1 // SPDX-License-Identifier: BSD-2-Clause
2 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
3  *
4  * LibTomCrypt is a library that provides various cryptographic
5  * algorithms in a highly modular and flexible manner.
6  *
7  * The library is free for all purposes without any express
8  * guarantee it works.
9  */
10 /**
11    @file noekeon.c
12    Implementation of the Noekeon block cipher by Tom St Denis
13 */
14 #include "tomcrypt_private.h"
15 
16 #ifdef LTC_NOEKEON
17 
18 const struct ltc_cipher_descriptor noekeon_desc =
19 {
20     "noekeon",
21     16,
22     16, 16, 16, 16,
23     &noekeon_setup,
24     &noekeon_ecb_encrypt,
25     &noekeon_ecb_decrypt,
26     &noekeon_test,
27     &noekeon_done,
28     &noekeon_keysize,
29     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
30 };
31 
32 static const ulong32 RC[] = {
33    0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
34    0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
35    0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
36    0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
37    0x000000d4UL
38 };
39 
40 #define kTHETA(a, b, c, d)                                 \
41     temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
42     b ^= temp; d ^= temp;                                  \
43     temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
44     a ^= temp; c ^= temp;
45 
46 #define THETA(k, a, b, c, d)                               \
47     temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
48     b ^= temp ^ k[1]; d ^= temp ^ k[3];                    \
49     temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
50     a ^= temp ^ k[0]; c ^= temp ^ k[2];
51 
52 #define GAMMA(a, b, c, d)     \
53     b ^= ~(d|c);              \
54     a ^= c&b;                 \
55     temp = d; d = a; a = temp;\
56     c ^= a ^ b ^ d;           \
57     b ^= ~(d|c);              \
58     a ^= c&b;
59 
60 #define PI1(a, b, c, d) \
61     b = ROLc(b, 1); c = ROLc(c, 5); d = ROLc(d, 2);
62 
63 #define PI2(a, b, c, d) \
64     b = RORc(b, 1); c = RORc(c, 5); d = RORc(d, 2);
65 
66  /**
67     Initialize the Noekeon block cipher
68     @param key The symmetric key you wish to pass
69     @param keylen The key length in bytes
70     @param num_rounds The number of rounds desired (0 for default)
71     @param skey The key in as scheduled by this function.
72     @return CRYPT_OK if successful
73  */
noekeon_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)74 int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
75 {
76    ulong32 temp;
77 
78    LTC_ARGCHK(key != NULL);
79    LTC_ARGCHK(skey != NULL);
80 
81    if (keylen != 16) {
82       return CRYPT_INVALID_KEYSIZE;
83    }
84 
85    if (num_rounds != 16 && num_rounds != 0) {
86       return CRYPT_INVALID_ROUNDS;
87    }
88 
89    LOAD32H(skey->noekeon.K[0],&key[0]);
90    LOAD32H(skey->noekeon.K[1],&key[4]);
91    LOAD32H(skey->noekeon.K[2],&key[8]);
92    LOAD32H(skey->noekeon.K[3],&key[12]);
93 
94    LOAD32H(skey->noekeon.dK[0],&key[0]);
95    LOAD32H(skey->noekeon.dK[1],&key[4]);
96    LOAD32H(skey->noekeon.dK[2],&key[8]);
97    LOAD32H(skey->noekeon.dK[3],&key[12]);
98 
99    kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
100 
101    return CRYPT_OK;
102 }
103 
104 /**
105   Encrypts a block of text with Noekeon
106   @param pt The input plaintext (16 bytes)
107   @param ct The output ciphertext (16 bytes)
108   @param skey The key as scheduled
109   @return CRYPT_OK if successful
110 */
111 #ifdef LTC_CLEAN_STACK
_noekeon_ecb_encrypt(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)112 static int _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
113 #else
114 int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
115 #endif
116 {
117    ulong32 a,b,c,d,temp;
