1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  Copyright 2017 - Free Electrons
4  *
5  *  Authors:
6  *	Boris Brezillon <boris.brezillon@free-electrons.com>
7  *	Peter Pan <peterpandong@micron.com>
8  */
9 
10 #ifndef __LINUX_MTD_NAND_H
11 #define __LINUX_MTD_NAND_H
12 
13 #include <linux/mtd/mtd.h>
14 
15 struct nand_device;
16 
17 /**
18  * struct nand_memory_organization - Memory organization structure
19  * @bits_per_cell: number of bits per NAND cell
20  * @pagesize: page size
21  * @oobsize: OOB area size
22  * @pages_per_eraseblock: number of pages per eraseblock
23  * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
24  * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
25  * @planes_per_lun: number of planes per LUN
26  * @luns_per_target: number of LUN per target (target is a synonym for die)
27  * @ntargets: total number of targets exposed by the NAND device
28  */
29 struct nand_memory_organization {
30 	unsigned int bits_per_cell;
31 	unsigned int pagesize;
32 	unsigned int oobsize;
33 	unsigned int pages_per_eraseblock;
34 	unsigned int eraseblocks_per_lun;
35 	unsigned int max_bad_eraseblocks_per_lun;
36 	unsigned int planes_per_lun;
37 	unsigned int luns_per_target;
38 	unsigned int ntargets;
39 };
40 
41 #define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt)	\
42 	{							\
43 		.bits_per_cell = (bpc),				\
44 		.pagesize = (ps),				\
45 		.oobsize = (os),				\
46 		.pages_per_eraseblock = (ppe),			\
47 		.eraseblocks_per_lun = (epl),			\
48 		.max_bad_eraseblocks_per_lun = (mbb),		\
49 		.planes_per_lun = (ppl),			\
50 		.luns_per_target = (lpt),			\
51 		.ntargets = (nt),				\
52 	}
53 
54 /**
55  * struct nand_row_converter - Information needed to convert an absolute offset
56  *			       into a row address
57  * @lun_addr_shift: position of the LUN identifier in the row address
58  * @eraseblock_addr_shift: position of the eraseblock identifier in the row
59  *			   address
60  */
61 struct nand_row_converter {
62 	unsigned int lun_addr_shift;
63 	unsigned int eraseblock_addr_shift;
64 };
65 
66 /**
67  * struct nand_pos - NAND position object
68  * @target: the NAND target/die
69  * @lun: the LUN identifier
70  * @plane: the plane within the LUN
71  * @eraseblock: the eraseblock within the LUN
72  * @page: the page within the LUN
73  *
74  * These information are usually used by specific sub-layers to select the
75  * appropriate target/die and generate a row address to pass to the device.
76  */
77 struct nand_pos {
78 	unsigned int target;
79 	unsigned int lun;
80 	unsigned int plane;
81 	unsigned int eraseblock;
82 	unsigned int page;
83 };
84 
85 /**
86  * enum nand_page_io_req_type - Direction of an I/O request
87  * @NAND_PAGE_READ: from the chip, to the controller
88  * @NAND_PAGE_WRITE: from the controller, to the chip
89  */
90 enum nand_page_io_req_type {
91 	NAND_PAGE_READ = 0,
92 	NAND_PAGE_WRITE,
93 };
94 
95 /**
96  * struct nand_page_io_req - NAND I/O request object
97  * @type: the type of page I/O: read or write
98  * @pos: the position this I/O request is targeting
99  * @dataoffs: the offset within the page
100  * @datalen: number of data bytes to read from/write to this page
101  * @databuf: buffer to store data in or get data from
102  * @ooboffs: the OOB offset within the page
103  * @ooblen: the number of OOB bytes to read from/write to this page
104  * @oobbuf: buffer to store OOB data in or get OOB data from
105  * @mode: one of the %MTD_OPS_XXX mode
106  *
107  * This object is used to pass per-page I/O requests to NAND sub-layers. This
108  * way all useful information are already formatted in a useful way and
109  * specific NAND layers can focus on translating these information into
110  * specific commands/operations.
