1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2007
4  * Sascha Hauer, Pengutronix
5  *
6  * (C) Copyright 2009 Freescale Semiconductor, Inc.
7  */
8 
9 #include <common.h>
10 #include <command.h>
11 #include <log.h>
12 #include <asm/io.h>
13 #include <linux/errno.h>
14 #include <asm/arch/imx-regs.h>
15 #include <asm/arch/crm_regs.h>
16 #include <asm/arch/clock.h>
17 #include <div64.h>
18 #include <asm/arch/sys_proto.h>
19 
20 enum pll_clocks {
21 	PLL1_CLOCK = 0,
22 	PLL2_CLOCK,
23 	PLL3_CLOCK,
24 #ifdef CONFIG_MX53
25 	PLL4_CLOCK,
26 #endif
27 	PLL_CLOCKS,
28 };
29 
30 struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
31 	[PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
32 	[PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
33 	[PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
34 #ifdef	CONFIG_MX53
35 	[PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
36 #endif
37 };
38 
39 #define AHB_CLK_ROOT    133333333
40 #define SZ_DEC_1M       1000000
41 #define PLL_PD_MAX      16      /* Actual pd+1 */
42 #define PLL_MFI_MAX     15
43 #define PLL_MFI_MIN     5
44 #define ARM_DIV_MAX     8
45 #define IPG_DIV_MAX     4
46 #define AHB_DIV_MAX     8
47 #define EMI_DIV_MAX     8
48 #define NFC_DIV_MAX     8
49 
50 #define MX5_CBCMR	0x00015154
51 #define MX5_CBCDR	0x02888945
52 
53 struct fixed_pll_mfd {
54 	u32 ref_clk_hz;
55 	u32 mfd;
56 };
57 
58 const struct fixed_pll_mfd fixed_mfd[] = {
59 	{MXC_HCLK, 24 * 16},
60 };
61 
62 struct pll_param {
63 	u32 pd;
64 	u32 mfi;
65 	u32 mfn;
66 	u32 mfd;
67 };
68 
69 #define PLL_FREQ_MAX(ref_clk)  (4 * (ref_clk) * PLL_MFI_MAX)
70 #define PLL_FREQ_MIN(ref_clk) \
71 		((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
72 #define MAX_DDR_CLK     420000000
73 #define NFC_CLK_MAX     34000000
74 
75 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
76 
set_usboh3_clk(void)77 void set_usboh3_clk(void)
78 {
79 	clrsetbits_le32(&mxc_ccm->cscmr1,
80 			MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK,
81 			MXC_CCM_CSCMR1_USBOH3_CLK_SEL(1));
82 	clrsetbits_le32(&mxc_ccm->cscdr1,
83 			MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK |
84 			MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK,
85 			MXC_CCM_CSCDR1_USBOH3_CLK_PRED(4) |
86 			MXC_CCM_CSCDR1_USBOH3_CLK_PODF(1));
87 }
88 
enable_usboh3_clk(bool enable)89 void enable_usboh3_clk(bool enable)
90 {
91 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
92 
93 	clrsetbits_le32(&mxc_ccm->CCGR2,
94 			MXC_CCM_CCGR2_USBOH3_60M(MXC_CCM_CCGR_CG_MASK),
95 			MXC_CCM_CCGR2_USBOH3_60M(cg));
96 }
97 
98 #ifdef CONFIG_SYS_I2C_MXC
99 /* i2c_num can be from 0, to 1 for i.MX51 and 2 for i.MX53 */
enable_i2c_clk(unsigned char enable,unsigned i2c_num)100 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
101 {
102 	u32 mask;
103 
104 #if defined(CONFIG_MX51)
105 	if (i2c_num > 1)
106 #elif defined(CONFIG_MX53)
107 	if (i2c_num > 2)
108 #endif
109 		return -EINVAL;
110 	mask = MXC_CCM_CCGR_CG_MASK <<
111 			(MXC_CCM_CCGR1_I2C1_OFFSET + (i2c_num << 1));
