
1279 int zone_nid = zone_to_nid(zone);
1280 phys_addr_t spa, epa;
1281 int nid;
1282
1283 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1284 &memblock.memory, &memblock.reserved,
1285 &spa, &epa, &nid);
1286
1287 while (*idx != U64_MAX) {
1288 unsigned long epfn = PFN_DOWN(epa);
1289 unsigned long spfn = PFN_UP(spa);
1290
1291 /*
1292 * Verify the end is at least past the start of the zone and
1293 * that we have at least one PFN to initialize.
1294 */
1295 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1296 /* if we went too far just stop searching */
1297 if (zone_end_pfn(zone) <= spfn) {
1298 *idx = U64_MAX;
1299 break;
1300 }
1301
1302 if (out_spfn)
1303 *out_spfn = max(zone->zone_start_pfn, spfn);
1304 if (out_epfn)
1305 *out_epfn = min(zone_end_pfn(zone), epfn);
1306
1307 return;
1308 }
1309
1310 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1311 &memblock.memory, &memblock.reserved,
1312 &spa, &epa, &nid);
1313 }
1314
1315 /* signal end of iteration */
1316 if (out_spfn)
1317 *out_spfn = ULONG_MAX;
1318 if (out_epfn)
1319 *out_epfn = 0;
1320 }
1321
1322 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1323
1324 /**
1325 * memblock_alloc_range_nid - allocate boot memory block
1326 * @size: size of memory block to be allocated in bytes
1327 * @align: alignment of the region and block's size
1328 * @start: the lower bound of the memory region to allocate (phys address)
1329 * @end: the upper bound of the memory region to allocate (phys address)
1330 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1331 * @exact_nid: control the allocation fall back to other nodes
1332 *
1333 * The allocation is performed from memory region limited by
1334 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1335 *
1336 * If the specified node can not hold the requested memory and @exact_nid
1337 * is false, the allocation falls back to any node in the system.
1338 *
1339 * For systems with memory mirroring, the allocation is attempted first
1340 * from the regions with mirroring enabled and then retried from any
1341 * memory region.
1342 *
1343 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1344 * allocated boot memory block, so that it is never reported as leaks.
1345 *
1346 * Return:
1347 * Physical address of allocated memory block on success, %0 on failure.
1348 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1349 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1350 phys_addr_t align, phys_addr_t start,
1351 phys_addr_t end, int nid,
1352 bool exact_nid)
1353 {
1354 enum memblock_flags flags = choose_memblock_flags();
1355 phys_addr_t found;
1356
1357 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1358 nid = NUMA_NO_NODE;
1359
1360 if (!align) {
1361 /* Can't use WARNs this early in boot on powerpc */
1362 dump_stack();
1363 align = SMP_CACHE_BYTES;
1364 }
1365
1366 again:
1367 found = memblock_find_in_range_node(size, align, start, end, nid,
1368 flags);
1369 if (found && !memblock_reserve(found, size))
1370 goto done;
1371
1372 if (nid != NUMA_NO_NODE && !exact_nid) {
1373 found = memblock_find_in_range_node(size, align, start,
1374 end, NUMA_NO_NODE,
1375 flags);
1376 if (found && !memblock_reserve(found, size))
1377 goto done;
1378 }
1379
1380 if (flags & MEMBLOCK_MIRROR) {
1381 flags &= ~MEMBLOCK_MIRROR;
1382 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1383 &size);
1384 goto again;
1385 }
1386
1387 return 0;
1388
1389 done:
1390 /*
1391 * Skip kmemleak for those places like kasan_init() and
1392 * early_pgtable_alloc() due to high volume.
1393 */
1394 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1395 /*
1396 * The min_count is set to 0 so that memblock allocated
1397 * blocks are never reported as leaks. This is because many
1398 * of these blocks are only referred via the physical
1399 * address which is not looked up by kmemleak.
