1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
4 * (C) Copyright 2007 Novell Inc.
5 */
6
7 #include <linux/pci.h>
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/device.h>
11 #include <linux/mempolicy.h>
12 #include <linux/string.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/sched/isolation.h>
16 #include <linux/cpu.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/suspend.h>
19 #include <linux/kexec.h>
20 #include <linux/of_device.h>
21 #include <linux/acpi.h>
22 #include <linux/dma-map-ops.h>
23 #include "pci.h"
24 #include "pcie/portdrv.h"
25
26 struct pci_dynid {
27 struct list_head node;
28 struct pci_device_id id;
29 };
30
31 /**
32 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
33 * @drv: target pci driver
34 * @vendor: PCI vendor ID
35 * @device: PCI device ID
36 * @subvendor: PCI subvendor ID
37 * @subdevice: PCI subdevice ID
38 * @class: PCI class
39 * @class_mask: PCI class mask
40 * @driver_data: private driver data
41 *
42 * Adds a new dynamic pci device ID to this driver and causes the
43 * driver to probe for all devices again. @drv must have been
44 * registered prior to calling this function.
45 *
46 * CONTEXT:
47 * Does GFP_KERNEL allocation.
48 *
49 * RETURNS:
50 * 0 on success, -errno on failure.
51 */
pci_add_dynid(struct pci_driver * drv,unsigned int vendor,unsigned int device,unsigned int subvendor,unsigned int subdevice,unsigned int class,unsigned int class_mask,unsigned long driver_data)52 int pci_add_dynid(struct pci_driver *drv,
53 unsigned int vendor, unsigned int device,
54 unsigned int subvendor, unsigned int subdevice,
55 unsigned int class, unsigned int class_mask,
56 unsigned long driver_data)
57 {
58 struct pci_dynid *dynid;
59
60 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
61 if (!dynid)
62 return -ENOMEM;
63
64 dynid->id.vendor = vendor;
65 dynid->id.device = device;
66 dynid->id.subvendor = subvendor;
67 dynid->id.subdevice = subdevice;
68 dynid->id.class = class;
69 dynid->id.class_mask = class_mask;
70 dynid->id.driver_data = driver_data;
71
72 spin_lock(&drv->dynids.lock);
73 list_add_tail(&dynid->node, &drv->dynids.list);
74 spin_unlock(&drv->dynids.lock);
75
76 return driver_attach(&drv->driver);
77 }
78 EXPORT_SYMBOL_GPL(pci_add_dynid);
79
pci_free_dynids(struct pci_driver * drv)80 static void pci_free_dynids(struct pci_driver *drv)
81 {
82 struct pci_dynid *dynid, *n;
83
84 spin_lock(&drv->dynids.lock);
85 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
86 list_del(&dynid->node);
87 kfree(dynid);
88 }
89 spin_unlock(&drv->dynids.lock);
90 }
91
92 /**
93 * pci_match_id - See if a PCI device matches a given pci_id table
94 * @ids: array of PCI device ID structures to search in
95 * @dev: the PCI device structure to match against.
96 *
97 * Used by a driver to check whether a PCI device is in its list of
98 * supported devices. Returns the matching pci_device_id structure or
99 * %NULL if there is no match.
100 *
101 * Deprecated; don't use this as it will not catch any dynamic IDs
102 * that a driver might want to check for.
103 */
pci_match_id(const struct pci_device_id * ids,struct pci_dev * dev)104 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
105 struct pci_dev *dev)
106 {
107 if (ids) {
108 while (ids->vendor || ids->subvendor || ids->class_mask) {
109 if (pci_match_one_device(ids, dev))
110 return ids;
111 ids++;
112 }
113 }
114 return NULL;
115 }
116 EXPORT_SYMBOL(pci_match_id);
117
118 static const struct pci_device_id pci_device_id_any = {
119 .vendor = PCI_ANY_ID,
120 .device = PCI_ANY_ID,
121 .subvendor = PCI_ANY_ID,
122 .subdevice = PCI_ANY_ID,
123 };
124
125 /**
126 * pci_match_device - See if a device matches a driver's list of IDs
127 * @drv: the PCI driver to match against
128 * @dev: the PCI device structure to match against
129 *
130 * Used by a driver to check whether a PCI device is in its list of
131 * supported devices or in the dynids list, which may have been augmented
132 * via the sysfs "new_id" file. Returns the matching pci_device_id
133 * structure or %NULL if there is no match.