112 	if (enable)
113 		setbits_le32(&mxc_ccm->CCGR1, mask);
114 	else
115 		clrbits_le32(&mxc_ccm->CCGR1, mask);
116 	return 0;
117 }
118 #endif
119 
set_usb_phy_clk(void)120 void set_usb_phy_clk(void)
121 {
122 	clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
123 }
124 
125 #if defined(CONFIG_MX51)
enable_usb_phy1_clk(bool enable)126 void enable_usb_phy1_clk(bool enable)
127 {
128 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
129 
130 	clrsetbits_le32(&mxc_ccm->CCGR2,
131 			MXC_CCM_CCGR2_USB_PHY(MXC_CCM_CCGR_CG_MASK),
132 			MXC_CCM_CCGR2_USB_PHY(cg));
133 }
134 
enable_usb_phy2_clk(bool enable)135 void enable_usb_phy2_clk(bool enable)
136 {
137 	/* i.MX51 has a single USB PHY clock, so do nothing here. */
138 }
139 #elif defined(CONFIG_MX53)
enable_usb_phy1_clk(bool enable)140 void enable_usb_phy1_clk(bool enable)
141 {
142 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
143 
144 	clrsetbits_le32(&mxc_ccm->CCGR4,
145 			MXC_CCM_CCGR4_USB_PHY1(MXC_CCM_CCGR_CG_MASK),
146 			MXC_CCM_CCGR4_USB_PHY1(cg));
147 }
148 
enable_usb_phy2_clk(bool enable)149 void enable_usb_phy2_clk(bool enable)
150 {
151 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
152 
153 	clrsetbits_le32(&mxc_ccm->CCGR4,
154 			MXC_CCM_CCGR4_USB_PHY2(MXC_CCM_CCGR_CG_MASK),
155 			MXC_CCM_CCGR4_USB_PHY2(cg));
156 }
157 #endif
158 
159 /*
160  * Calculate the frequency of PLLn.
161  */
decode_pll(struct mxc_pll_reg * pll,uint32_t infreq)162 static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
163 {
164 	uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
165 	uint64_t refclk, temp;
166 	int32_t mfn_abs;
167 
168 	ctrl = readl(&pll->ctrl);
169 
170 	if (ctrl & MXC_DPLLC_CTL_HFSM) {
171 		mfn = readl(&pll->hfs_mfn);
172 		mfd = readl(&pll->hfs_mfd);
173 		op = readl(&pll->hfs_op);
174 	} else {
175 		mfn = readl(&pll->mfn);
176 		mfd = readl(&pll->mfd);
177 		op = readl(&pll->op);
178 	}
179 
180 	mfd &= MXC_DPLLC_MFD_MFD_MASK;
181 	mfn &= MXC_DPLLC_MFN_MFN_MASK;
182 	pdf = op & MXC_DPLLC_OP_PDF_MASK;
183 	mfi = MXC_DPLLC_OP_MFI_RD(op);
184 
185 	/* 21.2.3 */
186 	if (mfi < 5)
187 		mfi = 5;
188 
189 	/* Sign extend */
190 	if (mfn >= 0x04000000) {
191 		mfn |= 0xfc000000;
192 		mfn_abs = -mfn;
193 	} else
194 		mfn_abs = mfn;
195 
196 	refclk = infreq * 2;
197 	if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
198 		refclk *= 2;
199 
200 	do_div(refclk, pdf + 1);
201 	temp = refclk * mfn_abs;
202 	do_div(temp, mfd + 1);
203 	ret = refclk * mfi;
204 
205 	if ((int)mfn < 0)
206 		ret -= temp;
207 	else
208 		ret += temp;
209 
210 	return ret;
211 }
212 
213 #ifdef CONFIG_MX51
214 /*
215  * This function returns the Frequency Pre-Multiplier clock.
216  */
get_fpm(void)217 static u32 get_fpm(void)
218 {
219 	u32 mult;
220 	u32 ccr = readl(&mxc_ccm->ccr);
221 
222 	if (ccr & MXC_CCM_CCR_FPM_MULT)
223 		mult = 1024;
224 	else
225 		mult = 512;
226 
227 	return MXC_CLK32 * mult;
228 }
229 #endif
230 
231 /*
232  * This function returns the low power audio clock.
