1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct user_struct;
40 struct pt_regs;
41
42 extern int sysctl_page_lock_unfairness;
43
44 void init_mm_internals(void);
45
46 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
47 extern unsigned long max_mapnr;
48
set_max_mapnr(unsigned long limit)49 static inline void set_max_mapnr(unsigned long limit)
50 {
51 max_mapnr = limit;
52 }
53 #else
set_max_mapnr(unsigned long limit)54 static inline void set_max_mapnr(unsigned long limit) { }
55 #endif
56
57 extern atomic_long_t _totalram_pages;
totalram_pages(void)58 static inline unsigned long totalram_pages(void)
59 {
60 return (unsigned long)atomic_long_read(&_totalram_pages);
61 }
62
totalram_pages_inc(void)63 static inline void totalram_pages_inc(void)
64 {
65 atomic_long_inc(&_totalram_pages);
66 }
67
totalram_pages_dec(void)68 static inline void totalram_pages_dec(void)
69 {
70 atomic_long_dec(&_totalram_pages);
71 }
72
totalram_pages_add(long count)73 static inline void totalram_pages_add(long count)
74 {
75 atomic_long_add(count, &_totalram_pages);
76 }
77
78 extern void * high_memory;
79 extern int page_cluster;
80
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97
98 #include <asm/page.h>
99 #include <asm/processor.h>
100
101 /*
102 * Architectures that support memory tagging (assigning tags to memory regions,
103 * embedding these tags into addresses that point to these memory regions, and
104 * checking that the memory and the pointer tags match on memory accesses)
105 * redefine this macro to strip tags from pointers.
106 * It's defined as noop for architectures that don't support memory tagging.
107 */
108 #ifndef untagged_addr
109 #define untagged_addr(addr) (addr)
110 #endif
111
112 #ifndef __pa_symbol
113 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
114 #endif
115
116 #ifndef page_to_virt
117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
118 #endif
119
120 #ifndef lm_alias
121 #define lm_alias(x) __va(__pa_symbol(x))
122 #endif
123
124 /*
125 * To prevent common memory management code establishing
126 * a zero page mapping on a read fault.
127 * This macro should be defined within <asm/pgtable.h>.
128 * s390 does this to prevent multiplexing of hardware bits
129 * related to the physical page in case of virtualization.
130 */
131 #ifndef mm_forbids_zeropage
132 #define mm_forbids_zeropage(X) (0)
133 #endif
134
135 /*
136 * On some architectures it is expensive to call memset() for small sizes.
137 * If an architecture decides to implement their own version of
138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139 * define their own version of this macro in <asm/pgtable.h>
140 */
141 #if BITS_PER_LONG == 64
142 /* This function must be updated when the size of struct page grows above 80
143 * or reduces below 56. The idea that compiler optimizes out switch()
144 * statement, and only leaves move/store instructions. Also the compiler can
145 * combine write statements if they are both assignments and can be reordered,
146 * this can result in several of the writes here being dropped.
147 */
148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)149 static inline void __mm_zero_struct_page(struct page *page)
150 {
151 unsigned long *_pp = (void *)page;
152
153 /* Check that struct page is either 56, 64, 72, or 80 bytes */
154 BUILD_BUG_ON(sizeof(struct page) & 7);
155 BUILD_BUG_ON(sizeof(struct page) < 56);
156 BUILD_BUG_ON(sizeof(struct page) > 80);
157
158 switch (sizeof(struct page)) {
159 case 80:
160 _pp[9] = 0;
161 fallthrough;
162 case 72:
163 _pp[8] = 0;
164 fallthrough;
165 case 64:
166 _pp[7] = 0;
167 fallthrough;
168 case 56:
169 _pp[6] = 0;
170 _pp[5] = 0;
171 _pp[4] = 0;
172 _pp[3] = 0;
173 _pp[2] = 0;
174 _pp[1] = 0;
175 _pp[0] = 0;
176 }
177 }
178 #else
179 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
180 #endif
181
182 /*
183 * Default maximum number of active map areas, this limits the number of vmas
184 * per mm struct. Users can overwrite this number by sysctl but there is a
185 * problem.
186 *
187 * When a program's coredump is generated as ELF format, a section is created
188 * per a vma. In ELF, the number of sections is represented in unsigned short.
189 * This means the number of sections should be smaller than 65535 at coredump.
190 * Because the kernel adds some informative sections to a image of program at
191 * generating coredump, we need some margin. The number of extra sections is
192 * 1-3 now and depends on arch. We use "5" as safe margin, here.
193 *
194 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
195 * not a hard limit any more. Although some userspace tools can be surprised by
196 * that.
197 */
198 #define MAPCOUNT_ELF_CORE_MARGIN (5)
199 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
200
201 extern int sysctl_max_map_count;
202
203 extern unsigned long sysctl_user_reserve_kbytes;
204 extern unsigned long sysctl_admin_reserve_kbytes;
205
206 extern int sysctl_overcommit_memory;
207 extern int sysctl_overcommit_ratio;
208 extern unsigned long sysctl_overcommit_kbytes;
209
210 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
212 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
214 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
215 loff_t *);
216
217 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
218 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
219 #else
220 #define nth_page(page,n) ((page) + (n))
221 #endif
222
223 /* to align the pointer to the (next) page boundary */
224 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230
231 void setup_initial_init_mm(void *start_code, void *end_code,
232 void *end_data, void *brk);
233
234 /*
235 * Linux kernel virtual memory manager primitives.
236 * The idea being to have a "virtual" mm in the same way
237 * we have a virtual fs - giving a cleaner interface to the
238 * mm details, and allowing different kinds of memory mappings
239 * (from shared memory to executable loading to arbitrary
240 * mmap() functions).
241 */
242
243 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
244 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
245 void vm_area_free(struct vm_area_struct *);
246
247 #ifndef CONFIG_MMU
248 extern struct rb_root nommu_region_tree;
249 extern struct rw_semaphore nommu_region_sem;
250
251 extern unsigned int kobjsize(const void *objp);
252 #endif
253
254 /*
255 * vm_flags in vm_area_struct, see mm_types.h.
256 * When changing, update also include/trace/events/mmflags.h
257 */
258 #define VM_NONE 0x00000000
259
260 #define VM_READ 0x00000001 /* currently active flags */
261 #define VM_WRITE 0x00000002
262 #define VM_EXEC 0x00000004
263 #define VM_SHARED 0x00000008
264
265 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
266 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
267 #define VM_MAYWRITE 0x00000020
268 #define VM_MAYEXEC 0x00000040
269 #define VM_MAYSHARE 0x00000080
270
271 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
272 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
273 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
274 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
275
276 #define VM_LOCKED 0x00002000
277 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
278
279 /* Used by sys_madvise() */
280 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
281 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
282
283 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
284 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
285 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
286 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
287 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
288 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
289 #define VM_SYNC 0x00800000 /* Synchronous page faults */
290 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
291 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
292 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
293
294 #ifdef CONFIG_MEM_SOFT_DIRTY
295 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
296 #else
297 # define VM_SOFTDIRTY 0
298 #endif
299
300 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
301 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
302 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
303 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
304
305 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
306 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
310 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
311 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
312 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
313 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
314 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
315 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317
318 #ifdef CONFIG_ARCH_HAS_PKEYS
319 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
321 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
322 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
323 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
324 #ifdef CONFIG_PPC
325 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
326 #else
327 # define VM_PKEY_BIT4 0
328 #endif
329 #endif /* CONFIG_ARCH_HAS_PKEYS */
330
331 #if defined(CONFIG_X86)
332 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
333 #elif defined(CONFIG_PPC)
334 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
335 #elif defined(CONFIG_PARISC)
336 # define VM_GROWSUP VM_ARCH_1
337 #elif defined(CONFIG_IA64)
338 # define VM_GROWSUP VM_ARCH_1
339 #elif defined(CONFIG_SPARC64)
340 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
341 # define VM_ARCH_CLEAR VM_SPARC_ADI
342 #elif defined(CONFIG_ARM64)
343 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
344 # define VM_ARCH_CLEAR VM_ARM64_BTI
345 #elif !defined(CONFIG_MMU)
346 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
347 #endif
348
349 #if defined(CONFIG_ARM64_MTE)
350 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
351 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
352 #else
353 # define VM_MTE VM_NONE
354 # define VM_MTE_ALLOWED VM_NONE
355 #endif
356
357 #ifndef VM_GROWSUP
358 # define VM_GROWSUP VM_NONE
359 #endif
360
361 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
362 # define VM_UFFD_MINOR_BIT 37
363 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
364 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
365 # define VM_UFFD_MINOR VM_NONE
366 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
367
368 /* Bits set in the VMA until the stack is in its final location */
369 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
370
371 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
372
373 /* Common data flag combinations */
374 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
375 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
376 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
377 VM_MAYWRITE | VM_MAYEXEC)
378 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
379 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
380
381 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
382 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
383 #endif
384
385 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
386 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
387 #endif
388
389 #ifdef CONFIG_STACK_GROWSUP
390 #define VM_STACK VM_GROWSUP
391 #else
392 #define VM_STACK VM_GROWSDOWN
393 #endif
394
395 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
396
397 /* VMA basic access permission flags */
398 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
399
400
401 /*
402 * Special vmas that are non-mergable, non-mlock()able.
403 */
404 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
405
406 /* This mask prevents VMA from being scanned with khugepaged */
407 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
408
409 /* This mask defines which mm->def_flags a process can inherit its parent */
410 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
411
412 /* This mask is used to clear all the VMA flags used by mlock */
413 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
414
415 /* Arch-specific flags to clear when updating VM flags on protection change */
416 #ifndef VM_ARCH_CLEAR
417 # define VM_ARCH_CLEAR VM_NONE
418 #endif
419 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
420
421 /*
422 * mapping from the currently active vm_flags protection bits (the
423 * low four bits) to a page protection mask..
424 */
425 extern pgprot_t protection_map[16];
426
427 /**
428 * enum fault_flag - Fault flag definitions.
429 * @FAULT_FLAG_WRITE: Fault was a write fault.
430 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
431 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
432 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
433 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
434 * @FAULT_FLAG_TRIED: The fault has been tried once.
435 * @FAULT_FLAG_USER: The fault originated in userspace.
436 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
437 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
438 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
439 *
440 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
441 * whether we would allow page faults to retry by specifying these two
442 * fault flags correctly. Currently there can be three legal combinations:
443 *
444 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
445 * this is the first try
446 *
447 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
448 * we've already tried at least once
449 *
450 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
451 *
452 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
453 * be used. Note that page faults can be allowed to retry for multiple times,
454 * in which case we'll have an initial fault with flags (a) then later on
455 * continuous faults with flags (b). We should always try to detect pending
456 * signals before a retry to make sure the continuous page faults can still be
457 * interrupted if necessary.
458 */
459 enum fault_flag {
460 FAULT_FLAG_WRITE = 1 << 0,
461 FAULT_FLAG_MKWRITE = 1 << 1,
462 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
463 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
464 FAULT_FLAG_KILLABLE = 1 << 4,
465 FAULT_FLAG_TRIED = 1 << 5,
466 FAULT_FLAG_USER = 1 << 6,
467 FAULT_FLAG_REMOTE = 1 << 7,
468 FAULT_FLAG_INSTRUCTION = 1 << 8,
469 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
470 };
471
472 /*
473 * The default fault flags that should be used by most of the
474 * arch-specific page fault handlers.
475 */
476 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
477 FAULT_FLAG_KILLABLE | \
478 FAULT_FLAG_INTERRUPTIBLE)
479
480 /**
481 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
482 * @flags: Fault flags.
483 *
484 * This is mostly used for places where we want to try to avoid taking
485 * the mmap_lock for too long a time when waiting for another condition
486 * to change, in which case we can try to be polite to release the
487 * mmap_lock in the first round to avoid potential starvation of other
488 * processes that would also want the mmap_lock.
489 *
490 * Return: true if the page fault allows retry and this is the first
491 * attempt of the fault handling; false otherwise.
492 */
fault_flag_allow_retry_first(enum fault_flag flags)493 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
494 {
495 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
496 (!(flags & FAULT_FLAG_TRIED));
497 }
498
499 #define FAULT_FLAG_TRACE \
500 { FAULT_FLAG_WRITE, "WRITE" }, \
501 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
502 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
503 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
504 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
505 { FAULT_FLAG_TRIED, "TRIED" }, \
506 { FAULT_FLAG_USER, "USER" }, \
507 { FAULT_FLAG_REMOTE, "REMOTE" }, \
508 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
509 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
510
511 /*
512 * vm_fault is filled by the pagefault handler and passed to the vma's
513 * ->fault function. The vma's ->fault is responsible for returning a bitmask
514 * of VM_FAULT_xxx flags that give details about how the fault was handled.
515 *
516 * MM layer fills up gfp_mask for page allocations but fault handler might
517 * alter it if its implementation requires a different allocation context.