134 */
pci_match_device(struct pci_driver * drv,struct pci_dev * dev)135 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
136 struct pci_dev *dev)
137 {
138 struct pci_dynid *dynid;
139 const struct pci_device_id *found_id = NULL, *ids;
140
141 /* When driver_override is set, only bind to the matching driver */
142 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
143 return NULL;
144
145 /* Look at the dynamic ids first, before the static ones */
146 spin_lock(&drv->dynids.lock);
147 list_for_each_entry(dynid, &drv->dynids.list, node) {
148 if (pci_match_one_device(&dynid->id, dev)) {
149 found_id = &dynid->id;
150 break;
151 }
152 }
153 spin_unlock(&drv->dynids.lock);
154
155 if (found_id)
156 return found_id;
157
158 for (ids = drv->id_table; (found_id = pci_match_id(ids, dev));
159 ids = found_id + 1) {
160 /*
161 * The match table is split based on driver_override.
162 * In case override_only was set, enforce driver_override
163 * matching.
164 */
165 if (found_id->override_only) {
166 if (dev->driver_override)
167 return found_id;
168 } else {
169 return found_id;
170 }
171 }
172
173 /* driver_override will always match, send a dummy id */
174 if (dev->driver_override)
175 return &pci_device_id_any;
176 return NULL;
177 }
178
179 /**
180 * new_id_store - sysfs frontend to pci_add_dynid()
181 * @driver: target device driver
182 * @buf: buffer for scanning device ID data
183 * @count: input size
184 *
185 * Allow PCI IDs to be added to an existing driver via sysfs.
186 */
new_id_store(struct device_driver * driver,const char * buf,size_t count)187 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
188 size_t count)
189 {
190 struct pci_driver *pdrv = to_pci_driver(driver);
191 const struct pci_device_id *ids = pdrv->id_table;
192 u32 vendor, device, subvendor = PCI_ANY_ID,
193 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
194 unsigned long driver_data = 0;
195 int fields = 0;
196 int retval = 0;
197
198 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
199 &vendor, &device, &subvendor, &subdevice,
200 &class, &class_mask, &driver_data);
201 if (fields < 2)
202 return -EINVAL;
203
204 if (fields != 7) {
205 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
206 if (!pdev)
207 return -ENOMEM;
208
209 pdev->vendor = vendor;
210 pdev->device = device;
211 pdev->subsystem_vendor = subvendor;
212 pdev->subsystem_device = subdevice;
213 pdev->class = class;
214
215 if (pci_match_device(pdrv, pdev))
216 retval = -EEXIST;
217
218 kfree(pdev);
219
220 if (retval)
221 return retval;
222 }
223
224 /* Only accept driver_data values that match an existing id_table
225 entry */
226 if (ids) {
227 retval = -EINVAL;
228 while (ids->vendor || ids->subvendor || ids->class_mask) {
229 if (driver_data == ids->driver_data) {
230 retval = 0;
231 break;
232 }
233 ids++;
234 }
235 if (retval) /* No match */
236 return retval;
237 }
238
239 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
240 class, class_mask, driver_data);
241 if (retval)
242 return retval;
243 return count;
244 }
245 static DRIVER_ATTR_WO(new_id);
246
247 /**
248 * remove_id_store - remove a PCI device ID from this driver
249 * @driver: target device driver
250 * @buf: buffer for scanning device ID data
251 * @count: input size
252 *
253 * Removes a dynamic pci device ID to this driver.
