1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) Marvell International Ltd. and its affiliates
4  */
5 
6 #include "ddr3_init.h"
7 #include "mv_ddr_common.h"
8 #include "mv_ddr_training_db.h"
9 #include "mv_ddr_regs.h"
10 #include "mv_ddr_sys_env_lib.h"
11 
12 #define DDR_INTERFACES_NUM		1
13 #define DDR_INTERFACE_OCTETS_NUM	5
14 
15 /*
16  * 1. L2 filter should be set at binary header to 0xD000000,
17  *    to avoid conflict with internal register IO.
18  * 2. U-Boot modifies internal registers base to 0xf100000,
19  *    and than should update L2 filter accordingly to 0xf000000 (3.75 GB)
20  */
21 #define L2_FILTER_FOR_MAX_MEMORY_SIZE	0xC0000000 /* temporary limit l2 filter to 3gb (LSP issue) */
22 #define ADDRESS_FILTERING_END_REGISTER	0x8c04
23 
24 #define DYNAMIC_CS_SIZE_CONFIG
25 #define DISABLE_L2_FILTERING_DURING_DDR_TRAINING
26 
27 /* Termal Sensor Registers */
28 #define TSEN_CONTROL_LSB_REG		0xE4070
29 #define TSEN_CONTROL_LSB_TC_TRIM_OFFSET	0
30 #define TSEN_CONTROL_LSB_TC_TRIM_MASK	(0x7 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET)
31 #define TSEN_CONTROL_MSB_REG		0xE4074
32 #define TSEN_CONTROL_MSB_RST_OFFSET	8
33 #define TSEN_CONTROL_MSB_RST_MASK	(0x1 << TSEN_CONTROL_MSB_RST_OFFSET)
34 #define TSEN_STATUS_REG			0xe4078
35 #define TSEN_STATUS_READOUT_VALID_OFFSET	10
36 #define TSEN_STATUS_READOUT_VALID_MASK	(0x1 <<				\
37 					 TSEN_STATUS_READOUT_VALID_OFFSET)
38 #define TSEN_STATUS_TEMP_OUT_OFFSET	0
39 #define TSEN_STATUS_TEMP_OUT_MASK	(0x3ff << TSEN_STATUS_TEMP_OUT_OFFSET)
40 
41 static struct dlb_config ddr3_dlb_config_table[] = {
42 	{DLB_CTRL_REG, 0x2000005c},
43 	{DLB_BUS_OPT_WT_REG, 0x00880000},
44 	{DLB_AGING_REG, 0x0f7f007f},
45 	{DLB_EVICTION_CTRL_REG, 0x0000129f},
46 	{DLB_EVICTION_TIMERS_REG, 0x00ff0000},
47 	{DLB_WTS_DIFF_CS_REG, 0x04030802},
48 	{DLB_WTS_DIFF_BG_REG, 0x00000a02},
49 	{DLB_WTS_SAME_BG_REG, 0x09000a01},
50 	{DLB_WTS_CMDS_REG, 0x00020005},
51 	{DLB_WTS_ATTR_PRIO_REG, 0x00060f10},
52 	{DLB_QUEUE_MAP_REG, 0x00000543},
53 	{DLB_SPLIT_REG, 0x00000000},
54 	{DLB_USER_CMD_REG, 0x00000000},
55 	{0x0, 0x0}
56 };
57 
sys_env_dlb_config_ptr_get(void)58 static struct dlb_config *sys_env_dlb_config_ptr_get(void)
59 {
60 	return &ddr3_dlb_config_table[0];
61 }
62 
63 static u8 a38x_bw_per_freq[MV_DDR_FREQ_LAST] = {
64 	0x3,			/* MV_DDR_FREQ_100 */
65 	0x4,			/* MV_DDR_FREQ_400 */
66 	0x4,			/* MV_DDR_FREQ_533 */
67 	0x5,			/* MV_DDR_FREQ_667 */
68 	0x5,			/* MV_DDR_FREQ_800 */
69 	0x5,			/* MV_DDR_FREQ_933 */
70 	0x5,			/* MV_DDR_FREQ_1066 */
71 	0x3,			/* MV_DDR_FREQ_311 */
72 	0x3,			/* MV_DDR_FREQ_333 */
73 	0x4,			/* MV_DDR_FREQ_467 */
74 	0x5,			/* MV_DDR_FREQ_850 */
75 	0x5,			/* MV_DDR_FREQ_600 */
76 	0x3,			/* MV_DDR_FREQ_300 */
77 	0x5,			/* MV_DDR_FREQ_900 */
78 	0x3,			/* MV_DDR_FREQ_360 */
79 	0x5			/* MV_DDR_FREQ_1000 */
80 };
81 
82 static u8 a38x_rate_per_freq[MV_DDR_FREQ_LAST] = {
83 	0x1,			/* MV_DDR_FREQ_100 */
84 	0x2,			/* MV_DDR_FREQ_400 */
85 	0x2,			/* MV_DDR_FREQ_533 */
86 	0x2,			/* MV_DDR_FREQ_667 */
87 	0x2,			/* MV_DDR_FREQ_800 */
88 	0x3,			/* MV_DDR_FREQ_933 */
89 	0x3,			/* MV_DDR_FREQ_1066 */
90 	0x1,			/* MV_DDR_FREQ_311 */
91 	0x1,			/* MV_DDR_FREQ_333 */
92 	0x2,			/* MV_DDR_FREQ_467 */
93 	0x2,			/* MV_DDR_FREQ_850 */
94 	0x2,			/* MV_DDR_FREQ_600 */
95 	0x1,			/* MV_DDR_FREQ_300 */
96 	0x2,			/* MV_DDR_FREQ_900 */
97 	0x1,			/* MV_DDR_FREQ_360 */
98 	0x2			/* MV_DDR_FREQ_1000 */
99 };
100 
101 static u16 a38x_vco_freq_per_sar_ref_clk_25_mhz[] = {
102 	666,			/* 0 */
103 	1332,
104 	800,
105 	1600,
106 	1066,
107 	2132,
108 	1200,
109 	2400,
110 	1332,
111 	1332,
112 	1500,
113 	1500,
114 	1600,			/* 12 */
115 	1600,
116 	1700,
117 	1700,
118 	1866,
119 	1866,
120 	1800,			/* 18 */
121 	2000,
122 	2000,
123 	4000,
124 	2132,
125 	2132,
126 	2300,
127 	2300,
128 	2400,
129 	2400,
130 	2500,
131 	2500,
132 	800
133 };
134 
135 static u16 a38x_vco_freq_per_sar_ref_clk_40_mhz[] = {
136 	666,			/* 0 */
137 	1332,
138 	800,
139 	800,			/* 0x3 */
140 	1066,
141 	1066,			/* 0x5 */
142 	1200,
143 	2400,
144 	1332,
145 	1332,
146 	1500,			/* 10 */
147 	1600,			/* 0xB */
148 	1600,
149 	1600,
150 	1700,
151 	1560,			/* 0xF */
152 	1866,
153 	1866,
154 	1800,
155 	2000,
156 	2000,			/* 20 */
157 	4000,
158 	2132,
159 	2132,
160 	2300,
161 	2300,
162 	2400,
163 	2400,
164 	2500,
165 	2500,
166 	1800			/* 30 - 0x1E */
167 };
168 
169 
170 static u32 async_mode_at_tf;
171 
172 static u32 dq_bit_map_2_phy_pin[] = {
173 	1, 0, 2, 6, 9, 8, 3, 7,	/* 0 */
174 	8, 9, 1, 7, 2, 6, 3, 0,	/* 1 */
175 	3, 9, 7, 8, 1, 0, 2, 6,	/* 2 */
176 	1, 0, 6, 2, 8, 3, 7, 9,	/* 3 */
177 	0, 1, 2, 9, 7, 8, 3, 6,	/* 4 */
178 };
179 
mv_ddr_mem_scrubbing(void)180 void mv_ddr_mem_scrubbing(void)
181 {
182 	ddr3_new_tip_ecc_scrub();
183 }
184 
185 static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
186 				     enum mv_ddr_freq freq);
187 
188 /*
189  * Read temperature TJ value
190  */