518 *
519 * pgoff should be used in favour of virtual_address, if possible.
520 */
521 struct vm_fault {
522 const struct {
523 struct vm_area_struct *vma; /* Target VMA */
524 gfp_t gfp_mask; /* gfp mask to be used for allocations */
525 pgoff_t pgoff; /* Logical page offset based on vma */
526 unsigned long address; /* Faulting virtual address */
527 };
528 enum fault_flag flags; /* FAULT_FLAG_xxx flags
529 * XXX: should really be 'const' */
530 pmd_t *pmd; /* Pointer to pmd entry matching
531 * the 'address' */
532 pud_t *pud; /* Pointer to pud entry matching
533 * the 'address'
534 */
535 union {
536 pte_t orig_pte; /* Value of PTE at the time of fault */
537 pmd_t orig_pmd; /* Value of PMD at the time of fault,
538 * used by PMD fault only.
539 */
540 };
541
542 struct page *cow_page; /* Page handler may use for COW fault */
543 struct page *page; /* ->fault handlers should return a
544 * page here, unless VM_FAULT_NOPAGE
545 * is set (which is also implied by
546 * VM_FAULT_ERROR).
547 */
548 /* These three entries are valid only while holding ptl lock */
549 pte_t *pte; /* Pointer to pte entry matching
550 * the 'address'. NULL if the page
551 * table hasn't been allocated.
552 */
553 spinlock_t *ptl; /* Page table lock.
554 * Protects pte page table if 'pte'
555 * is not NULL, otherwise pmd.
556 */
557 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
558 * vm_ops->map_pages() sets up a page
559 * table from atomic context.
560 * do_fault_around() pre-allocates
561 * page table to avoid allocation from
562 * atomic context.
563 */
564 };
565
566 /* page entry size for vm->huge_fault() */
567 enum page_entry_size {
568 PE_SIZE_PTE = 0,
569 PE_SIZE_PMD,
570 PE_SIZE_PUD,
571 };
572
573 /*
574 * These are the virtual MM functions - opening of an area, closing and
575 * unmapping it (needed to keep files on disk up-to-date etc), pointer
576 * to the functions called when a no-page or a wp-page exception occurs.
577 */
578 struct vm_operations_struct {
579 void (*open)(struct vm_area_struct * area);
580 void (*close)(struct vm_area_struct * area);
581 /* Called any time before splitting to check if it's allowed */
582 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
583 int (*mremap)(struct vm_area_struct *area);
584 /*
585 * Called by mprotect() to make driver-specific permission
586 * checks before mprotect() is finalised. The VMA must not
587 * be modified. Returns 0 if eprotect() can proceed.
588 */
589 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
590 unsigned long end, unsigned long newflags);
591 vm_fault_t (*fault)(struct vm_fault *vmf);
592 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
593 enum page_entry_size pe_size);
594 vm_fault_t (*map_pages)(struct vm_fault *vmf,
595 pgoff_t start_pgoff, pgoff_t end_pgoff);
596 unsigned long (*pagesize)(struct vm_area_struct * area);
597
598 /* notification that a previously read-only page is about to become
599 * writable, if an error is returned it will cause a SIGBUS */
600 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
601
602 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
603 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
604
605 /* called by access_process_vm when get_user_pages() fails, typically
606 * for use by special VMAs. See also generic_access_phys() for a generic
607 * implementation useful for any iomem mapping.
608 */
609 int (*access)(struct vm_area_struct *vma, unsigned long addr,
610 void *buf, int len, int write);
611
612 /* Called by the /proc/PID/maps code to ask the vma whether it
613 * has a special name. Returning non-NULL will also cause this
614 * vma to be dumped unconditionally. */
615 const char *(*name)(struct vm_area_struct *vma);
616
617 #ifdef CONFIG_NUMA
618 /*
619 * set_policy() op must add a reference to any non-NULL @new mempolicy
620 * to hold the policy upon return. Caller should pass NULL @new to
621 * remove a policy and fall back to surrounding context--i.e. do not
622 * install a MPOL_DEFAULT policy, nor the task or system default
623 * mempolicy.
624 */
625 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
626
627 /*
628 * get_policy() op must add reference [mpol_get()] to any policy at
629 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
630 * in mm/mempolicy.c will do this automatically.
631 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
632 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
633 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
634 * must return NULL--i.e., do not "fallback" to task or system default
635 * policy.
636 */
637 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
638 unsigned long addr);
639 #endif
640 /*
641 * Called by vm_normal_page() for special PTEs to find the
642 * page for @addr. This is useful if the default behavior
643 * (using pte_page()) would not find the correct page.
644 */
645 struct page *(*find_special_page)(struct vm_area_struct *vma,
646 unsigned long addr);
647 };
648
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)649 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
650 {
651 static const struct vm_operations_struct dummy_vm_ops = {};
652
653 memset(vma, 0, sizeof(*vma));
654 vma->vm_mm = mm;
655 vma->vm_ops = &dummy_vm_ops;
656 INIT_LIST_HEAD(&vma->anon_vma_chain);
657 }
658
vma_set_anonymous(struct vm_area_struct * vma)659 static inline void vma_set_anonymous(struct vm_area_struct *vma)
660 {
661 vma->vm_ops = NULL;
662 }
663
vma_is_anonymous(struct vm_area_struct * vma)664 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
665 {
666 return !vma->vm_ops;
667 }
668
vma_is_temporary_stack(struct vm_area_struct * vma)669 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
670 {
671 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
672
673 if (!maybe_stack)
674 return false;
675
676 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
677 VM_STACK_INCOMPLETE_SETUP)
678 return true;
679
680 return false;
681 }
682
vma_is_foreign(struct vm_area_struct * vma)683 static inline bool vma_is_foreign(struct vm_area_struct *vma)
684 {
685 if (!current->mm)
686 return true;
687
688 if (current->mm != vma->vm_mm)
689 return true;
690
691 return false;
692 }
693
vma_is_accessible(struct vm_area_struct * vma)694 static inline bool vma_is_accessible(struct vm_area_struct *vma)
695 {
696 return vma->vm_flags & VM_ACCESS_FLAGS;
697 }
698
699 #ifdef CONFIG_SHMEM
700 /*
701 * The vma_is_shmem is not inline because it is used only by slow
702 * paths in userfault.
703 */
704 bool vma_is_shmem(struct vm_area_struct *vma);
705 #else
vma_is_shmem(struct vm_area_struct * vma)706 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
707 #endif
708
709 int vma_is_stack_for_current(struct vm_area_struct *vma);
710
711 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
712 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
713
714 struct mmu_gather;
715 struct inode;
716
717 #include <linux/huge_mm.h>
718
719 /*
720 * Methods to modify the page usage count.
721 *
722 * What counts for a page usage:
723 * - cache mapping (page->mapping)
724 * - private data (page->private)
725 * - page mapped in a task's page tables, each mapping
726 * is counted separately
727 *
728 * Also, many kernel routines increase the page count before a critical
729 * routine so they can be sure the page doesn't go away from under them.
730 */
731
732 /*
733 * Drop a ref, return true if the refcount fell to zero (the page has no users)
734 */
put_page_testzero(struct page * page)735 static inline int put_page_testzero(struct page *page)
736 {
737 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
738 return page_ref_dec_and_test(page);
739 }
740
folio_put_testzero(struct folio * folio)741 static inline int folio_put_testzero(struct folio *folio)
742 {
743 return put_page_testzero(&folio->page);
744 }
745
746 /*
747 * Try to grab a ref unless the page has a refcount of zero, return false if
748 * that is the case.
749 * This can be called when MMU is off so it must not access
750 * any of the virtual mappings.
751 */
get_page_unless_zero(struct page * page)752 static inline bool get_page_unless_zero(struct page *page)
753 {
754 return page_ref_add_unless(page, 1, 0);
755 }
756
757 extern int page_is_ram(unsigned long pfn);
758
759 enum {
760 REGION_INTERSECTS,
761 REGION_DISJOINT,
762 REGION_MIXED,
763 };
764
765 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
766 unsigned long desc);
767
768 /* Support for virtually mapped pages */
769 struct page *vmalloc_to_page(const void *addr);
770 unsigned long vmalloc_to_pfn(const void *addr);
771
772 /*
773 * Determine if an address is within the vmalloc range
774 *
775 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
776 * is no special casing required.
777 */
778
779 #ifndef is_ioremap_addr
780 #define is_ioremap_addr(x) is_vmalloc_addr(x)
781 #endif
782
783 #ifdef CONFIG_MMU
784 extern bool is_vmalloc_addr(const void *x);
785 extern int is_vmalloc_or_module_addr(const void *x);
786 #else
is_vmalloc_addr(const void * x)787 static inline bool is_vmalloc_addr(const void *x)
788 {
789 return false;
790 }
is_vmalloc_or_module_addr(const void * x)791 static inline int is_vmalloc_or_module_addr(const void *x)
792 {
793 return 0;
794 }
795 #endif
796
head_compound_mapcount(struct page * head)797 static inline int head_compound_mapcount(struct page *head)
798 {
799 return atomic_read(compound_mapcount_ptr(head)) + 1;
800 }
801
802 /*
803 * Mapcount of compound page as a whole, does not include mapped sub-pages.
804 *
805 * Must be called only for compound pages or any their tail sub-pages.
806 */
compound_mapcount(struct page * page)807 static inline int compound_mapcount(struct page *page)
808 {
809 VM_BUG_ON_PAGE(!PageCompound(page), page);
810 page = compound_head(page);
811 return head_compound_mapcount(page);
812 }
813
814 /*
815 * The atomic page->_mapcount, starts from -1: so that transitions
816 * both from it and to it can be tracked, using atomic_inc_and_test
817 * and atomic_add_negative(-1).
818 */
page_mapcount_reset(struct page * page)819 static inline void page_mapcount_reset(struct page *page)
820 {
821 atomic_set(&(page)->_mapcount, -1);
822 }
823
824 int __page_mapcount(struct page *page);
825
826 /*
827 * Mapcount of 0-order page; when compound sub-page, includes
828 * compound_mapcount().
829 *
830 * Result is undefined for pages which cannot be mapped into userspace.
831 * For example SLAB or special types of pages. See function page_has_type().
832 * They use this place in struct page differently.
833 */
page_mapcount(struct page * page)834 static inline int page_mapcount(struct page *page)
835 {
836 if (unlikely(PageCompound(page)))
837 return __page_mapcount(page);
838 return atomic_read(&page->_mapcount) + 1;
839 }
840
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842 int total_mapcount(struct page *page);
843 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
844 #else
total_mapcount(struct page * page)845 static inline int total_mapcount(struct page *page)
846 {
847 return page_mapcount(page);
848 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)849 static inline int page_trans_huge_mapcount(struct page *page,
850 int *total_mapcount)
851 {
852 int mapcount = page_mapcount(page);
853 if (total_mapcount)
854 *total_mapcount = mapcount;
855 return mapcount;
856 }
857 #endif
858
virt_to_head_page(const void * x)859 static inline struct page *virt_to_head_page(const void *x)
860 {
861 struct page *page = virt_to_page(x);
862
863 return compound_head(page);
864 }
865
866 void __put_page(struct page *page);
867
868 void put_pages_list(struct list_head *pages);
869
870 void split_page(struct page *page, unsigned int order);
871 void folio_copy(struct folio *dst, struct folio *src);
872
873 unsigned long nr_free_buffer_pages(void);
874
875 /*
876 * Compound pages have a destructor function. Provide a
877 * prototype for that function and accessor functions.
878 * These are _only_ valid on the head of a compound page.
879 */
880 typedef void compound_page_dtor(struct page *);
881
882 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
883 enum compound_dtor_id {
884 NULL_COMPOUND_DTOR,
885 COMPOUND_PAGE_DTOR,
886 #ifdef CONFIG_HUGETLB_PAGE
887 HUGETLB_PAGE_DTOR,
888 #endif
889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
890 TRANSHUGE_PAGE_DTOR,
891 #endif
892 NR_COMPOUND_DTORS,
893 };
894 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
895
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)896 static inline void set_compound_page_dtor(struct page *page,
897 enum compound_dtor_id compound_dtor)
898 {
899 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
900 page[1].compound_dtor = compound_dtor;
901 }
902
destroy_compound_page(struct page * page)903 static inline void destroy_compound_page(struct page *page)
904 {
905 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
906 compound_page_dtors[page[1].compound_dtor](page);
907 }
908
compound_order(struct page * page)909 static inline unsigned int compound_order(struct page *page)
910 {
911 if (!PageHead(page))
912 return 0;
913 return page[1].compound_order;
914 }
915
916 /**
917 * folio_order - The allocation order of a folio.
918 * @folio: The folio.
919 *
920 * A folio is composed of 2^order pages. See get_order() for the definition
921 * of order.
