1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <asm/unaligned.h>
15
16 #include "common.h"
17
18 #define EXTN_FLAG_SENSOR_ID BIT(7)
19
20 #define OCC_ERROR_COUNT_THRESHOLD 2 /* required by OCC spec */
21
22 #define OCC_STATE_SAFE 4
23 #define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */
24
25 #define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000)
26
27 #define OCC_TEMP_SENSOR_FAULT 0xFF
28
29 #define OCC_FRU_TYPE_VRM 3
30
31 /* OCC sensor type and version definitions */
32
33 struct temp_sensor_1 {
34 u16 sensor_id;
35 u16 value;
36 } __packed;
37
38 struct temp_sensor_2 {
39 u32 sensor_id;
40 u8 fru_type;
41 u8 value;
42 } __packed;
43
44 struct temp_sensor_10 {
45 u32 sensor_id;
46 u8 fru_type;
47 u8 value;
48 u8 throttle;
49 u8 reserved;
50 } __packed;
51
52 struct freq_sensor_1 {
53 u16 sensor_id;
54 u16 value;
55 } __packed;
56
57 struct freq_sensor_2 {
58 u32 sensor_id;
59 u16 value;
60 } __packed;
61
62 struct power_sensor_1 {
63 u16 sensor_id;
64 u32 update_tag;
65 u32 accumulator;
66 u16 value;
67 } __packed;
68
69 struct power_sensor_2 {
70 u32 sensor_id;
71 u8 function_id;
72 u8 apss_channel;
73 u16 reserved;
74 u32 update_tag;
75 u64 accumulator;
76 u16 value;
77 } __packed;
78
79 struct power_sensor_data {
80 u16 value;
81 u32 update_tag;
82 u64 accumulator;
83 } __packed;
84
85 struct power_sensor_data_and_time {
86 u16 update_time;
87 u16 value;
88 u32 update_tag;
89 u64 accumulator;
90 } __packed;
91
92 struct power_sensor_a0 {
93 u32 sensor_id;
94 struct power_sensor_data_and_time system;
95 u32 reserved;
96 struct power_sensor_data_and_time proc;
97 struct power_sensor_data vdd;
98 struct power_sensor_data vdn;
99 } __packed;
100
101 struct caps_sensor_2 {
102 u16 cap;
103 u16 system_power;
104 u16 n_cap;
105 u16 max;
106 u16 min;
107 u16 user;
108 u8 user_source;
109 } __packed;
110
111 struct caps_sensor_3 {
112 u16 cap;
113 u16 system_power;
114 u16 n_cap;
115 u16 max;
116 u16 hard_min;
117 u16 soft_min;
118 u16 user;
119 u8 user_source;
120 } __packed;
121
122 struct extended_sensor {
123 union {
124 u8 name[4];
125 u32 sensor_id;
126 };
127 u8 flags;
128 u8 reserved;
129 u8 data[6];
130 } __packed;
131
occ_poll(struct occ * occ)132 static int occ_poll(struct occ *occ)
133 {
134 int rc;
135 u8 cmd[7];
136 struct occ_poll_response_header *header;
137
138 /* big endian */
139 cmd[0] = 0; /* sequence number */
140 cmd[1] = 0; /* cmd type */
141 cmd[2] = 0; /* data length msb */
142 cmd[3] = 1; /* data length lsb */
143 cmd[4] = occ->poll_cmd_data; /* data */
144 cmd[5] = 0; /* checksum msb */
145 cmd[6] = 0; /* checksum lsb */
146
147 /* mutex should already be locked if necessary */
148 rc = occ->send_cmd(occ, cmd, sizeof(cmd));
149 if (rc) {
150 occ->last_error = rc;
151 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
152 occ->error = rc;
153
154 goto done;
155 }
156
157 /* clear error since communication was successful */
158 occ->error_count = 0;
159 occ->last_error = 0;
160 occ->error = 0;
161
162 /* check for safe state */
163 header = (struct occ_poll_response_header *)occ->resp.data;
164 if (header->occ_state == OCC_STATE_SAFE) {
165 if (occ->last_safe) {
166 if (time_after(jiffies,
167 occ->last_safe + OCC_SAFE_TIMEOUT))
168 occ->error = -EHOSTDOWN;
169 } else {
170 occ->last_safe = jiffies;
171 }
172 } else {
173 occ->last_safe = 0;
174 }
175
176 done:
177 occ_sysfs_poll_done(occ);
178 return rc;
179 }
180
occ_set_user_power_cap(struct occ * occ,u16 user_power_cap)181 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
182 {
183 int rc;
184 u8 cmd[8];
185 __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
186
187 cmd[0] = 0; /* sequence number */
188 cmd[1] = 0x22; /* cmd type */