254 */
remove_id_store(struct device_driver * driver,const char * buf,size_t count)255 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
256 size_t count)
257 {
258 struct pci_dynid *dynid, *n;
259 struct pci_driver *pdrv = to_pci_driver(driver);
260 u32 vendor, device, subvendor = PCI_ANY_ID,
261 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
262 int fields = 0;
263 size_t retval = -ENODEV;
264
265 fields = sscanf(buf, "%x %x %x %x %x %x",
266 &vendor, &device, &subvendor, &subdevice,
267 &class, &class_mask);
268 if (fields < 2)
269 return -EINVAL;
270
271 spin_lock(&pdrv->dynids.lock);
272 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
273 struct pci_device_id *id = &dynid->id;
274 if ((id->vendor == vendor) &&
275 (id->device == device) &&
276 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
277 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
278 !((id->class ^ class) & class_mask)) {
279 list_del(&dynid->node);
280 kfree(dynid);
281 retval = count;
282 break;
283 }
284 }
285 spin_unlock(&pdrv->dynids.lock);
286
287 return retval;
288 }
289 static DRIVER_ATTR_WO(remove_id);
290
291 static struct attribute *pci_drv_attrs[] = {
292 &driver_attr_new_id.attr,
293 &driver_attr_remove_id.attr,
294 NULL,
295 };
296 ATTRIBUTE_GROUPS(pci_drv);
297
298 struct drv_dev_and_id {
299 struct pci_driver *drv;
300 struct pci_dev *dev;
301 const struct pci_device_id *id;
302 };
303
local_pci_probe(void * _ddi)304 static long local_pci_probe(void *_ddi)
305 {
306 struct drv_dev_and_id *ddi = _ddi;
307 struct pci_dev *pci_dev = ddi->dev;
308 struct pci_driver *pci_drv = ddi->drv;
309 struct device *dev = &pci_dev->dev;
310 int rc;
311
312 /*
313 * Unbound PCI devices are always put in D0, regardless of
314 * runtime PM status. During probe, the device is set to
315 * active and the usage count is incremented. If the driver
316 * supports runtime PM, it should call pm_runtime_put_noidle(),
317 * or any other runtime PM helper function decrementing the usage
318 * count, in its probe routine and pm_runtime_get_noresume() in
319 * its remove routine.
320 */
321 pm_runtime_get_sync(dev);
322 pci_dev->driver = pci_drv;
323 rc = pci_drv->probe(pci_dev, ddi->id);
324 if (!rc)
325 return rc;
326 if (rc < 0) {
327 pci_dev->driver = NULL;
328 pm_runtime_put_sync(dev);
329 return rc;
330 }
331 /*
332 * Probe function should return < 0 for failure, 0 for success
333 * Treat values > 0 as success, but warn.
334 */
335 pci_warn(pci_dev, "Driver probe function unexpectedly returned %d\n",
336 rc);
337 return 0;
338 }
339
pci_physfn_is_probed(struct pci_dev * dev)340 static bool pci_physfn_is_probed(struct pci_dev *dev)
341 {
342 #ifdef CONFIG_PCI_IOV
343 return dev->is_virtfn && dev->physfn->is_probed;
344 #else
345 return false;
346 #endif
347 }
348
pci_call_probe(struct pci_driver * drv,struct pci_dev * dev,const struct pci_device_id * id)349 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
350 const struct pci_device_id *id)
351 {
352 int error, node, cpu;
353 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
354 struct drv_dev_and_id ddi = { drv, dev, id };
355
356 /*
357 * Execute driver initialization on node where the device is
358 * attached. This way the driver likely allocates its local memory
359 * on the right node.
360 */
361 node = dev_to_node(&dev->dev);
362 dev->is_probed = 1;
363
364 cpu_hotplug_disable();
365
366 /*
367 * Prevent nesting work_on_cpu() for the case where a Virtual Function
368 * device is probed from work_on_cpu() of the Physical device.
369 */
370 if (node < 0 || node >= MAX_NUMNODES || !node_online(node) ||
371 pci_physfn_is_probed(dev))
372 cpu = nr_cpu_ids;
373 else
374 cpu = cpumask_any_and(cpumask_of_node(node),
375 housekeeping_cpumask(hk_flags));
376
377 if (cpu < nr_cpu_ids)
378 error = work_on_cpu(cpu, local_pci_probe, &ddi);
379 else
380 error = local_pci_probe(&ddi);
381
382 dev->is_probed = 0;
383 cpu_hotplug_enable();
384 return error;
385 }
386
387 /**
388 * __pci_device_probe - check if a driver wants to claim a specific PCI device
389 * @drv: driver to call to check if it wants the PCI device
390 * @pci_dev: PCI device being probed
391 *
392 * returns 0 on success, else error.