1400 */
1401 kmemleak_alloc_phys(found, size, 0, 0);
1402
1403 return found;
1404 }
1405
1406 /**
1407 * memblock_phys_alloc_range - allocate a memory block inside specified range
1408 * @size: size of memory block to be allocated in bytes
1409 * @align: alignment of the region and block's size
1410 * @start: the lower bound of the memory region to allocate (physical address)
1411 * @end: the upper bound of the memory region to allocate (physical address)
1412 *
1413 * Allocate @size bytes in the between @start and @end.
1414 *
1415 * Return: physical address of the allocated memory block on success,
1416 * %0 on failure.
1417 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1418 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1419 phys_addr_t align,
1420 phys_addr_t start,
1421 phys_addr_t end)
1422 {
1423 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1424 __func__, (u64)size, (u64)align, &start, &end,
1425 (void *)_RET_IP_);
1426 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1427 false);
1428 }
1429
1430 /**
1431 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1432 * @size: size of memory block to be allocated in bytes
1433 * @align: alignment of the region and block's size
1434 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1435 *
1436 * Allocates memory block from the specified NUMA node. If the node
1437 * has no available memory, attempts to allocated from any node in the
1438 * system.
1439 *
1440 * Return: physical address of the allocated memory block on success,
1441 * %0 on failure.
1442 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1443 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1444 {
1445 return memblock_alloc_range_nid(size, align, 0,
1446 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1447 }
1448
1449 /**
1450 * memblock_alloc_internal - allocate boot memory block
1451 * @size: size of memory block to be allocated in bytes
1452 * @align: alignment of the region and block's size
1453 * @min_addr: the lower bound of the memory region to allocate (phys address)
1454 * @max_addr: the upper bound of the memory region to allocate (phys address)
1455 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1456 * @exact_nid: control the allocation fall back to other nodes
1457 *
1458 * Allocates memory block using memblock_alloc_range_nid() and
1459 * converts the returned physical address to virtual.
1460 *
1461 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1462 * will fall back to memory below @min_addr. Other constraints, such
1463 * as node and mirrored memory will be handled again in
1464 * memblock_alloc_range_nid().
1465 *
1466 * Return:
1467 * Virtual address of allocated memory block on success, NULL on failure.
1468 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1469 static void * __init memblock_alloc_internal(
1470 phys_addr_t size, phys_addr_t align,
1471 phys_addr_t min_addr, phys_addr_t max_addr,
1472 int nid, bool exact_nid)
1473 {
1474 phys_addr_t alloc;
1475
1476 /*
1477 * Detect any accidental use of these APIs after slab is ready, as at
1478 * this moment memblock may be deinitialized already and its
1479 * internal data may be destroyed (after execution of memblock_free_all)
1480 */
1481 if (WARN_ON_ONCE(slab_is_available()))
1482 return kzalloc_node(size, GFP_NOWAIT, nid);
1483
1484 if (max_addr > memblock.current_limit)
1485 max_addr = memblock.current_limit;
1486
1487 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1488 exact_nid);
1489
1490 /* retry allocation without lower limit */
1491 if (!alloc && min_addr)
1492 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1493 exact_nid);
1494
1495 if (!alloc)
1496 return NULL;
1497
1498 return phys_to_virt(alloc);
1499 }
1500
1501 /**
1502 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1503 * without zeroing memory
1504 * @size: size of memory block to be allocated in bytes
1505 * @align: alignment of the region and block's size
1506 * @min_addr: the lower bound of the memory region from where the allocation
1507 * is preferred (phys address)
1508 * @max_addr: the upper bound of the memory region from where the allocation
1509 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1510 * allocate only from memory limited by memblock.current_limit value
1511 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1512 *
1513 * Public function, provides additional debug information (including caller
1514 * info), if enabled. Does not zero allocated memory.
1515 *
1516 * Return:
1517 * Virtual address of allocated memory block on success, NULL on failure.
