1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/reboot.c
4 *
5 * Copyright (C) 2013 Linus Torvalds
6 */
7
8 #define pr_fmt(fmt) "reboot: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/ctype.h>
12 #include <linux/export.h>
13 #include <linux/kexec.h>
14 #include <linux/kmod.h>
15 #include <linux/kmsg_dump.h>
16 #include <linux/reboot.h>
17 #include <linux/suspend.h>
18 #include <linux/syscalls.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/uaccess.h>
21
22 /*
23 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
24 */
25
26 int C_A_D = 1;
27 struct pid *cad_pid;
28 EXPORT_SYMBOL(cad_pid);
29
30 #if defined(CONFIG_ARM)
31 #define DEFAULT_REBOOT_MODE = REBOOT_HARD
32 #else
33 #define DEFAULT_REBOOT_MODE
34 #endif
35 enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
36 EXPORT_SYMBOL_GPL(reboot_mode);
37 enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
38
39 /*
40 * This variable is used privately to keep track of whether or not
41 * reboot_type is still set to its default value (i.e., reboot= hasn't
42 * been set on the command line). This is needed so that we can
43 * suppress DMI scanning for reboot quirks. Without it, it's
44 * impossible to override a faulty reboot quirk without recompiling.
45 */
46 int reboot_default = 1;
47 int reboot_cpu;
48 enum reboot_type reboot_type = BOOT_ACPI;
49 int reboot_force;
50
51 /*
52 * If set, this is used for preparing the system to power off.
53 */
54
55 void (*pm_power_off_prepare)(void);
56 EXPORT_SYMBOL_GPL(pm_power_off_prepare);
57
58 /**
59 * emergency_restart - reboot the system
60 *
61 * Without shutting down any hardware or taking any locks
62 * reboot the system. This is called when we know we are in
63 * trouble so this is our best effort to reboot. This is
64 * safe to call in interrupt context.
65 */
emergency_restart(void)66 void emergency_restart(void)
67 {
68 kmsg_dump(KMSG_DUMP_EMERG);
69 machine_emergency_restart();
70 }
71 EXPORT_SYMBOL_GPL(emergency_restart);
72
kernel_restart_prepare(char * cmd)73 void kernel_restart_prepare(char *cmd)
74 {
75 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
76 system_state = SYSTEM_RESTART;
77 usermodehelper_disable();
78 device_shutdown();
79 }
80
81 /**
82 * register_reboot_notifier - Register function to be called at reboot time
83 * @nb: Info about notifier function to be called
84 *
85 * Registers a function with the list of functions
86 * to be called at reboot time.
87 *
88 * Currently always returns zero, as blocking_notifier_chain_register()
89 * always returns zero.
90 */
register_reboot_notifier(struct notifier_block * nb)91 int register_reboot_notifier(struct notifier_block *nb)
92 {
93 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
94 }
95 EXPORT_SYMBOL(register_reboot_notifier);
96
97 /**
98 * unregister_reboot_notifier - Unregister previously registered reboot notifier
99 * @nb: Hook to be unregistered
100 *
101 * Unregisters a previously registered reboot
102 * notifier function.
103 *
104 * Returns zero on success, or %-ENOENT on failure.
105 */
unregister_reboot_notifier(struct notifier_block * nb)106 int unregister_reboot_notifier(struct notifier_block *nb)
107 {
108 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
109 }
110 EXPORT_SYMBOL(unregister_reboot_notifier);
111
devm_unregister_reboot_notifier(struct device * dev,void * res)112 static void devm_unregister_reboot_notifier(struct device *dev, void *res)
113 {
114 WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
115 }
116
devm_register_reboot_notifier(struct device * dev,struct notifier_block * nb)117 int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
118 {
119 struct notifier_block **rcnb;
120 int ret;
121
122 rcnb = devres_alloc(devm_unregister_reboot_notifier,
123 sizeof(*rcnb), GFP_KERNEL);
124 if (!rcnb)
125 return -ENOMEM;
126
127 ret = register_reboot_notifier(nb);
128 if (!ret) {
129 *rcnb = nb;
130 devres_add(dev, rcnb);
131 } else {
132 devres_free(rcnb);
133 }
134
135 return ret;
136 }
137 EXPORT_SYMBOL(devm_register_reboot_notifier);
138
139 /*
140 * Notifier list for kernel code which wants to be called
141 * to restart the system.