189 cmd[2] = 0; /* data length msb */
190 cmd[3] = 2; /* data length lsb */
191
192 memcpy(&cmd[4], &user_power_cap_be, 2);
193
194 cmd[6] = 0; /* checksum msb */
195 cmd[7] = 0; /* checksum lsb */
196
197 rc = mutex_lock_interruptible(&occ->lock);
198 if (rc)
199 return rc;
200
201 rc = occ->send_cmd(occ, cmd, sizeof(cmd));
202
203 mutex_unlock(&occ->lock);
204
205 return rc;
206 }
207
occ_update_response(struct occ * occ)208 int occ_update_response(struct occ *occ)
209 {
210 int rc = mutex_lock_interruptible(&occ->lock);
211
212 if (rc)
213 return rc;
214
215 /* limit the maximum rate of polling the OCC */
216 if (time_after(jiffies, occ->next_update)) {
217 rc = occ_poll(occ);
218 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
219 } else {
220 rc = occ->last_error;
221 }
222
223 mutex_unlock(&occ->lock);
224 return rc;
225 }
226
occ_show_temp_1(struct device * dev,struct device_attribute * attr,char * buf)227 static ssize_t occ_show_temp_1(struct device *dev,
228 struct device_attribute *attr, char *buf)
229 {
230 int rc;
231 u32 val = 0;
232 struct temp_sensor_1 *temp;
233 struct occ *occ = dev_get_drvdata(dev);
234 struct occ_sensors *sensors = &occ->sensors;
235 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
236
237 rc = occ_update_response(occ);
238 if (rc)
239 return rc;
240
241 temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
242
243 switch (sattr->nr) {
244 case 0:
245 val = get_unaligned_be16(&temp->sensor_id);
246 break;
247 case 1:
248 /*
249 * If a sensor reading has expired and couldn't be refreshed,
250 * OCC returns 0xFFFF for that sensor.
251 */
252 if (temp->value == 0xFFFF)
253 return -EREMOTEIO;
254 val = get_unaligned_be16(&temp->value) * 1000;
255 break;
256 default:
257 return -EINVAL;
258 }
259
260 return sysfs_emit(buf, "%u\n", val);
261 }
262
occ_show_temp_2(struct device * dev,struct device_attribute * attr,char * buf)263 static ssize_t occ_show_temp_2(struct device *dev,
264 struct device_attribute *attr, char *buf)
265 {
266 int rc;
267 u32 val = 0;
268 struct temp_sensor_2 *temp;
269 struct occ *occ = dev_get_drvdata(dev);
270 struct occ_sensors *sensors = &occ->sensors;
271 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
272
273 rc = occ_update_response(occ);
274 if (rc)
275 return rc;
276
277 temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
278
279 switch (sattr->nr) {
280 case 0:
281 val = get_unaligned_be32(&temp->sensor_id);
282 break;
283 case 1:
284 val = temp->value;
285 if (val == OCC_TEMP_SENSOR_FAULT)
286 return -EREMOTEIO;
287
288 /*
289 * VRM doesn't return temperature, only alarm bit. This
290 * attribute maps to tempX_alarm instead of tempX_input for
291 * VRM
292 */
293 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
294 /* sensor not ready */
295 if (val == 0)
296 return -EAGAIN;
297
298 val *= 1000;
299 }
300 break;
301 case 2:
302 val = temp->fru_type;
303 break;
304 case 3:
305 val = temp->value == OCC_TEMP_SENSOR_FAULT;
306 break;
307 default:
308 return -EINVAL;
309 }
310
311 return sysfs_emit(buf, "%u\n", val);
312 }
313
occ_show_temp_10(struct device * dev,struct device_attribute * attr,char * buf)314 static ssize_t occ_show_temp_10(struct device *dev,
315 struct device_attribute *attr, char *buf)
316 {
317 int rc;
318 u32 val = 0;
319 struct temp_sensor_10 *temp;
320 struct occ *occ = dev_get_drvdata(dev);
321 struct occ_sensors *sensors = &occ->sensors;
322 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
323
324 rc = occ_update_response(occ);
325 if (rc)
326 return rc;
327
328 temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
329
330 switch (sattr->nr) {
331 case 0:
332 val = get_unaligned_be32(&temp->sensor_id);
333 break;
334 case 1:
335 val = temp->value;
336 if (val == OCC_TEMP_SENSOR_FAULT)
337 return -EREMOTEIO;
338
339 /* sensor not ready */
340 if (val == 0)
341 return -EAGAIN;
342
343 val *= 1000;
344 break;
345 case 2:
346 val = temp->fru_type;
347 break;
348 case 3:
349 val = temp->value == OCC_TEMP_SENSOR_FAULT;
350 break;
351 case 4:
352 val = temp->throttle * 1000;
353 break;
354 default:
355 return -EINVAL;
356 }
357
358 return sysfs_emit(buf, "%u\n", val);
359 }
360
occ_show_freq_1(struct device * dev,struct device_attribute * attr,char * buf)361 static ssize_t occ_show_freq_1(struct device *dev,
362 struct device_attribute *attr, char *buf)
363 {
364 int rc;
365 u16 val = 0;
366 struct freq_sensor_1 *freq;
367 struct occ *occ = dev_get_drvdata(dev);
368 struct occ_sensors *sensors = &occ->sensors;
369 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
370
371 rc = occ_update_response(occ);
372 if (rc)
373 return rc;
374
375 freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
376
377 switch (sattr->nr) {
378 case 0:
379 val = get_unaligned_be16(&freq->sensor_id);
380 break;
381 case 1:
382 val = get_unaligned_be16(&freq->value);
383 break;
384 default:
385 return -EINVAL;
386 }
387
388 return sysfs_emit(buf, "%u\n", val);
389 }
390
occ_show_freq_2(struct device * dev,struct device_attribute * attr,char * buf)391 static ssize_t occ_show_freq_2(struct device *dev,
392 struct device_attribute *attr, char *buf)
393 {
394 int rc;
395 u32 val = 0;
396 struct freq_sensor_2 *freq;
397 struct occ *occ = dev_get_drvdata(dev);
398 struct occ_sensors *sensors = &occ->sensors;
399 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
400
401 rc = occ_update_response(occ);
402 if (rc)
403 return rc;
404
405 freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
406
407 switch (sattr->nr) {
408 case 0:
409 val = get_unaligned_be32(&freq->sensor_id);
410 break;
411 case 1:
412 val = get_unaligned_be16(&freq->value);
413 break;
414 default:
415 return -EINVAL;
416 }
417
418 return sysfs_emit(buf, "%u\n", val);
419 }
420
occ_show_power_1(struct device * dev,struct device_attribute * attr,char * buf)421 static ssize_t occ_show_power_1(struct device *dev,
422 struct device_attribute *attr, char *buf)
423 {
424 int rc;
425 u64 val = 0;
426 struct power_sensor_1 *power;
427 struct occ *occ = dev_get_drvdata(dev);
428 struct occ_sensors *sensors = &occ->sensors;
429 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
430
431 rc = occ_update_response(occ);
432 if (rc)
433 return rc;
434
435 power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
436
437 switch (sattr->nr) {
438 case 0:
439 val = get_unaligned_be16(&power->sensor_id);
440 break;
441 case 1:
442 val = get_unaligned_be32(&power->accumulator) /
443 get_unaligned_be32(&power->update_tag);
444 val *= 1000000ULL;
445 break;
446 case 2:
447 val = (u64)get_unaligned_be32(&power->update_tag) *
448 occ->powr_sample_time_us;
449 break;
450 case 3:
451 val = get_unaligned_be16(&power->value) * 1000000ULL;
452 break;
453 default:
454 return -EINVAL;
455 }
456
457 return sysfs_emit(buf, "%llu\n", val);
458 }
459
occ_get_powr_avg(u64 * accum,u32 * samples)460 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
461 {
462 u64 divisor = get_unaligned_be32(samples);
463
464 return (divisor == 0) ? 0 :
465 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
466 }
467
occ_show_power_2(struct device * dev,struct device_attribute * attr,char * buf)468 static ssize_t occ_show_power_2(struct device *dev,
469 struct device_attribute *attr, char *buf)
470 {
471 int rc;
472 u64 val = 0;
473 struct power_sensor_2 *power;
474 struct occ *occ = dev_get_drvdata(dev);
475 struct occ_sensors *sensors = &occ->sensors;
476 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