1518 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1519 void * __init memblock_alloc_exact_nid_raw(
1520 phys_addr_t size, phys_addr_t align,
1521 phys_addr_t min_addr, phys_addr_t max_addr,
1522 int nid)
1523 {
1524 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1525 __func__, (u64)size, (u64)align, nid, &min_addr,
1526 &max_addr, (void *)_RET_IP_);
1527
1528 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1529 true);
1530 }
1531
1532 /**
1533 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1534 * memory and without panicking
1535 * @size: size of memory block to be allocated in bytes
1536 * @align: alignment of the region and block's size
1537 * @min_addr: the lower bound of the memory region from where the allocation
1538 * is preferred (phys address)
1539 * @max_addr: the upper bound of the memory region from where the allocation
1540 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1541 * allocate only from memory limited by memblock.current_limit value
1542 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1543 *
1544 * Public function, provides additional debug information (including caller
1545 * info), if enabled. Does not zero allocated memory, does not panic if request
1546 * cannot be satisfied.
1547 *
1548 * Return:
1549 * Virtual address of allocated memory block on success, NULL on failure.
1550 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1551 void * __init memblock_alloc_try_nid_raw(
1552 phys_addr_t size, phys_addr_t align,
1553 phys_addr_t min_addr, phys_addr_t max_addr,
1554 int nid)
1555 {
1556 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1557 __func__, (u64)size, (u64)align, nid, &min_addr,
1558 &max_addr, (void *)_RET_IP_);
1559
1560 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1561 false);
1562 }
1563
1564 /**
1565 * memblock_alloc_try_nid - allocate boot memory block
1566 * @size: size of memory block to be allocated in bytes
1567 * @align: alignment of the region and block's size
1568 * @min_addr: the lower bound of the memory region from where the allocation
1569 * is preferred (phys address)
1570 * @max_addr: the upper bound of the memory region from where the allocation
1571 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1572 * allocate only from memory limited by memblock.current_limit value
1573 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1574 *
1575 * Public function, provides additional debug information (including caller
1576 * info), if enabled. This function zeroes the allocated memory.
1577 *
1578 * Return:
1579 * Virtual address of allocated memory block on success, NULL on failure.
1580 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1581 void * __init memblock_alloc_try_nid(
1582 phys_addr_t size, phys_addr_t align,
1583 phys_addr_t min_addr, phys_addr_t max_addr,
1584 int nid)
1585 {
1586 void *ptr;
1587
1588 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1589 __func__, (u64)size, (u64)align, nid, &min_addr,
1590 &max_addr, (void *)_RET_IP_);
1591 ptr = memblock_alloc_internal(size, align,
1592 min_addr, max_addr, nid, false);
1593 if (ptr)
1594 memset(ptr, 0, size);
1595
1596 return ptr;
1597 }
1598
1599 /**
1600 * memblock_free_late - free pages directly to buddy allocator
1601 * @base: phys starting address of the boot memory block
1602 * @size: size of the boot memory block in bytes
1603 *
1604 * This is only useful when the memblock allocator has already been torn
1605 * down, but we are still initializing the system. Pages are released directly
1606 * to the buddy allocator.