142 */
143 static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
144
145 /**
146 * register_restart_handler - Register function to be called to reset
147 * the system
148 * @nb: Info about handler function to be called
149 * @nb->priority: Handler priority. Handlers should follow the
150 * following guidelines for setting priorities.
151 * 0: Restart handler of last resort,
152 * with limited restart capabilities
153 * 128: Default restart handler; use if no other
154 * restart handler is expected to be available,
155 * and/or if restart functionality is
156 * sufficient to restart the entire system
157 * 255: Highest priority restart handler, will
158 * preempt all other restart handlers
159 *
160 * Registers a function with code to be called to restart the
161 * system.
162 *
163 * Registered functions will be called from machine_restart as last
164 * step of the restart sequence (if the architecture specific
165 * machine_restart function calls do_kernel_restart - see below
166 * for details).
167 * Registered functions are expected to restart the system immediately.
168 * If more than one function is registered, the restart handler priority
169 * selects which function will be called first.
170 *
171 * Restart handlers are expected to be registered from non-architecture
172 * code, typically from drivers. A typical use case would be a system
173 * where restart functionality is provided through a watchdog. Multiple
174 * restart handlers may exist; for example, one restart handler might
175 * restart the entire system, while another only restarts the CPU.
176 * In such cases, the restart handler which only restarts part of the
177 * hardware is expected to register with low priority to ensure that
178 * it only runs if no other means to restart the system is available.
179 *
180 * Currently always returns zero, as atomic_notifier_chain_register()
181 * always returns zero.
182 */
register_restart_handler(struct notifier_block * nb)183 int register_restart_handler(struct notifier_block *nb)
184 {
185 return atomic_notifier_chain_register(&restart_handler_list, nb);
186 }
187 EXPORT_SYMBOL(register_restart_handler);
188
189 /**
190 * unregister_restart_handler - Unregister previously registered
191 * restart handler
192 * @nb: Hook to be unregistered
193 *
194 * Unregisters a previously registered restart handler function.
195 *
196 * Returns zero on success, or %-ENOENT on failure.
197 */
unregister_restart_handler(struct notifier_block * nb)198 int unregister_restart_handler(struct notifier_block *nb)
199 {
200 return atomic_notifier_chain_unregister(&restart_handler_list, nb);
201 }
202 EXPORT_SYMBOL(unregister_restart_handler);
203
204 /**
205 * do_kernel_restart - Execute kernel restart handler call chain
206 *
207 * Calls functions registered with register_restart_handler.
208 *
209 * Expected to be called from machine_restart as last step of the restart
210 * sequence.
211 *
212 * Restarts the system immediately if a restart handler function has been
213 * registered. Otherwise does nothing.
214 */
do_kernel_restart(char * cmd)215 void do_kernel_restart(char *cmd)
216 {
217 atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
218 }
219
migrate_to_reboot_cpu(void)220 void migrate_to_reboot_cpu(void)
221 {
222 /* The boot cpu is always logical cpu 0 */
223 int cpu = reboot_cpu;
224
225 cpu_hotplug_disable();
226
227 /* Make certain the cpu I'm about to reboot on is online */
228 if (!cpu_online(cpu))
229 cpu = cpumask_first(cpu_online_mask);
230
231 /* Prevent races with other tasks migrating this task */
232 current->flags |= PF_NO_SETAFFINITY;
233
234 /* Make certain I only run on the appropriate processor */
235 set_cpus_allowed_ptr(current, cpumask_of(cpu));
236 }
237
238 /**
239 * kernel_restart - reboot the system
240 * @cmd: pointer to buffer containing command to execute for restart
241 * or %NULL
242 *
243 * Shutdown everything and perform a clean reboot.