922 *
923 * Return: The order of the folio.
924 */
folio_order(struct folio * folio)925 static inline unsigned int folio_order(struct folio *folio)
926 {
927 return compound_order(&folio->page);
928 }
929
hpage_pincount_available(struct page * page)930 static inline bool hpage_pincount_available(struct page *page)
931 {
932 /*
933 * Can the page->hpage_pinned_refcount field be used? That field is in
934 * the 3rd page of the compound page, so the smallest (2-page) compound
935 * pages cannot support it.
936 */
937 page = compound_head(page);
938 return PageCompound(page) && compound_order(page) > 1;
939 }
940
head_compound_pincount(struct page * head)941 static inline int head_compound_pincount(struct page *head)
942 {
943 return atomic_read(compound_pincount_ptr(head));
944 }
945
compound_pincount(struct page * page)946 static inline int compound_pincount(struct page *page)
947 {
948 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
949 page = compound_head(page);
950 return head_compound_pincount(page);
951 }
952
set_compound_order(struct page * page,unsigned int order)953 static inline void set_compound_order(struct page *page, unsigned int order)
954 {
955 page[1].compound_order = order;
956 page[1].compound_nr = 1U << order;
957 }
958
959 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)960 static inline unsigned long compound_nr(struct page *page)
961 {
962 if (!PageHead(page))
963 return 1;
964 return page[1].compound_nr;
965 }
966
967 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)968 static inline unsigned long page_size(struct page *page)
969 {
970 return PAGE_SIZE << compound_order(page);
971 }
972
973 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)974 static inline unsigned int page_shift(struct page *page)
975 {
976 return PAGE_SHIFT + compound_order(page);
977 }
978
979 void free_compound_page(struct page *page);
980
981 #ifdef CONFIG_MMU
982 /*
983 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
984 * servicing faults for write access. In the normal case, do always want
985 * pte_mkwrite. But get_user_pages can cause write faults for mappings
986 * that do not have writing enabled, when used by access_process_vm.
987 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)988 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
989 {
990 if (likely(vma->vm_flags & VM_WRITE))
991 pte = pte_mkwrite(pte);
992 return pte;
993 }
994
995 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
996 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
997
998 vm_fault_t finish_fault(struct vm_fault *vmf);
999 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1000 #endif
1001
1002 /*
1003 * Multiple processes may "see" the same page. E.g. for untouched
1004 * mappings of /dev/null, all processes see the same page full of
1005 * zeroes, and text pages of executables and shared libraries have
1006 * only one copy in memory, at most, normally.
1007 *
1008 * For the non-reserved pages, page_count(page) denotes a reference count.
1009 * page_count() == 0 means the page is free. page->lru is then used for
1010 * freelist management in the buddy allocator.
1011 * page_count() > 0 means the page has been allocated.
1012 *
1013 * Pages are allocated by the slab allocator in order to provide memory
1014 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1015 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1016 * unless a particular usage is carefully commented. (the responsibility of
1017 * freeing the kmalloc memory is the caller's, of course).
1018 *
1019 * A page may be used by anyone else who does a __get_free_page().
1020 * In this case, page_count still tracks the references, and should only
1021 * be used through the normal accessor functions. The top bits of page->flags
1022 * and page->virtual store page management information, but all other fields
1023 * are unused and could be used privately, carefully. The management of this
1024 * page is the responsibility of the one who allocated it, and those who have
1025 * subsequently been given references to it.
1026 *
1027 * The other pages (we may call them "pagecache pages") are completely
1028 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1029 * The following discussion applies only to them.
1030 *
1031 * A pagecache page contains an opaque `private' member, which belongs to the
1032 * page's address_space. Usually, this is the address of a circular list of
1033 * the page's disk buffers. PG_private must be set to tell the VM to call
1034 * into the filesystem to release these pages.
1035 *
1036 * A page may belong to an inode's memory mapping. In this case, page->mapping
1037 * is the pointer to the inode, and page->index is the file offset of the page,
1038 * in units of PAGE_SIZE.
1039 *
1040 * If pagecache pages are not associated with an inode, they are said to be
1041 * anonymous pages. These may become associated with the swapcache, and in that
1042 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1043 *
1044 * In either case (swapcache or inode backed), the pagecache itself holds one
1045 * reference to the page. Setting PG_private should also increment the
1046 * refcount. The each user mapping also has a reference to the page.
1047 *
1048 * The pagecache pages are stored in a per-mapping radix tree, which is
1049 * rooted at mapping->i_pages, and indexed by offset.
1050 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1051 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1052 *
1053 * All pagecache pages may be subject to I/O:
1054 * - inode pages may need to be read from disk,
1055 * - inode pages which have been modified and are MAP_SHARED may need
1056 * to be written back to the inode on disk,
1057 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1058 * modified may need to be swapped out to swap space and (later) to be read
1059 * back into memory.
1060 */
1061
1062 /*
1063 * The zone field is never updated after free_area_init_core()
1064 * sets it, so none of the operations on it need to be atomic.
1065 */
1066
1067 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1068 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1069 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1070 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1071 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1072 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1073
1074 /*
1075 * Define the bit shifts to access each section. For non-existent
1076 * sections we define the shift as 0; that plus a 0 mask ensures
1077 * the compiler will optimise away reference to them.
1078 */
1079 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1080 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1081 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1082 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1083 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1084
1085 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1086 #ifdef NODE_NOT_IN_PAGE_FLAGS
1087 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1088 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1089 SECTIONS_PGOFF : ZONES_PGOFF)
1090 #else
1091 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1092 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1093 NODES_PGOFF : ZONES_PGOFF)
1094 #endif
1095
1096 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1097
1098 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1099 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1100 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1101 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1102 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1103 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1104
page_zonenum(const struct page * page)1105 static inline enum zone_type page_zonenum(const struct page *page)
1106 {
1107 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1108 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1109 }
1110
folio_zonenum(const struct folio * folio)1111 static inline enum zone_type folio_zonenum(const struct folio *folio)
1112 {
1113 return page_zonenum(&folio->page);
1114 }
1115
1116 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1117 static inline bool is_zone_device_page(const struct page *page)
1118 {
1119 return page_zonenum(page) == ZONE_DEVICE;
1120 }
1121 extern void memmap_init_zone_device(struct zone *, unsigned long,
1122 unsigned long, struct dev_pagemap *);
1123 #else
is_zone_device_page(const struct page * page)1124 static inline bool is_zone_device_page(const struct page *page)
1125 {
1126 return false;
1127 }
1128 #endif
1129
is_zone_movable_page(const struct page * page)1130 static inline bool is_zone_movable_page(const struct page *page)
1131 {
1132 return page_zonenum(page) == ZONE_MOVABLE;
1133 }
1134
1135 #ifdef CONFIG_DEV_PAGEMAP_OPS
1136 void free_devmap_managed_page(struct page *page);
1137 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1138
page_is_devmap_managed(struct page * page)1139 static inline bool page_is_devmap_managed(struct page *page)
1140 {
1141 if (!static_branch_unlikely(&devmap_managed_key))
1142 return false;
1143 if (!is_zone_device_page(page))
1144 return false;
1145 switch (page->pgmap->type) {
1146 case MEMORY_DEVICE_PRIVATE:
1147 case MEMORY_DEVICE_FS_DAX:
1148 return true;
1149 default:
1150 break;
1151 }
1152 return false;
1153 }
1154
1155 void put_devmap_managed_page(struct page *page);
1156
1157 #else /* CONFIG_DEV_PAGEMAP_OPS */
page_is_devmap_managed(struct page * page)1158 static inline bool page_is_devmap_managed(struct page *page)
1159 {
1160 return false;
1161 }
1162
put_devmap_managed_page(struct page * page)1163 static inline void put_devmap_managed_page(struct page *page)
1164 {
1165 }
1166 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1167
is_device_private_page(const struct page * page)1168 static inline bool is_device_private_page(const struct page *page)
1169 {
1170 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1171 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1172 is_zone_device_page(page) &&
1173 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1174 }
1175
is_pci_p2pdma_page(const struct page * page)1176 static inline bool is_pci_p2pdma_page(const struct page *page)
1177 {
1178 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1179 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1180 is_zone_device_page(page) &&
1181 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1182 }
1183
1184 /* 127: arbitrary random number, small enough to assemble well */
1185 #define folio_ref_zero_or_close_to_overflow(folio) \
1186 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1187
1188 /**
1189 * folio_get - Increment the reference count on a folio.
1190 * @folio: The folio.
1191 *
1192 * Context: May be called in any context, as long as you know that
1193 * you have a refcount on the folio. If you do not already have one,
1194 * folio_try_get() may be the right interface for you to use.
1195 */
folio_get(struct folio * folio)1196 static inline void folio_get(struct folio *folio)
1197 {
1198 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1199 folio_ref_inc(folio);
1200 }
1201
get_page(struct page * page)1202 static inline void get_page(struct page *page)
1203 {
1204 folio_get(page_folio(page));
1205 }
1206
1207 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1208 struct page *try_grab_compound_head(struct page *page, int refs,
1209 unsigned int flags);
1210
1211
try_get_page(struct page * page)1212 static inline __must_check bool try_get_page(struct page *page)
1213 {
1214 page = compound_head(page);
1215 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1216 return false;
1217 page_ref_inc(page);
1218 return true;
1219 }
1220
1221 /**
1222 * folio_put - Decrement the reference count on a folio.
1223 * @folio: The folio.
1224 *
1225 * If the folio's reference count reaches zero, the memory will be
1226 * released back to the page allocator and may be used by another
1227 * allocation immediately. Do not access the memory or the struct folio
1228 * after calling folio_put() unless you can be sure that it wasn't the
1229 * last reference.
1230 *
1231 * Context: May be called in process or interrupt context, but not in NMI
1232 * context. May be called while holding a spinlock.
1233 */
folio_put(struct folio * folio)1234 static inline void folio_put(struct folio *folio)
1235 {
1236 if (folio_put_testzero(folio))
1237 __put_page(&folio->page);
1238 }
1239
put_page(struct page * page)1240 static inline void put_page(struct page *page)
1241 {
1242 struct folio *folio = page_folio(page);
1243
1244 /*
1245 * For devmap managed pages we need to catch refcount transition from
1246 * 2 to 1, when refcount reach one it means the page is free and we
1247 * need to inform the device driver through callback. See
1248 * include/linux/memremap.h and HMM for details.
1249 */
1250 if (page_is_devmap_managed(&folio->page)) {
1251 put_devmap_managed_page(&folio->page);
1252 return;
1253 }
1254
1255 folio_put(folio);
1256 }
1257
1258 /*
1259 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1260 * the page's refcount so that two separate items are tracked: the original page
1261 * reference count, and also a new count of how many pin_user_pages() calls were
1262 * made against the page. ("gup-pinned" is another term for the latter).
1263 *
1264 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1265 * distinct from normal pages. As such, the unpin_user_page() call (and its
1266 * variants) must be used in order to release gup-pinned pages.
1267 *
1268 * Choice of value:
1269 *
1270 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1271 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1272 * simpler, due to the fact that adding an even power of two to the page
1273 * refcount has the effect of using only the upper N bits, for the code that
1274 * counts up using the bias value. This means that the lower bits are left for
1275 * the exclusive use of the original code that increments and decrements by one
1276 * (or at least, by much smaller values than the bias value).
1277 *
1278 * Of course, once the lower bits overflow into the upper bits (and this is
1279 * OK, because subtraction recovers the original values), then visual inspection
1280 * no longer suffices to directly view the separate counts. However, for normal
1281 * applications that don't have huge page reference counts, this won't be an
1282 * issue.
1283 *
1284 * Locking: the lockless algorithm described in page_cache_get_speculative()
1285 * and page_cache_gup_pin_speculative() provides safe operation for
1286 * get_user_pages and page_mkclean and other calls that race to set up page
1287 * table entries.
1288 */
1289 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1290
1291 void unpin_user_page(struct page *page);
1292 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1293 bool make_dirty);
1294 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1295 bool make_dirty);
1296 void unpin_user_pages(struct page **pages, unsigned long npages);
1297
1298 /**
1299 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1300 * @page: The page.
1301 *
1302 * This function checks if a page has been pinned via a call to
1303 * a function in the pin_user_pages() family.
1304 *
1305 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1306 * because it means "definitely not pinned for DMA", but true means "probably
1307 * pinned for DMA, but possibly a false positive due to having at least
1308 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1309 *
1310 * False positives are OK, because: a) it's unlikely for a page to get that many
1311 * refcounts, and b) all the callers of this routine are expected to be able to
1312 * deal gracefully with a false positive.
1313 *
1314 * For huge pages, the result will be exactly correct. That's because we have
1315 * more tracking data available: the 3rd struct page in the compound page is
1316 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1317 * scheme).
1318 *
1319 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1320 *
1321 * Return: True, if it is likely that the page has been "dma-pinned".