111  */
112 struct nand_page_io_req {
113 	enum nand_page_io_req_type type;
114 	struct nand_pos pos;
115 	unsigned int dataoffs;
116 	unsigned int datalen;
117 	union {
118 		const void *out;
119 		void *in;
120 	} databuf;
121 	unsigned int ooboffs;
122 	unsigned int ooblen;
123 	union {
124 		const void *out;
125 		void *in;
126 	} oobbuf;
127 	int mode;
128 };
129 
130 const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void);
131 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void);
132 const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void);
133 
134 /**
135  * enum nand_ecc_engine_type - NAND ECC engine type
136  * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value
137  * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction
138  * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction
139  * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction
140  * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction
141  */
142 enum nand_ecc_engine_type {
143 	NAND_ECC_ENGINE_TYPE_INVALID,
144 	NAND_ECC_ENGINE_TYPE_NONE,
145 	NAND_ECC_ENGINE_TYPE_SOFT,
146 	NAND_ECC_ENGINE_TYPE_ON_HOST,
147 	NAND_ECC_ENGINE_TYPE_ON_DIE,
148 };
149 
150 /**
151  * enum nand_ecc_placement - NAND ECC bytes placement
152  * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown
153  * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area
154  * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes
155  *                                  interleaved with regular data in the main
156  *                                  area
157  */
158 enum nand_ecc_placement {
159 	NAND_ECC_PLACEMENT_UNKNOWN,
160 	NAND_ECC_PLACEMENT_OOB,
161 	NAND_ECC_PLACEMENT_INTERLEAVED,
162 };
163 
164 /**
165  * enum nand_ecc_algo - NAND ECC algorithm
166  * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm
167  * @NAND_ECC_ALGO_HAMMING: Hamming algorithm
168  * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm
169  * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm
170  */
171 enum nand_ecc_algo {
172 	NAND_ECC_ALGO_UNKNOWN,
173 	NAND_ECC_ALGO_HAMMING,
174 	NAND_ECC_ALGO_BCH,
175 	NAND_ECC_ALGO_RS,
176 };
177 
178 /**
179  * struct nand_ecc_props - NAND ECC properties
180  * @engine_type: ECC engine type
181  * @placement: OOB placement (if relevant)
182  * @algo: ECC algorithm (if relevant)
183  * @strength: ECC strength
184  * @step_size: Number of bytes per step
185  * @flags: Misc properties
186  */
187 struct nand_ecc_props {
188 	enum nand_ecc_engine_type engine_type;
189 	enum nand_ecc_placement placement;
190 	enum nand_ecc_algo algo;
191 	unsigned int strength;
192 	unsigned int step_size;
193 	unsigned int flags;
194 };
195 
196 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
197 
198 /* NAND ECC misc flags */
199 #define NAND_ECC_MAXIMIZE_STRENGTH BIT(0)
200 
201 /**
202  * struct nand_bbt - bad block table object
203  * @cache: in memory BBT cache
204  */
205 struct nand_bbt {
206 	unsigned long *cache;
207 };
208 
209 /**
210  * struct nand_ops - NAND operations
211  * @erase: erase a specific block. No need to check if the block is bad before
212  *	   erasing, this has been taken care of by the generic NAND layer
213  * @markbad: mark a specific block bad. No need to check if the block is
214  *	     already marked bad, this has been taken care of by the generic
215  *	     NAND layer. This method should just write the BBM (Bad Block
216  *	     Marker) so that future call to struct_nand_ops->isbad() return
217  *	     true
218  * @isbad: check whether a block is bad or not. This method should just read
219  *	   the BBM and return whether the block is bad or not based on what it
220  *	   reads
221  *
222  * These are all low level operations that should be implemented by specialized
223  * NAND layers (SPI NAND, raw NAND, ...).
224  */
225 struct nand_ops {
226 	int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
227 	int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
228 	bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
229 };
230 
231 /**
232  * struct nand_ecc_context - Context for the ECC engine
233  * @conf: basic ECC engine parameters
234  * @nsteps: number of ECC steps
235  * @total: total number of bytes used for storing ECC codes, this is used by
236  *         generic OOB layouts
237  * @priv: ECC engine driver private data
238  */
239 struct nand_ecc_context {
240 	struct nand_ecc_props conf;
241 	unsigned int nsteps;
242 	unsigned int total;
243 	void *priv;
244 };
245 
246 /**
247  * struct nand_ecc_engine_ops - ECC engine operations
248  * @init_ctx: given a desired user configuration for the pointed NAND device,
249  *            requests the ECC engine driver to setup a configuration with
250  *            values it supports.
251  * @cleanup_ctx: clean the context initialized by @init_ctx.
252  * @prepare_io_req: is called before reading/writing a page to prepare the I/O
253  *                  request to be performed with ECC correction.
254  * @finish_io_req: is called after reading/writing a page to terminate the I/O
255  *                 request and ensure proper ECC correction.