1607 */
memblock_free_late(phys_addr_t base,phys_addr_t size)1608 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1609 {
1610 phys_addr_t cursor, end;
1611
1612 end = base + size - 1;
1613 memblock_dbg("%s: [%pa-%pa] %pS\n",
1614 __func__, &base, &end, (void *)_RET_IP_);
1615 kmemleak_free_part_phys(base, size);
1616 cursor = PFN_UP(base);
1617 end = PFN_DOWN(base + size);
1618
1619 for (; cursor < end; cursor++) {
1620 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1621 totalram_pages_inc();
1622 }
1623 }
1624
1625 /*
1626 * Remaining API functions
1627 */
1628
memblock_phys_mem_size(void)1629 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1630 {
1631 return memblock.memory.total_size;
1632 }
1633
memblock_reserved_size(void)1634 phys_addr_t __init_memblock memblock_reserved_size(void)
1635 {
1636 return memblock.reserved.total_size;
1637 }
1638
1639 /* lowest address */
memblock_start_of_DRAM(void)1640 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1641 {
1642 return memblock.memory.regions[0].base;
1643 }
1644
memblock_end_of_DRAM(void)1645 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1646 {
1647 int idx = memblock.memory.cnt - 1;
1648
1649 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1650 }
1651
__find_max_addr(phys_addr_t limit)1652 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1653 {
1654 phys_addr_t max_addr = PHYS_ADDR_MAX;
1655 struct memblock_region *r;
1656
1657 /*
1658 * translate the memory @limit size into the max address within one of
1659 * the memory memblock regions, if the @limit exceeds the total size
1660 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1661 */
1662 for_each_mem_region(r) {
1663 if (limit <= r->size) {
1664 max_addr = r->base + limit;
1665 break;
1666 }
1667 limit -= r->size;
1668 }
1669
1670 return max_addr;
1671 }
1672
memblock_enforce_memory_limit(phys_addr_t limit)1673 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1674 {
1675 phys_addr_t max_addr;
1676
1677 if (!limit)
1678 return;
1679
1680 max_addr = __find_max_addr(limit);
1681
1682 /* @limit exceeds the total size of the memory, do nothing */
1683 if (max_addr == PHYS_ADDR_MAX)
1684 return;
1685
1686 /* truncate both memory and reserved regions */
1687 memblock_remove_range(&memblock.memory, max_addr,
1688 PHYS_ADDR_MAX);
1689 memblock_remove_range(&memblock.reserved, max_addr,
1690 PHYS_ADDR_MAX);
1691 }
1692
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1693 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1694 {
1695 int start_rgn, end_rgn;
1696 int i, ret;
1697
1698 if (!size)
1699 return;
1700
1701 if (!memblock_memory->total_size) {
1702 pr_warn("%s: No memory registered yet\n", __func__);
1703 return;
1704 }
1705
1706 ret = memblock_isolate_range(&memblock.memory, base, size,
1707 &start_rgn, &end_rgn);
1708 if (ret)
1709 return;
1710
1711 /* remove all the MAP regions */
1712 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1713 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1714 memblock_remove_region(&memblock.memory, i);
1715
1716 for (i = start_rgn - 1; i >= 0; i--)
1717 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1718 memblock_remove_region(&memblock.memory, i);
1719
1720 /* truncate the reserved regions */
1721 memblock_remove_range(&memblock.reserved, 0, base);
1722 memblock_remove_range(&memblock.reserved,
1723 base + size, PHYS_ADDR_MAX);
1724 }
1725
memblock_mem_limit_remove_map(phys_addr_t limit)1726 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1727 {
1728 phys_addr_t max_addr;
1729
1730 if (!limit)
1731 return;
1732
1733 max_addr = __find_max_addr(limit);
1734
1735 /* @limit exceeds the total size of the memory, do nothing */
1736 if (max_addr == PHYS_ADDR_MAX)
1737 return;
1738
1739 memblock_cap_memory_range(0, max_addr);
1740 }
1741
memblock_search(struct memblock_type * type,phys_addr_t addr)1742 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1743 {
1744 unsigned int left = 0, right = type->cnt;
1745
1746 do {
1747 unsigned int mid = (right + left) / 2;
1748
1749 if (addr < type->regions[mid].base)
1750 right = mid;
1751 else if (addr >= (type->regions[mid].base +
1752 type->regions[mid].size))
1753 left = mid + 1;
1754 else
1755 return mid;
1756 } while (left < right);
1757 return -1;
1758 }
1759
memblock_is_reserved(phys_addr_t addr)1760 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1761 {
1762 return memblock_search(&memblock.reserved, addr) != -1;
1763 }
1764
memblock_is_memory(phys_addr_t addr)1765 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1766 {
1767 return memblock_search(&memblock.memory, addr) != -1;
1768 }
1769
memblock_is_map_memory(phys_addr_t addr)1770 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1771 {
1772 int i = memblock_search(&memblock.memory, addr);
1773
1774 if (i == -1)
1775 return false;
1776 return !memblock_is_nomap(&memblock.memory.regions[i]);
1777 }
1778
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1779 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1780 unsigned long *start_pfn, unsigned long *end_pfn)
1781 {
1782 struct memblock_type *type = &memblock.memory;
1783 int mid = memblock_search(type, PFN_PHYS(pfn));
1784
1785 if (mid == -1)
1786 return -1;
1787
1788 *start_pfn = PFN_DOWN(type->regions[mid].base);
1789 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1790
1791 return memblock_get_region_node(&type->regions[mid]);
1792 }
1793
1794 /**
1795 * memblock_is_region_memory - check if a region is a subset of memory
1796 * @base: base of region to check
1797 * @size: size of region to check
1798 *
1799 * Check if the region [@base, @base + @size) is a subset of a memory block.