ddr3_ctrl_get_junc_temp(u8 dev_num)191 static u32 ddr3_ctrl_get_junc_temp(u8 dev_num)
192 {
193 	int reg = 0;
194 
195 	/* Initiates TSEN hardware reset once */
196 	if ((reg_read(TSEN_CONTROL_MSB_REG) & TSEN_CONTROL_MSB_RST_MASK) == 0) {
197 		reg_bit_set(TSEN_CONTROL_MSB_REG, TSEN_CONTROL_MSB_RST_MASK);
198 		/* set Tsen Tc Trim to correct default value (errata #132698) */
199 		reg = reg_read(TSEN_CONTROL_LSB_REG);
200 		reg &= ~TSEN_CONTROL_LSB_TC_TRIM_MASK;
201 		reg |= 0x3 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET;
202 		reg_write(TSEN_CONTROL_LSB_REG, reg);
203 	}
204 	mdelay(10);
205 
206 	/* Check if the readout field is valid */
207 	if ((reg_read(TSEN_STATUS_REG) & TSEN_STATUS_READOUT_VALID_MASK) == 0) {
208 		printf("%s: TSEN not ready\n", __func__);
209 		return 0;
210 	}
211 
212 	reg = reg_read(TSEN_STATUS_REG);
213 	reg = (reg & TSEN_STATUS_TEMP_OUT_MASK) >> TSEN_STATUS_TEMP_OUT_OFFSET;
214 
215 	return ((((10000 * reg) / 21445) * 1000) - 272674) / 1000;
216 }
217 
218 /*
219  * Name:     ddr3_tip_a38x_get_freq_config.
220  * Desc:
221  * Args:
222  * Notes:
223  * Returns:  MV_OK if success, other error code if fail.
224  */
ddr3_tip_a38x_get_freq_config(u8 dev_num,enum mv_ddr_freq freq,struct hws_tip_freq_config_info * freq_config_info)225 static int ddr3_tip_a38x_get_freq_config(u8 dev_num, enum mv_ddr_freq freq,
226 				  struct hws_tip_freq_config_info
227 				  *freq_config_info)
228 {
229 	if (a38x_bw_per_freq[freq] == 0xff)
230 		return MV_NOT_SUPPORTED;
231 
232 	if (freq_config_info == NULL)
233 		return MV_BAD_PARAM;
234 
235 	freq_config_info->bw_per_freq = a38x_bw_per_freq[freq];
236 	freq_config_info->rate_per_freq = a38x_rate_per_freq[freq];
237 	freq_config_info->is_supported = 1;
238 
239 	return MV_OK;
240 }
241 
dunit_read(u32 addr,u32 mask,u32 * data)242 static void dunit_read(u32 addr, u32 mask, u32 *data)
243 {
244 	*data = reg_read(addr) & mask;
245 }
246 
dunit_write(u32 addr,u32 mask,u32 data)247 static void dunit_write(u32 addr, u32 mask, u32 data)
248 {
249 	u32 reg_val = data;
250 
251 	if (mask != MASK_ALL_BITS) {
252 		dunit_read(addr, MASK_ALL_BITS, &reg_val);
253 		reg_val &= (~mask);
254 		reg_val |= (data & mask);
255 	}
256 
257 	reg_write(addr, reg_val);
258 }
259 
260 #define ODPG_ENABLE_REG				0x186d4
261 #define ODPG_EN_OFFS				0
262 #define ODPG_EN_MASK				0x1
263 #define ODPG_EN_ENA				1
264 #define ODPG_EN_DONE				0
265 #define ODPG_DIS_OFFS				8
266 #define ODPG_DIS_MASK				0x1
267 #define ODPG_DIS_DIS				1
mv_ddr_odpg_enable(void)268 void mv_ddr_odpg_enable(void)
269 {
270 	dunit_write(ODPG_ENABLE_REG,
271 		    ODPG_EN_MASK << ODPG_EN_OFFS,
272 		    ODPG_EN_ENA << ODPG_EN_OFFS);
273 }
274 
mv_ddr_odpg_disable(void)275 void mv_ddr_odpg_disable(void)
276 {
277 	dunit_write(ODPG_ENABLE_REG,
278 		    ODPG_DIS_MASK << ODPG_DIS_OFFS,
279 		    ODPG_DIS_DIS << ODPG_DIS_OFFS);
280 }
281 
mv_ddr_odpg_done_clr(void)282 void mv_ddr_odpg_done_clr(void)
283 {
284 	return;
285 }
286 
mv_ddr_is_odpg_done(u32 count)287 int mv_ddr_is_odpg_done(u32 count)
288 {
289 	u32 i, data;
290 
291 	for (i = 0; i < count; i++) {
292 		dunit_read(ODPG_ENABLE_REG, MASK_ALL_BITS, &data);
293 		if (((data >> ODPG_EN_OFFS) & ODPG_EN_MASK) ==
294 		     ODPG_EN_DONE)
295 			break;
296 	}
297 
298 	if (i >= count) {
299 		printf("%s: timeout\n", __func__);
300 		return MV_FAIL;
301 	}
302 
303 	return MV_OK;
304 }
305 
mv_ddr_training_enable(void)306 void mv_ddr_training_enable(void)
307 {
308 	dunit_write(GLOB_CTRL_STATUS_REG,
309 		    TRAINING_TRIGGER_MASK << TRAINING_TRIGGER_OFFS,
310 		    TRAINING_TRIGGER_ENA << TRAINING_TRIGGER_OFFS);
311 }
312 
313 #define DRAM_INIT_CTRL_STATUS_REG	0x18488
314 #define TRAINING_TRIGGER_OFFS		0
315 #define TRAINING_TRIGGER_MASK		0x1
316 #define TRAINING_TRIGGER_ENA		1
317 #define TRAINING_DONE_OFFS		1
318 #define TRAINING_DONE_MASK		0x1
319 #define TRAINING_DONE_DONE		1
320 #define TRAINING_DONE_NOT_DONE		0
321 #define TRAINING_RESULT_OFFS		2
322 #define TRAINING_RESULT_MASK		0x1
323 #define TRAINING_RESULT_PASS		0
324 #define TRAINING_RESULT_FAIL		1
mv_ddr_is_training_done(u32 count,u32 * result)325 int mv_ddr_is_training_done(u32 count, u32 *result)
326 {
327 	u32 i, data;
328 
329 	if (result == NULL) {
330 		printf("%s: NULL result pointer found\n", __func__);
331 		return MV_FAIL;
332 	}
333 
334 	for (i = 0; i < count; i++) {
335 		dunit_read(DRAM_INIT_CTRL_STATUS_REG, MASK_ALL_BITS, &data);
336 		if (((data >> TRAINING_DONE_OFFS) & TRAINING_DONE_MASK) ==
337 		     TRAINING_DONE_DONE)
338 			break;
339 	}
340 
341 	if (i >= count) {
342 		printf("%s: timeout\n", __func__);
343 		return MV_FAIL;
344 	}
345 
346 	*result = (data >> TRAINING_RESULT_OFFS) & TRAINING_RESULT_MASK;
347 
348 	return MV_OK;
349 }
350 
351 #define DM_PAD	10
mv_ddr_dm_pad_get(void)352 u32 mv_ddr_dm_pad_get(void)
353 {
354 	return DM_PAD;
355 }
356 
357 /*
358  * Name:     ddr3_tip_a38x_select_ddr_controller.