477
478 rc = occ_update_response(occ);
479 if (rc)
480 return rc;
481
482 power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
483
484 switch (sattr->nr) {
485 case 0:
486 return sysfs_emit(buf, "%u_%u_%u\n",
487 get_unaligned_be32(&power->sensor_id),
488 power->function_id, power->apss_channel);
489 case 1:
490 val = occ_get_powr_avg(&power->accumulator,
491 &power->update_tag);
492 break;
493 case 2:
494 val = (u64)get_unaligned_be32(&power->update_tag) *
495 occ->powr_sample_time_us;
496 break;
497 case 3:
498 val = get_unaligned_be16(&power->value) * 1000000ULL;
499 break;
500 default:
501 return -EINVAL;
502 }
503
504 return sysfs_emit(buf, "%llu\n", val);
505 }
506
occ_show_power_a0(struct device * dev,struct device_attribute * attr,char * buf)507 static ssize_t occ_show_power_a0(struct device *dev,
508 struct device_attribute *attr, char *buf)
509 {
510 int rc;
511 u64 val = 0;
512 struct power_sensor_a0 *power;
513 struct occ *occ = dev_get_drvdata(dev);
514 struct occ_sensors *sensors = &occ->sensors;
515 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
516
517 rc = occ_update_response(occ);
518 if (rc)
519 return rc;
520
521 power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
522
523 switch (sattr->nr) {
524 case 0:
525 return sysfs_emit(buf, "%u_system\n",
526 get_unaligned_be32(&power->sensor_id));
527 case 1:
528 val = occ_get_powr_avg(&power->system.accumulator,
529 &power->system.update_tag);
530 break;
531 case 2:
532 val = (u64)get_unaligned_be32(&power->system.update_tag) *
533 occ->powr_sample_time_us;
534 break;
535 case 3:
536 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
537 break;
538 case 4:
539 return sysfs_emit(buf, "%u_proc\n",
540 get_unaligned_be32(&power->sensor_id));
541 case 5:
542 val = occ_get_powr_avg(&power->proc.accumulator,
543 &power->proc.update_tag);
544 break;
545 case 6:
546 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
547 occ->powr_sample_time_us;
548 break;
549 case 7:
550 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
551 break;
552 case 8:
553 return sysfs_emit(buf, "%u_vdd\n",
554 get_unaligned_be32(&power->sensor_id));
555 case 9:
556 val = occ_get_powr_avg(&power->vdd.accumulator,
557 &power->vdd.update_tag);
558 break;
559 case 10:
560 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
561 occ->powr_sample_time_us;
562 break;
563 case 11:
564 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
565 break;
566 case 12:
567 return sysfs_emit(buf, "%u_vdn\n",
568 get_unaligned_be32(&power->sensor_id));
569 case 13:
570 val = occ_get_powr_avg(&power->vdn.accumulator,
571 &power->vdn.update_tag);
572 break;
573 case 14:
574 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
575 occ->powr_sample_time_us;
576 break;
577 case 15:
578 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
579 break;
580 default:
581 return -EINVAL;
582 }
583
584 return sysfs_emit(buf, "%llu\n", val);
585 }
586
occ_show_caps_1_2(struct device * dev,struct device_attribute * attr,char * buf)587 static ssize_t occ_show_caps_1_2(struct device *dev,
588 struct device_attribute *attr, char *buf)
589 {
590 int rc;
591 u64 val = 0;
592 struct caps_sensor_2 *caps;
593 struct occ *occ = dev_get_drvdata(dev);
594 struct occ_sensors *sensors = &occ->sensors;
595 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
596
597 rc = occ_update_response(occ);
598 if (rc)
599 return rc;
600
601 caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
602
603 switch (sattr->nr) {
604 case 0:
605 return sysfs_emit(buf, "system\n");
606 case 1:
607 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
608 break;
609 case 2:
610 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