256  */
257 struct nand_ecc_engine_ops {
258 	int (*init_ctx)(struct nand_device *nand);
259 	void (*cleanup_ctx)(struct nand_device *nand);
260 	int (*prepare_io_req)(struct nand_device *nand,
261 			      struct nand_page_io_req *req);
262 	int (*finish_io_req)(struct nand_device *nand,
263 			     struct nand_page_io_req *req);
264 };
265 
266 /**
267  * struct nand_ecc_engine - ECC engine abstraction for NAND devices
268  * @ops: ECC engine operations
269  */
270 struct nand_ecc_engine {
271 	struct nand_ecc_engine_ops *ops;
272 };
273 
274 void of_get_nand_ecc_user_config(struct nand_device *nand);
275 int nand_ecc_init_ctx(struct nand_device *nand);
276 void nand_ecc_cleanup_ctx(struct nand_device *nand);
277 int nand_ecc_prepare_io_req(struct nand_device *nand,
278 			    struct nand_page_io_req *req);
279 int nand_ecc_finish_io_req(struct nand_device *nand,
280 			   struct nand_page_io_req *req);
281 bool nand_ecc_is_strong_enough(struct nand_device *nand);
282 struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand);
283 struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand);
284 
285 #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING)
286 struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void);
287 #else
nand_ecc_sw_hamming_get_engine(void)288 static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void)
289 {
290 	return NULL;
291 }
292 #endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */
293 
294 #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)
295 struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void);
296 #else
nand_ecc_sw_bch_get_engine(void)297 static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void)
298 {
299 	return NULL;
300 }
301 #endif /* CONFIG_MTD_NAND_ECC_SW_BCH */
302 
303 /**
304  * struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests
305  * @orig_req: Pointer to the original IO request
306  * @nand: Related NAND device, to have access to its memory organization
307  * @page_buffer_size: Real size of the page buffer to use (can be set by the
308  *                    user before the tweaking mechanism initialization)
309  * @oob_buffer_size: Real size of the OOB buffer to use (can be set by the
310  *                   user before the tweaking mechanism initialization)
311  * @spare_databuf: Data bounce buffer
312  * @spare_oobbuf: OOB bounce buffer
313  * @bounce_data: Flag indicating a data bounce buffer is used
314  * @bounce_oob: Flag indicating an OOB bounce buffer is used
315  */
316 struct nand_ecc_req_tweak_ctx {
317 	struct nand_page_io_req orig_req;
318 	struct nand_device *nand;
319 	unsigned int page_buffer_size;
320 	unsigned int oob_buffer_size;
321 	void *spare_databuf;
322 	void *spare_oobbuf;
323 	bool bounce_data;
324 	bool bounce_oob;
325 };
326 
327 int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
328 			       struct nand_device *nand);
329 void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx);
330 void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
331 			struct nand_page_io_req *req);
332 void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
333 			  struct nand_page_io_req *req);
334 
335 /**
336  * struct nand_ecc - Information relative to the ECC
337  * @defaults: Default values, depend on the underlying subsystem
338  * @requirements: ECC requirements from the NAND chip perspective
339  * @user_conf: User desires in terms of ECC parameters
340  * @ctx: ECC context for the ECC engine, derived from the device @requirements
341  *       the @user_conf and the @defaults
342  * @ondie_engine: On-die ECC engine reference, if any
343  * @engine: ECC engine actually bound
344  */
345 struct nand_ecc {
346 	struct nand_ecc_props defaults;
347 	struct nand_ecc_props requirements;
348 	struct nand_ecc_props user_conf;
349 	struct nand_ecc_context ctx;
350 	struct nand_ecc_engine *ondie_engine;
351 	struct nand_ecc_engine *engine;
352 };
353 
354 /**
355  * struct nand_device - NAND device
356  * @mtd: MTD instance attached to the NAND device
357  * @memorg: memory layout
358  * @ecc: NAND ECC object attached to the NAND device
359  * @rowconv: position to row address converter
360  * @bbt: bad block table info
361  * @ops: NAND operations attached to the NAND device
362  *
363  * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
364  * should declare their own NAND object embedding a nand_device struct (that's
365  * how inheritance is done).
366  * struct_nand_device->memorg and struct_nand_device->ecc.requirements should
367  * be filled at device detection time to reflect the NAND device
368  * capabilities/requirements. Once this is done nanddev_init() can be called.
369  * It will take care of converting NAND information into MTD ones, which means
370  * the specialized NAND layers should never manually tweak
371  * struct_nand_device->mtd except for the ->_read/write() hooks.