233  */
get_lp_apm(void)234 static u32 get_lp_apm(void)
235 {
236 	u32 ret_val = 0;
237 	u32 ccsr = readl(&mxc_ccm->ccsr);
238 
239 	if (ccsr & MXC_CCM_CCSR_LP_APM)
240 #if defined(CONFIG_MX51)
241 		ret_val = get_fpm();
242 #elif defined(CONFIG_MX53)
243 		ret_val = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
244 #endif
245 	else
246 		ret_val = MXC_HCLK;
247 
248 	return ret_val;
249 }
250 
251 /*
252  * Get mcu main rate
253  */
get_mcu_main_clk(void)254 u32 get_mcu_main_clk(void)
255 {
256 	u32 reg, freq;
257 
258 	reg = MXC_CCM_CACRR_ARM_PODF_RD(readl(&mxc_ccm->cacrr));
259 	freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
260 	return freq / (reg + 1);
261 }
262 
263 /*
264  * Get the rate of peripheral's root clock.
265  */
get_periph_clk(void)266 u32 get_periph_clk(void)
267 {
268 	u32 reg;
269 
270 	reg = readl(&mxc_ccm->cbcdr);
271 	if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
272 		return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
273 	reg = readl(&mxc_ccm->cbcmr);
274 	switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(reg)) {
275 	case 0:
276 		return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
277 	case 1:
278 		return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
279 	case 2:
280 		return get_lp_apm();
281 	default:
282 		return 0;
283 	}
284 	/* NOTREACHED */
285 }
286 
287 /*
288  * Get the rate of ipg clock.
289  */
get_ipg_clk(void)290 static u32 get_ipg_clk(void)
291 {
292 	uint32_t freq, reg, div;
293 
294 	freq = get_ahb_clk();
295 
296 	reg = readl(&mxc_ccm->cbcdr);
297 	div = MXC_CCM_CBCDR_IPG_PODF_RD(reg) + 1;
298 
299 	return freq / div;
300 }
301 
302 /*
303  * Get the rate of ipg_per clock.
304  */
get_ipg_per_clk(void)305 static u32 get_ipg_per_clk(void)
306 {
307 	u32 freq, pred1, pred2, podf;
308 
309 	if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
310 		return get_ipg_clk();
311 
312 	if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL)
313 		freq = get_lp_apm();
314 	else
315 		freq = get_periph_clk();
316 	podf = readl(&mxc_ccm->cbcdr);
317 	pred1 = MXC_CCM_CBCDR_PERCLK_PRED1_RD(podf);
318 	pred2 = MXC_CCM_CBCDR_PERCLK_PRED2_RD(podf);
319 	podf = MXC_CCM_CBCDR_PERCLK_PODF_RD(podf);
320 	return freq / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
321 }
322 
323 /* Get the output clock rate of a standard PLL MUX for peripherals. */
get_standard_pll_sel_clk(u32 clk_sel)324 static u32 get_standard_pll_sel_clk(u32 clk_sel)
325 {
326 	u32 freq = 0;
327 
328 	switch (clk_sel & 0x3) {
329 	case 0:
330 		freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
331 		break;
332 	case 1:
333 		freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
334 		break;
335 	case 2:
336 		freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
337 		break;
338 	case 3:
339 		freq = get_lp_apm();
340 		break;
341 	}
342 
343 	return freq;
344 }
345 
346 /*
347  * Get the rate of uart clk.
348  */
get_uart_clk(void)349 static u32 get_uart_clk(void)
350 {
351 	unsigned int clk_sel, freq, reg, pred, podf;
352 
353 	reg = readl(&mxc_ccm->cscmr1);
354 	clk_sel = MXC_CCM_CSCMR1_UART_CLK_SEL_RD(reg);
355 	freq = get_standard_pll_sel_clk(clk_sel);
356 
357 	reg = readl(&mxc_ccm->cscdr1);
358 	pred = MXC_CCM_CSCDR1_UART_CLK_PRED_RD(reg);
359 	podf = MXC_CCM_CSCDR1_UART_CLK_PODF_RD(reg);
360 	freq /= (pred + 1) * (podf + 1);
361 
362 	return freq;
363 }
364 
365 /*
366  * get cspi clock rate.
367  */
imx_get_cspiclk(void)368 static u32 imx_get_cspiclk(void)
369 {
370 	u32 ret_val = 0, pdf, pre_pdf, clk_sel, freq;
371 	u32 cscmr1 = readl(&mxc_ccm->cscmr1);
372 	u32 cscdr2 = readl(&mxc_ccm->cscdr2);
373 
374 	pre_pdf = MXC_CCM_CSCDR2_CSPI_CLK_PRED_RD(cscdr2);
375 	pdf = MXC_CCM_CSCDR2_CSPI_CLK_PODF_RD(cscdr2);
376 	clk_sel = MXC_CCM_CSCMR1_CSPI_CLK_SEL_RD(cscmr1);
377 	freq = get_standard_pll_sel_clk(clk_sel);
378 	ret_val = freq / ((pre_pdf + 1) * (pdf + 1));
379 	return ret_val;
380 }
381 
382 /*
383  * get esdhc clock rate.