611 break;
612 case 3:
613 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
614 break;
615 case 4:
616 val = get_unaligned_be16(&caps->max) * 1000000ULL;
617 break;
618 case 5:
619 val = get_unaligned_be16(&caps->min) * 1000000ULL;
620 break;
621 case 6:
622 val = get_unaligned_be16(&caps->user) * 1000000ULL;
623 break;
624 case 7:
625 if (occ->sensors.caps.version == 1)
626 return -EINVAL;
627
628 val = caps->user_source;
629 break;
630 default:
631 return -EINVAL;
632 }
633
634 return sysfs_emit(buf, "%llu\n", val);
635 }
636
occ_show_caps_3(struct device * dev,struct device_attribute * attr,char * buf)637 static ssize_t occ_show_caps_3(struct device *dev,
638 struct device_attribute *attr, char *buf)
639 {
640 int rc;
641 u64 val = 0;
642 struct caps_sensor_3 *caps;
643 struct occ *occ = dev_get_drvdata(dev);
644 struct occ_sensors *sensors = &occ->sensors;
645 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
646
647 rc = occ_update_response(occ);
648 if (rc)
649 return rc;
650
651 caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
652
653 switch (sattr->nr) {
654 case 0:
655 return sysfs_emit(buf, "system\n");
656 case 1:
657 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
658 break;
659 case 2:
660 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
661 break;
662 case 3:
663 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
664 break;
665 case 4:
666 val = get_unaligned_be16(&caps->max) * 1000000ULL;
667 break;
668 case 5:
669 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
670 break;
671 case 6:
672 val = get_unaligned_be16(&caps->user) * 1000000ULL;
673 break;
674 case 7:
675 val = caps->user_source;
676 break;
677 default:
678 return -EINVAL;
679 }
680
681 return sysfs_emit(buf, "%llu\n", val);
682 }
683
occ_store_caps_user(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)684 static ssize_t occ_store_caps_user(struct device *dev,
685 struct device_attribute *attr,
686 const char *buf, size_t count)
687 {
688 int rc;
689 u16 user_power_cap;
690 unsigned long long value;
691 struct occ *occ = dev_get_drvdata(dev);
692
693 rc = kstrtoull(buf, 0, &value);
694 if (rc)
695 return rc;
696
697 user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
698
699 rc = occ_set_user_power_cap(occ, user_power_cap);
700 if (rc)
701 return rc;
702
703 return count;
704 }
705
occ_show_extended(struct device * dev,struct device_attribute * attr,char * buf)706 static ssize_t occ_show_extended(struct device *dev,
707 struct device_attribute *attr, char *buf)
708 {
709 int rc;
710 struct extended_sensor *extn;
711 struct occ *occ = dev_get_drvdata(dev);
712 struct occ_sensors *sensors = &occ->sensors;
713 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
714
715 rc = occ_update_response(occ);
716 if (rc)
717 return rc;
718
719 extn = ((struct extended_sensor *)sensors->extended.data) +
720 sattr->index;
721
722 switch (sattr->nr) {
723 case 0:
724 if (extn->flags & EXTN_FLAG_SENSOR_ID) {
725 rc = sysfs_emit(buf, "%u",
726 get_unaligned_be32(&extn->sensor_id));
727 } else {
728 rc = sysfs_emit(buf, "%02x%02x%02x%02x\n",
729 extn->name[0], extn->name[1],
730 extn->name[2], extn->name[3]);
731 }
732 break;
733 case 1:
734 rc = sysfs_emit(buf, "%02x\n", extn->flags);
735 break;
736 case 2:
737 rc = sysfs_emit(buf, "%02x%02x%02x%02x%02x%02x\n",
738 extn->data[0], extn->data[1], extn->data[2],
739 extn->data[3], extn->data[4], extn->data[5]);
740 break;
741 default:
742 return -EINVAL;
743 }
744
745 return rc;
746 }
747
748 /*
749 * Some helper macros to make it easier to define an occ_attribute. Since these
750 * are dynamically allocated, we shouldn't use the existing kernel macros which
751 * stringify the name argument.