244 * This is not safe to call in interrupt context.
245 */
kernel_restart(char * cmd)246 void kernel_restart(char *cmd)
247 {
248 kernel_restart_prepare(cmd);
249 migrate_to_reboot_cpu();
250 syscore_shutdown();
251 if (!cmd)
252 pr_emerg("Restarting system\n");
253 else
254 pr_emerg("Restarting system with command '%s'\n", cmd);
255 kmsg_dump(KMSG_DUMP_SHUTDOWN);
256 machine_restart(cmd);
257 }
258 EXPORT_SYMBOL_GPL(kernel_restart);
259
kernel_shutdown_prepare(enum system_states state)260 static void kernel_shutdown_prepare(enum system_states state)
261 {
262 blocking_notifier_call_chain(&reboot_notifier_list,
263 (state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
264 system_state = state;
265 usermodehelper_disable();
266 device_shutdown();
267 }
268 /**
269 * kernel_halt - halt the system
270 *
271 * Shutdown everything and perform a clean system halt.
272 */
kernel_halt(void)273 void kernel_halt(void)
274 {
275 kernel_shutdown_prepare(SYSTEM_HALT);
276 migrate_to_reboot_cpu();
277 syscore_shutdown();
278 pr_emerg("System halted\n");
279 kmsg_dump(KMSG_DUMP_SHUTDOWN);
280 machine_halt();
281 }
282 EXPORT_SYMBOL_GPL(kernel_halt);
283
284 /**
285 * kernel_power_off - power_off the system
286 *
287 * Shutdown everything and perform a clean system power_off.
288 */
kernel_power_off(void)289 void kernel_power_off(void)
290 {
291 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
292 if (pm_power_off_prepare)
293 pm_power_off_prepare();
294 migrate_to_reboot_cpu();
295 syscore_shutdown();
296 pr_emerg("Power down\n");
297 kmsg_dump(KMSG_DUMP_SHUTDOWN);
298 machine_power_off();
299 }
300 EXPORT_SYMBOL_GPL(kernel_power_off);
301
302 DEFINE_MUTEX(system_transition_mutex);
303
304 /*
305 * Reboot system call: for obvious reasons only root may call it,
306 * and even root needs to set up some magic numbers in the registers
307 * so that some mistake won't make this reboot the whole machine.
308 * You can also set the meaning of the ctrl-alt-del-key here.
309 *
310 * reboot doesn't sync: do that yourself before calling this.
311 */
SYSCALL_DEFINE4(reboot,int,magic1,int,magic2,unsigned int,cmd,void __user *,arg)312 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
313 void __user *, arg)
314 {
315 struct pid_namespace *pid_ns = task_active_pid_ns(current);
316 char buffer[256];
317 int ret = 0;
318
319 /* We only trust the superuser with rebooting the system. */
320 if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
321 return -EPERM;
322
323 /* For safety, we require "magic" arguments. */
324 if (magic1 != LINUX_REBOOT_MAGIC1 ||
325 (magic2 != LINUX_REBOOT_MAGIC2 &&
326 magic2 != LINUX_REBOOT_MAGIC2A &&
327 magic2 != LINUX_REBOOT_MAGIC2B &&
328 magic2 != LINUX_REBOOT_MAGIC2C))
329 return -EINVAL;
330
331 /*
332 * If pid namespaces are enabled and the current task is in a child
333 * pid_namespace, the command is handled by reboot_pid_ns() which will
334 * call do_exit().
335 */
336 ret = reboot_pid_ns(pid_ns, cmd);
337 if (ret)
338 return ret;
339
340 /* Instead of trying to make the power_off code look like
341 * halt when pm_power_off is not set do it the easy way.