384  */
get_esdhc_clk(u32 port)385 static u32 get_esdhc_clk(u32 port)
386 {
387 	u32 clk_sel = 0, pred = 0, podf = 0, freq = 0;
388 	u32 cscmr1 = readl(&mxc_ccm->cscmr1);
389 	u32 cscdr1 = readl(&mxc_ccm->cscdr1);
390 
391 	switch (port) {
392 	case 0:
393 		clk_sel = MXC_CCM_CSCMR1_ESDHC1_MSHC1_CLK_SEL_RD(cscmr1);
394 		pred = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PRED_RD(cscdr1);
395 		podf = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PODF_RD(cscdr1);
396 		break;
397 	case 1:
398 		clk_sel = MXC_CCM_CSCMR1_ESDHC2_MSHC2_CLK_SEL_RD(cscmr1);
399 		pred = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PRED_RD(cscdr1);
400 		podf = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PODF_RD(cscdr1);
401 		break;
402 	case 2:
403 		if (cscmr1 & MXC_CCM_CSCMR1_ESDHC3_CLK_SEL)
404 			return get_esdhc_clk(1);
405 		else
406 			return get_esdhc_clk(0);
407 	case 3:
408 		if (cscmr1 & MXC_CCM_CSCMR1_ESDHC4_CLK_SEL)
409 			return get_esdhc_clk(1);
410 		else
411 			return get_esdhc_clk(0);
412 	default:
413 		break;
414 	}
415 
416 	freq = get_standard_pll_sel_clk(clk_sel) / ((pred + 1) * (podf + 1));
417 	return freq;
418 }
419 
get_axi_a_clk(void)420 static u32 get_axi_a_clk(void)
421 {
422 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
423 	u32 pdf = MXC_CCM_CBCDR_AXI_A_PODF_RD(cbcdr);
424 
425 	return  get_periph_clk() / (pdf + 1);
426 }
427 
get_axi_b_clk(void)428 static u32 get_axi_b_clk(void)
429 {
430 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
431 	u32 pdf = MXC_CCM_CBCDR_AXI_B_PODF_RD(cbcdr);
432 
433 	return  get_periph_clk() / (pdf + 1);
434 }
435 
get_emi_slow_clk(void)436 static u32 get_emi_slow_clk(void)
437 {
438 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
439 	u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
440 	u32 pdf = MXC_CCM_CBCDR_EMI_PODF_RD(cbcdr);
441 
442 	if (emi_clk_sel)
443 		return  get_ahb_clk() / (pdf + 1);
444 
445 	return  get_periph_clk() / (pdf + 1);
446 }
447 
get_ddr_clk(void)448 static u32 get_ddr_clk(void)
449 {
450 	u32 ret_val = 0;
451 	u32 cbcmr = readl(&mxc_ccm->cbcmr);
452 	u32 ddr_clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
453 #ifdef CONFIG_MX51
454 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
455 	if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
456 		u32 ddr_clk_podf = MXC_CCM_CBCDR_DDR_PODF_RD(cbcdr);
457 
458 		ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
459 		ret_val /= ddr_clk_podf + 1;
460 
461 		return ret_val;
462 	}
463 #endif
464 	switch (ddr_clk_sel) {
465 	case 0:
466 		ret_val = get_axi_a_clk();
467 		break;
468 	case 1:
469 		ret_val = get_axi_b_clk();
470 		break;
471 	case 2:
472 		ret_val = get_emi_slow_clk();
473 		break;
474 	case 3:
475 		ret_val = get_ahb_clk();
476 		break;
477 	default:
478 		break;
479 	}
480 
481 	return ret_val;
482 }
483 
484 /*
485  * The API of get mxc clocks.