752 */
753 #define ATTR_OCC(_name, _mode, _show, _store) { \
754 .attr = { \
755 .name = _name, \
756 .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \
757 }, \
758 .show = _show, \
759 .store = _store, \
760 }
761
762 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \
763 .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \
764 .index = _index, \
765 .nr = _nr, \
766 }
767
768 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \
769 ((struct sensor_device_attribute_2) \
770 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
771
772 /*
773 * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
774 * use our own instead of the built-in hwmon attribute types.
775 */
occ_setup_sensor_attrs(struct occ * occ)776 static int occ_setup_sensor_attrs(struct occ *occ)
777 {
778 unsigned int i, s, num_attrs = 0;
779 struct device *dev = occ->bus_dev;
780 struct occ_sensors *sensors = &occ->sensors;
781 struct occ_attribute *attr;
782 struct temp_sensor_2 *temp;
783 ssize_t (*show_temp)(struct device *, struct device_attribute *,
784 char *) = occ_show_temp_1;
785 ssize_t (*show_freq)(struct device *, struct device_attribute *,
786 char *) = occ_show_freq_1;
787 ssize_t (*show_power)(struct device *, struct device_attribute *,
788 char *) = occ_show_power_1;
789 ssize_t (*show_caps)(struct device *, struct device_attribute *,
790 char *) = occ_show_caps_1_2;
791
792 switch (sensors->temp.version) {
793 case 1:
794 num_attrs += (sensors->temp.num_sensors * 2);
795 break;
796 case 2:
797 num_attrs += (sensors->temp.num_sensors * 4);
798 show_temp = occ_show_temp_2;
799 break;
800 case 0x10:
801 num_attrs += (sensors->temp.num_sensors * 5);
802 show_temp = occ_show_temp_10;
803 break;
804 default:
805 sensors->temp.num_sensors = 0;
806 }
807
808 switch (sensors->freq.version) {
809 case 2:
810 show_freq = occ_show_freq_2;
811 fallthrough;
812 case 1:
813 num_attrs += (sensors->freq.num_sensors * 2);
814 break;
815 default:
816 sensors->freq.num_sensors = 0;
817 }
818
819 switch (sensors->power.version) {
820 case 2:
821 show_power = occ_show_power_2;
822 fallthrough;
823 case 1:
824 num_attrs += (sensors->power.num_sensors * 4);
825 break;
826 case 0xA0:
827 num_attrs += (sensors->power.num_sensors * 16);
828 show_power = occ_show_power_a0;
829 break;
830 default:
831 sensors->power.num_sensors = 0;
832 }
833
834 switch (sensors->caps.version) {
835 case 1:
836 num_attrs += (sensors->caps.num_sensors * 7);
837 break;
838 case 3:
839 show_caps = occ_show_caps_3;
840 fallthrough;
841 case 2:
842 num_attrs += (sensors->caps.num_sensors * 8);
843 break;
844 default:
845 sensors->caps.num_sensors = 0;
846 }
847
848 switch (sensors->extended.version) {
849 case 1:
850 num_attrs += (sensors->extended.num_sensors * 3);
851 break;
852 default:
853 sensors->extended.num_sensors = 0;
854 }
855
856 occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
857 GFP_KERNEL);
858 if (!occ->attrs)
859 return -ENOMEM;
860
861 /* null-terminated list */
862 occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
863 num_attrs + 1, GFP_KERNEL);
864 if (!occ->group.attrs)
865 return -ENOMEM;
866
867 attr = occ->attrs;
868
869 for (i = 0; i < sensors->temp.num_sensors; ++i) {
870 s = i + 1;
871 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
872
873 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
874 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
875 0, i);
876 attr++;
877
878 if (sensors->temp.version == 2 &&
879 temp->fru_type == OCC_FRU_TYPE_VRM) {
880 snprintf(attr->name, sizeof(attr->name),
881 "temp%d_alarm", s);
882 } else {
883 snprintf(attr->name, sizeof(attr->name),
884 "temp%d_input", s);
885 }
886
887 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
888 1, i);
889 attr++;
890
891 if (sensors->temp.version > 1) {
892 snprintf(attr->name, sizeof(attr->name),
893 "temp%d_fru_type", s);
894 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
895 show_temp, NULL, 2, i);
896 attr++;
897
898 snprintf(attr->name, sizeof(attr->name),
899 "temp%d_fault", s);
900 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
901 show_temp, NULL, 3, i);
902 attr++;