359  * Desc:     Enable/Disable access to Marvell's server.
360  * Args:     dev_num     - device number
361  *           enable        - whether to enable or disable the server
362  * Notes:
363  * Returns:  MV_OK if success, other error code if fail.
364  */
ddr3_tip_a38x_select_ddr_controller(u8 dev_num,int enable)365 static int ddr3_tip_a38x_select_ddr_controller(u8 dev_num, int enable)
366 {
367 	u32 reg;
368 
369 	reg = reg_read(DUAL_DUNIT_CFG_REG);
370 
371 	if (enable)
372 		reg |= (1 << 6);
373 	else
374 		reg &= ~(1 << 6);
375 
376 	reg_write(DUAL_DUNIT_CFG_REG, reg);
377 
378 	return MV_OK;
379 }
380 
ddr3_tip_clock_mode(u32 frequency)381 static u8 ddr3_tip_clock_mode(u32 frequency)
382 {
383 	if ((frequency == MV_DDR_FREQ_LOW_FREQ) || (mv_ddr_freq_get(frequency) <= 400))
384 		return 1;
385 
386 	return 2;
387 }
388 
mv_ddr_sar_freq_get(int dev_num,enum mv_ddr_freq * freq)389 static int mv_ddr_sar_freq_get(int dev_num, enum mv_ddr_freq *freq)
390 {
391 	u32 reg, ref_clk_satr;
392 
393 	/* Read sample at reset setting */
394 	reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
395 	       RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
396 		RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
397 
398 	ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
399 	if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
400 	    DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
401 		switch (reg) {
402 		case 0x1:
403 			DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
404 					      ("Warning: Unsupported freq mode for 333Mhz configured(%d)\n",
405 					      reg));
406 			/* fallthrough */
407 		case 0x0:
408 			*freq = MV_DDR_FREQ_333;
409 			break;
410 		case 0x3:
411 			DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
412 					      ("Warning: Unsupported freq mode for 400Mhz configured(%d)\n",
413 					      reg));
414 			/* fallthrough */
415 		case 0x2:
416 			*freq = MV_DDR_FREQ_400;
417 			break;
418 		case 0xd:
419 			DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
420 					      ("Warning: Unsupported freq mode for 533Mhz configured(%d)\n",
421 					      reg));
422 			/* fallthrough */
423 		case 0x4:
424 			*freq = MV_DDR_FREQ_533;
425 			break;
426 		case 0x6:
427 			*freq = MV_DDR_FREQ_600;
428 			break;
429 		case 0x11:
430 		case 0x14:
431 			DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
432 					      ("Warning: Unsupported freq mode for 667Mhz configured(%d)\n",
433 					      reg));
434 			/* fallthrough */
435 		case 0x8:
436 			*freq = MV_DDR_FREQ_667;
437 			break;
438 		case 0x15:
439 		case 0x1b:
440 			DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
441 					      ("Warning: Unsupported freq mode for 800Mhz configured(%d)\n",
442 					      reg));
443 			/* fallthrough */
444 		case 0xc:
445 			*freq = MV_DDR_FREQ_800;
446 			break;
447 		case 0x10:
448 			*freq = MV_DDR_FREQ_933;
449 			break;
450 		case 0x12:
451 			*freq = MV_DDR_FREQ_900;
452 			break;
453 		case 0x13:
454 			*freq = MV_DDR_FREQ_933;
455 			break;
456 		default:
457 			*freq = 0;
458 			return MV_NOT_SUPPORTED;
459 		}
460 	} else { /* REFCLK 40MHz case */
461 		switch (reg) {
462 		case 0x3:
463 			*freq = MV_DDR_FREQ_400;
464 			break;
465 		case 0x5:
466 			*freq = MV_DDR_FREQ_533;
467 			break;
468 		case 0xb:
469 			*freq = MV_DDR_FREQ_800;
470 			break;
471 		case 0x1e:
472 			*freq = MV_DDR_FREQ_900;
473 			break;
474 		default:
475 			*freq = 0;
476 			return MV_NOT_SUPPORTED;
477 		}
478 	}
479 
480 	return MV_OK;
481 }
482 
ddr3_tip_a38x_get_medium_freq(int dev_num,enum mv_ddr_freq * freq)483 static int ddr3_tip_a38x_get_medium_freq(int dev_num, enum mv_ddr_freq *freq)
484 {
485 	u32 reg, ref_clk_satr;
486 
487 	/* Read sample at reset setting */
488 	reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
489 	RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
490 	RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
491 
492 	ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
493 	if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
494 	    DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
495 		switch (reg) {
496 		case 0x0:
497 		case 0x1:
498 			/* Medium is same as TF to run PBS in this freq */
499 			*freq = MV_DDR_FREQ_333;
500 			break;
501 		case 0x2:
502 		case 0x3:
503 			/* Medium is same as TF to run PBS in this freq */
504 			*freq = MV_DDR_FREQ_400;
505 			break;
506 		case 0x4:
507 		case 0xd:
508 			/* Medium is same as TF to run PBS in this freq */
509 			*freq = MV_DDR_FREQ_533;
510 			break;
511 		case 0x8:
512 		case 0x10:
513 		case 0x11:
514 		case 0x14:
515 			*freq = MV_DDR_FREQ_333;
516 			break;
517 		case 0xc:
518 		case 0x15:
519 		case 0x1b:
520 			*freq = MV_DDR_FREQ_400;
521 			break;
522 		case 0x6:
523 			*freq = MV_DDR_FREQ_300;
524 			break;
525 		case 0x12:
526 			*freq = MV_DDR_FREQ_360;
527 			break;
528 		case 0x13:
529 			*freq = MV_DDR_FREQ_400;
530 			break;
531 		default:
532 			*freq = 0;
533 			return MV_NOT_SUPPORTED;
534 		}
535 	} else { /* REFCLK 40MHz case */
536 		switch (reg) {
537 		case 0x3:
538 			/* Medium is same as TF to run PBS in this freq */
539 			*freq = MV_DDR_FREQ_400;
540 			break;
541 		case 0x5:
542 			/* Medium is same as TF to run PBS in this freq */
543 			*freq = MV_DDR_FREQ_533;
544 			break;
545 		case 0xb:
546 			*freq = MV_DDR_FREQ_400;
547 			break;
548 		case 0x1e:
549 			*freq = MV_DDR_FREQ_360;
550 			break;
551 		default:
552 			*freq = 0;
553 			return MV_NOT_SUPPORTED;
554 		}
555 	}
556 
557 	return MV_OK;
558 }
559 
ddr3_tip_a38x_get_device_info(u8 dev_num,struct ddr3_device_info * info_ptr)560 static int ddr3_tip_a38x_get_device_info(u8 dev_num, struct ddr3_device_info *info_ptr)
561 {
562 	info_ptr->device_id = 0x6800;
563 	info_ptr->ck_delay = ck_delay;
564 
565 	return MV_OK;
566 }
567 
568 /* check indirect access to phy register file completed */
is_prfa_done(void)569 static int is_prfa_done(void)
570 {
571 	u32 reg_val;