1800 *
1801 * Return:
1802 * 0 if false, non-zero if true
1803 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1804 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1805 {
1806 int idx = memblock_search(&memblock.memory, base);
1807 phys_addr_t end = base + memblock_cap_size(base, &size);
1808
1809 if (idx == -1)
1810 return false;
1811 return (memblock.memory.regions[idx].base +
1812 memblock.memory.regions[idx].size) >= end;
1813 }
1814
1815 /**
1816 * memblock_is_region_reserved - check if a region intersects reserved memory
1817 * @base: base of region to check
1818 * @size: size of region to check
1819 *
1820 * Check if the region [@base, @base + @size) intersects a reserved
1821 * memory block.
1822 *
1823 * Return:
1824 * True if they intersect, false if not.
1825 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1826 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1827 {
1828 return memblock_overlaps_region(&memblock.reserved, base, size);
1829 }
1830
memblock_trim_memory(phys_addr_t align)1831 void __init_memblock memblock_trim_memory(phys_addr_t align)
1832 {
1833 phys_addr_t start, end, orig_start, orig_end;
1834 struct memblock_region *r;
1835
1836 for_each_mem_region(r) {
1837 orig_start = r->base;
1838 orig_end = r->base + r->size;
1839 start = round_up(orig_start, align);
1840 end = round_down(orig_end, align);
1841
1842 if (start == orig_start && end == orig_end)
1843 continue;
1844
1845 if (start < end) {
1846 r->base = start;
1847 r->size = end - start;
1848 } else {
1849 memblock_remove_region(&memblock.memory,
1850 r - memblock.memory.regions);
1851 r--;
1852 }
1853 }
1854 }
1855
memblock_set_current_limit(phys_addr_t limit)1856 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1857 {
1858 memblock.current_limit = limit;
1859 }
1860
memblock_get_current_limit(void)1861 phys_addr_t __init_memblock memblock_get_current_limit(void)
1862 {
1863 return memblock.current_limit;
1864 }
1865
memblock_dump(struct memblock_type * type)1866 static void __init_memblock memblock_dump(struct memblock_type *type)
1867 {
1868 phys_addr_t base, end, size;
1869 enum memblock_flags flags;
1870 int idx;
1871 struct memblock_region *rgn;
1872
1873 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1874
1875 for_each_memblock_type(idx, type, rgn) {
1876 char nid_buf[32] = "";
1877
1878 base = rgn->base;
1879 size = rgn->size;
1880 end = base + size - 1;
1881 flags = rgn->flags;
1882 #ifdef CONFIG_NUMA
1883 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1884 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1885 memblock_get_region_node(rgn));
1886 #endif
1887 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1888 type->name, idx, &base, &end, &size, nid_buf, flags);
1889 }
1890 }
1891
__memblock_dump_all(void)1892 static void __init_memblock __memblock_dump_all(void)
1893 {
1894 pr_info("MEMBLOCK configuration:\n");
1895 pr_info(" memory size = %pa reserved size = %pa\n",
1896 &memblock.memory.total_size,
1897 &memblock.reserved.total_size);
1898
1899 memblock_dump(&memblock.memory);
1900 memblock_dump(&memblock.reserved);
1901 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1902 memblock_dump(&physmem);
1903 #endif
1904 }
1905
memblock_dump_all(void)1906 void __init_memblock memblock_dump_all(void)
1907 {
1908 if (memblock_debug)
1909 __memblock_dump_all();
1910 }
1911
memblock_allow_resize(void)1912 void __init memblock_allow_resize(void)
1913 {
1914 memblock_can_resize = 1;
1915 }
1916
early_memblock(char * p)1917 static int __init early_memblock(char *p)
1918 {
1919 if (p && strstr(p, "debug"))
1920 memblock_debug = 1;
1921 return 0;
1922 }
1923 early_param("memblock", early_memblock);
1924
free_memmap(unsigned long start_pfn,unsigned long end_pfn)1925 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1926 {
1927 struct page *start_pg, *end_pg;
1928 phys_addr_t pg, pgend;
1929
1930 /*
1931 * Convert start_pfn/end_pfn to a struct page pointer.