903
904 if (sensors->temp.version == 0x10) {
905 snprintf(attr->name, sizeof(attr->name),
906 "temp%d_max", s);
907 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
908 show_temp, NULL,
909 4, i);
910 attr++;
911 }
912 }
913 }
914
915 for (i = 0; i < sensors->freq.num_sensors; ++i) {
916 s = i + 1;
917
918 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
919 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
920 0, i);
921 attr++;
922
923 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
924 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
925 1, i);
926 attr++;
927 }
928
929 if (sensors->power.version == 0xA0) {
930 /*
931 * Special case for many-attribute power sensor. Split it into
932 * a sensor number per power type, emulating several sensors.
933 */
934 for (i = 0; i < sensors->power.num_sensors; ++i) {
935 unsigned int j;
936 unsigned int nr = 0;
937
938 s = (i * 4) + 1;
939
940 for (j = 0; j < 4; ++j) {
941 snprintf(attr->name, sizeof(attr->name),
942 "power%d_label", s);
943 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
944 show_power, NULL,
945 nr++, i);
946 attr++;
947
948 snprintf(attr->name, sizeof(attr->name),
949 "power%d_average", s);
950 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
951 show_power, NULL,
952 nr++, i);
953 attr++;
954
955 snprintf(attr->name, sizeof(attr->name),
956 "power%d_average_interval", s);
957 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
958 show_power, NULL,
959 nr++, i);
960 attr++;
961
962 snprintf(attr->name, sizeof(attr->name),
963 "power%d_input", s);
964 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
965 show_power, NULL,
966 nr++, i);
967 attr++;
968
969 s++;
970 }
971 }
972
973 s = (sensors->power.num_sensors * 4) + 1;
974 } else {
975 for (i = 0; i < sensors->power.num_sensors; ++i) {
976 s = i + 1;
977
978 snprintf(attr->name, sizeof(attr->name),
979 "power%d_label", s);
980 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
981 show_power, NULL, 0, i);
982 attr++;
983
984 snprintf(attr->name, sizeof(attr->name),
985 "power%d_average", s);
986 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
987 show_power, NULL, 1, i);
988 attr++;
989
990 snprintf(attr->name, sizeof(attr->name),
991 "power%d_average_interval", s);
992 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
993 show_power, NULL, 2, i);
994 attr++;
995
996 snprintf(attr->name, sizeof(attr->name),
997 "power%d_input", s);
998 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
999 show_power, NULL, 3, i);
1000 attr++;
1001 }
1002
1003 s = sensors->power.num_sensors + 1;
1004 }
1005
1006 if (sensors->caps.num_sensors >= 1) {
1007 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1008 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1009 0, 0);
1010 attr++;
1011
1012 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1013 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1014 1, 0);
1015 attr++;
1016
1017 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1018 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1019 2, 0);
1020 attr++;
1021
1022 snprintf(attr->name, sizeof(attr->name),
1023 "power%d_cap_not_redundant", s);
1024 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1025 3, 0);
1026 attr++;
1027
1028 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1029 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1030 4, 0);
1031 attr++;
1032
1033 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1034 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1035 5, 0);
1036 attr++;
1037
1038 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1039 s);
1040 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1041 occ_store_caps_user, 6, 0);
1042 attr++;
1043
1044 if (sensors->caps.version > 1) {
1045 snprintf(attr->name, sizeof(attr->name),
1046 "power%d_cap_user_source", s);
1047 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1048 show_caps, NULL, 7, 0);
1049 attr++;
1050 }
1051 }
1052
1053 for (i = 0; i < sensors->extended.num_sensors; ++i) {
1054 s = i + 1;
1055
1056 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1057 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1058 occ_show_extended, NULL, 0, i);