118    int r;
119 
120    LTC_ARGCHK(skey != NULL);
121    LTC_ARGCHK(pt   != NULL);
122    LTC_ARGCHK(ct   != NULL);
123 
124    LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
125    LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
126 
127 #define ROUND(i) \
128        a ^= RC[i]; \
129        THETA(skey->noekeon.K, a,b,c,d); \
130        PI1(a,b,c,d); \
131        GAMMA(a,b,c,d); \
132        PI2(a,b,c,d);
133 
134    for (r = 0; r < 16; ++r) {
135        ROUND(r);
136    }
137 
138 #undef ROUND
139 
140    a ^= RC[16];
141    THETA(skey->noekeon.K, a, b, c, d);
142 
143    STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
144    STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
145 
146    return CRYPT_OK;
147 }
148 
149 #ifdef LTC_CLEAN_STACK
noekeon_ecb_encrypt(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)150 int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
151 {
152    int err = _noekeon_ecb_encrypt(pt, ct, skey);
153    burn_stack(sizeof(ulong32) * 5 + sizeof(int));
154    return err;
155 }
156 #endif
157 
158 /**
159   Decrypts a block of text with Noekeon
160   @param ct The input ciphertext (16 bytes)
161   @param pt The output plaintext (16 bytes)
162   @param skey The key as scheduled
163   @return CRYPT_OK if successful
164 */
165 #ifdef LTC_CLEAN_STACK
_noekeon_ecb_decrypt(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)166 static int _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
167 #else
168 int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
169 #endif
170 {
171    ulong32 a,b,c,d, temp;
172    int r;
173 
174    LTC_ARGCHK(skey != NULL);
175    LTC_ARGCHK(pt   != NULL);
176    LTC_ARGCHK(ct   != NULL);
177 
178    LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
179    LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
180 
181 
182 #define ROUND(i) \
183        THETA(skey->noekeon.dK, a,b,c,d); \
184        a ^= RC[i]; \
185        PI1(a,b,c,d); \
186        GAMMA(a,b,c,d); \
187        PI2(a,b,c,d);
188 
189    for (r = 16; r > 0; --r) {
190        ROUND(r);
191    }
192 
193 #undef ROUND
194 
195    THETA(skey->noekeon.dK, a,b,c,d);
196    a ^= RC[0];
197    STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
198    STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
199    return CRYPT_OK;
200 }
201 
202 #ifdef LTC_CLEAN_STACK
noekeon_ecb_decrypt(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)203 int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
204 {
205    int err = _noekeon_ecb_decrypt(ct, pt, skey);
206    burn_stack(sizeof(ulong32) * 5 + sizeof(int));
207    return err;
208 }
209 #endif
210 
211 /**
212   Performs a self-test of the Noekeon block cipher
213   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
214 */
noekeon_test(void)215 int noekeon_test(void)
216 {
217  #ifndef LTC_TEST
218     return CRYPT_NOP;
219  #else
220  static const struct {
221      int keylen;
222      unsigned char key[16], pt[16], ct[16];
223  } tests[] = {
224    {
225       16,
226       { 0xAA, 0x3C, 0x8C, 0x86, 0xD9, 0x8B, 0xF8, 0xBE, 0x21, 0xE0, 0x36, 0x09, 0x78, 0xFB, 0xE4, 0x90 },
227       { 0xE4, 0x96, 0x6C, 0xD3, 0x13, 0xA0, 0x6C, 0xAF, 0xD0, 0x23, 0xC9, 0xFD, 0x45, 0x32, 0x23, 0x16 },
228       { 0xA6, 0xEC, 0xB8, 0xA8, 0x61, 0xFD, 0x62, 0xD9, 0x13, 0x02, 0xFE, 0x9E, 0x47, 0x01, 0x3F, 0xC3 }
229    },
230    {
231       16,
232       { 0xED, 0x43, 0xD1, 0x87, 0x21, 0x7E, 0xE0, 0x97, 0x3D, 0x76, 0xC3, 0x37, 0x2E, 0x7D, 0xAE, 0xD3 },
233       { 0xE3, 0x38, 0x32, 0xCC, 0xF2, 0x2F, 0x2F, 0x0A, 0x4A, 0x8B, 0x8F, 0x18, 0x12, 0x20, 0x17, 0xD3 },
234       { 0x94, 0xA5, 0xDF, 0xF5, 0xAE, 0x1C, 0xBB, 0x22, 0xAD, 0xEB, 0xA7, 0x0D, 0xB7, 0x82, 0x90, 0xA0 }
235    },
236    {
237       16,
238       { 0x6F, 0xDC, 0x23, 0x38, 0xF2, 0x10, 0xFB, 0xD3, 0xC1, 0x8C, 0x02, 0xF6, 0xB4, 0x6A, 0xD5, 0xA8 },