1932 */
1933 start_pg = pfn_to_page(start_pfn - 1) + 1;
1934 end_pg = pfn_to_page(end_pfn - 1) + 1;
1935
1936 /*
1937 * Convert to physical addresses, and round start upwards and end
1938 * downwards.
1939 */
1940 pg = PAGE_ALIGN(__pa(start_pg));
1941 pgend = __pa(end_pg) & PAGE_MASK;
1942
1943 /*
1944 * If there are free pages between these, free the section of the
1945 * memmap array.
1946 */
1947 if (pg < pgend)
1948 memblock_phys_free(pg, pgend - pg);
1949 }
1950
1951 /*
1952 * The mem_map array can get very big. Free the unused area of the memory map.
1953 */
free_unused_memmap(void)1954 static void __init free_unused_memmap(void)
1955 {
1956 unsigned long start, end, prev_end = 0;
1957 int i;
1958
1959 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1960 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1961 return;
1962
1963 /*
1964 * This relies on each bank being in address order.
1965 * The banks are sorted previously in bootmem_init().
1966 */
1967 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1968 #ifdef CONFIG_SPARSEMEM
1969 /*
1970 * Take care not to free memmap entries that don't exist
1971 * due to SPARSEMEM sections which aren't present.
1972 */
1973 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1974 #endif
1975 /*
1976 * Align down here since many operations in VM subsystem
1977 * presume that there are no holes in the memory map inside
1978 * a pageblock
1979 */
1980 start = round_down(start, pageblock_nr_pages);
1981
1982 /*
1983 * If we had a previous bank, and there is a space
1984 * between the current bank and the previous, free it.
1985 */
1986 if (prev_end && prev_end < start)
1987 free_memmap(prev_end, start);
1988
1989 /*
1990 * Align up here since many operations in VM subsystem
1991 * presume that there are no holes in the memory map inside
1992 * a pageblock
1993 */
1994 prev_end = ALIGN(end, pageblock_nr_pages);
1995 }
1996
1997 #ifdef CONFIG_SPARSEMEM
1998 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
1999 prev_end = ALIGN(end, pageblock_nr_pages);
2000 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2001 }
2002 #endif
2003 }
2004
__free_pages_memory(unsigned long start,unsigned long end)2005 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2006 {
2007 int order;
2008
2009 while (start < end) {
2010 order = min(MAX_ORDER - 1UL, __ffs(start));
2011
2012 while (start + (1UL << order) > end)
2013 order--;
2014
2015 memblock_free_pages(pfn_to_page(start), start, order);
2016
2017 start += (1UL << order);
2018 }
2019 }
2020
__free_memory_core(phys_addr_t start,phys_addr_t end)2021 static unsigned long __init __free_memory_core(phys_addr_t start,
2022 phys_addr_t end)
2023 {
2024 unsigned long start_pfn = PFN_UP(start);
2025 unsigned long end_pfn = min_t(unsigned long,
2026 PFN_DOWN(end), max_low_pfn);
2027
2028 if (start_pfn >= end_pfn)
2029 return 0;
2030
2031 __free_pages_memory(start_pfn, end_pfn);
2032
2033 return end_pfn - start_pfn;
2034 }
2035
memmap_init_reserved_pages(void)2036 static void __init memmap_init_reserved_pages(void)
2037 {
2038 struct memblock_region *region;
2039 phys_addr_t start, end;
2040 u64 i;
2041