372  */
373 struct nand_device {
374 	struct mtd_info mtd;
375 	struct nand_memory_organization memorg;
376 	struct nand_ecc ecc;
377 	struct nand_row_converter rowconv;
378 	struct nand_bbt bbt;
379 	const struct nand_ops *ops;
380 };
381 
382 /**
383  * struct nand_io_iter - NAND I/O iterator
384  * @req: current I/O request
385  * @oobbytes_per_page: maximum number of OOB bytes per page
386  * @dataleft: remaining number of data bytes to read/write
387  * @oobleft: remaining number of OOB bytes to read/write
388  *
389  * Can be used by specialized NAND layers to iterate over all pages covered
390  * by an MTD I/O request, which should greatly simplifies the boiler-plate
391  * code needed to read/write data from/to a NAND device.
392  */
393 struct nand_io_iter {
394 	struct nand_page_io_req req;
395 	unsigned int oobbytes_per_page;
396 	unsigned int dataleft;
397 	unsigned int oobleft;
398 };
399 
400 /**
401  * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
402  * @mtd: MTD instance
403  *
404  * Return: the NAND device embedding @mtd.
405  */
mtd_to_nanddev(struct mtd_info * mtd)406 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
407 {
408 	return container_of(mtd, struct nand_device, mtd);
409 }
410 
411 /**
412  * nanddev_to_mtd() - Get the MTD device attached to a NAND device
413  * @nand: NAND device
414  *
415  * Return: the MTD device embedded in @nand.
416  */
nanddev_to_mtd(struct nand_device * nand)417 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
418 {
419 	return &nand->mtd;
420 }
421 
422 /*
423  * nanddev_bits_per_cell() - Get the number of bits per cell
424  * @nand: NAND device
425  *
426  * Return: the number of bits per cell.
427  */
nanddev_bits_per_cell(const struct nand_device * nand)428 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
429 {
430 	return nand->memorg.bits_per_cell;
431 }
432 
433 /**
434  * nanddev_page_size() - Get NAND page size
435  * @nand: NAND device
436  *
437  * Return: the page size.
438  */
nanddev_page_size(const struct nand_device * nand)439 static inline size_t nanddev_page_size(const struct nand_device *nand)
440 {
441 	return nand->memorg.pagesize;
442 }
443 
444 /**
445  * nanddev_per_page_oobsize() - Get NAND OOB size
446  * @nand: NAND device
447  *
448  * Return: the OOB size.
449  */
450 static inline unsigned int
nanddev_per_page_oobsize(const struct nand_device * nand)451 nanddev_per_page_oobsize(const struct nand_device *nand)
452 {
453 	return nand->memorg.oobsize;
454 }
455 
456 /**
457  * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
458  * @nand: NAND device
459  *
460  * Return: the number of pages per eraseblock.
461  */
462 static inline unsigned int
nanddev_pages_per_eraseblock(const struct nand_device * nand)463 nanddev_pages_per_eraseblock(const struct nand_device *nand)
464 {
465 	return nand->memorg.pages_per_eraseblock;
466 }
467 
468 /**
469  * nanddev_pages_per_target() - Get the number of pages per target
470  * @nand: NAND device
471  *
472  * Return: the number of pages per target.
473  */
474 static inline unsigned int
nanddev_pages_per_target(const struct nand_device * nand)475 nanddev_pages_per_target(const struct nand_device *nand)
476 {
477 	return nand->memorg.pages_per_eraseblock *
478 	       nand->memorg.eraseblocks_per_lun *
479 	       nand->memorg.luns_per_target;
480 }
481 
482 /**
483  * nanddev_per_page_oobsize() - Get NAND erase block size
484  * @nand: NAND device
485  *
486  * Return: the eraseblock size.
487  */
nanddev_eraseblock_size(const struct nand_device * nand)488 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
489 {
490 	return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
491 }
492 
493 /**
494  * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
495  * @nand: NAND device
496  *
497  * Return: the number of eraseblocks per LUN.
498  */
499 static inline unsigned int
nanddev_eraseblocks_per_lun(const struct nand_device * nand)500 nanddev_eraseblocks_per_lun(const struct nand_device *nand)
501 {
502 	return nand->memorg.eraseblocks_per_lun;
503 }
504 
505 /**
506  * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
507  * @nand: NAND device
508  *
509  * Return: the number of eraseblocks per target.
