1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * page_pool.c
4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5 * Copyright (C) 2016 Red Hat, Inc.
6 */
7
8 #include <linux/types.h>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/device.h>
12
13 #include <net/page_pool.h>
14 #include <net/xdp.h>
15
16 #include <linux/dma-direction.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/page-flags.h>
19 #include <linux/mm.h> /* for __put_page() */
20 #include <linux/poison.h>
21
22 #include <trace/events/page_pool.h>
23
24 #define DEFER_TIME (msecs_to_jiffies(1000))
25 #define DEFER_WARN_INTERVAL (60 * HZ)
26
27 #define BIAS_MAX LONG_MAX
28
page_pool_init(struct page_pool * pool,const struct page_pool_params * params)29 static int page_pool_init(struct page_pool *pool,
30 const struct page_pool_params *params)
31 {
32 unsigned int ring_qsize = 1024; /* Default */
33
34 memcpy(&pool->p, params, sizeof(pool->p));
35
36 /* Validate only known flags were used */
37 if (pool->p.flags & ~(PP_FLAG_ALL))
38 return -EINVAL;
39
40 if (pool->p.pool_size)
41 ring_qsize = pool->p.pool_size;
42
43 /* Sanity limit mem that can be pinned down */
44 if (ring_qsize > 32768)
45 return -E2BIG;
46
47 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
48 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
49 * which is the XDP_TX use-case.
50 */
51 if (pool->p.flags & PP_FLAG_DMA_MAP) {
52 if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
53 (pool->p.dma_dir != DMA_BIDIRECTIONAL))
54 return -EINVAL;
55 }
56
57 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
58 /* In order to request DMA-sync-for-device the page
59 * needs to be mapped
60 */
61 if (!(pool->p.flags & PP_FLAG_DMA_MAP))
62 return -EINVAL;
63
64 if (!pool->p.max_len)
65 return -EINVAL;
66
67 /* pool->p.offset has to be set according to the address
68 * offset used by the DMA engine to start copying rx data
69 */
70 }
71
72 if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT &&
73 pool->p.flags & PP_FLAG_PAGE_FRAG)
74 return -EINVAL;
75
76 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
77 return -ENOMEM;
78
79 atomic_set(&pool->pages_state_release_cnt, 0);
80
81 /* Driver calling page_pool_create() also call page_pool_destroy() */
82 refcount_set(&pool->user_cnt, 1);
83
84 if (pool->p.flags & PP_FLAG_DMA_MAP)
85 get_device(pool->p.dev);
86
87 return 0;
88 }
89
page_pool_create(const struct page_pool_params * params)90 struct page_pool *page_pool_create(const struct page_pool_params *params)
91 {
92 struct page_pool *pool;
93 int err;
94
95 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
96 if (!pool)
97 return ERR_PTR(-ENOMEM);
98
99 err = page_pool_init(pool, params);
100 if (err < 0) {
101 pr_warn("%s() gave up with errno %d\n", __func__, err);
102 kfree(pool);
103 return ERR_PTR(err);
104 }
105
106 return pool;
107 }
108 EXPORT_SYMBOL(page_pool_create);
109
110 static void page_pool_return_page(struct page_pool *pool, struct page *page);
111
112 noinline
page_pool_refill_alloc_cache(struct page_pool * pool)113 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
114 {
115 struct ptr_ring *r = &pool->ring;
116 struct page *page;
117 int pref_nid; /* preferred NUMA node */
118
119 /* Quicker fallback, avoid locks when ring is empty */
120 if (__ptr_ring_empty(r))
121 return NULL;
122
123 /* Softirq guarantee CPU and thus NUMA node is stable. This,
124 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
125 */
126 #ifdef CONFIG_NUMA
127 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
128 #else
129 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
130 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
131 #endif
132
133 /* Slower-path: Get pages from locked ring queue */
134 spin_lock(&r->consumer_lock);
135
136 /* Refill alloc array, but only if NUMA match */
137 do {
138 page = __ptr_ring_consume(r);
139 if (unlikely(!page))
140 break;
141
142 if (likely(page_to_nid(page) == pref_nid)) {
143 pool->alloc.cache[pool->alloc.count++] = page;
144 } else {
145 /* NUMA mismatch;
146 * (1) release 1 page to page-allocator and
147 * (2) break out to fallthrough to alloc_pages_node.