486  */
mxc_get_clock(enum mxc_clock clk)487 unsigned int mxc_get_clock(enum mxc_clock clk)
488 {
489 	switch (clk) {
490 	case MXC_ARM_CLK:
491 		return get_mcu_main_clk();
492 	case MXC_AHB_CLK:
493 		return get_ahb_clk();
494 	case MXC_IPG_CLK:
495 		return get_ipg_clk();
496 	case MXC_IPG_PERCLK:
497 	case MXC_I2C_CLK:
498 		return get_ipg_per_clk();
499 	case MXC_UART_CLK:
500 		return get_uart_clk();
501 	case MXC_CSPI_CLK:
502 		return imx_get_cspiclk();
503 	case MXC_ESDHC_CLK:
504 		return get_esdhc_clk(0);
505 	case MXC_ESDHC2_CLK:
506 		return get_esdhc_clk(1);
507 	case MXC_ESDHC3_CLK:
508 		return get_esdhc_clk(2);
509 	case MXC_ESDHC4_CLK:
510 		return get_esdhc_clk(3);
511 	case MXC_FEC_CLK:
512 		return get_ipg_clk();
513 	case MXC_SATA_CLK:
514 		return get_ahb_clk();
515 	case MXC_DDR_CLK:
516 		return get_ddr_clk();
517 	default:
518 		break;
519 	}
520 	return -EINVAL;
521 }
522 
imx_get_uartclk(void)523 u32 imx_get_uartclk(void)
524 {
525 	return get_uart_clk();
526 }
527 
imx_get_fecclk(void)528 u32 imx_get_fecclk(void)
529 {
530 	return get_ipg_clk();
531 }
532 
gcd(int m,int n)533 static int gcd(int m, int n)
534 {
535 	int t;
536 	while (m > 0) {
537 		if (n > m) {
538 			t = m;
539 			m = n;
540 			n = t;
541 		} /* swap */
542 		m -= n;
543 	}
544 	return n;
545 }
546 
547 /*
548  * This is to calculate various parameters based on reference clock and
549  * targeted clock based on the equation:
550  *      t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
551  * This calculation is based on a fixed MFD value for simplicity.
552  */
calc_pll_params(u32 ref,u32 target,struct pll_param * pll)553 static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
554 {
555 	u64 pd, mfi = 1, mfn, mfd, t1;
556 	u32 n_target = target;
557 	u32 n_ref = ref, i;
558 
559 	/*
560 	 * Make sure targeted freq is in the valid range.
561 	 * Otherwise the following calculation might be wrong!!!
562 	 */
563 	if (n_target < PLL_FREQ_MIN(ref) ||
564 		n_target > PLL_FREQ_MAX(ref)) {
565 		printf("Targeted peripheral clock should be"
566 			"within [%d - %d]\n",
567 			PLL_FREQ_MIN(ref) / SZ_DEC_1M,
568 			PLL_FREQ_MAX(ref) / SZ_DEC_1M);
569 		return -EINVAL;
570 	}
571 
572 	for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
573 		if (fixed_mfd[i].ref_clk_hz == ref) {
574 			mfd = fixed_mfd[i].mfd;
575 			break;
576 		}
577 	}
578 
579 	if (i == ARRAY_SIZE(fixed_mfd))
580 		return -EINVAL;
581 
582 	/* Use n_target and n_ref to avoid overflow */
583 	for (pd = 1; pd <= PLL_PD_MAX; pd++) {
584 		t1 = n_target * pd;
585 		do_div(t1, (4 * n_ref));
586 		mfi = t1;
587 		if (mfi > PLL_MFI_MAX)
588 			return -EINVAL;
589 		else if (mfi < 5)
590 			continue;
591 		break;
592 	}
593 	/*
594 	 * Now got pd and mfi already
595 	 *
596 	 * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
597 	 */
598 	t1 = n_target * pd;
599 	do_div(t1, 4);
600 	t1 -= n_ref * mfi;
601 	t1 *= mfd;
602 	do_div(t1, n_ref);
603 	mfn = t1;
604 	debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
605 		ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
606 	i = 1;
607 	if (mfn != 0)
608 		i = gcd(mfd, mfn);
609 	pll->pd = (u32)pd;
610 	pll->mfi = (u32)mfi;
611 	do_div(mfn, i);
612 	pll->mfn = (u32)mfn;
613 	do_div(mfd, i);
614 	pll->mfd = (u32)mfd;
615 
616 	return 0;
617 }
618 
619 #define calc_div(tgt_clk, src_clk, limit) ({		\
620 		u32 v = 0;				\
621 		if (((src_clk) % (tgt_clk)) <= 100)	\
622 			v = (src_clk) / (tgt_clk);	\
623 		else					\
624 			v = ((src_clk) / (tgt_clk)) + 1;\
625 		if (v > limit)				\
626 			v = limit;			\
627 		(v - 1);				\
628 	})
629 
630 #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