1059 attr++;
1060
1061 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1062 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1063 occ_show_extended, NULL, 1, i);
1064 attr++;
1065
1066 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1067 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1068 occ_show_extended, NULL, 2, i);
1069 attr++;
1070 }
1071
1072 /* put the sensors in the group */
1073 for (i = 0; i < num_attrs; ++i) {
1074 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1075 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1076 }
1077
1078 return 0;
1079 }
1080
1081 /* only need to do this once at startup, as OCC won't change sensors on us */
occ_parse_poll_response(struct occ * occ)1082 static void occ_parse_poll_response(struct occ *occ)
1083 {
1084 unsigned int i, old_offset, offset = 0, size = 0;
1085 struct occ_sensor *sensor;
1086 struct occ_sensors *sensors = &occ->sensors;
1087 struct occ_response *resp = &occ->resp;
1088 struct occ_poll_response *poll =
1089 (struct occ_poll_response *)&resp->data[0];
1090 struct occ_poll_response_header *header = &poll->header;
1091 struct occ_sensor_data_block *block = &poll->block;
1092
1093 dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1094 header->occ_code_level);
1095
1096 for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1097 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1098 old_offset = offset;
1099 offset = (block->header.num_sensors *
1100 block->header.sensor_length) + sizeof(block->header);
1101 size += offset;
1102
1103 /* validate all the length/size fields */
1104 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1105 dev_warn(occ->bus_dev, "exceeded response buffer\n");
1106 return;
1107 }
1108
1109 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1110 old_offset, offset - 1, block->header.eye_catcher,
1111 block->header.num_sensors);
1112
1113 /* match sensor block type */
1114 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1115 sensor = &sensors->temp;
1116 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1117 sensor = &sensors->freq;
1118 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1119 sensor = &sensors->power;
1120 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1121 sensor = &sensors->caps;
1122 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1123 sensor = &sensors->extended;
1124 else {
1125 dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1126 block->header.eye_catcher);
1127 continue;
1128 }
1129
1130 sensor->num_sensors = block->header.num_sensors;
1131 sensor->version = block->header.sensor_format;
1132 sensor->data = &block->data;
1133 }
1134
1135 dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1136 sizeof(*header), size + sizeof(*header));
1137 }
1138
occ_setup(struct occ * occ,const char * name)1139 int occ_setup(struct occ *occ, const char *name)
1140 {
1141 int rc;
1142
1143 mutex_init(&occ->lock);
1144 occ->groups[0] = &occ->group;
1145
1146 /* no need to lock */
1147 rc = occ_poll(occ);
1148 if (rc == -ESHUTDOWN) {
1149 dev_info(occ->bus_dev, "host is not ready\n");
1150 return rc;
1151 } else if (rc < 0) {
1152 dev_err(occ->bus_dev,
1153 "failed to get OCC poll response=%02x: %d\n",
1154 occ->resp.return_status, rc);
1155 return rc;
1156 }
1157
1158 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1159 occ_parse_poll_response(occ);
1160
1161 rc = occ_setup_sensor_attrs(occ);
1162 if (rc) {
1163 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1164 rc);
1165 return rc;
1166 }
1167
1168 occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1169 occ, occ->groups);
1170 if (IS_ERR(occ->hwmon)) {
1171 rc = PTR_ERR(occ->hwmon);
1172 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1173 rc);
1174 return rc;
1175 }
1176
1177 rc = occ_setup_sysfs(occ);
1178 if (rc)
1179 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1180
1181 return rc;
1182 }
1183 EXPORT_SYMBOL_GPL(occ_setup);
1184
1185 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1186 MODULE_DESCRIPTION("Common OCC hwmon code");
1187 MODULE_LICENSE("GPL");
1188