510  */
511 static inline unsigned int
nanddev_eraseblocks_per_target(const struct nand_device * nand)512 nanddev_eraseblocks_per_target(const struct nand_device *nand)
513 {
514 	return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
515 }
516 
517 /**
518  * nanddev_target_size() - Get the total size provided by a single target/die
519  * @nand: NAND device
520  *
521  * Return: the total size exposed by a single target/die in bytes.
522  */
nanddev_target_size(const struct nand_device * nand)523 static inline u64 nanddev_target_size(const struct nand_device *nand)
524 {
525 	return (u64)nand->memorg.luns_per_target *
526 	       nand->memorg.eraseblocks_per_lun *
527 	       nand->memorg.pages_per_eraseblock *
528 	       nand->memorg.pagesize;
529 }
530 
531 /**
532  * nanddev_ntarget() - Get the total of targets
533  * @nand: NAND device
534  *
535  * Return: the number of targets/dies exposed by @nand.
536  */
nanddev_ntargets(const struct nand_device * nand)537 static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
538 {
539 	return nand->memorg.ntargets;
540 }
541 
542 /**
543  * nanddev_neraseblocks() - Get the total number of eraseblocks
544  * @nand: NAND device
545  *
546  * Return: the total number of eraseblocks exposed by @nand.
547  */
nanddev_neraseblocks(const struct nand_device * nand)548 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
549 {
550 	return nand->memorg.ntargets * nand->memorg.luns_per_target *
551 	       nand->memorg.eraseblocks_per_lun;
552 }
553 
554 /**
555  * nanddev_size() - Get NAND size
556  * @nand: NAND device
557  *
558  * Return: the total size (in bytes) exposed by @nand.
559  */
nanddev_size(const struct nand_device * nand)560 static inline u64 nanddev_size(const struct nand_device *nand)
561 {
562 	return nanddev_target_size(nand) * nanddev_ntargets(nand);
563 }
564 
565 /**
566  * nanddev_get_memorg() - Extract memory organization info from a NAND device
567  * @nand: NAND device
568  *
569  * This can be used by the upper layer to fill the memorg info before calling
570  * nanddev_init().
571  *
572  * Return: the memorg object embedded in the NAND device.
573  */
574 static inline struct nand_memory_organization *
nanddev_get_memorg(struct nand_device * nand)575 nanddev_get_memorg(struct nand_device *nand)
576 {
577 	return &nand->memorg;
578 }
579 
580 /**
581  * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device
582  * @nand: NAND device
583  */
584 static inline const struct nand_ecc_props *
nanddev_get_ecc_conf(struct nand_device * nand)585 nanddev_get_ecc_conf(struct nand_device *nand)
586 {
587 	return &nand->ecc.ctx.conf;
588 }
589 
590 /**
591  * nanddev_get_ecc_nsteps() - Extract the number of ECC steps
592  * @nand: NAND device
593  */
594 static inline unsigned int
nanddev_get_ecc_nsteps(struct nand_device * nand)595 nanddev_get_ecc_nsteps(struct nand_device *nand)
596 {
597 	return nand->ecc.ctx.nsteps;
598 }
599 
600 /**
601  * nanddev_get_ecc_bytes_per_step() - Extract the number of ECC bytes per step
602  * @nand: NAND device
603  */
604 static inline unsigned int
nanddev_get_ecc_bytes_per_step(struct nand_device * nand)605 nanddev_get_ecc_bytes_per_step(struct nand_device *nand)
606 {
607 	return nand->ecc.ctx.total / nand->ecc.ctx.nsteps;
608 }
609 
610 /**
611  * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND
612  *                                  device
613  * @nand: NAND device
614  */
615 static inline const struct nand_ecc_props *
nanddev_get_ecc_requirements(struct nand_device * nand)616 nanddev_get_ecc_requirements(struct nand_device *nand)
617 {
618 	return &nand->ecc.requirements;
619 }
620 
621 /**
622  * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND
623  *                                  device
624  * @nand: NAND device
625  * @reqs: Requirements
626  */
627 static inline void
nanddev_set_ecc_requirements(struct nand_device * nand,const struct nand_ecc_props * reqs)628 nanddev_set_ecc_requirements(struct nand_device *nand,
629 			     const struct nand_ecc_props *reqs)
630 {
631 	nand->ecc.requirements = *reqs;
632 }
633 
634 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
635 		 struct module *owner);
636 void nanddev_cleanup(struct nand_device *nand);
637 
638 /**
639  * nanddev_register() - Register a NAND device
640  * @nand: NAND device
641  *
642  * Register a NAND device.