631 	{	\
632 		writel(0x1232, &pll->ctrl);		\
633 		writel(0x2, &pll->config);		\
634 		writel((((pd) - 1) << 0) | ((fi) << 4),	\
635 			&pll->op);			\
636 		writel(fn, &(pll->mfn));		\
637 		writel((fd) - 1, &pll->mfd);		\
638 		writel((((pd) - 1) << 0) | ((fi) << 4),	\
639 			&pll->hfs_op);			\
640 		writel(fn, &pll->hfs_mfn);		\
641 		writel((fd) - 1, &pll->hfs_mfd);	\
642 		writel(0x1232, &pll->ctrl);		\
643 		while (!readl(&pll->ctrl) & 0x1)	\
644 			;\
645 	}
646 
config_pll_clk(enum pll_clocks index,struct pll_param * pll_param)647 static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
648 {
649 	u32 ccsr = readl(&mxc_ccm->ccsr);
650 	struct mxc_pll_reg *pll = mxc_plls[index];
651 
652 	switch (index) {
653 	case PLL1_CLOCK:
654 		/* Switch ARM to PLL2 clock */
655 		writel(ccsr | MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
656 				&mxc_ccm->ccsr);
657 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
658 					pll_param->mfi, pll_param->mfn,
659 					pll_param->mfd);
660 		/* Switch back */
661 		writel(ccsr & ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
662 				&mxc_ccm->ccsr);
663 		break;
664 	case PLL2_CLOCK:
665 		/* Switch to pll2 bypass clock */
666 		writel(ccsr | MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
667 				&mxc_ccm->ccsr);
668 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
669 					pll_param->mfi, pll_param->mfn,
670 					pll_param->mfd);
671 		/* Switch back */
672 		writel(ccsr & ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
673 				&mxc_ccm->ccsr);
674 		break;
675 	case PLL3_CLOCK:
676 		/* Switch to pll3 bypass clock */
677 		writel(ccsr | MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
678 				&mxc_ccm->ccsr);
679 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
680 					pll_param->mfi, pll_param->mfn,
681 					pll_param->mfd);
682 		/* Switch back */
683 		writel(ccsr & ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
684 				&mxc_ccm->ccsr);
685 		break;
686 #ifdef CONFIG_MX53
687 	case PLL4_CLOCK:
688 		/* Switch to pll4 bypass clock */
689 		writel(ccsr | MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
690 				&mxc_ccm->ccsr);
691 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
692 					pll_param->mfi, pll_param->mfn,
693 					pll_param->mfd);
694 		/* Switch back */
695 		writel(ccsr & ~MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
696 				&mxc_ccm->ccsr);
697 		break;
698 #endif
699 	default:
700 		return -EINVAL;
701 	}
702 
703 	return 0;
704 }
705 
706 /* Config CPU clock */
config_core_clk(u32 ref,u32 freq)707 static int config_core_clk(u32 ref, u32 freq)
708 {
709 	int ret = 0;
710 	struct pll_param pll_param;
711 
712 	memset(&pll_param, 0, sizeof(struct pll_param));
713 
714 	/* The case that periph uses PLL1 is not considered here */
715 	ret = calc_pll_params(ref, freq, &pll_param);
716 	if (ret != 0) {
717 		printf("Error:Can't find pll parameters: %d\n", ret);
718 		return ret;
719 	}
720 
721 	return config_pll_clk(PLL1_CLOCK, &pll_param);
722 }
723 
config_nfc_clk(u32 nfc_clk)724 static int config_nfc_clk(u32 nfc_clk)
725 {
726 	u32 parent_rate = get_emi_slow_clk();
727 	u32 div;
728 
729 	if (nfc_clk == 0)
730 		return -EINVAL;
731 	div = parent_rate / nfc_clk;
732 	if (div == 0)
733 		div++;
734 	if (parent_rate / div > NFC_CLK_MAX)
735 		div++;
736 	clrsetbits_le32(&mxc_ccm->cbcdr,
737 			MXC_CCM_CBCDR_NFC_PODF_MASK,
738 			MXC_CCM_CBCDR_NFC_PODF(div - 1));
739 	while (readl(&mxc_ccm->cdhipr) != 0)
740 		;
741 	return 0;
742 }
743 
enable_nfc_clk(unsigned char enable)744 void enable_nfc_clk(unsigned char enable)
745 {
746 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