342 */
343 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
344 cmd = LINUX_REBOOT_CMD_HALT;
345
346 mutex_lock(&system_transition_mutex);
347 switch (cmd) {
348 case LINUX_REBOOT_CMD_RESTART:
349 kernel_restart(NULL);
350 break;
351
352 case LINUX_REBOOT_CMD_CAD_ON:
353 C_A_D = 1;
354 break;
355
356 case LINUX_REBOOT_CMD_CAD_OFF:
357 C_A_D = 0;
358 break;
359
360 case LINUX_REBOOT_CMD_HALT:
361 kernel_halt();
362 do_exit(0);
363
364 case LINUX_REBOOT_CMD_POWER_OFF:
365 kernel_power_off();
366 do_exit(0);
367 break;
368
369 case LINUX_REBOOT_CMD_RESTART2:
370 ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
371 if (ret < 0) {
372 ret = -EFAULT;
373 break;
374 }
375 buffer[sizeof(buffer) - 1] = '\0';
376
377 kernel_restart(buffer);
378 break;
379
380 #ifdef CONFIG_KEXEC_CORE
381 case LINUX_REBOOT_CMD_KEXEC:
382 ret = kernel_kexec();
383 break;
384 #endif
385
386 #ifdef CONFIG_HIBERNATION
387 case LINUX_REBOOT_CMD_SW_SUSPEND:
388 ret = hibernate();
389 break;
390 #endif
391
392 default:
393 ret = -EINVAL;
394 break;
395 }
396 mutex_unlock(&system_transition_mutex);
397 return ret;
398 }
399
deferred_cad(struct work_struct * dummy)400 static void deferred_cad(struct work_struct *dummy)
401 {
402 kernel_restart(NULL);
403 }
404
405 /*
406 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
407 * As it's called within an interrupt, it may NOT sync: the only choice
408 * is whether to reboot at once, or just ignore the ctrl-alt-del.
409 */
ctrl_alt_del(void)410 void ctrl_alt_del(void)
411 {
412 static DECLARE_WORK(cad_work, deferred_cad);
413
414 if (C_A_D)
415 schedule_work(&cad_work);
416 else
417 kill_cad_pid(SIGINT, 1);
418 }
419
420 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
421 static const char reboot_cmd[] = "/sbin/reboot";
422
run_cmd(const char * cmd)423 static int run_cmd(const char *cmd)
424 {
425 char **argv;
426 static char *envp[] = {
427 "HOME=/",
428 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
429 NULL
430 };
431 int ret;
432 argv = argv_split(GFP_KERNEL, cmd, NULL);
433 if (argv) {
434 ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
435 argv_free(argv);
436 } else {
437 ret = -ENOMEM;
438 }
439
440 return ret;
441 }
442
__orderly_reboot(void)443 static int __orderly_reboot(void)
444 {
445 int ret;
446
447 ret = run_cmd(reboot_cmd);
448
449 if (ret) {
450 pr_warn("Failed to start orderly reboot: forcing the issue\n");
451 emergency_sync();
452 kernel_restart(NULL);
453 }
454
455 return ret;
456 }
457
__orderly_poweroff(bool force)458 static int __orderly_poweroff(bool force)
459 {
460 int ret;
461
462 ret = run_cmd(poweroff_cmd);
463
464 if (ret && force) {
465 pr_warn("Failed to start orderly shutdown: forcing the issue\n");
466
467 /*
468 * I guess this should try to kick off some daemon to sync and
469 * poweroff asap. Or not even bother syncing if we're doing an
470 * emergency shutdown?
471 */
472 emergency_sync();
473 kernel_power_off();
474 }
475
476 return ret;
477 }
478
479 static bool poweroff_force;
480
poweroff_work_func(struct work_struct * work)481 static void poweroff_work_func(struct work_struct *work)
482 {
483 __orderly_poweroff(poweroff_force);
484 }
485
486 static DECLARE_WORK(poweroff_work, poweroff_work_func);
487
488 /**
489 * orderly_poweroff - Trigger an orderly system poweroff
490 * @force: force poweroff if command execution fails
491 *
492 * This may be called from any context to trigger a system shutdown.