1322 * False, if the page is definitely not dma-pinned.
1323 */
page_maybe_dma_pinned(struct page * page)1324 static inline bool page_maybe_dma_pinned(struct page *page)
1325 {
1326 if (hpage_pincount_available(page))
1327 return compound_pincount(page) > 0;
1328
1329 /*
1330 * page_ref_count() is signed. If that refcount overflows, then
1331 * page_ref_count() returns a negative value, and callers will avoid
1332 * further incrementing the refcount.
1333 *
1334 * Here, for that overflow case, use the signed bit to count a little
1335 * bit higher via unsigned math, and thus still get an accurate result.
1336 */
1337 return ((unsigned int)page_ref_count(compound_head(page))) >=
1338 GUP_PIN_COUNTING_BIAS;
1339 }
1340
is_cow_mapping(vm_flags_t flags)1341 static inline bool is_cow_mapping(vm_flags_t flags)
1342 {
1343 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1344 }
1345
1346 /*
1347 * This should most likely only be called during fork() to see whether we
1348 * should break the cow immediately for a page on the src mm.
1349 */
page_needs_cow_for_dma(struct vm_area_struct * vma,struct page * page)1350 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1351 struct page *page)
1352 {
1353 if (!is_cow_mapping(vma->vm_flags))
1354 return false;
1355
1356 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1357 return false;
1358
1359 return page_maybe_dma_pinned(page);
1360 }
1361
1362 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1363 #define SECTION_IN_PAGE_FLAGS
1364 #endif
1365
1366 /*
1367 * The identification function is mainly used by the buddy allocator for
1368 * determining if two pages could be buddies. We are not really identifying
1369 * the zone since we could be using the section number id if we do not have
1370 * node id available in page flags.
1371 * We only guarantee that it will return the same value for two combinable
1372 * pages in a zone.
1373 */
page_zone_id(struct page * page)1374 static inline int page_zone_id(struct page *page)
1375 {
1376 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1377 }
1378
1379 #ifdef NODE_NOT_IN_PAGE_FLAGS
1380 extern int page_to_nid(const struct page *page);
1381 #else
page_to_nid(const struct page * page)1382 static inline int page_to_nid(const struct page *page)
1383 {
1384 struct page *p = (struct page *)page;
1385
1386 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1387 }
1388 #endif
1389
folio_nid(const struct folio * folio)1390 static inline int folio_nid(const struct folio *folio)
1391 {
1392 return page_to_nid(&folio->page);
1393 }
1394
1395 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1396 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1397 {
1398 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1399 }
1400
cpupid_to_pid(int cpupid)1401 static inline int cpupid_to_pid(int cpupid)
1402 {
1403 return cpupid & LAST__PID_MASK;
1404 }
1405
cpupid_to_cpu(int cpupid)1406 static inline int cpupid_to_cpu(int cpupid)
1407 {
1408 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1409 }
1410
cpupid_to_nid(int cpupid)1411 static inline int cpupid_to_nid(int cpupid)
1412 {
1413 return cpu_to_node(cpupid_to_cpu(cpupid));
1414 }
1415
cpupid_pid_unset(int cpupid)1416 static inline bool cpupid_pid_unset(int cpupid)
1417 {
1418 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1419 }
1420
cpupid_cpu_unset(int cpupid)1421 static inline bool cpupid_cpu_unset(int cpupid)
1422 {
1423 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1424 }
1425
__cpupid_match_pid(pid_t task_pid,int cpupid)1426 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1427 {
1428 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1429 }
1430
1431 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1432 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1433 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1434 {
1435 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1436 }
1437
page_cpupid_last(struct page * page)1438 static inline int page_cpupid_last(struct page *page)
1439 {
1440 return page->_last_cpupid;
1441 }
page_cpupid_reset_last(struct page * page)1442 static inline void page_cpupid_reset_last(struct page *page)
1443 {
1444 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1445 }
1446 #else
page_cpupid_last(struct page * page)1447 static inline int page_cpupid_last(struct page *page)
1448 {
1449 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1450 }
1451
1452 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1453
page_cpupid_reset_last(struct page * page)1454 static inline void page_cpupid_reset_last(struct page *page)
1455 {
1456 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1457 }
1458 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1459 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1460 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1461 {
1462 return page_to_nid(page); /* XXX */
1463 }
1464
page_cpupid_last(struct page * page)1465 static inline int page_cpupid_last(struct page *page)
1466 {
1467 return page_to_nid(page); /* XXX */
1468 }
1469
cpupid_to_nid(int cpupid)1470 static inline int cpupid_to_nid(int cpupid)
1471 {
1472 return -1;
1473 }
1474
cpupid_to_pid(int cpupid)1475 static inline int cpupid_to_pid(int cpupid)
1476 {
1477 return -1;
1478 }
1479
cpupid_to_cpu(int cpupid)1480 static inline int cpupid_to_cpu(int cpupid)
1481 {
1482 return -1;
1483 }
1484
cpu_pid_to_cpupid(int nid,int pid)1485 static inline int cpu_pid_to_cpupid(int nid, int pid)
1486 {
1487 return -1;
1488 }
1489
cpupid_pid_unset(int cpupid)1490 static inline bool cpupid_pid_unset(int cpupid)
1491 {
1492 return true;
1493 }
1494
page_cpupid_reset_last(struct page * page)1495 static inline void page_cpupid_reset_last(struct page *page)
1496 {
1497 }
1498
cpupid_match_pid(struct task_struct * task,int cpupid)1499 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1500 {
1501 return false;
1502 }
1503 #endif /* CONFIG_NUMA_BALANCING */
1504
1505 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1506
1507 /*
1508 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1509 * setting tags for all pages to native kernel tag value 0xff, as the default
1510 * value 0x00 maps to 0xff.
1511 */
1512
page_kasan_tag(const struct page * page)1513 static inline u8 page_kasan_tag(const struct page *page)
1514 {
1515 u8 tag = 0xff;
1516
1517 if (kasan_enabled()) {
1518 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1519 tag ^= 0xff;
1520 }
1521
1522 return tag;
1523 }
1524
page_kasan_tag_set(struct page * page,u8 tag)1525 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1526 {
1527 if (kasan_enabled()) {
1528 tag ^= 0xff;
1529 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1530 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1531 }
1532 }
1533
page_kasan_tag_reset(struct page * page)1534 static inline void page_kasan_tag_reset(struct page *page)
1535 {
1536 if (kasan_enabled())
1537 page_kasan_tag_set(page, 0xff);
1538 }
1539
1540 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1541
page_kasan_tag(const struct page * page)1542 static inline u8 page_kasan_tag(const struct page *page)
1543 {
1544 return 0xff;
1545 }
1546
page_kasan_tag_set(struct page * page,u8 tag)1547 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1548 static inline void page_kasan_tag_reset(struct page *page) { }
1549
1550 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1551
page_zone(const struct page * page)1552 static inline struct zone *page_zone(const struct page *page)
1553 {
1554 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1555 }
1556
page_pgdat(const struct page * page)1557 static inline pg_data_t *page_pgdat(const struct page *page)
1558 {
1559 return NODE_DATA(page_to_nid(page));
1560 }
1561
folio_zone(const struct folio * folio)1562 static inline struct zone *folio_zone(const struct folio *folio)
1563 {
1564 return page_zone(&folio->page);
1565 }
1566
folio_pgdat(const struct folio * folio)1567 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1568 {
1569 return page_pgdat(&folio->page);
1570 }
1571
1572 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1573 static inline void set_page_section(struct page *page, unsigned long section)
1574 {
1575 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1576 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1577 }
1578
page_to_section(const struct page * page)1579 static inline unsigned long page_to_section(const struct page *page)
1580 {
1581 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1582 }
1583 #endif
1584
1585 /**
1586 * folio_pfn - Return the Page Frame Number of a folio.
1587 * @folio: The folio.
1588 *
1589 * A folio may contain multiple pages. The pages have consecutive
1590 * Page Frame Numbers.
1591 *
1592 * Return: The Page Frame Number of the first page in the folio.
1593 */
folio_pfn(struct folio * folio)1594 static inline unsigned long folio_pfn(struct folio *folio)
1595 {
1596 return page_to_pfn(&folio->page);
1597 }
1598
1599 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1600 #ifdef CONFIG_MIGRATION
is_pinnable_page(struct page * page)1601 static inline bool is_pinnable_page(struct page *page)
1602 {
1603 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1604 is_zero_pfn(page_to_pfn(page));
1605 }
1606 #else
is_pinnable_page(struct page * page)1607 static inline bool is_pinnable_page(struct page *page)
1608 {
1609 return true;
1610 }
1611 #endif
1612
set_page_zone(struct page * page,enum zone_type zone)1613 static inline void set_page_zone(struct page *page, enum zone_type zone)
1614 {
1615 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1616 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1617 }
1618
set_page_node(struct page * page,unsigned long node)1619 static inline void set_page_node(struct page *page, unsigned long node)
1620 {
1621 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1622 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1623 }
1624
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1625 static inline void set_page_links(struct page *page, enum zone_type zone,
1626 unsigned long node, unsigned long pfn)
1627 {
1628 set_page_zone(page, zone);
1629 set_page_node(page, node);
1630 #ifdef SECTION_IN_PAGE_FLAGS
1631 set_page_section(page, pfn_to_section_nr(pfn));
1632 #endif
1633 }
1634
1635 /**
1636 * folio_nr_pages - The number of pages in the folio.
1637 * @folio: The folio.
1638 *
1639 * Return: A positive power of two.
1640 */
folio_nr_pages(struct folio * folio)1641 static inline long folio_nr_pages(struct folio *folio)
1642 {
1643 return compound_nr(&folio->page);
1644 }
1645
1646 /**
1647 * folio_next - Move to the next physical folio.
1648 * @folio: The folio we're currently operating on.
1649 *
1650 * If you have physically contiguous memory which may span more than
1651 * one folio (eg a &struct bio_vec), use this function to move from one
1652 * folio to the next. Do not use it if the memory is only virtually
1653 * contiguous as the folios are almost certainly not adjacent to each
1654 * other. This is the folio equivalent to writing ``page++``.
1655 *
1656 * Context: We assume that the folios are refcounted and/or locked at a
1657 * higher level and do not adjust the reference counts.
1658 * Return: The next struct folio.
1659 */
folio_next(struct folio * folio)1660 static inline struct folio *folio_next(struct folio *folio)
1661 {
1662 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1663 }
1664
1665 /**
1666 * folio_shift - The size of the memory described by this folio.
1667 * @folio: The folio.
1668 *
1669 * A folio represents a number of bytes which is a power-of-two in size.
1670 * This function tells you which power-of-two the folio is. See also
1671 * folio_size() and folio_order().
1672 *
1673 * Context: The caller should have a reference on the folio to prevent
1674 * it from being split. It is not necessary for the folio to be locked.
1675 * Return: The base-2 logarithm of the size of this folio.
1676 */
folio_shift(struct folio * folio)1677 static inline unsigned int folio_shift(struct folio *folio)
1678 {
1679 return PAGE_SHIFT + folio_order(folio);
1680 }
1681
1682 /**
1683 * folio_size - The number of bytes in a folio.
1684 * @folio: The folio.
1685 *
1686 * Context: The caller should have a reference on the folio to prevent
1687 * it from being split. It is not necessary for the folio to be locked.
1688 * Return: The number of bytes in this folio.
1689 */
folio_size(struct folio * folio)1690 static inline size_t folio_size(struct folio *folio)
1691 {
1692 return PAGE_SIZE << folio_order(folio);
1693 }
1694
1695 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
arch_make_page_accessible(struct page * page)1696 static inline int arch_make_page_accessible(struct page *page)
1697 {
1698 return 0;
1699 }
1700 #endif
1701
1702 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)1703 static inline int arch_make_folio_accessible(struct folio *folio)
1704 {
1705 int ret;
1706 long i, nr = folio_nr_pages(folio);
1707
1708 for (i = 0; i < nr; i++) {
1709 ret = arch_make_page_accessible(folio_page(folio, i));
1710 if (ret)
1711 break;
1712 }
1713
1714 return ret;
1715 }
1716 #endif
1717
1718 /*
1719 * Some inline functions in vmstat.h depend on page_zone()
1720 */
1721 #include <linux/vmstat.h>
1722
lowmem_page_address(const struct page * page)1723 static __always_inline void *lowmem_page_address(const struct page *page)
1724 {
1725 return page_to_virt(page);
1726 }
1727
1728 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1729 #define HASHED_PAGE_VIRTUAL
1730 #endif
1731
1732 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1733 static inline void *page_address(const struct page *page)
1734 {
1735 return page->virtual;
1736 }
set_page_address(struct page * page,void * address)1737 static inline void set_page_address(struct page *page, void *address)
1738 {
1739 page->virtual = address;
1740 }
1741 #define page_address_init() do { } while(0)
1742 #endif
1743
1744 #if defined(HASHED_PAGE_VIRTUAL)
1745 void *page_address(const struct page *page);
1746 void set_page_address(struct page *page, void *virtual);
1747 void page_address_init(void);
1748 #endif
1749
1750 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1751 #define page_address(page) lowmem_page_address(page)
1752 #define set_page_address(page, address) do { } while(0)
1753 #define page_address_init() do { } while(0)
1754 #endif
1755
1756 extern void *page_rmapping(struct page *page);
1757 extern struct anon_vma *page_anon_vma(struct page *page);
1758 extern pgoff_t __page_file_index(struct page *page);
1759
1760 /*
1761 * Return the pagecache index of the passed page. Regular pagecache pages
1762 * use ->index whereas swapcache pages use swp_offset(->private)
1763 */
page_index(struct page * page)1764 static inline pgoff_t page_index(struct page *page)
1765 {
1766 if (unlikely(PageSwapCache(page)))
1767 return __page_file_index(page);
1768 return page->index;
1769 }
1770
1771 bool page_mapped(struct page *page);
1772 bool folio_mapped(struct folio *folio);
1773
1774 /*
1775 * Return true only if the page has been allocated with
1776 * ALLOC_NO_WATERMARKS and the low watermark was not
1777 * met implying that the system is under some pressure.