747 
748 	clrsetbits_le32(&mxc_ccm->CCGR5,
749 		MXC_CCM_CCGR5_EMI_ENFC(MXC_CCM_CCGR_CG_MASK),
750 		MXC_CCM_CCGR5_EMI_ENFC(cg));
751 }
752 
753 #ifdef CONFIG_FSL_IIM
enable_efuse_prog_supply(bool enable)754 void enable_efuse_prog_supply(bool enable)
755 {
756 	if (enable)
757 		setbits_le32(&mxc_ccm->cgpr,
758 			     MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
759 	else
760 		clrbits_le32(&mxc_ccm->cgpr,
761 			     MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
762 }
763 #endif
764 
765 /* Config main_bus_clock for periphs */
config_periph_clk(u32 ref,u32 freq)766 static int config_periph_clk(u32 ref, u32 freq)
767 {
768 	int ret = 0;
769 	struct pll_param pll_param;
770 
771 	memset(&pll_param, 0, sizeof(struct pll_param));
772 
773 	if (readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
774 		ret = calc_pll_params(ref, freq, &pll_param);
775 		if (ret != 0) {
776 			printf("Error:Can't find pll parameters: %d\n",
777 				ret);
778 			return ret;
779 		}
780 		switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(
781 				readl(&mxc_ccm->cbcmr))) {
782 		case 0:
783 			return config_pll_clk(PLL1_CLOCK, &pll_param);
784 			break;
785 		case 1:
786 			return config_pll_clk(PLL3_CLOCK, &pll_param);
787 			break;
788 		default:
789 			return -EINVAL;
790 		}
791 	}
792 
793 	return 0;
794 }
795 
config_ddr_clk(u32 emi_clk)796 static int config_ddr_clk(u32 emi_clk)
797 {
798 	u32 clk_src;
799 	s32 shift = 0, clk_sel, div = 1;
800 	u32 cbcmr = readl(&mxc_ccm->cbcmr);
801 
802 	if (emi_clk > MAX_DDR_CLK) {
803 		printf("Warning:DDR clock should not exceed %d MHz\n",
804 			MAX_DDR_CLK / SZ_DEC_1M);
805 		emi_clk = MAX_DDR_CLK;
806 	}
807 
808 	clk_src = get_periph_clk();
809 	/* Find DDR clock input */
810 	clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
811 	switch (clk_sel) {
812 	case 0:
813 		shift = 16;
814 		break;
815 	case 1:
816 		shift = 19;
817 		break;
818 	case 2:
819 		shift = 22;
820 		break;
821 	case 3:
822 		shift = 10;
823 		break;
824 	default:
825 		return -EINVAL;
826 	}
827 
828 	if ((clk_src % emi_clk) < 10000000)
829 		div = clk_src / emi_clk;
830 	else
831 		div = (clk_src / emi_clk) + 1;
832 	if (div > 8)
833 		div = 8;
834 
835 	clrsetbits_le32(&mxc_ccm->cbcdr, 0x7 << shift, (div - 1) << shift);
836 	while (readl(&mxc_ccm->cdhipr) != 0)
837 		;
838 	writel(0x0, &mxc_ccm->ccdr);
839 
840 	return 0;
841 }
842 
843 #ifdef CONFIG_MX53
config_ldb_clk(u32 ref,u32 freq)844 static int config_ldb_clk(u32 ref, u32 freq)
845 {
846 	int ret = 0;
847 	struct pll_param pll_param;
848 
849 	memset(&pll_param, 0, sizeof(struct pll_param));
850 
851 	ret = calc_pll_params(ref, freq, &pll_param);
852 	if (ret != 0) {
853 		printf("Error:Can't find pll parameters: %d\n",
854 			ret);
855 		return ret;
856 	}
857 
858 	return config_pll_clk(PLL4_CLOCK, &pll_param);
859 }
860 #else
config_ldb_clk(u32 ref,u32 freq)861 static int config_ldb_clk(u32 ref, u32 freq)
862 {
863 	/* Platform not supported */
864 	return -EINVAL;
865 }
866 #endif
867 
868 /*
869  * This function assumes the expected core clock has to be changed by
870  * modifying the PLL. This is NOT true always but for most of the times,
871  * it is. So it assumes the PLL output freq is the same as the expected
872  * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
873  * In the latter case, it will try to increase the presc value until
874  * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
875  * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
876  * on the targeted PLL and reference input clock to the PLL. Lastly,
877  * it sets the register based on these values along with the dividers.