572 	u32 iter = 0;
573 
574 	do {
575 		if (iter++ > MAX_POLLING_ITERATIONS) {
576 			printf("error: %s: polling timeout\n", __func__);
577 			return MV_FAIL;
578 		}
579 		dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
580 		reg_val >>= PRFA_REQ_OFFS;
581 		reg_val &= PRFA_REQ_MASK;
582 	} while (reg_val == PRFA_REQ_ENA); /* request pending */
583 
584 	return MV_OK;
585 }
586 
587 /* write to phy register thru indirect access */
prfa_write(enum hws_access_type phy_access,u32 phy,enum hws_ddr_phy phy_type,u32 addr,u32 data,enum hws_operation op_type)588 static int prfa_write(enum hws_access_type phy_access, u32 phy,
589 		      enum hws_ddr_phy phy_type, u32 addr,
590 		      u32 data, enum hws_operation op_type)
591 {
592 	u32 reg_val = ((data & PRFA_DATA_MASK) << PRFA_DATA_OFFS) |
593 		      ((addr & PRFA_REG_NUM_MASK) << PRFA_REG_NUM_OFFS) |
594 		      ((phy & PRFA_PUP_NUM_MASK) << PRFA_PUP_NUM_OFFS) |
595 		      ((phy_type & PRFA_PUP_CTRL_DATA_MASK) << PRFA_PUP_CTRL_DATA_OFFS) |
596 		      ((phy_access & PRFA_PUP_BCAST_WR_ENA_MASK) << PRFA_PUP_BCAST_WR_ENA_OFFS) |
597 		      (((addr >> 6) & PRFA_REG_NUM_HI_MASK) << PRFA_REG_NUM_HI_OFFS) |
598 		      ((op_type & PRFA_TYPE_MASK) << PRFA_TYPE_OFFS);
599 	dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
600 	reg_val |= (PRFA_REQ_ENA << PRFA_REQ_OFFS);
601 	dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
602 
603 	/* polling for prfa request completion */
604 	if (is_prfa_done() != MV_OK)
605 		return MV_FAIL;
606 
607 	return MV_OK;
608 }
609 
610 /* read from phy register thru indirect access */
prfa_read(enum hws_access_type phy_access,u32 phy,enum hws_ddr_phy phy_type,u32 addr,u32 * data)611 static int prfa_read(enum hws_access_type phy_access, u32 phy,
612 		     enum hws_ddr_phy phy_type, u32 addr, u32 *data)
613 {
614 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
615 	u32 max_phy = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
616 	u32 i, reg_val;
617 
618 	if (phy_access == ACCESS_TYPE_MULTICAST) {
619 		for (i = 0; i < max_phy; i++) {
620 			VALIDATE_BUS_ACTIVE(tm->bus_act_mask, i);
621 			if (prfa_write(ACCESS_TYPE_UNICAST, i, phy_type, addr, 0, OPERATION_READ) != MV_OK)
622 				return MV_FAIL;
623 			dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
624 			data[i] = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
625 		}
626 	} else {
627 		if (prfa_write(phy_access, phy, phy_type, addr, 0, OPERATION_READ) != MV_OK)
628 			return MV_FAIL;
629 		dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
630 		*data = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
631 	}
632 
633 	return MV_OK;
634 }
635 
mv_ddr_sw_db_init(u32 dev_num,u32 board_id)636 static int mv_ddr_sw_db_init(u32 dev_num, u32 board_id)
637 {
638 	struct hws_tip_config_func_db config_func;
639 
640 	/* new read leveling version */
641 	config_func.mv_ddr_dunit_read = dunit_read;
642 	config_func.mv_ddr_dunit_write = dunit_write;
643 	config_func.tip_dunit_mux_select_func =
644 		ddr3_tip_a38x_select_ddr_controller;
645 	config_func.tip_get_freq_config_info_func =
646 		ddr3_tip_a38x_get_freq_config;
647 	config_func.tip_set_freq_divider_func = ddr3_tip_a38x_set_divider;
648 	config_func.tip_get_device_info_func = ddr3_tip_a38x_get_device_info;
649 	config_func.tip_get_temperature = ddr3_ctrl_get_junc_temp;
650 	config_func.tip_get_clock_ratio = ddr3_tip_clock_mode;
651 	config_func.tip_external_read = ddr3_tip_ext_read;
652 	config_func.tip_external_write = ddr3_tip_ext_write;
653 	config_func.mv_ddr_phy_read = prfa_read;
654 	config_func.mv_ddr_phy_write = prfa_write;
655 
656 	ddr3_tip_init_config_func(dev_num, &config_func);
657 
658 	ddr3_tip_register_dq_table(dev_num, dq_bit_map_2_phy_pin);
659 
660 	/* set device attributes*/
661 	ddr3_tip_dev_attr_init(dev_num);
662 	ddr3_tip_dev_attr_set(dev_num, MV_ATTR_TIP_REV, MV_TIP_REV_4);
663 	ddr3_tip_dev_attr_set(dev_num, MV_ATTR_PHY_EDGE, MV_DDR_PHY_EDGE_POSITIVE);
664 	ddr3_tip_dev_attr_set(dev_num, MV_ATTR_OCTET_PER_INTERFACE, DDR_INTERFACE_OCTETS_NUM);
665 	ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 0);
666 
667 	ca_delay = 0;
668 	delay_enable = 1;
669 	dfs_low_freq = DFS_LOW_FREQ_VALUE;
670 	calibration_update_control = 1;
671 
672 	ddr3_tip_a38x_get_medium_freq(dev_num, &medium_freq);
673 
674 	return MV_OK;
675 }
676 
mv_ddr_training_mask_set(void)677 static int mv_ddr_training_mask_set(void)
678 {
679 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
680 	enum mv_ddr_freq ddr_freq = tm->interface_params[0].memory_freq;
681 
682 	mask_tune_func = (SET_LOW_FREQ_MASK_BIT |
683 			  LOAD_PATTERN_MASK_BIT |
684 			  SET_MEDIUM_FREQ_MASK_BIT | WRITE_LEVELING_MASK_BIT |
685 			  WRITE_LEVELING_SUPP_MASK_BIT |
686 			  READ_LEVELING_MASK_BIT |
687 			  PBS_RX_MASK_BIT |
688 			  PBS_TX_MASK_BIT |
689 			  SET_TARGET_FREQ_MASK_BIT |
690 			  WRITE_LEVELING_TF_MASK_BIT |
691 			  WRITE_LEVELING_SUPP_TF_MASK_BIT |
692 			  READ_LEVELING_TF_MASK_BIT |
693 			  CENTRALIZATION_RX_MASK_BIT |
694 			  CENTRALIZATION_TX_MASK_BIT);
695 	rl_mid_freq_wa = 1;
696 
697 	if ((ddr_freq == MV_DDR_FREQ_333) || (ddr_freq == MV_DDR_FREQ_400)) {
698 		mask_tune_func = (WRITE_LEVELING_MASK_BIT |
699 				  LOAD_PATTERN_2_MASK_BIT |
700 				  WRITE_LEVELING_SUPP_MASK_BIT |
701 				  READ_LEVELING_MASK_BIT |
702 				  PBS_RX_MASK_BIT |
703 				  PBS_TX_MASK_BIT |
704 				  CENTRALIZATION_RX_MASK_BIT |
705 				  CENTRALIZATION_TX_MASK_BIT);
706 		rl_mid_freq_wa = 0; /* WA not needed if 333/400 is TF */
707 	}
708 
709 	/* Supplementary not supported for ECC modes */
710 	if (mv_ddr_is_ecc_ena()) {
711 		mask_tune_func &= ~WRITE_LEVELING_SUPP_TF_MASK_BIT;
712 		mask_tune_func &= ~WRITE_LEVELING_SUPP_MASK_BIT;
713 		mask_tune_func &= ~PBS_TX_MASK_BIT;
714 		mask_tune_func &= ~PBS_RX_MASK_BIT;
715 	}
716 
717 	return MV_OK;
718 }
719 
720 /* function: mv_ddr_set_calib_controller
721  * this function sets the controller which will control
722  * the calibration cycle in the end of the training.