643  * This function is just a wrapper around mtd_device_register()
644  * registering the MTD device embedded in @nand.
645  *
646  * Return: 0 in case of success, a negative error code otherwise.
647  */
nanddev_register(struct nand_device * nand)648 static inline int nanddev_register(struct nand_device *nand)
649 {
650 	return mtd_device_register(&nand->mtd, NULL, 0);
651 }
652 
653 /**
654  * nanddev_unregister() - Unregister a NAND device
655  * @nand: NAND device
656  *
657  * Unregister a NAND device.
658  * This function is just a wrapper around mtd_device_unregister()
659  * unregistering the MTD device embedded in @nand.
660  *
661  * Return: 0 in case of success, a negative error code otherwise.
662  */
nanddev_unregister(struct nand_device * nand)663 static inline int nanddev_unregister(struct nand_device *nand)
664 {
665 	return mtd_device_unregister(&nand->mtd);
666 }
667 
668 /**
669  * nanddev_set_of_node() - Attach a DT node to a NAND device
670  * @nand: NAND device
671  * @np: DT node
672  *
673  * Attach a DT node to a NAND device.
674  */
nanddev_set_of_node(struct nand_device * nand,struct device_node * np)675 static inline void nanddev_set_of_node(struct nand_device *nand,
676 				       struct device_node *np)
677 {
678 	mtd_set_of_node(&nand->mtd, np);
679 }
680 
681 /**
682  * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
683  * @nand: NAND device
684  *
685  * Return: the DT node attached to @nand.
686  */
nanddev_get_of_node(struct nand_device * nand)687 static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
688 {
689 	return mtd_get_of_node(&nand->mtd);
690 }
691 
692 /**
693  * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
694  * @nand: NAND device
695  * @offs: absolute NAND offset (usually passed by the MTD layer)
696  * @pos: a NAND position object to fill in
697  *
698  * Converts @offs into a nand_pos representation.
699  *
700  * Return: the offset within the NAND page pointed by @pos.
701  */
nanddev_offs_to_pos(struct nand_device * nand,loff_t offs,struct nand_pos * pos)702 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
703 					       loff_t offs,
704 					       struct nand_pos *pos)
705 {
706 	unsigned int pageoffs;
707 	u64 tmp = offs;
708 
709 	pageoffs = do_div(tmp, nand->memorg.pagesize);
710 	pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
711 	pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
712 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
713 	pos->lun = do_div(tmp, nand->memorg.luns_per_target);
714 	pos->target = tmp;
715 
716 	return pageoffs;
717 }
718 
719 /**
720  * nanddev_pos_cmp() - Compare two NAND positions
721  * @a: First NAND position
722  * @b: Second NAND position
723  *
724  * Compares two NAND positions.
725  *
726  * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
727  */
nanddev_pos_cmp(const struct nand_pos * a,const struct nand_pos * b)728 static inline int nanddev_pos_cmp(const struct nand_pos *a,
729 				  const struct nand_pos *b)
730 {
731 	if (a->target != b->target)
732 		return a->target < b->target ? -1 : 1;
733 
734 	if (a->lun != b->lun)
735 		return a->lun < b->lun ? -1 : 1;
736 
737 	if (a->eraseblock != b->eraseblock)
738 		return a->eraseblock < b->eraseblock ? -1 : 1;
739 
740 	if (a->page != b->page)
741 		return a->page < b->page ? -1 : 1;
742 
743 	return 0;
744 }
745 
746 /**
747  * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
748  * @nand: NAND device
749  * @pos: the NAND position to convert
750  *
751  * Converts @pos NAND position into an absolute offset.
752  *
753  * Return: the absolute offset. Note that @pos points to the beginning of a
754  *	   page, if one wants to point to a specific offset within this page
755  *	   the returned offset has to be adjusted manually.
756  */
nanddev_pos_to_offs(struct nand_device * nand,const struct nand_pos * pos)757 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
758 					 const struct nand_pos *pos)
759 {
760 	unsigned int npages;
761 
762 	npages = pos->page +
763 		 ((pos->eraseblock +
764 		   (pos->lun +
765 		    (pos->target * nand->memorg.luns_per_target)) *
766 		   nand->memorg.eraseblocks_per_lun) *
767 		  nand->memorg.pages_per_eraseblock);
768 
769 	return (loff_t)npages * nand->memorg.pagesize;
770 }
771 
772 /**
773  * nanddev_pos_to_row() - Extract a row address from a NAND position
774  * @nand: NAND device
775  * @pos: the position to convert
776  *
777  * Converts a NAND position into a row address that can then be passed to the
778  * device.