148 * This limit stress on page buddy alloactor.
149 */
150 page_pool_return_page(pool, page);
151 page = NULL;
152 break;
153 }
154 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
155
156 /* Return last page */
157 if (likely(pool->alloc.count > 0))
158 page = pool->alloc.cache[--pool->alloc.count];
159
160 spin_unlock(&r->consumer_lock);
161 return page;
162 }
163
164 /* fast path */
__page_pool_get_cached(struct page_pool * pool)165 static struct page *__page_pool_get_cached(struct page_pool *pool)
166 {
167 struct page *page;
168
169 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
170 if (likely(pool->alloc.count)) {
171 /* Fast-path */
172 page = pool->alloc.cache[--pool->alloc.count];
173 } else {
174 page = page_pool_refill_alloc_cache(pool);
175 }
176
177 return page;
178 }
179
page_pool_dma_sync_for_device(struct page_pool * pool,struct page * page,unsigned int dma_sync_size)180 static void page_pool_dma_sync_for_device(struct page_pool *pool,
181 struct page *page,
182 unsigned int dma_sync_size)
183 {
184 dma_addr_t dma_addr = page_pool_get_dma_addr(page);
185
186 dma_sync_size = min(dma_sync_size, pool->p.max_len);
187 dma_sync_single_range_for_device(pool->p.dev, dma_addr,
188 pool->p.offset, dma_sync_size,
189 pool->p.dma_dir);
190 }
191
page_pool_dma_map(struct page_pool * pool,struct page * page)192 static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
193 {
194 dma_addr_t dma;
195
196 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
197 * since dma_addr_t can be either 32 or 64 bits and does not always fit
198 * into page private data (i.e 32bit cpu with 64bit DMA caps)
199 * This mapping is kept for lifetime of page, until leaving pool.
200 */
201 dma = dma_map_page_attrs(pool->p.dev, page, 0,
202 (PAGE_SIZE << pool->p.order),
203 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
204 if (dma_mapping_error(pool->p.dev, dma))
205 return false;
206
207 page_pool_set_dma_addr(page, dma);
208
209 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
210 page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
211
212 return true;
213 }
214
page_pool_set_pp_info(struct page_pool * pool,struct page * page)215 static void page_pool_set_pp_info(struct page_pool *pool,
216 struct page *page)
217 {
218 page->pp = pool;
219 page->pp_magic |= PP_SIGNATURE;
220 }
221
page_pool_clear_pp_info(struct page * page)222 static void page_pool_clear_pp_info(struct page *page)
223 {
224 page->pp_magic = 0;
225 page->pp = NULL;
226 }
227
__page_pool_alloc_page_order(struct page_pool * pool,gfp_t gfp)228 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
229 gfp_t gfp)
230 {
231 struct page *page;
232
233 gfp |= __GFP_COMP;
234 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
235 if (unlikely(!page))
236 return NULL;
237
238 if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
239 unlikely(!page_pool_dma_map(pool, page))) {
240 put_page(page);
241 return NULL;
242 }
243
244 page_pool_set_pp_info(pool, page);
245
246 /* Track how many pages are held 'in-flight' */
247 pool->pages_state_hold_cnt++;
248 trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
249 return page;
250 }
251
252 /* slow path */
253 noinline
__page_pool_alloc_pages_slow(struct page_pool * pool,gfp_t gfp)254 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
255 gfp_t gfp)
256 {
257 const int bulk = PP_ALLOC_CACHE_REFILL;
258 unsigned int pp_flags = pool->p.flags;
259 unsigned int pp_order = pool->p.order;
260 struct page *page;
261 int i, nr_pages;
262
263 /* Don't support bulk alloc for high-order pages */
264 if (unlikely(pp_order))
265 return __page_pool_alloc_page_order(pool, gfp);
266
267 /* Unnecessary as alloc cache is empty, but guarantees zero count */
268 if (unlikely(pool->alloc.count > 0))
269 return pool->alloc.cache[--pool->alloc.count];
270
271 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
272 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
273
274 nr_pages = alloc_pages_bulk_array(gfp, bulk, pool->alloc.cache);
275 if (unlikely(!nr_pages))
276 return NULL;
277
278 /* Pages have been filled into alloc.cache array, but count is zero and
279 * page element have not been (possibly) DMA mapped.