723  * 1 - internal controller
724  * 2 - external controller
725  */
mv_ddr_set_calib_controller(void)726 void mv_ddr_set_calib_controller(void)
727 {
728 	calibration_update_control = CAL_UPDATE_CTRL_INT;
729 }
730 
ddr3_tip_a38x_set_divider(u8 dev_num,u32 if_id,enum mv_ddr_freq frequency)731 static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
732 				     enum mv_ddr_freq frequency)
733 {
734 	u32 divider = 0;
735 	u32 sar_val, ref_clk_satr;
736 	u32 async_val;
737 	u32 freq = mv_ddr_freq_get(frequency);
738 
739 	if (if_id != 0) {
740 		DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
741 				      ("A38x does not support interface 0x%x\n",
742 				       if_id));
743 		return MV_BAD_PARAM;
744 	}
745 
746 	/* get VCO freq index */
747 	sar_val = (reg_read(REG_DEVICE_SAR1_ADDR) >>
748 		   RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
749 		RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
750 
751 	ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
752 	if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
753 	    DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ)
754 		divider = a38x_vco_freq_per_sar_ref_clk_25_mhz[sar_val] / freq;
755 	else
756 		divider = a38x_vco_freq_per_sar_ref_clk_40_mhz[sar_val] / freq;
757 
758 	if ((async_mode_at_tf == 1) && (freq > 400)) {
759 		/* Set async mode */
760 		dunit_write(0x20220, 0x1000, 0x1000);
761 		dunit_write(0xe42f4, 0x200, 0x200);
762 
763 		/* Wait for async mode setup */
764 		mdelay(5);
765 
766 		/* Set KNL values */
767 		switch (frequency) {
768 		case MV_DDR_FREQ_467:
769 			async_val = 0x806f012;
770 			break;
771 		case MV_DDR_FREQ_533:
772 			async_val = 0x807f012;
773 			break;
774 		case MV_DDR_FREQ_600:
775 			async_val = 0x805f00a;
776 			break;
777 		case MV_DDR_FREQ_667:
778 			async_val = 0x809f012;
779 			break;
780 		case MV_DDR_FREQ_800:
781 			async_val = 0x807f00a;
782 			break;
783 		case MV_DDR_FREQ_850:
784 			async_val = 0x80cb012;
785 			break;
786 		case MV_DDR_FREQ_900:
787 			async_val = 0x80d7012;
788 			break;
789 		case MV_DDR_FREQ_933:
790 			async_val = 0x80df012;
791 			break;
792 		case MV_DDR_FREQ_1000:
793 			async_val = 0x80ef012;
794 			break;
795 		case MV_DDR_FREQ_1066:
796 			async_val = 0x80ff012;
797 			break;
798 		default:
799 			/* set MV_DDR_FREQ_667 as default */
800 			async_val = 0x809f012;
801 		}
802 		dunit_write(0xe42f0, 0xffffffff, async_val);
803 	} else {
804 		/* Set sync mode */
805 		dunit_write(0x20220, 0x1000, 0x0);
806 		dunit_write(0xe42f4, 0x200, 0x0);
807 
808 		/* cpupll_clkdiv_reset_mask */
809 		dunit_write(0xe4264, 0xff, 0x1f);
810 
811 		/* cpupll_clkdiv_reload_smooth */
812 		dunit_write(0xe4260, (0xff << 8), (0x2 << 8));
813 
814 		/* cpupll_clkdiv_relax_en */
815 		dunit_write(0xe4260, (0xff << 24), (0x2 << 24));
816 
817 		/* write the divider */
818 		dunit_write(0xe4268, (0x3f << 8), (divider << 8));
819 
820 		/* set cpupll_clkdiv_reload_ratio */
821 		dunit_write(0xe4264, (1 << 8), (1 << 8));
822 
823 		/* undet cpupll_clkdiv_reload_ratio */
824 		dunit_write(0xe4264, (1 << 8), 0x0);
825 
826 		/* clear cpupll_clkdiv_reload_force */
827 		dunit_write(0xe4260, (0xff << 8), 0x0);
828 
829 		/* clear cpupll_clkdiv_relax_en */
830 		dunit_write(0xe4260, (0xff << 24), 0x0);
831 
832 		/* clear cpupll_clkdiv_reset_mask */
833 		dunit_write(0xe4264, 0xff, 0x0);
834 	}
835 
836 	/* Dunit training clock + 1:1/2:1 mode */
837 	dunit_write(0x18488, (1 << 16), ((ddr3_tip_clock_mode(frequency) & 0x1) << 16));
838 	dunit_write(0x1524, (1 << 15), ((ddr3_tip_clock_mode(frequency) - 1) << 15));
839 
840 	return MV_OK;
841 }
842 
843 /*
844  * external read from memory
845  */
ddr3_tip_ext_read(u32 dev_num,u32 if_id,u32 reg_addr,u32 num_of_bursts,u32 * data)846 int ddr3_tip_ext_read(u32 dev_num, u32 if_id, u32 reg_addr,
847 		      u32 num_of_bursts, u32 *data)
848 {
849 	u32 burst_num;
850 
851 	for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
852 		data[burst_num] = readl(reg_addr + 4 * burst_num);
853 
854 	return MV_OK;
855 }
856 
857 /*
858  * external write to memory
859  */
ddr3_tip_ext_write(u32 dev_num,u32 if_id,u32 reg_addr,u32 num_of_bursts,u32 * data)860 int ddr3_tip_ext_write(u32 dev_num, u32 if_id, u32 reg_addr,
861 		       u32 num_of_bursts, u32 *data) {
862 	u32 burst_num;
863 
864 	for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
865 		writel(data[burst_num], reg_addr + 4 * burst_num);
866 
867 	return MV_OK;
868 }
869 
mv_ddr_early_init(void)870 int mv_ddr_early_init(void)
871 {
872 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
873 
874 	/* FIXME: change this configuration per ddr type
875 	 * configure a380 and a390 to work with receiver odt timing
876 	 * the odt_config is defined:
877 	 * '1' in ddr4
878 	 * '0' in ddr3
879 	 * here the parameter is run over in ddr4 and ddr3 to '1' (in ddr4 the default is '1')
880 	 * to configure the odt to work with timing restrictions
881 	 */
882 
883 	mv_ddr_sw_db_init(0, 0);
884 
885 	if (tm->interface_params[0].memory_freq != MV_DDR_FREQ_SAR)
886 		async_mode_at_tf = 1;
887 
888 	return MV_OK;
889 }
890 
mv_ddr_early_init2(void)891 int mv_ddr_early_init2(void)
892 {
893 	mv_ddr_training_mask_set();
894 
895 	return MV_OK;
896 }
897 
mv_ddr_pre_training_fixup(void)898 int mv_ddr_pre_training_fixup(void)
899 {
900 	return 0;
901 }
902 
mv_ddr_post_training_fixup(void)903 int mv_ddr_post_training_fixup(void)
904 {
905 	return 0;
906 }
907 
ddr3_post_run_alg(void)908 int ddr3_post_run_alg(void)
909 {
910 	return MV_OK;
911 }
912 
ddr3_silicon_post_init(void)913 int ddr3_silicon_post_init(void)
914 {
915 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
916 
917 	/* Set half bus width */
918 	if (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask)) {
919 		CHECK_STATUS(ddr3_tip_if_write