878  * Note 1) There is no value checking for the passed-in divider values
879  *         so the caller has to make sure those values are sensible.
880  *      2) Also adjust the NFC divider such that the NFC clock doesn't
881  *         exceed NFC_CLK_MAX.
882  *      3) IPU HSP clock is independent of AHB clock. Even it can go up to
883  *         177MHz for higher voltage, this function fixes the max to 133MHz.
884  *      4) This function should not have allowed diag_printf() calls since
885  *         the serial driver has been stoped. But leave then here to allow
886  *         easy debugging by NOT calling the cyg_hal_plf_serial_stop().
887  */
mxc_set_clock(u32 ref,u32 freq,enum mxc_clock clk)888 int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
889 {
890 	freq *= SZ_DEC_1M;
891 
892 	switch (clk) {
893 	case MXC_ARM_CLK:
894 		if (config_core_clk(ref, freq))
895 			return -EINVAL;
896 		break;
897 	case MXC_PERIPH_CLK:
898 		if (config_periph_clk(ref, freq))
899 			return -EINVAL;
900 		break;
901 	case MXC_DDR_CLK:
902 		if (config_ddr_clk(freq))
903 			return -EINVAL;
904 		break;
905 	case MXC_NFC_CLK:
906 		if (config_nfc_clk(freq))
907 			return -EINVAL;
908 		break;
909 	case MXC_LDB_CLK:
910 		if (config_ldb_clk(ref, freq))
911 			return -EINVAL;
912 		break;
913 	default:
914 		printf("Warning:Unsupported or invalid clock type\n");
915 	}
916 
917 	return 0;
918 }
919 
920 #ifdef CONFIG_MX53
921 /*
922  * The clock for the external interface can be set to use internal clock
923  * if fuse bank 4, row 3, bit 2 is set.
924  * This is an undocumented feature and it was confirmed by Freescale's support:
925  * Fuses (but not pins) may be used to configure SATA clocks.
926  * Particularly the i.MX53 Fuse_Map contains the next information
927  * about configuring SATA clocks :  SATA_ALT_REF_CLK[1:0] (offset 0x180C)
928  * '00' - 100MHz (External)
929  * '01' - 50MHz (External)
930  * '10' - 120MHz, internal (USB PHY)
931  * '11' - Reserved
932 */
mxc_set_sata_internal_clock(void)933 void mxc_set_sata_internal_clock(void)
934 {
935 	u32 *tmp_base =
936 		(u32 *)(IIM_BASE_ADDR + 0x180c);
937 
938 	set_usb_phy_clk();
939 
940 	clrsetbits_le32(tmp_base, 0x6, 0x4);
941 }
942 #endif
943 
944 #ifndef CONFIG_SPL_BUILD
945 /*
946  * Dump some core clockes.
947  */
do_mx5_showclocks(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])948 static int do_mx5_showclocks(struct cmd_tbl *cmdtp, int flag, int argc,
949 			     char *const argv[])
950 {
951 	u32 freq;
952 
953 	freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
954 	printf("PLL1       %8d MHz\n", freq / 1000000);
955 	freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
956 	printf("PLL2       %8d MHz\n", freq / 1000000);
957 	freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
958 	printf("PLL3       %8d MHz\n", freq / 1000000);
959 #ifdef	CONFIG_MX53
960 	freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
961 	printf("PLL4       %8d MHz\n", freq / 1000000);
962 #endif
963 
964 	printf("\n");
965 	printf("AHB        %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
966 	printf("IPG        %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
967 	printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
968 	printf("DDR        %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
969 #ifdef CONFIG_MXC_SPI
970 	printf("CSPI       %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
971 #endif
972 	return 0;
973 }
974 
975 /***************************************************/
976 
977 U_BOOT_CMD(
978 	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
979 	"display clocks",
980 	""
981 );
982 #endif
983