493 * If the orderly shutdown fails, it will force an immediate shutdown.
494 */
orderly_poweroff(bool force)495 void orderly_poweroff(bool force)
496 {
497 if (force) /* do not override the pending "true" */
498 poweroff_force = true;
499 schedule_work(&poweroff_work);
500 }
501 EXPORT_SYMBOL_GPL(orderly_poweroff);
502
reboot_work_func(struct work_struct * work)503 static void reboot_work_func(struct work_struct *work)
504 {
505 __orderly_reboot();
506 }
507
508 static DECLARE_WORK(reboot_work, reboot_work_func);
509
510 /**
511 * orderly_reboot - Trigger an orderly system reboot
512 *
513 * This may be called from any context to trigger a system reboot.
514 * If the orderly reboot fails, it will force an immediate reboot.
515 */
orderly_reboot(void)516 void orderly_reboot(void)
517 {
518 schedule_work(&reboot_work);
519 }
520 EXPORT_SYMBOL_GPL(orderly_reboot);
521
522 /**
523 * hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay
524 * @work: work_struct associated with the emergency poweroff function
525 *
526 * This function is called in very critical situations to force
527 * a kernel poweroff after a configurable timeout value.
528 */
hw_failure_emergency_poweroff_func(struct work_struct * work)529 static void hw_failure_emergency_poweroff_func(struct work_struct *work)
530 {
531 /*
532 * We have reached here after the emergency shutdown waiting period has
533 * expired. This means orderly_poweroff has not been able to shut off
534 * the system for some reason.
535 *
536 * Try to shut down the system immediately using kernel_power_off
537 * if populated
538 */
539 pr_emerg("Hardware protection timed-out. Trying forced poweroff\n");
540 kernel_power_off();
541
542 /*
543 * Worst of the worst case trigger emergency restart
544 */
545 pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n");
546 emergency_restart();
547 }
548
549 static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work,
550 hw_failure_emergency_poweroff_func);
551
552 /**
553 * hw_failure_emergency_poweroff - Trigger an emergency system poweroff
554 *
555 * This may be called from any critical situation to trigger a system shutdown
556 * after a given period of time. If time is negative this is not scheduled.
557 */
hw_failure_emergency_poweroff(int poweroff_delay_ms)558 static void hw_failure_emergency_poweroff(int poweroff_delay_ms)
559 {
560 if (poweroff_delay_ms <= 0)
561 return;
562 schedule_delayed_work(&hw_failure_emergency_poweroff_work,
563 msecs_to_jiffies(poweroff_delay_ms));
564 }
565
566 /**
567 * hw_protection_shutdown - Trigger an emergency system poweroff
568 *
569 * @reason: Reason of emergency shutdown to be printed.
570 * @ms_until_forced: Time to wait for orderly shutdown before tiggering a
571 * forced shudown. Negative value disables the forced
572 * shutdown.
573 *
574 * Initiate an emergency system shutdown in order to protect hardware from
575 * further damage. Usage examples include a thermal protection or a voltage or
576 * current regulator failures.
577 * NOTE: The request is ignored if protection shutdown is already pending even
578 * if the previous request has given a large timeout for forced shutdown.
579 * Can be called from any context.