920 			     (0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
921 			      SDRAM_CFG_REG, 0x0, 0x8000));
922 	}
923 
924 	return MV_OK;
925 }
926 
mv_ddr_init_freq_get(void)927 u32 mv_ddr_init_freq_get(void)
928 {
929 	enum mv_ddr_freq freq;
930 
931 	mv_ddr_sar_freq_get(0, &freq);
932 
933 	return freq;
934 }
935 
ddr3_get_bus_width(void)936 static u32 ddr3_get_bus_width(void)
937 {
938 	u32 bus_width;
939 
940 	bus_width = (reg_read(SDRAM_CFG_REG) & 0x8000) >>
941 		BUS_IN_USE_OFFS;
942 
943 	return (bus_width == 0) ? 16 : 32;
944 }
945 
ddr3_get_device_width(u32 cs)946 static u32 ddr3_get_device_width(u32 cs)
947 {
948 	u32 device_width;
949 
950 	device_width = (reg_read(SDRAM_ADDR_CTRL_REG) &
951 			(CS_STRUCT_MASK << CS_STRUCT_OFFS(cs))) >>
952 			CS_STRUCT_OFFS(cs);
953 
954 	return (device_width == 0) ? 8 : 16;
955 }
956 
ddr3_get_device_size(u32 cs)957 static u32 ddr3_get_device_size(u32 cs)
958 {
959 	u32 device_size_low, device_size_high, device_size;
960 	u32 data, cs_low_offset, cs_high_offset;
961 
962 	cs_low_offset = CS_SIZE_OFFS(cs);
963 	cs_high_offset = CS_SIZE_HIGH_OFFS(cs);
964 
965 	data = reg_read(SDRAM_ADDR_CTRL_REG);
966 	device_size_low = (data >> cs_low_offset) & 0x3;
967 	device_size_high = (data >> cs_high_offset) & 0x1;
968 
969 	device_size = device_size_low | (device_size_high << 2);
970 
971 	switch (device_size) {
972 	case 0:
973 		return 2048;
974 	case 2:
975 		return 512;
976 	case 3:
977 		return 1024;
978 	case 4:
979 		return 4096;
980 	case 5:
981 		return 8192;
982 	case 1:
983 	default:
984 		DEBUG_INIT_C("Error: Wrong device size of Cs: ", cs, 1);
985 		/* zeroes mem size in ddr3_calc_mem_cs_size */
986 		return 0;
987 	}
988 }
989 
ddr3_calc_mem_cs_size(u32 cs,uint64_t * cs_size)990 int ddr3_calc_mem_cs_size(u32 cs, uint64_t *cs_size)
991 {
992 	u32 cs_mem_size;
993 
994 	/* Calculate in MiB */
995 	cs_mem_size = ((ddr3_get_bus_width() / ddr3_get_device_width(cs)) *
996 		       ddr3_get_device_size(cs)) / 8;
997 
998 	/*
999 	 * Multiple controller bus width, 2x for 64 bit
1000 	 * (SoC controller may be 32 or 64 bit,
1001 	 * so bit 15 in 0x1400, that means if whole bus used or only half,
1002 	 * have a differnt meaning
1003 	 */
1004 	cs_mem_size *= DDR_CONTROLLER_BUS_WIDTH_MULTIPLIER;
1005 
1006 	if ((cs_mem_size < 128) || (cs_mem_size > 4096)) {
1007 		DEBUG_INIT_C("Error: Wrong Memory size of Cs: ", cs, 1);
1008 		return MV_BAD_VALUE;
1009 	}
1010 
1011 	*cs_size = cs_mem_size;
1012 
1013 	return MV_OK;
1014 }
1015 
ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena)1016 static int ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena)
1017 {
1018 	u32 reg, cs;
1019 	uint64_t mem_total_size = 0;
1020 	uint64_t cs_mem_size_mb = 0;
1021 	uint64_t cs_mem_size = 0;
1022 	uint64_t mem_total_size_c, cs_mem_size_c;
1023 
1024 
1025 #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
1026 	u32 physical_mem_size;
1027 	u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE;
1028 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1029 #endif
1030 
1031 	/* Open fast path windows */
1032 	for (cs = 0; cs < MAX_CS_NUM; cs++) {
1033 		if (cs_ena & (1 << cs)) {
1034 			/* get CS size */
1035 			if (ddr3_calc_mem_cs_size(cs, &cs_mem_size_mb) != MV_OK)
1036 				return MV_FAIL;
1037 			cs_mem_size = cs_mem_size_mb * _1M;
1038 
1039 #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
1040 			/*
1041 			 * if number of address pins doesn't allow to use max
1042 			 * mem size that is defined in topology
1043 			 * mem size is defined by DEVICE_MAX_DRAM_ADDRESS_SIZE
1044 			 */
1045 			physical_mem_size = mem_size
1046 				[tm->interface_params[0].memory_size];
1047 
1048 			if (ddr3_get_device_width(cs) == 16) {
1049 				/*
1050 				 * 16bit mem device can be twice more - no need
1051 				 * in less significant pin
1052 				 */
1053 				max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2;
1054 			}
1055 
1056 			if (physical_mem_size > max_mem_size) {
1057 				cs_mem_size = max_mem_size *
1058 					(ddr3_get_bus_width() /
1059 					 ddr3_get_device_width(cs));
1060 				printf("Updated Physical Mem size is from 0x%x to %x\n",
1061 				       physical_mem_size,
1062 				       DEVICE_MAX_DRAM_ADDRESS_SIZE);
1063 			}
1064 #endif
1065 
1066 			/* set fast path window control for the cs */
1067 			reg = 0xffffe1;
1068 			reg |= (cs << 2);
1069 			reg |= (cs_mem_size - 1) & 0xffff0000;
1070 			/*Open fast path Window */
1071 			reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg);
1072 
1073 			/* Set fast path window base address for the cs */
1074 			reg = ((cs_mem_size) * cs) & 0xffff0000;
1075 			/* Set base address */
1076 			reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg);
1077 
1078 			/*
1079 			 * Since memory size may be bigger than 4G the summ may
1080 			 * be more than 32 bit word,
1081 			 * so to estimate the result divide mem_total_size and
1082 			 * cs_mem_size by 0x10000 (it is equal to >> 16)
1083 			 */
1084 			mem_total_size_c = (mem_total_size >> 16) & 0xffffffffffff;
1085 			cs_mem_size_c = (cs_mem_size >> 16) & 0xffffffffffff;
1086 
1087 			/* if the sum less than 2 G - calculate the value */
1088 			if (mem_total_size_c + cs_mem_size_c < 0x10000)
1089 				mem_total_size += cs_mem_size;
1090 			else	/* put max possible size */
1091 				mem_total_size = L2_FILTER_FOR_MAX_MEMORY_SIZE;
1092 		}
1093 	}
1094 
1095 	/* Set L2 filtering to Max Memory size */
1096 	reg_write(ADDRESS_FILTERING_END_REGISTER, mem_total_size);
1097 
1098 	return MV_OK;
1099 }
1100 
ddr3_restore_and_set_final_windows(u32 * win,const char * ddr_type)1101 static int ddr3_restore_and_set_final_windows(u32 *win, const char *ddr_type)
1102 {
1103 	u32 win_ctrl_reg, num_of_win_regs;
1104 	u32 cs_ena = mv_ddr_sys_env_get_cs_ena_from_reg();
1105 	u32 ui;
1106 