1778 */
page_is_pfmemalloc(const struct page * page)1779 static inline bool page_is_pfmemalloc(const struct page *page)
1780 {
1781 /*
1782 * lru.next has bit 1 set if the page is allocated from the
1783 * pfmemalloc reserves. Callers may simply overwrite it if
1784 * they do not need to preserve that information.
1785 */
1786 return (uintptr_t)page->lru.next & BIT(1);
1787 }
1788
1789 /*
1790 * Only to be called by the page allocator on a freshly allocated
1791 * page.
1792 */
set_page_pfmemalloc(struct page * page)1793 static inline void set_page_pfmemalloc(struct page *page)
1794 {
1795 page->lru.next = (void *)BIT(1);
1796 }
1797
clear_page_pfmemalloc(struct page * page)1798 static inline void clear_page_pfmemalloc(struct page *page)
1799 {
1800 page->lru.next = NULL;
1801 }
1802
1803 /*
1804 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1805 */
1806 extern void pagefault_out_of_memory(void);
1807
1808 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1809 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1810 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1811
1812 /*
1813 * Flags passed to show_mem() and show_free_areas() to suppress output in
1814 * various contexts.
1815 */
1816 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1817
1818 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1819
1820 #ifdef CONFIG_MMU
1821 extern bool can_do_mlock(void);
1822 #else
can_do_mlock(void)1823 static inline bool can_do_mlock(void) { return false; }
1824 #endif
1825 extern int user_shm_lock(size_t, struct ucounts *);
1826 extern void user_shm_unlock(size_t, struct ucounts *);
1827
1828 /*
1829 * Parameter block passed down to zap_pte_range in exceptional cases.
1830 */
1831 struct zap_details {
1832 struct address_space *zap_mapping; /* Check page->mapping if set */
1833 struct page *single_page; /* Locked page to be unmapped */
1834 };
1835
1836 /*
1837 * We set details->zap_mappings when we want to unmap shared but keep private
1838 * pages. Return true if skip zapping this page, false otherwise.
1839 */
1840 static inline bool
zap_skip_check_mapping(struct zap_details * details,struct page * page)1841 zap_skip_check_mapping(struct zap_details *details, struct page *page)
1842 {
1843 if (!details || !page)
1844 return false;
1845
1846 return details->zap_mapping &&
1847 (details->zap_mapping != page_rmapping(page));
1848 }
1849
1850 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1851 pte_t pte);
1852 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1853 pmd_t pmd);
1854
1855 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1856 unsigned long size);
1857 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1858 unsigned long size);
1859 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1860 unsigned long start, unsigned long end);
1861
1862 struct mmu_notifier_range;
1863
1864 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1865 unsigned long end, unsigned long floor, unsigned long ceiling);
1866 int
1867 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1868 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1869 struct mmu_notifier_range *range, pte_t **ptepp,
1870 pmd_t **pmdpp, spinlock_t **ptlp);
1871 int follow_pte(struct mm_struct *mm, unsigned long address,
1872 pte_t **ptepp, spinlock_t **ptlp);
1873 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1874 unsigned long *pfn);
1875 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1876 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1877 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1878 void *buf, int len, int write);
1879
1880 extern void truncate_pagecache(struct inode *inode, loff_t new);
1881 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1882 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1883 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1884 int truncate_inode_page(struct address_space *mapping, struct page *page);
1885 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1886 int invalidate_inode_page(struct page *page);
1887
1888 #ifdef CONFIG_MMU
1889 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1890 unsigned long address, unsigned int flags,
1891 struct pt_regs *regs);
1892 extern int fixup_user_fault(struct mm_struct *mm,
1893 unsigned long address, unsigned int fault_flags,
1894 bool *unlocked);
1895 void unmap_mapping_page(struct page *page);
1896 void unmap_mapping_pages(struct address_space *mapping,
1897 pgoff_t start, pgoff_t nr, bool even_cows);
1898 void unmap_mapping_range(struct address_space *mapping,
1899 loff_t const holebegin, loff_t const holelen, int even_cows);
1900 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1901 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1902 unsigned long address, unsigned int flags,
1903 struct pt_regs *regs)
1904 {
1905 /* should never happen if there's no MMU */
1906 BUG();
1907 return VM_FAULT_SIGBUS;
1908 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1909 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1910 unsigned int fault_flags, bool *unlocked)
1911 {
1912 /* should never happen if there's no MMU */
1913 BUG();
1914 return -EFAULT;
1915 }
unmap_mapping_page(struct page * page)1916 static inline void unmap_mapping_page(struct page *page) { }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1917 static inline void unmap_mapping_pages(struct address_space *mapping,
1918 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1919 static inline void unmap_mapping_range(struct address_space *mapping,
1920 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1921 #endif
1922
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1923 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1924 loff_t const holebegin, loff_t const holelen)
1925 {
1926 unmap_mapping_range(mapping, holebegin, holelen, 0);
1927 }
1928
1929 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1930 void *buf, int len, unsigned int gup_flags);
1931 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1932 void *buf, int len, unsigned int gup_flags);
1933 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1934 void *buf, int len, unsigned int gup_flags);
1935
1936 long get_user_pages_remote(struct mm_struct *mm,
1937 unsigned long start, unsigned long nr_pages,
1938 unsigned int gup_flags, struct page **pages,
1939 struct vm_area_struct **vmas, int *locked);
1940 long pin_user_pages_remote(struct mm_struct *mm,
1941 unsigned long start, unsigned long nr_pages,
1942 unsigned int gup_flags, struct page **pages,
1943 struct vm_area_struct **vmas, int *locked);
1944 long get_user_pages(unsigned long start, unsigned long nr_pages,
1945 unsigned int gup_flags, struct page **pages,
1946 struct vm_area_struct **vmas);
1947 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1948 unsigned int gup_flags, struct page **pages,
1949 struct vm_area_struct **vmas);
1950 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1951 unsigned int gup_flags, struct page **pages, int *locked);
1952 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1953 unsigned int gup_flags, struct page **pages, int *locked);
1954 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1955 struct page **pages, unsigned int gup_flags);
1956 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1957 struct page **pages, unsigned int gup_flags);
1958
1959 int get_user_pages_fast(unsigned long start, int nr_pages,
1960 unsigned int gup_flags, struct page **pages);
1961 int pin_user_pages_fast(unsigned long start, int nr_pages,
1962 unsigned int gup_flags, struct page **pages);
1963
1964 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1965 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1966 struct task_struct *task, bool bypass_rlim);
1967
1968 struct kvec;
1969 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1970 struct page **pages);
1971 struct page *get_dump_page(unsigned long addr);
1972
1973 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1974 extern void do_invalidatepage(struct page *page, unsigned int offset,
1975 unsigned int length);
1976
1977 bool folio_mark_dirty(struct folio *folio);
1978 bool set_page_dirty(struct page *page);
1979 int set_page_dirty_lock(struct page *page);
1980
1981 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1982
1983 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1984 unsigned long old_addr, struct vm_area_struct *new_vma,
1985 unsigned long new_addr, unsigned long len,
1986 bool need_rmap_locks);
1987
1988 /*
1989 * Flags used by change_protection(). For now we make it a bitmap so
1990 * that we can pass in multiple flags just like parameters. However
1991 * for now all the callers are only use one of the flags at the same
1992 * time.
1993 */
1994 /* Whether we should allow dirty bit accounting */
1995 #define MM_CP_DIRTY_ACCT (1UL << 0)
1996 /* Whether this protection change is for NUMA hints */
1997 #define MM_CP_PROT_NUMA (1UL << 1)
1998 /* Whether this change is for write protecting */
1999 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2000 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2001 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2002 MM_CP_UFFD_WP_RESOLVE)
2003
2004 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
2005 unsigned long end, pgprot_t newprot,
2006 unsigned long cp_flags);
2007 extern int mprotect_fixup(struct vm_area_struct *vma,
2008 struct vm_area_struct **pprev, unsigned long start,
2009 unsigned long end, unsigned long newflags);
2010
2011 /*
2012 * doesn't attempt to fault and will return short.
2013 */
2014 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2015 unsigned int gup_flags, struct page **pages);
2016 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2017 unsigned int gup_flags, struct page **pages);
2018
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2019 static inline bool get_user_page_fast_only(unsigned long addr,
2020 unsigned int gup_flags, struct page **pagep)
2021 {
2022 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2023 }
2024 /*
2025 * per-process(per-mm_struct) statistics.
2026 */
get_mm_counter(struct mm_struct * mm,int member)2027 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2028 {
2029 long val = atomic_long_read(&mm->rss_stat.count[member]);
2030
2031 #ifdef SPLIT_RSS_COUNTING
2032 /*
2033 * counter is updated in asynchronous manner and may go to minus.
2034 * But it's never be expected number for users.