779  *
780  * Return: the row address extracted from @pos.
781  */
nanddev_pos_to_row(struct nand_device * nand,const struct nand_pos * pos)782 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
783 					      const struct nand_pos *pos)
784 {
785 	return (pos->lun << nand->rowconv.lun_addr_shift) |
786 	       (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
787 	       pos->page;
788 }
789 
790 /**
791  * nanddev_pos_next_target() - Move a position to the next target/die
792  * @nand: NAND device
793  * @pos: the position to update
794  *
795  * Updates @pos to point to the start of the next target/die. Useful when you
796  * want to iterate over all targets/dies of a NAND device.
797  */
nanddev_pos_next_target(struct nand_device * nand,struct nand_pos * pos)798 static inline void nanddev_pos_next_target(struct nand_device *nand,
799 					   struct nand_pos *pos)
800 {
801 	pos->page = 0;
802 	pos->plane = 0;
803 	pos->eraseblock = 0;
804 	pos->lun = 0;
805 	pos->target++;
806 }
807 
808 /**
809  * nanddev_pos_next_lun() - Move a position to the next LUN
810  * @nand: NAND device
811  * @pos: the position to update
812  *
813  * Updates @pos to point to the start of the next LUN. Useful when you want to
814  * iterate over all LUNs of a NAND device.
815  */
nanddev_pos_next_lun(struct nand_device * nand,struct nand_pos * pos)816 static inline void nanddev_pos_next_lun(struct nand_device *nand,
817 					struct nand_pos *pos)
818 {
819 	if (pos->lun >= nand->memorg.luns_per_target - 1)
820 		return nanddev_pos_next_target(nand, pos);
821 
822 	pos->lun++;
823 	pos->page = 0;
824 	pos->plane = 0;
825 	pos->eraseblock = 0;
826 }
827 
828 /**
829  * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
830  * @nand: NAND device
831  * @pos: the position to update
832  *
833  * Updates @pos to point to the start of the next eraseblock. Useful when you
834  * want to iterate over all eraseblocks of a NAND device.
835  */
nanddev_pos_next_eraseblock(struct nand_device * nand,struct nand_pos * pos)836 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
837 					       struct nand_pos *pos)
838 {
839 	if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
840 		return nanddev_pos_next_lun(nand, pos);
841 
842 	pos->eraseblock++;
843 	pos->page = 0;
844 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
845 }
846 
847 /**
848  * nanddev_pos_next_page() - Move a position to the next page
849  * @nand: NAND device
850  * @pos: the position to update
851  *
852  * Updates @pos to point to the start of the next page. Useful when you want to
853  * iterate over all pages of a NAND device.
854  */
nanddev_pos_next_page(struct nand_device * nand,struct nand_pos * pos)855 static inline void nanddev_pos_next_page(struct nand_device *nand,
856 					 struct nand_pos *pos)
857 {
858 	if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
859 		return nanddev_pos_next_eraseblock(nand, pos);
860 
861 	pos->page++;
862 }
863 
864 /**
865  * nand_io_iter_init - Initialize a NAND I/O iterator
866  * @nand: NAND device
867  * @offs: absolute offset
868  * @req: MTD request
869  * @iter: NAND I/O iterator
870  *
871  * Initializes a NAND iterator based on the information passed by the MTD
872  * layer.
873  */
nanddev_io_iter_init(struct nand_device * nand,enum nand_page_io_req_type reqtype,loff_t offs,struct mtd_oob_ops * req,struct nand_io_iter * iter)874 static inline void nanddev_io_iter_init(struct nand_device *nand,
875 					enum nand_page_io_req_type reqtype,
876 					loff_t offs, struct mtd_oob_ops *req,
877 					struct nand_io_iter *iter)
878 {
879 	struct mtd_info *mtd = nanddev_to_mtd(nand);
880 
881 	iter->req.type = reqtype;
882 	iter->req.mode = req->mode;
883 	iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
884 	iter->req.ooboffs = req->ooboffs;
885 	iter->oobbytes_per_page = mtd_oobavail(mtd, req);
886 	iter->dataleft = req->len;
887 	iter->oobleft = req->ooblen;
888 	iter->req.databuf.in = req->datbuf;
889 	iter->req.datalen = min_t(unsigned int,
890 				  nand->memorg.pagesize - iter->req.dataoffs,
891 				  iter->dataleft);
892 	iter->req.oobbuf.in = req->oobbuf;
893 	iter->req.ooblen = min_t(unsigned int,
894 				 iter->oobbytes_per_page - iter->req.ooboffs,
895 				 iter->oobleft);
896 }
897 
898 /**
899  * nand_io_iter_next_page - Move to the next page
900  * @nand: NAND device
901  * @iter: NAND I/O iterator
902  *
903  * Updates the @iter to point to the next page.