1107 	win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
1108 	num_of_win_regs = 16;
1109 
1110 	/* Return XBAR windows 4-7 or 16-19 init configuration */
1111 	for (ui = 0; ui < num_of_win_regs; ui++)
1112 		reg_write((win_ctrl_reg + 0x4 * ui), win[ui]);
1113 
1114 	printf("%s Training Sequence - Switching XBAR Window to FastPath Window\n",
1115 	       ddr_type);
1116 
1117 #if defined DYNAMIC_CS_SIZE_CONFIG
1118 	if (ddr3_fast_path_dynamic_cs_size_config(cs_ena) != MV_OK)
1119 		printf("ddr3_fast_path_dynamic_cs_size_config FAILED\n");
1120 #else
1121 	u32 reg, cs;
1122 	reg = 0x1fffffe1;
1123 	for (cs = 0; cs < MAX_CS_NUM; cs++) {
1124 		if (cs_ena & (1 << cs)) {
1125 			reg |= (cs << 2);
1126 			break;
1127 		}
1128 	}
1129 	/* Open fast path Window to - 0.5G */
1130 	reg_write(REG_FASTPATH_WIN_CTRL_ADDR(0), reg);
1131 #endif
1132 
1133 	return MV_OK;
1134 }
1135 
ddr3_save_and_set_training_windows(u32 * win)1136 static int ddr3_save_and_set_training_windows(u32 *win)
1137 {
1138 	u32 cs_ena;
1139 	u32 reg, tmp_count, cs, ui;
1140 	u32 win_ctrl_reg, win_base_reg, win_remap_reg;
1141 	u32 num_of_win_regs, win_jump_index;
1142 	win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
1143 	win_base_reg = REG_XBAR_WIN_4_BASE_ADDR;
1144 	win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR;
1145 	win_jump_index = 0x10;
1146 	num_of_win_regs = 16;
1147 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1148 
1149 #ifdef DISABLE_L2_FILTERING_DURING_DDR_TRAINING
1150 	/*
1151 	 * Disable L2 filtering during DDR training
1152 	 * (when Cross Bar window is open)
1153 	 */
1154 	reg_write(ADDRESS_FILTERING_END_REGISTER, 0);
1155 #endif
1156 
1157 	cs_ena = tm->interface_params[0].as_bus_params[0].cs_bitmask;
1158 
1159 	/* Close XBAR Window 19 - Not needed */
1160 	/* {0x000200e8}  -   Open Mbus Window - 2G */
1161 	reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0);
1162 
1163 	/* Save XBAR Windows 4-19 init configurations */
1164 	for (ui = 0; ui < num_of_win_regs; ui++)
1165 		win[ui] = reg_read(win_ctrl_reg + 0x4 * ui);
1166 
1167 	/* Open XBAR Windows 4-7 or 16-19 for other CS */
1168 	reg = 0;
1169 	tmp_count = 0;
1170 	for (cs = 0; cs < MAX_CS_NUM; cs++) {
1171 		if (cs_ena & (1 << cs)) {
1172 			switch (cs) {
1173 			case 0:
1174 				reg = 0x0e00;
1175 				break;
1176 			case 1:
1177 				reg = 0x0d00;
1178 				break;
1179 			case 2:
1180 				reg = 0x0b00;
1181 				break;
1182 			case 3:
1183 				reg = 0x0700;
1184 				break;
1185 			}
1186 			reg |= (1 << 0);
1187 			reg |= (SDRAM_CS_SIZE & 0xffff0000);
1188 
1189 			reg_write(win_ctrl_reg + win_jump_index * tmp_count,
1190 				  reg);
1191 			reg = (((SDRAM_CS_SIZE + 1) * (tmp_count)) &
1192 			       0xffff0000);
1193 			reg_write(win_base_reg + win_jump_index * tmp_count,
1194 				  reg);
1195 
1196 			if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR)
1197 				reg_write(win_remap_reg +
1198 					  win_jump_index * tmp_count, 0);
1199 
1200 			tmp_count++;
1201 		}
1202 	}
1203 
1204 	return MV_OK;
1205 }
1206 
1207 static u32 win[16];
1208 
mv_ddr_pre_training_soc_config(const char * ddr_type)1209 int mv_ddr_pre_training_soc_config(const char *ddr_type)
1210 {
1211 	u32 soc_num;
1212 	u32 reg_val;
1213 
1214 	/* Switching CPU to MRVL ID */
1215 	soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >>
1216 		SAR1_CPU_CORE_OFFSET;
1217 	switch (soc_num) {
1218 	case 0x3:
1219 		reg_bit_set(CPU_CONFIGURATION_REG(3), CPU_MRVL_ID_OFFSET);
1220 		reg_bit_set(CPU_CONFIGURATION_REG(2), CPU_MRVL_ID_OFFSET);
1221 		/* fallthrough */
1222 	case 0x1:
1223 		reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET);
1224 		/* fallthrough */
1225 	case 0x0:
1226 		reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET);
1227 		/* fallthrough */
1228 	default:
1229 		break;
1230 	}
1231 
1232 	/*
1233 	 * Set DRAM Reset Mask in case detected GPIO indication of wakeup from
1234 	 * suspend i.e the DRAM values will not be overwritten / reset when
1235 	 * waking from suspend
1236 	 */
1237 	if (mv_ddr_sys_env_suspend_wakeup_check() ==
1238 	    SUSPEND_WAKEUP_ENABLED_GPIO_DETECTED) {
1239 		reg_bit_set(SDRAM_INIT_CTRL_REG,
1240 			    DRAM_RESET_MASK_MASKED << DRAM_RESET_MASK_OFFS);
1241 	}
1242 
1243 	/* Check if DRAM is already initialized  */
1244 	if (reg_read(REG_BOOTROM_ROUTINE_ADDR) &
1245 	    (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) {
1246 		printf("%s Training Sequence - 2nd boot - Skip\n", ddr_type);
1247 		return MV_OK;
1248 	}
1249 
1250 	/* Fix read ready phases for all SOC in reg 0x15c8 */
1251 	reg_val = reg_read(TRAINING_DBG_3_REG);
1252 
1253 	reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0));
1254 	reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0));	/* phase 0 */
1255 
1256 	reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1));
1257 	reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1));	/* phase 1 */
1258 
1259 	reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3));
1260 	reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3));	/* phase 3 */
1261 
1262 	reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4));
1263 	reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4));	/* phase 4 */
1264 
1265 	reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5));
1266 	reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5));	/* phase 5 */
1267 
1268 	reg_write(TRAINING_DBG_3_REG, reg_val);
1269 
1270 	/*
1271 	 * Axi_bresp_mode[8] = Compliant,
1272 	 * Axi_addr_decode_cntrl[11] = Internal,
1273 	 * Axi_data_bus_width[0] = 128bit
1274 	 * */
1275 	/* 0x14a8 - AXI Control Register */
1276 	reg_write(AXI_CTRL_REG, 0);
1277 
1278 	/*
1279 	 * Stage 2 - Training Values Setup
1280 	 */
1281 	/* Set X-BAR windows for the training sequence */
1282 	ddr3_save_and_set_training_windows(win);
1283 