580 */
hw_protection_shutdown(const char * reason,int ms_until_forced)581 void hw_protection_shutdown(const char *reason, int ms_until_forced)
582 {
583 static atomic_t allow_proceed = ATOMIC_INIT(1);
584
585 pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason);
586
587 /* Shutdown should be initiated only once. */
588 if (!atomic_dec_and_test(&allow_proceed))
589 return;
590
591 /*
592 * Queue a backup emergency shutdown in the event of
593 * orderly_poweroff failure
594 */
595 hw_failure_emergency_poweroff(ms_until_forced);
596 orderly_poweroff(true);
597 }
598 EXPORT_SYMBOL_GPL(hw_protection_shutdown);
599
reboot_setup(char * str)600 static int __init reboot_setup(char *str)
601 {
602 for (;;) {
603 enum reboot_mode *mode;
604
605 /*
606 * Having anything passed on the command line via
607 * reboot= will cause us to disable DMI checking
608 * below.
609 */
610 reboot_default = 0;
611
612 if (!strncmp(str, "panic_", 6)) {
613 mode = &panic_reboot_mode;
614 str += 6;
615 } else {
616 mode = &reboot_mode;
617 }
618
619 switch (*str) {
620 case 'w':
621 *mode = REBOOT_WARM;
622 break;
623
624 case 'c':
625 *mode = REBOOT_COLD;
626 break;
627
628 case 'h':
629 *mode = REBOOT_HARD;
630 break;
631
632 case 's':
633 /*
634 * reboot_cpu is s[mp]#### with #### being the processor
635 * to be used for rebooting. Skip 's' or 'smp' prefix.
636 */
637 str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
638
639 if (isdigit(str[0])) {
640 int cpu = simple_strtoul(str, NULL, 0);
641
642 if (cpu >= num_possible_cpus()) {
643 pr_err("Ignoring the CPU number in reboot= option. "
644 "CPU %d exceeds possible cpu number %d\n",
645 cpu, num_possible_cpus());
646 break;
647 }
648 reboot_cpu = cpu;
649 } else
650 *mode = REBOOT_SOFT;
651 break;
652
653 case 'g':
654 *mode = REBOOT_GPIO;
655 break;
656
657 case 'b':
658 case 'a':
659 case 'k':
660 case 't':
661 case 'e':
662 case 'p':
663 reboot_type = *str;
664 break;
665
666 case 'f':
667 reboot_force = 1;
668 break;
669 }
670
671 str = strchr(str, ',');
672 if (str)
673 str++;
674 else
675 break;
676 }
677 return 1;
678 }
679 __setup("reboot=", reboot_setup);
680
681 #ifdef CONFIG_SYSFS
682
683 #define REBOOT_COLD_STR "cold"
684 #define REBOOT_WARM_STR "warm"
685 #define REBOOT_HARD_STR "hard"
686 #define REBOOT_SOFT_STR "soft"
687 #define REBOOT_GPIO_STR "gpio"
688 #define REBOOT_UNDEFINED_STR "undefined"
689
690 #define BOOT_TRIPLE_STR "triple"
691 #define BOOT_KBD_STR "kbd"
692 #define BOOT_BIOS_STR "bios"
693 #define BOOT_ACPI_STR "acpi"
694 #define BOOT_EFI_STR "efi"
695 #define BOOT_PCI_STR "pci"
696
mode_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)697 static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
698 {
699 const char *val;
700
701 switch (reboot_mode) {
702 case REBOOT_COLD:
703 val = REBOOT_COLD_STR;
704 break;
705 case REBOOT_WARM:
706 val = REBOOT_WARM_STR;
707 break;
708 case REBOOT_HARD:
709 val = REBOOT_HARD_STR;
710 break;
711 case REBOOT_SOFT:
712 val = REBOOT_SOFT_STR;
713 break;
714 case REBOOT_GPIO:
715 val = REBOOT_GPIO_STR;
716 break;
717 default:
718 val = REBOOT_UNDEFINED_STR;
719 }
720
721 return sprintf(buf, "%s\n", val);
722 }
mode_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)723 static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
724 const char *buf, size_t count)
725 {
726 if (!capable(CAP_SYS_BOOT))
727 return -EPERM;
728
729 if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
730 reboot_mode = REBOOT_COLD;
731 else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
732 reboot_mode = REBOOT_WARM;
733 else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
734 reboot_mode = REBOOT_HARD;
735 else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
736 reboot_mode = REBOOT_SOFT;
737 else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
738 reboot_mode = REBOOT_GPIO;
739 else