280 */
281 for (i = 0; i < nr_pages; i++) {
282 page = pool->alloc.cache[i];
283 if ((pp_flags & PP_FLAG_DMA_MAP) &&
284 unlikely(!page_pool_dma_map(pool, page))) {
285 put_page(page);
286 continue;
287 }
288
289 page_pool_set_pp_info(pool, page);
290 pool->alloc.cache[pool->alloc.count++] = page;
291 /* Track how many pages are held 'in-flight' */
292 pool->pages_state_hold_cnt++;
293 trace_page_pool_state_hold(pool, page,
294 pool->pages_state_hold_cnt);
295 }
296
297 /* Return last page */
298 if (likely(pool->alloc.count > 0))
299 page = pool->alloc.cache[--pool->alloc.count];
300 else
301 page = NULL;
302
303 /* When page just alloc'ed is should/must have refcnt 1. */
304 return page;
305 }
306
307 /* For using page_pool replace: alloc_pages() API calls, but provide
308 * synchronization guarantee for allocation side.
309 */
page_pool_alloc_pages(struct page_pool * pool,gfp_t gfp)310 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
311 {
312 struct page *page;
313
314 /* Fast-path: Get a page from cache */
315 page = __page_pool_get_cached(pool);
316 if (page)
317 return page;
318
319 /* Slow-path: cache empty, do real allocation */
320 page = __page_pool_alloc_pages_slow(pool, gfp);
321 return page;
322 }
323 EXPORT_SYMBOL(page_pool_alloc_pages);
324
325 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
326 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
327 */
328 #define _distance(a, b) (s32)((a) - (b))
329
page_pool_inflight(struct page_pool * pool)330 static s32 page_pool_inflight(struct page_pool *pool)
331 {
332 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
333 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
334 s32 inflight;
335
336 inflight = _distance(hold_cnt, release_cnt);
337
338 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
339 WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight);
340
341 return inflight;
342 }
343
344 /* Disconnects a page (from a page_pool). API users can have a need
345 * to disconnect a page (from a page_pool), to allow it to be used as
346 * a regular page (that will eventually be returned to the normal
347 * page-allocator via put_page).
348 */
page_pool_release_page(struct page_pool * pool,struct page * page)349 void page_pool_release_page(struct page_pool *pool, struct page *page)
350 {
351 dma_addr_t dma;
352 int count;
353
354 if (!(pool->p.flags & PP_FLAG_DMA_MAP))
355 /* Always account for inflight pages, even if we didn't
356 * map them
357 */
358 goto skip_dma_unmap;
359
360 dma = page_pool_get_dma_addr(page);
361
362 /* When page is unmapped, it cannot be returned to our pool */
363 dma_unmap_page_attrs(pool->p.dev, dma,
364 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
365 DMA_ATTR_SKIP_CPU_SYNC);
366 page_pool_set_dma_addr(page, 0);
367 skip_dma_unmap:
368 page_pool_clear_pp_info(page);
369
370 /* This may be the last page returned, releasing the pool, so
371 * it is not safe to reference pool afterwards.
372 */
373 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
374 trace_page_pool_state_release(pool, page, count);
375 }
376 EXPORT_SYMBOL(page_pool_release_page);
377
378 /* Return a page to the page allocator, cleaning up our state */
page_pool_return_page(struct page_pool * pool,struct page * page)379 static void page_pool_return_page(struct page_pool *pool, struct page *page)
380 {
381 page_pool_release_page(pool, page);
382
383 put_page(page);
384 /* An optimization would be to call __free_pages(page, pool->p.order)
385 * knowing page is not part of page-cache (thus avoiding a
386 * __page_cache_release() call).