2035 */
2036 if (val < 0)
2037 val = 0;
2038 #endif
2039 return (unsigned long)val;
2040 }
2041
2042 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
2043
add_mm_counter(struct mm_struct * mm,int member,long value)2044 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2045 {
2046 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2047
2048 mm_trace_rss_stat(mm, member, count);
2049 }
2050
inc_mm_counter(struct mm_struct * mm,int member)2051 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2052 {
2053 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2054
2055 mm_trace_rss_stat(mm, member, count);
2056 }
2057
dec_mm_counter(struct mm_struct * mm,int member)2058 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2059 {
2060 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2061
2062 mm_trace_rss_stat(mm, member, count);
2063 }
2064
2065 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)2066 static inline int mm_counter_file(struct page *page)
2067 {
2068 if (PageSwapBacked(page))
2069 return MM_SHMEMPAGES;
2070 return MM_FILEPAGES;
2071 }
2072
mm_counter(struct page * page)2073 static inline int mm_counter(struct page *page)
2074 {
2075 if (PageAnon(page))
2076 return MM_ANONPAGES;
2077 return mm_counter_file(page);
2078 }
2079
get_mm_rss(struct mm_struct * mm)2080 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2081 {
2082 return get_mm_counter(mm, MM_FILEPAGES) +
2083 get_mm_counter(mm, MM_ANONPAGES) +
2084 get_mm_counter(mm, MM_SHMEMPAGES);
2085 }
2086
get_mm_hiwater_rss(struct mm_struct * mm)2087 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2088 {
2089 return max(mm->hiwater_rss, get_mm_rss(mm));
2090 }
2091
get_mm_hiwater_vm(struct mm_struct * mm)2092 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2093 {
2094 return max(mm->hiwater_vm, mm->total_vm);
2095 }
2096
update_hiwater_rss(struct mm_struct * mm)2097 static inline void update_hiwater_rss(struct mm_struct *mm)
2098 {
2099 unsigned long _rss = get_mm_rss(mm);
2100
2101 if ((mm)->hiwater_rss < _rss)
2102 (mm)->hiwater_rss = _rss;
2103 }
2104
update_hiwater_vm(struct mm_struct * mm)2105 static inline void update_hiwater_vm(struct mm_struct *mm)
2106 {
2107 if (mm->hiwater_vm < mm->total_vm)
2108 mm->hiwater_vm = mm->total_vm;
2109 }
2110
reset_mm_hiwater_rss(struct mm_struct * mm)2111 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2112 {
2113 mm->hiwater_rss = get_mm_rss(mm);
2114 }
2115
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2116 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2117 struct mm_struct *mm)
2118 {
2119 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2120
2121 if (*maxrss < hiwater_rss)
2122 *maxrss = hiwater_rss;
2123 }
2124
2125 #if defined(SPLIT_RSS_COUNTING)
2126 void sync_mm_rss(struct mm_struct *mm);
2127 #else
sync_mm_rss(struct mm_struct * mm)2128 static inline void sync_mm_rss(struct mm_struct *mm)
2129 {
2130 }
2131 #endif
2132
2133 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2134 static inline int pte_special(pte_t pte)
2135 {
2136 return 0;
2137 }
2138
pte_mkspecial(pte_t pte)2139 static inline pte_t pte_mkspecial(pte_t pte)
2140 {
2141 return pte;
2142 }
2143 #endif
2144
2145 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2146 static inline int pte_devmap(pte_t pte)
2147 {
2148 return 0;
2149 }
2150 #endif
2151
2152 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2153
2154 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2155 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2156 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2157 spinlock_t **ptl)
2158 {
2159 pte_t *ptep;
2160 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2161 return ptep;
2162 }
2163
2164 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2165 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2166 unsigned long address)
2167 {
2168 return 0;
2169 }
2170 #else
2171 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2172 #endif
2173
2174 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2175 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2176 unsigned long address)
2177 {
2178 return 0;
2179 }
mm_inc_nr_puds(struct mm_struct * mm)2180 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2181 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2182
2183 #else
2184 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2185
mm_inc_nr_puds(struct mm_struct * mm)2186 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2187 {
2188 if (mm_pud_folded(mm))
2189 return;
2190 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2191 }
2192
mm_dec_nr_puds(struct mm_struct * mm)2193 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2194 {
2195 if (mm_pud_folded(mm))
2196 return;
2197 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2198 }
2199 #endif
2200
2201 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2202 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2203 unsigned long address)
2204 {
2205 return 0;
2206 }
2207
mm_inc_nr_pmds(struct mm_struct * mm)2208 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2209 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2210
2211 #else
2212 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2213
mm_inc_nr_pmds(struct mm_struct * mm)2214 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2215 {
2216 if (mm_pmd_folded(mm))
2217 return;
2218 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2219 }
2220
mm_dec_nr_pmds(struct mm_struct * mm)2221 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2222 {
2223 if (mm_pmd_folded(mm))
2224 return;
2225 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2226 }
2227 #endif
2228
2229 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2230 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2231 {
2232 atomic_long_set(&mm->pgtables_bytes, 0);
2233 }
2234
mm_pgtables_bytes(const struct mm_struct * mm)2235 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2236 {
2237 return atomic_long_read(&mm->pgtables_bytes);
2238 }
2239
mm_inc_nr_ptes(struct mm_struct * mm)2240 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2241 {
2242 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2243 }
2244
mm_dec_nr_ptes(struct mm_struct * mm)2245 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2246 {
2247 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2248 }
2249 #else
2250
mm_pgtables_bytes_init(struct mm_struct * mm)2251 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2252 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2253 {
2254 return 0;
2255 }
2256
mm_inc_nr_ptes(struct mm_struct * mm)2257 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2258 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2259 #endif
2260
2261 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2262 int __pte_alloc_kernel(pmd_t *pmd);
2263
2264 #if defined(CONFIG_MMU)
2265
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2266 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2267 unsigned long address)
2268 {
2269 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2270 NULL : p4d_offset(pgd, address);
2271 }
2272
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2273 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2274 unsigned long address)
2275 {
2276 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2277 NULL : pud_offset(p4d, address);
2278 }
2279
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2280 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2281 {
2282 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2283 NULL: pmd_offset(pud, address);
2284 }
2285 #endif /* CONFIG_MMU */
2286
2287 #if USE_SPLIT_PTE_PTLOCKS
2288 #if ALLOC_SPLIT_PTLOCKS
2289 void __init ptlock_cache_init(void);
2290 extern bool ptlock_alloc(struct page *page);
2291 extern void ptlock_free(struct page *page);
2292
ptlock_ptr(struct page * page)2293 static inline spinlock_t *ptlock_ptr(struct page *page)
2294 {
2295 return page->ptl;
2296 }
2297 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2298 static inline void ptlock_cache_init(void)
2299 {
2300 }
2301
ptlock_alloc(struct page * page)2302 static inline bool ptlock_alloc(struct page *page)
2303 {
2304 return true;
2305 }
2306
ptlock_free(struct page * page)2307 static inline void ptlock_free(struct page *page)
2308 {
2309 }
2310
ptlock_ptr(struct page * page)2311 static inline spinlock_t *ptlock_ptr(struct page *page)
2312 {
2313 return &page->ptl;
2314 }
2315 #endif /* ALLOC_SPLIT_PTLOCKS */
2316
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2317 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2318 {
2319 return ptlock_ptr(pmd_page(*pmd));
2320 }
2321
ptlock_init(struct page * page)2322 static inline bool ptlock_init(struct page *page)
2323 {
2324 /*
2325 * prep_new_page() initialize page->private (and therefore page->ptl)
2326 * with 0. Make sure nobody took it in use in between.
2327 *
2328 * It can happen if arch try to use slab for page table allocation:
2329 * slab code uses page->slab_cache, which share storage with page->ptl.
2330 */
2331 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2332 if (!ptlock_alloc(page))
2333 return false;
2334 spin_lock_init(ptlock_ptr(page));
2335 return true;
2336 }
2337
2338 #else /* !USE_SPLIT_PTE_PTLOCKS */
2339 /*
2340 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2341 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2342 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2343 {
2344 return &mm->page_table_lock;
2345 }
ptlock_cache_init(void)2346 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)2347 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)2348 static inline void ptlock_free(struct page *page) {}
2349 #endif /* USE_SPLIT_PTE_PTLOCKS */
2350
pgtable_init(void)2351 static inline void pgtable_init(void)
2352 {
2353 ptlock_cache_init();
2354 pgtable_cache_init();
2355 }
2356
pgtable_pte_page_ctor(struct page * page)2357 static inline bool pgtable_pte_page_ctor(struct page *page)
2358 {
2359 if (!ptlock_init(page))
2360 return false;
2361 __SetPageTable(page);
2362 inc_lruvec_page_state(page, NR_PAGETABLE);
2363 return true;
2364 }
2365
pgtable_pte_page_dtor(struct page * page)2366 static inline void pgtable_pte_page_dtor(struct page *page)
2367 {
2368 ptlock_free(page);
2369 __ClearPageTable(page);
2370 dec_lruvec_page_state(page, NR_PAGETABLE);
2371 }
2372
2373 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2374 ({ \
2375 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2376 pte_t *__pte = pte_offset_map(pmd, address); \
2377 *(ptlp) = __ptl; \
2378 spin_lock(__ptl); \
2379 __pte; \
2380 })
2381
2382 #define pte_unmap_unlock(pte, ptl) do { \
2383 spin_unlock(ptl); \
2384 pte_unmap(pte); \
2385 } while (0)
2386
2387 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2388
2389 #define pte_alloc_map(mm, pmd, address) \
2390 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2391
2392 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2393 (pte_alloc(mm, pmd) ? \
2394 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2395
2396 #define pte_alloc_kernel(pmd, address) \
2397 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2398 NULL: pte_offset_kernel(pmd, address))
2399
2400 #if USE_SPLIT_PMD_PTLOCKS
2401
pmd_to_page(pmd_t * pmd)2402 static struct page *pmd_to_page(pmd_t *pmd)
2403 {
2404 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2405 return virt_to_page((void *)((unsigned long) pmd & mask));
2406 }
2407
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2408 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2409 {
2410 return ptlock_ptr(pmd_to_page(pmd));
2411 }
2412
pmd_ptlock_init(struct page * page)2413 static inline bool pmd_ptlock_init(struct page *page)
2414 {
2415 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2416 page->pmd_huge_pte = NULL;
2417 #endif
2418 return ptlock_init(page);
2419 }
2420
pmd_ptlock_free(struct page * page)2421 static inline void pmd_ptlock_free(struct page *page)
2422 {
2423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2424 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2425 #endif
2426 ptlock_free(page);
2427 }
2428
2429 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2430
2431 #else
2432
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2433 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2434 {
2435 return &mm->page_table_lock;
2436 }
2437
pmd_ptlock_init(struct page * page)2438 static inline bool pmd_ptlock_init(struct page *page) { return true; }
pmd_ptlock_free(struct page * page)2439 static inline void pmd_ptlock_free(struct page *page) {}
2440
2441 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2442
2443 #endif
2444
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2445 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2446 {
2447 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2448 spin_lock(ptl);
2449 return ptl;
2450 }
2451
pgtable_pmd_page_ctor(struct page * page)2452 static inline bool pgtable_pmd_page_ctor(struct page *page)
2453 {
2454 if (!pmd_ptlock_init(page))
2455 return false;
2456 __SetPageTable(page);
2457 inc_lruvec_page_state(page, NR_PAGETABLE);
2458 return true;
2459 }
2460
pgtable_pmd_page_dtor(struct page * page)2461 static inline void pgtable_pmd_page_dtor(struct page *page)
2462 {
2463 pmd_ptlock_free(page);
2464 __ClearPageTable(page);
2465 dec_lruvec_page_state(page, NR_PAGETABLE);
2466 }
2467
2468 /*
2469 * No scalability reason to split PUD locks yet, but follow the same pattern
2470 * as the PMD locks to make it easier if we decide to. The VM should not be
2471 * considered ready to switch to split PUD locks yet; there may be places
2472 * which need to be converted from page_table_lock.
2473 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2474 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2475 {
2476 return &mm->page_table_lock;
2477 }
2478
pud_lock(struct mm_struct * mm,pud_t * pud)2479 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2480 {
2481 spinlock_t *ptl = pud_lockptr(mm, pud);
2482
2483 spin_lock(ptl);
2484 return ptl;
2485 }
2486
2487 extern void __init pagecache_init(void);
2488 extern void __init free_area_init_memoryless_node(int nid);
2489 extern void free_initmem(void);
2490
2491 /*
2492 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2493 * into the buddy system. The freed pages will be poisoned with pattern
2494 * "poison" if it's within range [0, UCHAR_MAX].
2495 * Return pages freed into the buddy system.
2496 */
2497 extern unsigned long free_reserved_area(void *start, void *end,
2498 int poison, const char *s);
2499
2500 extern void adjust_managed_page_count(struct page *page, long count);
2501 extern void mem_init_print_info(void);
2502
2503 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2504
2505 /* Free the reserved page into the buddy system, so it gets managed. */
free_reserved_page(struct page * page)2506 static inline void free_reserved_page(struct page *page)
2507 {
2508 ClearPageReserved(page);
2509 init_page_count(page);
2510 __free_page(page);
2511 adjust_managed_page_count(page, 1);
2512 }
2513 #define free_highmem_page(page) free_reserved_page(page)
2514
mark_page_reserved(struct page * page)2515 static inline void mark_page_reserved(struct page *page)
2516 {
2517 SetPageReserved(page);
2518 adjust_managed_page_count(page, -1);
2519 }
2520
2521 /*
2522 * Default method to free all the __init memory into the buddy system.
2523 * The freed pages will be poisoned with pattern "poison" if it's within
2524 * range [0, UCHAR_MAX].
2525 * Return pages freed into the buddy system.
2526 */
free_initmem_default(int poison)2527 static inline unsigned long free_initmem_default(int poison)
2528 {
2529 extern char __init_begin[], __init_end[];
2530
2531 return free_reserved_area(&__init_begin, &__init_end,
2532 poison, "unused kernel image (initmem)");
2533 }
2534
get_num_physpages(void)2535 static inline unsigned long get_num_physpages(void)
2536 {
2537 int nid;
2538 unsigned long phys_pages = 0;
2539
2540 for_each_online_node(nid)
2541 phys_pages += node_present_pages(nid);
2542
2543 return phys_pages;
2544 }
2545
2546 /*
2547 * Using memblock node mappings, an architecture may initialise its
2548 * zones, allocate the backing mem_map and account for memory holes in an
2549 * architecture independent manner.