904  */
nanddev_io_iter_next_page(struct nand_device * nand,struct nand_io_iter * iter)905 static inline void nanddev_io_iter_next_page(struct nand_device *nand,
906 					     struct nand_io_iter *iter)
907 {
908 	nanddev_pos_next_page(nand, &iter->req.pos);
909 	iter->dataleft -= iter->req.datalen;
910 	iter->req.databuf.in += iter->req.datalen;
911 	iter->oobleft -= iter->req.ooblen;
912 	iter->req.oobbuf.in += iter->req.ooblen;
913 	iter->req.dataoffs = 0;
914 	iter->req.ooboffs = 0;
915 	iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
916 				  iter->dataleft);
917 	iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
918 				 iter->oobleft);
919 }
920 
921 /**
922  * nand_io_iter_end - Should end iteration or not
923  * @nand: NAND device
924  * @iter: NAND I/O iterator
925  *
926  * Check whether @iter has reached the end of the NAND portion it was asked to
927  * iterate on or not.
928  *
929  * Return: true if @iter has reached the end of the iteration request, false
930  *	   otherwise.
931  */
nanddev_io_iter_end(struct nand_device * nand,const struct nand_io_iter * iter)932 static inline bool nanddev_io_iter_end(struct nand_device *nand,
933 				       const struct nand_io_iter *iter)
934 {
935 	if (iter->dataleft || iter->oobleft)
936 		return false;
937 
938 	return true;
939 }
940 
941 /**
942  * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
943  *			   request
944  * @nand: NAND device
945  * @start: start address to read/write from
946  * @req: MTD I/O request
947  * @iter: NAND I/O iterator
948  *
949  * Should be used for iterate over pages that are contained in an MTD request.
950  */
951 #define nanddev_io_for_each_page(nand, type, start, req, iter)		\
952 	for (nanddev_io_iter_init(nand, type, start, req, iter);	\
953 	     !nanddev_io_iter_end(nand, iter);				\
954 	     nanddev_io_iter_next_page(nand, iter))
955 
956 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
957 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
958 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
959 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
960 
961 /* ECC related functions */
962 int nanddev_ecc_engine_init(struct nand_device *nand);
963 void nanddev_ecc_engine_cleanup(struct nand_device *nand);
964 
965 /* BBT related functions */
966 enum nand_bbt_block_status {
967 	NAND_BBT_BLOCK_STATUS_UNKNOWN,
968 	NAND_BBT_BLOCK_GOOD,
969 	NAND_BBT_BLOCK_WORN,
970 	NAND_BBT_BLOCK_RESERVED,
971 	NAND_BBT_BLOCK_FACTORY_BAD,
972 	NAND_BBT_BLOCK_NUM_STATUS,
973 };
974 
975 int nanddev_bbt_init(struct nand_device *nand);
976 void nanddev_bbt_cleanup(struct nand_device *nand);
977 int nanddev_bbt_update(struct nand_device *nand);
978 int nanddev_bbt_get_block_status(const struct nand_device *nand,
979 				 unsigned int entry);
980 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
981 				 enum nand_bbt_block_status status);
982 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
983 
984 /**
985  * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
986  * @nand: NAND device
987  * @pos: the NAND position we want to get BBT entry for
988  *
989  * Return the BBT entry used to store information about the eraseblock pointed
990  * by @pos.
991  *
992  * Return: the BBT entry storing information about eraseblock pointed by @pos.
993  */
nanddev_bbt_pos_to_entry(struct nand_device * nand,const struct nand_pos * pos)994 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
995 						    const struct nand_pos *pos)
996 {
997 	return pos->eraseblock +
998 	       ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
999 		nand->memorg.eraseblocks_per_lun);
1000 }
1001 
1002 /**
1003  * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
1004  * @nand: NAND device
1005  *
1006  * Return: true if the BBT has been initialized, false otherwise.
1007  */
nanddev_bbt_is_initialized(struct nand_device * nand)1008 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
1009 {
1010 	return !!nand->bbt.cache;
1011 }
1012 
1013 /* MTD -> NAND helper functions. */
1014 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
1015 int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
1016 
1017 #endif /* __LINUX_MTD_NAND_H */
1018