393 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
394 */
__pci_device_probe(struct pci_driver * drv,struct pci_dev * pci_dev)395 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
396 {
397 const struct pci_device_id *id;
398 int error = 0;
399
400 if (drv->probe) {
401 error = -ENODEV;
402
403 id = pci_match_device(drv, pci_dev);
404 if (id)
405 error = pci_call_probe(drv, pci_dev, id);
406 }
407 return error;
408 }
409
pcibios_alloc_irq(struct pci_dev * dev)410 int __weak pcibios_alloc_irq(struct pci_dev *dev)
411 {
412 return 0;
413 }
414
pcibios_free_irq(struct pci_dev * dev)415 void __weak pcibios_free_irq(struct pci_dev *dev)
416 {
417 }
418
419 #ifdef CONFIG_PCI_IOV
pci_device_can_probe(struct pci_dev * pdev)420 static inline bool pci_device_can_probe(struct pci_dev *pdev)
421 {
422 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe ||
423 pdev->driver_override);
424 }
425 #else
pci_device_can_probe(struct pci_dev * pdev)426 static inline bool pci_device_can_probe(struct pci_dev *pdev)
427 {
428 return true;
429 }
430 #endif
431
pci_device_probe(struct device * dev)432 static int pci_device_probe(struct device *dev)
433 {
434 int error;
435 struct pci_dev *pci_dev = to_pci_dev(dev);
436 struct pci_driver *drv = to_pci_driver(dev->driver);
437
438 if (!pci_device_can_probe(pci_dev))
439 return -ENODEV;
440
441 pci_assign_irq(pci_dev);
442
443 error = pcibios_alloc_irq(pci_dev);
444 if (error < 0)
445 return error;
446
447 pci_dev_get(pci_dev);
448 error = __pci_device_probe(drv, pci_dev);
449 if (error) {
450 pcibios_free_irq(pci_dev);
451 pci_dev_put(pci_dev);
452 }
453
454 return error;
455 }
456
pci_device_remove(struct device * dev)457 static void pci_device_remove(struct device *dev)
458 {
459 struct pci_dev *pci_dev = to_pci_dev(dev);
460 struct pci_driver *drv = pci_dev->driver;
461
462 if (drv->remove) {
463 pm_runtime_get_sync(dev);
464 drv->remove(pci_dev);
465 pm_runtime_put_noidle(dev);
466 }
467 pcibios_free_irq(pci_dev);
468 pci_dev->driver = NULL;
469 pci_iov_remove(pci_dev);
470
471 /* Undo the runtime PM settings in local_pci_probe() */
472 pm_runtime_put_sync(dev);
473
474 /*
475 * If the device is still on, set the power state as "unknown",
476 * since it might change by the next time we load the driver.
477 */
478 if (pci_dev->current_state == PCI_D0)
479 pci_dev->current_state = PCI_UNKNOWN;
480
481 /*
482 * We would love to complain here if pci_dev->is_enabled is set, that
483 * the driver should have called pci_disable_device(), but the
484 * unfortunate fact is there are too many odd BIOS and bridge setups
485 * that don't like drivers doing that all of the time.
486 * Oh well, we can dream of sane hardware when we sleep, no matter how
487 * horrible the crap we have to deal with is when we are awake...
488 */
489
490 pci_dev_put(pci_dev);
491 }
492
pci_device_shutdown(struct device * dev)493 static void pci_device_shutdown(struct device *dev)
494 {
495 struct pci_dev *pci_dev = to_pci_dev(dev);
496 struct pci_driver *drv = pci_dev->driver;
497
498 pm_runtime_resume(dev);
499
500 if (drv && drv->shutdown)
501 drv->shutdown(pci_dev);
502
503 /*
504 * If this is a kexec reboot, turn off Bus Master bit on the
505 * device to tell it to not continue to do DMA. Don't touch
506 * devices in D3cold or unknown states.
507 * If it is not a kexec reboot, firmware will hit the PCI
508 * devices with big hammer and stop their DMA any way.