2550 *
2551 * An architecture is expected to register range of page frames backed by
2552 * physical memory with memblock_add[_node]() before calling
2553 * free_area_init() passing in the PFN each zone ends at. At a basic
2554 * usage, an architecture is expected to do something like
2555 *
2556 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2557 * max_highmem_pfn};
2558 * for_each_valid_physical_page_range()
2559 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2560 * free_area_init(max_zone_pfns);
2561 */
2562 void free_area_init(unsigned long *max_zone_pfn);
2563 unsigned long node_map_pfn_alignment(void);
2564 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2565 unsigned long end_pfn);
2566 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2567 unsigned long end_pfn);
2568 extern void get_pfn_range_for_nid(unsigned int nid,
2569 unsigned long *start_pfn, unsigned long *end_pfn);
2570 extern unsigned long find_min_pfn_with_active_regions(void);
2571
2572 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)2573 static inline int early_pfn_to_nid(unsigned long pfn)
2574 {
2575 return 0;
2576 }
2577 #else
2578 /* please see mm/page_alloc.c */
2579 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2580 #endif
2581
2582 extern void set_dma_reserve(unsigned long new_dma_reserve);
2583 extern void memmap_init_range(unsigned long, int, unsigned long,
2584 unsigned long, unsigned long, enum meminit_context,
2585 struct vmem_altmap *, int migratetype);
2586 extern void setup_per_zone_wmarks(void);
2587 extern void calculate_min_free_kbytes(void);
2588 extern int __meminit init_per_zone_wmark_min(void);
2589 extern void mem_init(void);
2590 extern void __init mmap_init(void);
2591 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2592 extern long si_mem_available(void);
2593 extern void si_meminfo(struct sysinfo * val);
2594 extern void si_meminfo_node(struct sysinfo *val, int nid);
2595 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2596 extern unsigned long arch_reserved_kernel_pages(void);
2597 #endif
2598
2599 extern __printf(3, 4)
2600 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2601
2602 extern void setup_per_cpu_pageset(void);
2603
2604 /* page_alloc.c */
2605 extern int min_free_kbytes;
2606 extern int watermark_boost_factor;
2607 extern int watermark_scale_factor;
2608 extern bool arch_has_descending_max_zone_pfns(void);
2609
2610 /* nommu.c */
2611 extern atomic_long_t mmap_pages_allocated;
2612 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2613
2614 /* interval_tree.c */
2615 void vma_interval_tree_insert(struct vm_area_struct *node,
2616 struct rb_root_cached *root);
2617 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2618 struct vm_area_struct *prev,
2619 struct rb_root_cached *root);
2620 void vma_interval_tree_remove(struct vm_area_struct *node,
2621 struct rb_root_cached *root);
2622 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2623 unsigned long start, unsigned long last);
2624 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2625 unsigned long start, unsigned long last);
2626
2627 #define vma_interval_tree_foreach(vma, root, start, last) \
2628 for (vma = vma_interval_tree_iter_first(root, start, last); \
2629 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2630
2631 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2632 struct rb_root_cached *root);
2633 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2634 struct rb_root_cached *root);
2635 struct anon_vma_chain *
2636 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2637 unsigned long start, unsigned long last);
2638 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2639 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2640 #ifdef CONFIG_DEBUG_VM_RB
2641 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2642 #endif
2643
2644 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2645 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2646 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2647
2648 /* mmap.c */
2649 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2650 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2651 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2652 struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2653 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2654 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2655 {
2656 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2657 }
2658 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2659 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2660 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2661 struct mempolicy *, struct vm_userfaultfd_ctx);
2662 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2663 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2664 unsigned long addr, int new_below);
2665 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2666 unsigned long addr, int new_below);
2667 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2668 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2669 struct rb_node **, struct rb_node *);
2670 extern void unlink_file_vma(struct vm_area_struct *);
2671 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2672 unsigned long addr, unsigned long len, pgoff_t pgoff,
2673 bool *need_rmap_locks);
2674 extern void exit_mmap(struct mm_struct *);
2675
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2676 static inline int check_data_rlimit(unsigned long rlim,
2677 unsigned long new,
2678 unsigned long start,
2679 unsigned long end_data,
2680 unsigned long start_data)
2681 {
2682 if (rlim < RLIM_INFINITY) {
2683 if (((new - start) + (end_data - start_data)) > rlim)
2684 return -ENOSPC;
2685 }
2686
2687 return 0;
2688 }
2689
2690 extern int mm_take_all_locks(struct mm_struct *mm);
2691 extern void mm_drop_all_locks(struct mm_struct *mm);
2692
2693 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2694 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2695 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2696 extern struct file *get_task_exe_file(struct task_struct *task);
2697
2698 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2699 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2700
2701 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2702 const struct vm_special_mapping *sm);
2703 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2704 unsigned long addr, unsigned long len,
2705 unsigned long flags,
2706 const struct vm_special_mapping *spec);
2707 /* This is an obsolete alternative to _install_special_mapping. */
2708 extern int install_special_mapping(struct mm_struct *mm,
2709 unsigned long addr, unsigned long len,
2710 unsigned long flags, struct page **pages);
2711
2712 unsigned long randomize_stack_top(unsigned long stack_top);
2713
2714 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2715
2716 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2717 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2718 struct list_head *uf);
2719 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2720 unsigned long len, unsigned long prot, unsigned long flags,
2721 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2722 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2723 struct list_head *uf, bool downgrade);
2724 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2725 struct list_head *uf);
2726 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2727
2728 #ifdef CONFIG_MMU
2729 extern int __mm_populate(unsigned long addr, unsigned long len,
2730 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2731 static inline void mm_populate(unsigned long addr, unsigned long len)
2732 {
2733 /* Ignore errors */
2734 (void) __mm_populate(addr, len, 1);
2735 }
2736 #else
mm_populate(unsigned long addr,unsigned long len)2737 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2738 #endif
2739
2740 /* These take the mm semaphore themselves */
2741 extern int __must_check vm_brk(unsigned long, unsigned long);
2742 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2743 extern int vm_munmap(unsigned long, size_t);
2744 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2745 unsigned long, unsigned long,
2746 unsigned long, unsigned long);
2747
2748 struct vm_unmapped_area_info {
2749 #define VM_UNMAPPED_AREA_TOPDOWN 1
2750 unsigned long flags;
2751 unsigned long length;
2752 unsigned long low_limit;
2753 unsigned long high_limit;
2754 unsigned long align_mask;
2755 unsigned long align_offset;
2756 };
2757
2758 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2759
2760 /* truncate.c */
2761 extern void truncate_inode_pages(struct address_space *, loff_t);
2762 extern void truncate_inode_pages_range(struct address_space *,
2763 loff_t lstart, loff_t lend);
2764 extern void truncate_inode_pages_final(struct address_space *);
2765
2766 /* generic vm_area_ops exported for stackable file systems */
2767 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2768 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2769 pgoff_t start_pgoff, pgoff_t end_pgoff);
2770 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2771
2772 extern unsigned long stack_guard_gap;
2773 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2774 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2775
2776 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2777 extern int expand_downwards(struct vm_area_struct *vma,
2778 unsigned long address);
2779 #if VM_GROWSUP
2780 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2781 #else
2782 #define expand_upwards(vma, address) (0)
2783 #endif
2784
2785 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2786 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2787 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2788 struct vm_area_struct **pprev);
2789
2790 /**
2791 * find_vma_intersection() - Look up the first VMA which intersects the interval
2792 * @mm: The process address space.
2793 * @start_addr: The inclusive start user address.
2794 * @end_addr: The exclusive end user address.
2795 *
2796 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2797 * start_addr < end_addr.
2798 */
2799 static inline
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2800 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2801 unsigned long start_addr,
2802 unsigned long end_addr)
2803 {
2804 struct vm_area_struct *vma = find_vma(mm, start_addr);
2805
2806 if (vma && end_addr <= vma->vm_start)
2807 vma = NULL;
2808 return vma;
2809 }
2810
2811 /**
2812 * vma_lookup() - Find a VMA at a specific address
2813 * @mm: The process address space.
2814 * @addr: The user address.
2815 *
2816 * Return: The vm_area_struct at the given address, %NULL otherwise.
2817 */
2818 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)2819 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2820 {
2821 struct vm_area_struct *vma = find_vma(mm, addr);
2822
2823 if (vma && addr < vma->vm_start)
2824 vma = NULL;
2825
2826 return vma;
2827 }
2828
vm_start_gap(struct vm_area_struct * vma)2829 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2830 {
2831 unsigned long vm_start = vma->vm_start;
2832
2833 if (vma->vm_flags & VM_GROWSDOWN) {
2834 vm_start -= stack_guard_gap;
2835 if (vm_start > vma->vm_start)
2836 vm_start = 0;
2837 }
2838 return vm_start;
2839 }
2840
vm_end_gap(struct vm_area_struct * vma)2841 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2842 {
2843 unsigned long vm_end = vma->vm_end;
2844
2845 if (vma->vm_flags & VM_GROWSUP) {
2846 vm_end += stack_guard_gap;
2847 if (vm_end < vma->vm_end)
2848 vm_end = -PAGE_SIZE;
2849 }
2850 return vm_end;
2851 }
2852
vma_pages(struct vm_area_struct * vma)2853 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2854 {
2855 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2856 }
2857
2858 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2859 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2860 unsigned long vm_start, unsigned long vm_end)
2861 {
2862 struct vm_area_struct *vma = find_vma(mm, vm_start);
2863
2864 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2865 vma = NULL;
2866
2867 return vma;
2868 }
2869
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2870 static inline bool range_in_vma(struct vm_area_struct *vma,
2871 unsigned long start, unsigned long end)
2872 {
2873 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2874 }
2875
2876 #ifdef CONFIG_MMU
2877 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2878 void vma_set_page_prot(struct vm_area_struct *vma);
2879 #else
vm_get_page_prot(unsigned long vm_flags)2880 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2881 {
2882 return __pgprot(0);
2883 }
vma_set_page_prot(struct vm_area_struct * vma)2884 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2885 {
2886 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2887 }
2888 #endif
2889
2890 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2891
2892 #ifdef CONFIG_NUMA_BALANCING
2893 unsigned long change_prot_numa(struct vm_area_struct *vma,
2894 unsigned long start, unsigned long end);
2895 #endif
2896
2897 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2898 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2899 unsigned long pfn, unsigned long size, pgprot_t);
2900 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2901 unsigned long pfn, unsigned long size, pgprot_t prot);
2902 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2903 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2904 struct page **pages, unsigned long *num);
2905 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2906 unsigned long num);
2907 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2908 unsigned long num);
2909 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2910 unsigned long pfn);
2911 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2912 unsigned long pfn, pgprot_t pgprot);
2913 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2914 pfn_t pfn);
2915 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2916 pfn_t pfn, pgprot_t pgprot);
2917 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2918 unsigned long addr, pfn_t pfn);
2919 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2920
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2921 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2922 unsigned long addr, struct page *page)
2923 {
2924 int err = vm_insert_page(vma, addr, page);
2925
2926 if (err == -ENOMEM)
2927 return VM_FAULT_OOM;
2928 if (err < 0 && err != -EBUSY)
2929 return VM_FAULT_SIGBUS;
2930
2931 return VM_FAULT_NOPAGE;
2932 }
2933
2934 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2935 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2936 unsigned long addr, unsigned long pfn,
2937 unsigned long size, pgprot_t prot)
2938 {
2939 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2940 }
2941 #endif
2942
vmf_error(int err)2943 static inline vm_fault_t vmf_error(int err)
2944 {
2945 if (err == -ENOMEM)
2946 return VM_FAULT_OOM;
2947 return VM_FAULT_SIGBUS;
2948 }
2949
2950 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2951 unsigned int foll_flags);
2952
2953 #define FOLL_WRITE 0x01 /* check pte is writable */
2954 #define FOLL_TOUCH 0x02 /* mark page accessed */
2955 #define FOLL_GET 0x04 /* do get_page on page */
2956 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2957 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2958 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2959 * and return without waiting upon it */
2960 #define FOLL_POPULATE 0x40 /* fault in pages (with FOLL_MLOCK) */
2961 #define FOLL_NOFAULT 0x80 /* do not fault in pages */
2962 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2963 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2964 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2965 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2966 #define FOLL_MLOCK 0x1000 /* lock present pages */
2967 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2968 #define FOLL_COW 0x4000 /* internal GUP flag */
2969 #define FOLL_ANON 0x8000 /* don't do file mappings */
2970 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2971 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2972 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2973 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2974
2975 /*
2976 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2977 * other. Here is what they mean, and how to use them:
2978 *
2979 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2980 * period _often_ under userspace control. This is in contrast to
2981 * iov_iter_get_pages(), whose usages are transient.
2982 *
2983 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2984 * lifetime enforced by the filesystem and we need guarantees that longterm
2985 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2986 * the filesystem. Ideas for this coordination include revoking the longterm
2987 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2988 * added after the problem with filesystems was found FS DAX VMAs are
2989 * specifically failed. Filesystem pages are still subject to bugs and use of
2990 * FOLL_LONGTERM should be avoided on those pages.
2991 *
2992 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2993 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2994 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2995 * is due to an incompatibility with the FS DAX check and
2996 * FAULT_FLAG_ALLOW_RETRY.
2997 *
2998 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2999 * that region. And so, CMA attempts to migrate the page before pinning, when
3000 * FOLL_LONGTERM is specified.
3001 *
3002 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
3003 * but an additional pin counting system) will be invoked. This is intended for
3004 * anything that gets a page reference and then touches page data (for example,
3005 * Direct IO). This lets the filesystem know that some non-file-system entity is
3006 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
3007 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
3008 * a call to unpin_user_page().
3009 *
3010 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
3011 * and separate refcounting mechanisms, however, and that means that each has
3012 * its own acquire and release mechanisms:
3013 *
3014 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
3015 *
3016 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
3017 *
3018 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
3019 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
3020 * calls applied to them, and that's perfectly OK. This is a constraint on the
3021 * callers, not on the pages.)