1284 	return MV_OK;
1285 }
1286 
ddr3_new_tip_dlb_config(void)1287 static int ddr3_new_tip_dlb_config(void)
1288 {
1289 	u32 reg, i = 0;
1290 	struct dlb_config *config_table_ptr = sys_env_dlb_config_ptr_get();
1291 
1292 	/* Write the configuration */
1293 	while (config_table_ptr[i].reg_addr != 0) {
1294 		reg_write(config_table_ptr[i].reg_addr,
1295 			  config_table_ptr[i].reg_data);
1296 		i++;
1297 	}
1298 
1299 
1300 	/* Enable DLB */
1301 	reg = reg_read(DLB_CTRL_REG);
1302 	reg &= ~(DLB_EN_MASK << DLB_EN_OFFS) &
1303 	       ~(WR_COALESCE_EN_MASK << WR_COALESCE_EN_OFFS) &
1304 	       ~(AXI_PREFETCH_EN_MASK << AXI_PREFETCH_EN_OFFS) &
1305 	       ~(MBUS_PREFETCH_EN_MASK << MBUS_PREFETCH_EN_OFFS) &
1306 	       ~(PREFETCH_NXT_LN_SZ_TRIG_MASK << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
1307 
1308 	reg |= (DLB_EN_ENA << DLB_EN_OFFS) |
1309 	       (WR_COALESCE_EN_ENA << WR_COALESCE_EN_OFFS) |
1310 	       (AXI_PREFETCH_EN_ENA << AXI_PREFETCH_EN_OFFS) |
1311 	       (MBUS_PREFETCH_EN_ENA << MBUS_PREFETCH_EN_OFFS) |
1312 	       (PREFETCH_NXT_LN_SZ_TRIG_ENA << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
1313 
1314 	reg_write(DLB_CTRL_REG, reg);
1315 
1316 	return MV_OK;
1317 }
1318 
mv_ddr_post_training_soc_config(const char * ddr_type)1319 int mv_ddr_post_training_soc_config(const char *ddr_type)
1320 {
1321 	u32 reg_val;
1322 
1323 	/* Restore and set windows */
1324 	ddr3_restore_and_set_final_windows(win, ddr_type);
1325 
1326 	/* Update DRAM init indication in bootROM register */
1327 	reg_val = reg_read(REG_BOOTROM_ROUTINE_ADDR);
1328 	reg_write(REG_BOOTROM_ROUTINE_ADDR,
1329 		  reg_val | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS));
1330 
1331 	/* DLB config */
1332 	ddr3_new_tip_dlb_config();
1333 
1334 	return MV_OK;
1335 }
1336 
mv_ddr_mc_config(void)1337 void mv_ddr_mc_config(void)
1338 {
1339 	/* Memory controller initializations */
1340 	struct init_cntr_param init_param;
1341 	int status;
1342 
1343 	init_param.do_mrs_phy = 1;
1344 	init_param.is_ctrl64_bit = 0;
1345 	init_param.init_phy = 1;
1346 	init_param.msys_init = 1;
1347 	status = hws_ddr3_tip_init_controller(0, &init_param);
1348 	if (status != MV_OK)
1349 		printf("DDR3 init controller - FAILED 0x%x\n", status);
1350 
1351 	status = mv_ddr_mc_init();
1352 	if (status != MV_OK)
1353 		printf("DDR3 init_sequence - FAILED 0x%x\n", status);
1354 }
1355 /* function: mv_ddr_mc_init
1356  * this function enables the dunit after init controller configuration
1357  */
mv_ddr_mc_init(void)1358 int mv_ddr_mc_init(void)
1359 {
1360 	CHECK_STATUS(ddr3_tip_enable_init_sequence(0));
1361 
1362 	return MV_OK;
1363 }
1364 
1365 /* function: ddr3_tip_configure_phy
1366  * configures phy and electrical parameters
1367  */
ddr3_tip_configure_phy(u32 dev_num)1368 int ddr3_tip_configure_phy(u32 dev_num)
1369 {
1370 	u32 if_id, phy_id;
1371 	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
1372 	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1373 
1374 	CHECK_STATUS(ddr3_tip_bus_write
1375 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1376 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1377 		PAD_ZRI_CAL_PHY_REG,
1378 		((0x7f & g_zpri_data) << 7 | (0x7f & g_znri_data))));
1379 	CHECK_STATUS(ddr3_tip_bus_write
1380 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1381 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1382 		PAD_ZRI_CAL_PHY_REG,
1383 		((0x7f & g_zpri_ctrl) << 7 | (0x7f & g_znri_ctrl))));
1384 	CHECK_STATUS(ddr3_tip_bus_write
1385 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1386 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1387 		PAD_ODT_CAL_PHY_REG,
1388 		((0x3f & g_zpodt_data) << 6 | (0x3f & g_znodt_data))));
1389 	CHECK_STATUS(ddr3_tip_bus_write
1390 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1391 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1392 		PAD_ODT_CAL_PHY_REG,
1393 		((0x3f & g_zpodt_ctrl) << 6 | (0x3f & g_znodt_ctrl))));
1394 
1395 	CHECK_STATUS(ddr3_tip_bus_write
1396 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1397 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1398 		PAD_PRE_DISABLE_PHY_REG, 0));
1399 	CHECK_STATUS(ddr3_tip_bus_write
1400 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1401 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1402 		CMOS_CONFIG_PHY_REG, 0));
1403 	CHECK_STATUS(ddr3_tip_bus_write
1404 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1405 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1406 		CMOS_CONFIG_PHY_REG, 0));
1407 
1408 	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
1409 		/* check if the interface is enabled */
1410 		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
1411 
1412 		for (phy_id = 0;
1413 			phy_id < octets_per_if_num;
1414 			phy_id++) {
1415 				VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
1416 				/* Vref & clamp */
1417 				CHECK_STATUS(ddr3_tip_bus_read_modify_write
1418 					(dev_num, ACCESS_TYPE_UNICAST,
1419 					if_id, phy_id, DDR_PHY_DATA,
1420 					PAD_CFG_PHY_REG,
1421 					((clamp_tbl[if_id] << 4) | vref_init_val),
1422 					((0x7 << 4) | 0x7)));
1423 				/* clamp not relevant for control */
1424 				CHECK_STATUS(ddr3_tip_bus_read_modify_write
1425 					(dev_num, ACCESS_TYPE_UNICAST,
1426 					if_id, phy_id, DDR_PHY_CONTROL,
1427 					PAD_CFG_PHY_REG, 0x4, 0x7));
1428 		}
1429 	}
1430 
1431 	if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_PHY_EDGE) ==
1432 		MV_DDR_PHY_EDGE_POSITIVE)
1433 		CHECK_STATUS(ddr3_tip_bus_write
1434 		(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1435 		ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1436 		DDR_PHY_DATA, 0x90, 0x6002));
1437 
1438 
1439 	return MV_OK;
1440 }
1441 
1442 
mv_ddr_manual_cal_do(void)1443 int mv_ddr_manual_cal_do(void)
1444 {
1445 	return 0;
1446 }
1447