2042 /* initialize struct pages for the reserved regions */
2043 for_each_reserved_mem_range(i, &start, &end)
2044 reserve_bootmem_region(start, end);
2045
2046 /* and also treat struct pages for the NOMAP regions as PageReserved */
2047 for_each_mem_region(region) {
2048 if (memblock_is_nomap(region)) {
2049 start = region->base;
2050 end = start + region->size;
2051 reserve_bootmem_region(start, end);
2052 }
2053 }
2054 }
2055
free_low_memory_core_early(void)2056 static unsigned long __init free_low_memory_core_early(void)
2057 {
2058 unsigned long count = 0;
2059 phys_addr_t start, end;
2060 u64 i;
2061
2062 memblock_clear_hotplug(0, -1);
2063
2064 memmap_init_reserved_pages();
2065
2066 /*
2067 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2068 * because in some case like Node0 doesn't have RAM installed
2069 * low ram will be on Node1
2070 */
2071 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2072 NULL)
2073 count += __free_memory_core(start, end);
2074
2075 return count;
2076 }
2077
2078 static int reset_managed_pages_done __initdata;
2079
reset_node_managed_pages(pg_data_t * pgdat)2080 void reset_node_managed_pages(pg_data_t *pgdat)
2081 {
2082 struct zone *z;
2083
2084 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2085 atomic_long_set(&z->managed_pages, 0);
2086 }
2087
reset_all_zones_managed_pages(void)2088 void __init reset_all_zones_managed_pages(void)
2089 {
2090 struct pglist_data *pgdat;
2091
2092 if (reset_managed_pages_done)
2093 return;
2094
2095 for_each_online_pgdat(pgdat)
2096 reset_node_managed_pages(pgdat);
2097
2098 reset_managed_pages_done = 1;
2099 }
2100
2101 /**
2102 * memblock_free_all - release free pages to the buddy allocator
2103 */
memblock_free_all(void)2104 void __init memblock_free_all(void)
2105 {
2106 unsigned long pages;
2107
2108 free_unused_memmap();
2109 reset_all_zones_managed_pages();
2110
2111 pages = free_low_memory_core_early();
2112 totalram_pages_add(pages);
2113 }
2114
2115 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2116
memblock_debug_show(struct seq_file * m,void * private)2117 static int memblock_debug_show(struct seq_file *m, void *private)
2118 {
2119 struct memblock_type *type = m->private;
2120 struct memblock_region *reg;
2121 int i;
2122 phys_addr_t end;
2123
2124 for (i = 0; i < type->cnt; i++) {
2125 reg = &type->regions[i];
2126 end = reg->base + reg->size - 1;
2127
2128 seq_printf(m, "%4d: ", i);
2129 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2130 }
2131 return 0;
2132 }
2133 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2134
memblock_init_debugfs(void)2135 static int __init memblock_init_debugfs(void)
2136 {
2137 struct dentry *root = debugfs_create_dir("memblock", NULL);
2138
2139 debugfs_create_file("memory", 0444, root,
2140 &memblock.memory, &memblock_debug_fops);
2141 debugfs_create_file("reserved", 0444, root,
2142 &memblock.reserved, &memblock_debug_fops);
2143 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2144 debugfs_create_file("physmem", 0444, root, &physmem,
2145 &memblock_debug_fops);
2146 #endif
2147
2148 return 0;
2149 }
2150 __initcall(memblock_init_debugfs);
2151
2152 #endif /* CONFIG_DEBUG_FS */
2153