3022 *
3023 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
3024 * directly by the caller. That's in order to help avoid mismatches when
3025 * releasing pages: get_user_pages*() pages must be released via put_page(),
3026 * while pin_user_pages*() pages must be released via unpin_user_page().
3027 *
3028 * Please see Documentation/core-api/pin_user_pages.rst for more information.
3029 */
3030
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3031 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3032 {
3033 if (vm_fault & VM_FAULT_OOM)
3034 return -ENOMEM;
3035 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3036 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3037 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3038 return -EFAULT;
3039 return 0;
3040 }
3041
3042 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3043 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3044 unsigned long size, pte_fn_t fn, void *data);
3045 extern int apply_to_existing_page_range(struct mm_struct *mm,
3046 unsigned long address, unsigned long size,
3047 pte_fn_t fn, void *data);
3048
3049 extern void init_mem_debugging_and_hardening(void);
3050 #ifdef CONFIG_PAGE_POISONING
3051 extern void __kernel_poison_pages(struct page *page, int numpages);
3052 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3053 extern bool _page_poisoning_enabled_early;
3054 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3055 static inline bool page_poisoning_enabled(void)
3056 {
3057 return _page_poisoning_enabled_early;
3058 }
3059 /*
3060 * For use in fast paths after init_mem_debugging() has run, or when a
3061 * false negative result is not harmful when called too early.
3062 */
page_poisoning_enabled_static(void)3063 static inline bool page_poisoning_enabled_static(void)
3064 {
3065 return static_branch_unlikely(&_page_poisoning_enabled);
3066 }
kernel_poison_pages(struct page * page,int numpages)3067 static inline void kernel_poison_pages(struct page *page, int numpages)
3068 {
3069 if (page_poisoning_enabled_static())
3070 __kernel_poison_pages(page, numpages);
3071 }
kernel_unpoison_pages(struct page * page,int numpages)3072 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3073 {
3074 if (page_poisoning_enabled_static())
3075 __kernel_unpoison_pages(page, numpages);
3076 }
3077 #else
page_poisoning_enabled(void)3078 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3079 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3080 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3081 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3082 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3083 #endif
3084
3085 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3086 static inline bool want_init_on_alloc(gfp_t flags)
3087 {
3088 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3089 &init_on_alloc))
3090 return true;
3091 return flags & __GFP_ZERO;
3092 }
3093
3094 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3095 static inline bool want_init_on_free(void)
3096 {
3097 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3098 &init_on_free);
3099 }
3100
3101 extern bool _debug_pagealloc_enabled_early;
3102 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3103
debug_pagealloc_enabled(void)3104 static inline bool debug_pagealloc_enabled(void)
3105 {
3106 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3107 _debug_pagealloc_enabled_early;
3108 }
3109
3110 /*
3111 * For use in fast paths after init_debug_pagealloc() has run, or when a
3112 * false negative result is not harmful when called too early.
3113 */
debug_pagealloc_enabled_static(void)3114 static inline bool debug_pagealloc_enabled_static(void)
3115 {
3116 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3117 return false;
3118
3119 return static_branch_unlikely(&_debug_pagealloc_enabled);
3120 }
3121
3122 #ifdef CONFIG_DEBUG_PAGEALLOC
3123 /*
3124 * To support DEBUG_PAGEALLOC architecture must ensure that
3125 * __kernel_map_pages() never fails
3126 */
3127 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3128
debug_pagealloc_map_pages(struct page * page,int numpages)3129 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3130 {
3131 if (debug_pagealloc_enabled_static())
3132 __kernel_map_pages(page, numpages, 1);
3133 }
3134
debug_pagealloc_unmap_pages(struct page * page,int numpages)3135 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3136 {
3137 if (debug_pagealloc_enabled_static())
3138 __kernel_map_pages(page, numpages, 0);
3139 }
3140 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3141 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3142 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3143 #endif /* CONFIG_DEBUG_PAGEALLOC */
3144
3145 #ifdef __HAVE_ARCH_GATE_AREA
3146 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3147 extern int in_gate_area_no_mm(unsigned long addr);
3148 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3149 #else
get_gate_vma(struct mm_struct * mm)3150 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3151 {
3152 return NULL;
3153 }
in_gate_area_no_mm(unsigned long addr)3154 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3155 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3156 {
3157 return 0;
3158 }
3159 #endif /* __HAVE_ARCH_GATE_AREA */
3160
3161 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3162
3163 #ifdef CONFIG_SYSCTL
3164 extern int sysctl_drop_caches;
3165 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3166 loff_t *);
3167 #endif
3168
3169 void drop_slab(void);
3170 void drop_slab_node(int nid);
3171
3172 #ifndef CONFIG_MMU
3173 #define randomize_va_space 0
3174 #else
3175 extern int randomize_va_space;
3176 #endif
3177
3178 const char * arch_vma_name(struct vm_area_struct *vma);
3179 #ifdef CONFIG_MMU
3180 void print_vma_addr(char *prefix, unsigned long rip);
3181 #else
print_vma_addr(char * prefix,unsigned long rip)3182 static inline void print_vma_addr(char *prefix, unsigned long rip)
3183 {
3184 }
3185 #endif
3186
3187 int vmemmap_remap_free(unsigned long start, unsigned long end,
3188 unsigned long reuse);
3189 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3190 unsigned long reuse, gfp_t gfp_mask);
3191
3192 void *sparse_buffer_alloc(unsigned long size);
3193 struct page * __populate_section_memmap(unsigned long pfn,
3194 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3195 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3196 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3197 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3198 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3199 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3200 struct vmem_altmap *altmap);
3201 void *vmemmap_alloc_block(unsigned long size, int node);
3202 struct vmem_altmap;
3203 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3204 struct vmem_altmap *altmap);
3205 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3206 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3207 int node, struct vmem_altmap *altmap);
3208 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3209 struct vmem_altmap *altmap);
3210 void vmemmap_populate_print_last(void);
3211 #ifdef CONFIG_MEMORY_HOTPLUG
3212 void vmemmap_free(unsigned long start, unsigned long end,
3213 struct vmem_altmap *altmap);
3214 #endif
3215 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3216 unsigned long nr_pages);
3217
3218 enum mf_flags {
3219 MF_COUNT_INCREASED = 1 << 0,
3220 MF_ACTION_REQUIRED = 1 << 1,
3221 MF_MUST_KILL = 1 << 2,
3222 MF_SOFT_OFFLINE = 1 << 3,
3223 };
3224 extern int memory_failure(unsigned long pfn, int flags);
3225 extern void memory_failure_queue(unsigned long pfn, int flags);
3226 extern void memory_failure_queue_kick(int cpu);
3227 extern int unpoison_memory(unsigned long pfn);
3228 extern int sysctl_memory_failure_early_kill;
3229 extern int sysctl_memory_failure_recovery;
3230 extern void shake_page(struct page *p);
3231 extern atomic_long_t num_poisoned_pages __read_mostly;
3232 extern int soft_offline_page(unsigned long pfn, int flags);
3233
3234
3235 /*
3236 * Error handlers for various types of pages.
3237 */
3238 enum mf_result {
3239 MF_IGNORED, /* Error: cannot be handled */
3240 MF_FAILED, /* Error: handling failed */
3241 MF_DELAYED, /* Will be handled later */
3242 MF_RECOVERED, /* Successfully recovered */
3243 };
3244
3245 enum mf_action_page_type {
3246 MF_MSG_KERNEL,
3247 MF_MSG_KERNEL_HIGH_ORDER,
3248 MF_MSG_SLAB,
3249 MF_MSG_DIFFERENT_COMPOUND,
3250 MF_MSG_POISONED_HUGE,
3251 MF_MSG_HUGE,
3252 MF_MSG_FREE_HUGE,
3253 MF_MSG_NON_PMD_HUGE,
3254 MF_MSG_UNMAP_FAILED,
3255 MF_MSG_DIRTY_SWAPCACHE,
3256 MF_MSG_CLEAN_SWAPCACHE,
3257 MF_MSG_DIRTY_MLOCKED_LRU,
3258 MF_MSG_CLEAN_MLOCKED_LRU,
3259 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3260 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3261 MF_MSG_DIRTY_LRU,
3262 MF_MSG_CLEAN_LRU,
3263 MF_MSG_TRUNCATED_LRU,
3264 MF_MSG_BUDDY,
3265 MF_MSG_BUDDY_2ND,
3266 MF_MSG_DAX,
3267 MF_MSG_UNSPLIT_THP,
3268 MF_MSG_UNKNOWN,
3269 };
3270
3271 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3272 extern void clear_huge_page(struct page *page,
3273 unsigned long addr_hint,
3274 unsigned int pages_per_huge_page);
3275 extern void copy_user_huge_page(struct page *dst, struct page *src,
3276 unsigned long addr_hint,
3277 struct vm_area_struct *vma,
3278 unsigned int pages_per_huge_page);
3279 extern long copy_huge_page_from_user(struct page *dst_page,
3280 const void __user *usr_src,
3281 unsigned int pages_per_huge_page,
3282 bool allow_pagefault);
3283
3284 /**
3285 * vma_is_special_huge - Are transhuge page-table entries considered special?
3286 * @vma: Pointer to the struct vm_area_struct to consider
3287 *
3288 * Whether transhuge page-table entries are considered "special" following
3289 * the definition in vm_normal_page().
3290 *
3291 * Return: true if transhuge page-table entries should be considered special,
3292 * false otherwise.
3293 */
vma_is_special_huge(const struct vm_area_struct * vma)3294 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3295 {
3296 return vma_is_dax(vma) || (vma->vm_file &&
3297 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3298 }
3299
3300 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3301
3302 #ifdef CONFIG_DEBUG_PAGEALLOC
3303 extern unsigned int _debug_guardpage_minorder;
3304 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3305
debug_guardpage_minorder(void)3306 static inline unsigned int debug_guardpage_minorder(void)
3307 {
3308 return _debug_guardpage_minorder;
3309 }
3310
debug_guardpage_enabled(void)3311 static inline bool debug_guardpage_enabled(void)
3312 {
3313 return static_branch_unlikely(&_debug_guardpage_enabled);
3314 }
3315
page_is_guard(struct page * page)3316 static inline bool page_is_guard(struct page *page)
3317 {
3318 if (!debug_guardpage_enabled())
3319 return false;
3320
3321 return PageGuard(page);
3322 }
3323 #else
debug_guardpage_minorder(void)3324 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3325 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3326 static inline bool page_is_guard(struct page *page) { return false; }
3327 #endif /* CONFIG_DEBUG_PAGEALLOC */
3328
3329 #if MAX_NUMNODES > 1
3330 void __init setup_nr_node_ids(void);
3331 #else
setup_nr_node_ids(void)3332 static inline void setup_nr_node_ids(void) {}
3333 #endif
3334
3335 extern int memcmp_pages(struct page *page1, struct page *page2);
3336
pages_identical(struct page * page1,struct page * page2)3337 static inline int pages_identical(struct page *page1, struct page *page2)
3338 {
3339 return !memcmp_pages(page1, page2);
3340 }
3341
3342 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3343 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3344 pgoff_t first_index, pgoff_t nr,
3345 pgoff_t bitmap_pgoff,
3346 unsigned long *bitmap,
3347 pgoff_t *start,
3348 pgoff_t *end);
3349
3350 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3351 pgoff_t first_index, pgoff_t nr);
3352 #endif
3353
3354 extern int sysctl_nr_trim_pages;
3355
3356 #ifdef CONFIG_PRINTK
3357 void mem_dump_obj(void *object);
3358 #else
mem_dump_obj(void * object)3359 static inline void mem_dump_obj(void *object) {}
3360 #endif
3361
3362 /**
3363 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3364 * @seals: the seals to check
3365 * @vma: the vma to operate on
3366 *
3367 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3368 * the vma flags. Return 0 if check pass, or <0 for errors.
3369 */
seal_check_future_write(int seals,struct vm_area_struct * vma)3370 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3371 {
3372 if (seals & F_SEAL_FUTURE_WRITE) {
3373 /*
3374 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3375 * "future write" seal active.
3376 */
3377 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3378 return -EPERM;
3379
3380 /*
3381 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3382 * MAP_SHARED and read-only, take care to not allow mprotect to
3383 * revert protections on such mappings. Do this only for shared
3384 * mappings. For private mappings, don't need to mask
3385 * VM_MAYWRITE as we still want them to be COW-writable.
3386 */
3387 if (vma->vm_flags & VM_SHARED)
3388 vma->vm_flags &= ~(VM_MAYWRITE);
3389 }
3390
3391 return 0;
3392 }
3393
3394 #endif /* __KERNEL__ */
3395 #endif /* _LINUX_MM_H */
3396