387 */
388 }
389
page_pool_recycle_in_ring(struct page_pool * pool,struct page * page)390 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page)
391 {
392 int ret;
393 /* BH protection not needed if current is serving softirq */
394 if (in_serving_softirq())
395 ret = ptr_ring_produce(&pool->ring, page);
396 else
397 ret = ptr_ring_produce_bh(&pool->ring, page);
398
399 return (ret == 0) ? true : false;
400 }
401
402 /* Only allow direct recycling in special circumstances, into the
403 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
404 *
405 * Caller must provide appropriate safe context.
406 */
page_pool_recycle_in_cache(struct page * page,struct page_pool * pool)407 static bool page_pool_recycle_in_cache(struct page *page,
408 struct page_pool *pool)
409 {
410 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE))
411 return false;
412
413 /* Caller MUST have verified/know (page_ref_count(page) == 1) */
414 pool->alloc.cache[pool->alloc.count++] = page;
415 return true;
416 }
417
418 /* If the page refcnt == 1, this will try to recycle the page.
419 * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
420 * the configured size min(dma_sync_size, pool->max_len).
421 * If the page refcnt != 1, then the page will be returned to memory
422 * subsystem.
423 */
424 static __always_inline struct page *
__page_pool_put_page(struct page_pool * pool,struct page * page,unsigned int dma_sync_size,bool allow_direct)425 __page_pool_put_page(struct page_pool *pool, struct page *page,
426 unsigned int dma_sync_size, bool allow_direct)
427 {
428 /* It is not the last user for the page frag case */
429 if (pool->p.flags & PP_FLAG_PAGE_FRAG &&
430 page_pool_atomic_sub_frag_count_return(page, 1))
431 return NULL;
432
433 /* This allocator is optimized for the XDP mode that uses
434 * one-frame-per-page, but have fallbacks that act like the
435 * regular page allocator APIs.
436 *
437 * refcnt == 1 means page_pool owns page, and can recycle it.
438 *
439 * page is NOT reusable when allocated when system is under
440 * some pressure. (page_is_pfmemalloc)
441 */
442 if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) {
443 /* Read barrier done in page_ref_count / READ_ONCE */
444
445 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
446 page_pool_dma_sync_for_device(pool, page,
447 dma_sync_size);
448
449 if (allow_direct && in_serving_softirq() &&
450 page_pool_recycle_in_cache(page, pool))
451 return NULL;
452
453 /* Page found as candidate for recycling */
454 return page;
455 }
456 /* Fallback/non-XDP mode: API user have elevated refcnt.
457 *
458 * Many drivers split up the page into fragments, and some
459 * want to keep doing this to save memory and do refcnt based
460 * recycling. Support this use case too, to ease drivers
461 * switching between XDP/non-XDP.
462 *
463 * In-case page_pool maintains the DMA mapping, API user must
464 * call page_pool_put_page once. In this elevated refcnt
465 * case, the DMA is unmapped/released, as driver is likely
466 * doing refcnt based recycle tricks, meaning another process
467 * will be invoking put_page.
468 */
469 /* Do not replace this with page_pool_return_page() */
470 page_pool_release_page(pool, page);
471 put_page(page);
472
473 return NULL;
474 }
475
page_pool_put_page(struct page_pool * pool,struct page * page,unsigned int dma_sync_size,bool allow_direct)476 void page_pool_put_page(struct page_pool *pool, struct page *page,
477 unsigned int dma_sync_size, bool allow_direct)
478 {
479 page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
480 if (page && !page_pool_recycle_in_ring(pool, page)) {
481 /* Cache full, fallback to free pages */
482 page_pool_return_page(pool, page);
483 }
484 }
485 EXPORT_SYMBOL(page_pool_put_page);
486
487 /* Caller must not use data area after call, as this function overwrites it */
page_pool_put_page_bulk(struct page_pool * pool,void ** data,int count)488 void page_pool_put_page_bulk(struct page_pool *pool, void **data,
489 int count)
490 {
491 int i, bulk_len = 0;
492
493 for (i = 0; i < count; i++) {
494 struct page *page = virt_to_head_page(data[i]);