239       { 0xDB, 0x29, 0xED, 0xB5, 0x5F, 0xB3, 0x60, 0x3A, 0x92, 0xA8, 0xEB, 0x9C, 0x6D, 0x9D, 0x3E, 0x8F },
240       { 0x78, 0xF3, 0x6F, 0xF8, 0x9E, 0xBB, 0x8C, 0x6A, 0xE8, 0x10, 0xF7, 0x00, 0x22, 0x15, 0x30, 0x3D }
241    },
242    {
243       16,
244       { 0x2C, 0x0C, 0x02, 0xEF, 0x6B, 0xC4, 0xF2, 0x0B, 0x2E, 0xB9, 0xE0, 0xBF, 0xD9, 0x36, 0xC2, 0x4E },
245       { 0x84, 0xE2, 0xFE, 0x64, 0xB1, 0xB9, 0xFE, 0x76, 0xA8, 0x3F, 0x45, 0xC7, 0x40, 0x7A, 0xAF, 0xEE },
246       { 0x2A, 0x08, 0xD6, 0xA2, 0x1C, 0x63, 0x08, 0xB0, 0xF8, 0xBC, 0xB3, 0xA1, 0x66, 0xF7, 0xAE, 0xCF }
247    },
248    {
249       16,
250       { 0x6F, 0x30, 0xF8, 0x9F, 0xDA, 0x6E, 0xA0, 0x91, 0x04, 0x0F, 0x6C, 0x8B, 0x7D, 0xF7, 0x2A, 0x4B },
251       { 0x65, 0xB6, 0xA6, 0xD0, 0x42, 0x14, 0x08, 0x60, 0x34, 0x8D, 0x37, 0x2F, 0x01, 0xF0, 0x46, 0xBE },
252       { 0x66, 0xAC, 0x0B, 0x62, 0x1D, 0x68, 0x11, 0xF5, 0x27, 0xB1, 0x13, 0x5D, 0xF3, 0x2A, 0xE9, 0x18 }
253    },
254    {
255       16,
256       { 0xCA, 0xA4, 0x16, 0xB7, 0x1C, 0x92, 0x2E, 0xAD, 0xEB, 0xA7, 0xDB, 0x69, 0x92, 0xCB, 0x35, 0xEF },
257       { 0x81, 0x6F, 0x8E, 0x4D, 0x96, 0xC6, 0xB3, 0x67, 0x83, 0xF5, 0x63, 0xC7, 0x20, 0x6D, 0x40, 0x23 },
258       { 0x44, 0xF7, 0x63, 0x62, 0xF0, 0x43, 0xBB, 0x67, 0x4A, 0x75, 0x12, 0x42, 0x46, 0x29, 0x28, 0x19 }
259    },
260    {
261       16,
262       { 0x6B, 0xCF, 0x22, 0x2F, 0xE0, 0x1B, 0xB0, 0xAA, 0xD8, 0x3C, 0x91, 0x99, 0x18, 0xB2, 0x28, 0xE8 },
263       { 0x7C, 0x37, 0xC7, 0xD0, 0xAC, 0x92, 0x29, 0xF1, 0x60, 0x82, 0x93, 0x89, 0xAA, 0x61, 0xAA, 0xA9 },
264       { 0xE5, 0x89, 0x1B, 0xB3, 0xFE, 0x8B, 0x0C, 0xA1, 0xA6, 0xC7, 0xBE, 0x12, 0x73, 0x0F, 0xC1, 0x19 }
265    },
266    {
267       16,
268       { 0xE6, 0xD0, 0xF1, 0x03, 0x2E, 0xDE, 0x70, 0x8D, 0xD8, 0x9E, 0x36, 0x5C, 0x05, 0x52, 0xE7, 0x0D },
269       { 0xE2, 0x42, 0xE7, 0x92, 0x0E, 0xF7, 0x82, 0xA2, 0xB8, 0x21, 0x8D, 0x26, 0xBA, 0x2D, 0xE6, 0x32 },
270       { 0x1E, 0xDD, 0x75, 0x22, 0xB9, 0x36, 0x8A, 0x0F, 0x32, 0xFD, 0xD4, 0x48, 0x65, 0x12, 0x5A, 0x2F }
271    }
272  };
273  symmetric_key key;
274  unsigned char tmp[2][16];
275  int err, i, y;
276 
277  for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
278     zeromem(&key, sizeof(key));
279     if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
280        return err;
281     }
282 
283     noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
284     noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
285     if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Noekeon Encrypt", i) ||
286           compare_testvector(tmp[1], 16, tests[i].pt, 16, "Noekeon Decrypt", i)) {
287         return CRYPT_FAIL_TESTVECTOR;
288     }
289 
290     /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
291     for (y = 0; y < 16; y++) tmp[0][y] = 0;
292     for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
293     for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
294     for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
295  }
296  return CRYPT_OK;
297  #endif
298 }
299 
300 /** Terminate the context
301    @param skey    The scheduled key
302 */
noekeon_done(symmetric_key * skey)303 void noekeon_done(symmetric_key *skey)
304 {
305   LTC_UNUSED_PARAM(skey);
306 }
307 
308 /**
309   Gets suitable key size
310   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
311   @return CRYPT_OK if the input key size is acceptable.
312 */
noekeon_keysize(int * keysize)313 int noekeon_keysize(int *keysize)
314 {
315    LTC_ARGCHK(keysize != NULL);
316    if (*keysize < 16) {
317       return CRYPT_INVALID_KEYSIZE;
318    }
319    *keysize = 16;
320    return CRYPT_OK;
321 }
322 
323 #endif
324 
325 
326 /* ref:         $Format:%D$ */
327 /* git commit:  $Format:%H$ */
328 /* commit time: $Format:%ai$ */
329