740 return -EINVAL;
741
742 reboot_default = 0;
743
744 return count;
745 }
746 static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
747
748 #ifdef CONFIG_X86
force_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)749 static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
750 {
751 return sprintf(buf, "%d\n", reboot_force);
752 }
force_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)753 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
754 const char *buf, size_t count)
755 {
756 bool res;
757
758 if (!capable(CAP_SYS_BOOT))
759 return -EPERM;
760
761 if (kstrtobool(buf, &res))
762 return -EINVAL;
763
764 reboot_default = 0;
765 reboot_force = res;
766
767 return count;
768 }
769 static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
770
type_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)771 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
772 {
773 const char *val;
774
775 switch (reboot_type) {
776 case BOOT_TRIPLE:
777 val = BOOT_TRIPLE_STR;
778 break;
779 case BOOT_KBD:
780 val = BOOT_KBD_STR;
781 break;
782 case BOOT_BIOS:
783 val = BOOT_BIOS_STR;
784 break;
785 case BOOT_ACPI:
786 val = BOOT_ACPI_STR;
787 break;
788 case BOOT_EFI:
789 val = BOOT_EFI_STR;
790 break;
791 case BOOT_CF9_FORCE:
792 val = BOOT_PCI_STR;
793 break;
794 default:
795 val = REBOOT_UNDEFINED_STR;
796 }
797
798 return sprintf(buf, "%s\n", val);
799 }
type_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)800 static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
801 const char *buf, size_t count)
802 {
803 if (!capable(CAP_SYS_BOOT))
804 return -EPERM;
805
806 if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
807 reboot_type = BOOT_TRIPLE;
808 else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
809 reboot_type = BOOT_KBD;
810 else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
811 reboot_type = BOOT_BIOS;
812 else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
813 reboot_type = BOOT_ACPI;
814 else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
815 reboot_type = BOOT_EFI;
816 else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
817 reboot_type = BOOT_CF9_FORCE;
818 else
819 return -EINVAL;
820
821 reboot_default = 0;
822
823 return count;
824 }
825 static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
826 #endif
827
828 #ifdef CONFIG_SMP
cpu_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)829 static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
830 {
831 return sprintf(buf, "%d\n", reboot_cpu);
832 }
cpu_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)833 static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
834 const char *buf, size_t count)
835 {
836 unsigned int cpunum;
837 int rc;
838
839 if (!capable(CAP_SYS_BOOT))
840 return -EPERM;
841
842 rc = kstrtouint(buf, 0, &cpunum);
843
844 if (rc)
845 return rc;
846
847 if (cpunum >= num_possible_cpus())
848 return -ERANGE;
849
850 reboot_default = 0;
851 reboot_cpu = cpunum;
852
853 return count;
854 }
855 static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
856 #endif
857
858 static struct attribute *reboot_attrs[] = {
859 &reboot_mode_attr.attr,
860 #ifdef CONFIG_X86
861 &reboot_force_attr.attr,
862 &reboot_type_attr.attr,
863 #endif
864 #ifdef CONFIG_SMP
865 &reboot_cpu_attr.attr,
866 #endif
867 NULL,
868 };
869
870 static const struct attribute_group reboot_attr_group = {
871 .attrs = reboot_attrs,
872 };
873
reboot_ksysfs_init(void)874 static int __init reboot_ksysfs_init(void)
875 {
876 struct kobject *reboot_kobj;
877 int ret;
878
879 reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
880 if (!reboot_kobj)
881 return -ENOMEM;
882
883 ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
884 if (ret) {
885 kobject_put(reboot_kobj);
886 return ret;
887 }
888
889 return 0;
890 }
891 late_initcall(reboot_ksysfs_init);
892
893 #endif
894