495
496 page = __page_pool_put_page(pool, page, -1, false);
497 /* Approved for bulk recycling in ptr_ring cache */
498 if (page)
499 data[bulk_len++] = page;
500 }
501
502 if (unlikely(!bulk_len))
503 return;
504
505 /* Bulk producer into ptr_ring page_pool cache */
506 page_pool_ring_lock(pool);
507 for (i = 0; i < bulk_len; i++) {
508 if (__ptr_ring_produce(&pool->ring, data[i]))
509 break; /* ring full */
510 }
511 page_pool_ring_unlock(pool);
512
513 /* Hopefully all pages was return into ptr_ring */
514 if (likely(i == bulk_len))
515 return;
516
517 /* ptr_ring cache full, free remaining pages outside producer lock
518 * since put_page() with refcnt == 1 can be an expensive operation
519 */
520 for (; i < bulk_len; i++)
521 page_pool_return_page(pool, data[i]);
522 }
523 EXPORT_SYMBOL(page_pool_put_page_bulk);
524
page_pool_drain_frag(struct page_pool * pool,struct page * page)525 static struct page *page_pool_drain_frag(struct page_pool *pool,
526 struct page *page)
527 {
528 long drain_count = BIAS_MAX - pool->frag_users;
529
530 /* Some user is still using the page frag */
531 if (likely(page_pool_atomic_sub_frag_count_return(page,
532 drain_count)))
533 return NULL;
534
535 if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) {
536 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
537 page_pool_dma_sync_for_device(pool, page, -1);
538
539 return page;
540 }
541
542 page_pool_return_page(pool, page);
543 return NULL;
544 }
545
page_pool_free_frag(struct page_pool * pool)546 static void page_pool_free_frag(struct page_pool *pool)
547 {
548 long drain_count = BIAS_MAX - pool->frag_users;
549 struct page *page = pool->frag_page;
550
551 pool->frag_page = NULL;
552
553 if (!page ||
554 page_pool_atomic_sub_frag_count_return(page, drain_count))
555 return;
556
557 page_pool_return_page(pool, page);
558 }
559
page_pool_alloc_frag(struct page_pool * pool,unsigned int * offset,unsigned int size,gfp_t gfp)560 struct page *page_pool_alloc_frag(struct page_pool *pool,
561 unsigned int *offset,
562 unsigned int size, gfp_t gfp)
563 {
564 unsigned int max_size = PAGE_SIZE << pool->p.order;
565 struct page *page = pool->frag_page;
566
567 if (WARN_ON(!(pool->p.flags & PP_FLAG_PAGE_FRAG) ||
568 size > max_size))
569 return NULL;
570
571 size = ALIGN(size, dma_get_cache_alignment());
572 *offset = pool->frag_offset;
573
574 if (page && *offset + size > max_size) {
575 page = page_pool_drain_frag(pool, page);
576 if (page)
577 goto frag_reset;
578 }
579
580 if (!page) {
581 page = page_pool_alloc_pages(pool, gfp);
582 if (unlikely(!page)) {
583 pool->frag_page = NULL;
584 return NULL;
585 }
586
587 pool->frag_page = page;
588
589 frag_reset:
590 pool->frag_users = 1;
591 *offset = 0;
592 pool->frag_offset = size;
593 page_pool_set_frag_count(page, BIAS_MAX);
594 return page;
595 }
596
597 pool->frag_users++;
598 pool->frag_offset = *offset + size;
599 return page;
600 }
601 EXPORT_SYMBOL(page_pool_alloc_frag);
602
page_pool_empty_ring(struct page_pool * pool)603 static void page_pool_empty_ring(struct page_pool *pool)
604 {
605 struct page *page;
606
607 /* Empty recycle ring */
608 while ((page = ptr_ring_consume_bh(&pool->ring))) {
609 /* Verify the refcnt invariant of cached pages */
610 if (!(page_ref_count(page) == 1))
611 pr_crit("%s() page_pool refcnt %d violation\n",
612 __func__, page_ref_count(page));
613
614 page_pool_return_page(pool, page);
615 }
616 }
617
page_pool_free(struct page_pool * pool)618 static void page_pool_free(struct page_pool *pool)
619 {
620 if (pool->disconnect)
621 pool->disconnect(pool);
622
623 ptr_ring_cleanup(&pool->ring, NULL);
624
625 if (pool->p.flags & PP_FLAG_DMA_MAP)
626 put_device(pool->p.dev);
627
628 kfree(pool);
629 }
630
page_pool_empty_alloc_cache_once(struct page_pool * pool)631 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
632 {
633 struct page *page;
634
635 if (pool->destroy_cnt)
636 return;
637
638 /* Empty alloc cache, assume caller made sure this is
639 * no-longer in use, and page_pool_alloc_pages() cannot be
640 * call concurrently.
641 */
642 while (pool->alloc.count) {
643 page = pool->alloc.cache[--pool->alloc.count];
644 page_pool_return_page(pool, page);
645 }
646 }
647
page_pool_scrub(struct page_pool * pool)648 static void page_pool_scrub(struct page_pool *pool)
649 {
650 page_pool_empty_alloc_cache_once(pool);
651 pool->destroy_cnt++;
652
653 /* No more consumers should exist, but producers could still
654 * be in-flight.
655 */
656 page_pool_empty_ring(pool);
657 }
658
page_pool_release(struct page_pool * pool)659 static int page_pool_release(struct page_pool *pool)
660 {
661 int inflight;
662
663 page_pool_scrub(pool);
664 inflight = page_pool_inflight(pool);
665 if (!inflight)
666 page_pool_free(pool);
667
668 return inflight;
669 }
670
page_pool_release_retry(struct work_struct * wq)671 static void page_pool_release_retry(struct work_struct *wq)
672 {
673 struct delayed_work *dwq = to_delayed_work(wq);
674 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
675 int inflight;
676
677 inflight = page_pool_release(pool);
678 if (!inflight)
679 return;
680
681 /* Periodic warning */
682 if (time_after_eq(jiffies, pool->defer_warn)) {
683 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
684
685 pr_warn("%s() stalled pool shutdown %d inflight %d sec\n",
686 __func__, inflight, sec);
687 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
688 }
689
690 /* Still not ready to be disconnected, retry later */
691 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
692 }
693
page_pool_use_xdp_mem(struct page_pool * pool,void (* disconnect)(void *))694 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *))
695 {
696 refcount_inc(&pool->user_cnt);
697 pool->disconnect = disconnect;
698 }
699
page_pool_destroy(struct page_pool * pool)700 void page_pool_destroy(struct page_pool *pool)
701 {
702 if (!pool)
703 return;
704
705 if (!page_pool_put(pool))
706 return;
707
708 page_pool_free_frag(pool);
709
710 if (!page_pool_release(pool))
711 return;
712
713 pool->defer_start = jiffies;
714 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
715
716 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
717 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
718 }
719 EXPORT_SYMBOL(page_pool_destroy);
720
721 /* Caller must provide appropriate safe context, e.g. NAPI. */
page_pool_update_nid(struct page_pool * pool,int new_nid)722 void page_pool_update_nid(struct page_pool *pool, int new_nid)
723 {
724 struct page *page;
725
726 trace_page_pool_update_nid(pool, new_nid);
727 pool->p.nid = new_nid;
728
729 /* Flush pool alloc cache, as refill will check NUMA node */
730 while (pool->alloc.count) {
731 page = pool->alloc.cache[--pool->alloc.count];
732 page_pool_return_page(pool, page);
733 }
734 }
735 EXPORT_SYMBOL(page_pool_update_nid);
736
page_pool_return_skb_page(struct page * page)737 bool page_pool_return_skb_page(struct page *page)
738 {
739 struct page_pool *pp;
740
741 page = compound_head(page);
742
743 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
744 * in order to preserve any existing bits, such as bit 0 for the
745 * head page of compound page and bit 1 for pfmemalloc page, so
746 * mask those bits for freeing side when doing below checking,
747 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
748 * to avoid recycling the pfmemalloc page.
749 */
750 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
751 return false;
752
753 pp = page->pp;
754
755 /* Driver set this to memory recycling info. Reset it on recycle.
756 * This will *not* work for NIC using a split-page memory model.
757 * The page will be returned to the pool here regardless of the
758 * 'flipped' fragment being in use or not.
759 */
760 page_pool_put_full_page(pp, page, false);
761
762 return true;
763 }
764 EXPORT_SYMBOL(page_pool_return_skb_page);
765