509 */
510 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
511 pci_clear_master(pci_dev);
512 }
513
514 #ifdef CONFIG_PM
515
516 /* Auxiliary functions used for system resume and run-time resume. */
517
518 /**
519 * pci_restore_standard_config - restore standard config registers of PCI device
520 * @pci_dev: PCI device to handle
521 */
pci_restore_standard_config(struct pci_dev * pci_dev)522 static int pci_restore_standard_config(struct pci_dev *pci_dev)
523 {
524 pci_update_current_state(pci_dev, PCI_UNKNOWN);
525
526 if (pci_dev->current_state != PCI_D0) {
527 int error = pci_set_power_state(pci_dev, PCI_D0);
528 if (error)
529 return error;
530 }
531
532 pci_restore_state(pci_dev);
533 pci_pme_restore(pci_dev);
534 return 0;
535 }
536
pci_pm_default_resume(struct pci_dev * pci_dev)537 static void pci_pm_default_resume(struct pci_dev *pci_dev)
538 {
539 pci_fixup_device(pci_fixup_resume, pci_dev);
540 pci_enable_wake(pci_dev, PCI_D0, false);
541 }
542
543 #endif
544
545 #ifdef CONFIG_PM_SLEEP
546
pci_pm_default_resume_early(struct pci_dev * pci_dev)547 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
548 {
549 pci_power_up(pci_dev);
550 pci_update_current_state(pci_dev, PCI_D0);
551 pci_restore_state(pci_dev);
552 pci_pme_restore(pci_dev);
553 }
554
555 /*
556 * Default "suspend" method for devices that have no driver provided suspend,
557 * or not even a driver at all (second part).
558 */
pci_pm_set_unknown_state(struct pci_dev * pci_dev)559 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
560 {
561 /*
562 * mark its power state as "unknown", since we don't know if
563 * e.g. the BIOS will change its device state when we suspend.
564 */
565 if (pci_dev->current_state == PCI_D0)
566 pci_dev->current_state = PCI_UNKNOWN;
567 }
568
569 /*
570 * Default "resume" method for devices that have no driver provided resume,
571 * or not even a driver at all (second part).
572 */
pci_pm_reenable_device(struct pci_dev * pci_dev)573 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
574 {
575 int retval;
576
577 /* if the device was enabled before suspend, re-enable */
578 retval = pci_reenable_device(pci_dev);
579 /*
580 * if the device was busmaster before the suspend, make it busmaster
581 * again
582 */
583 if (pci_dev->is_busmaster)
584 pci_set_master(pci_dev);
585
586 return retval;
587 }
588
pci_legacy_suspend(struct device * dev,pm_message_t state)589 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
590 {
591 struct pci_dev *pci_dev = to_pci_dev(dev);
592 struct pci_driver *drv = pci_dev->driver;
593
594 if (drv && drv->suspend) {
595 pci_power_t prev = pci_dev->current_state;
596 int error;
597
598 error = drv->suspend(pci_dev, state);
599 suspend_report_result(drv->suspend, error);
600 if (error)
601 return error;
602
603 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
604 && pci_dev->current_state != PCI_UNKNOWN) {
605 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
606 "PCI PM: Device state not saved by %pS\n",
607 drv->suspend);
608 }
609 }
610
611 pci_fixup_device(pci_fixup_suspend, pci_dev);
612
613 return 0;
614 }
615
pci_legacy_suspend_late(struct device * dev,pm_message_t state)616 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
617 {
618 struct pci_dev *pci_dev = to_pci_dev(dev);
619
620 if (!pci_dev->state_saved)
621 pci_save_state(pci_dev);
622
623 pci_pm_set_unknown_state(pci_dev);
624
625 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
626
627 return 0;
628 }
629
pci_legacy_resume(struct device * dev)630 static int pci_legacy_resume(struct device *dev)
631 {
632 struct pci_dev *pci_dev = to_pci_dev(dev);
633 struct pci_driver *drv = pci_dev->driver;
634
635 pci_fixup_device(pci_fixup_resume, pci_dev);
636
637 return drv && drv->resume ?
638 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
639 }
640
641 /* Auxiliary functions used by the new power management framework */
642
pci_pm_default_suspend(struct pci_dev * pci_dev)643 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
644 {
645 /* Disable non-bridge devices without PM support */
646 if (!pci_has_subordinate(pci_dev))
647 pci_disable_enabled_device(pci_dev);
648 }
649
pci_has_legacy_pm_support(struct pci_dev * pci_dev)650 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
651 {
652 struct pci_driver *drv = pci_dev->driver;
653 bool ret = drv && (drv->suspend || drv->resume);
654
655 /*
656 * Legacy PM support is used by default, so warn if the new framework is
657 * supported as well. Drivers are supposed to support either the
658 * former, or the latter, but not both at the same time.
659 */
660 pci_WARN(pci_dev, ret && drv->driver.pm, "device %04x:%04x\n",
661 pci_dev->vendor, pci_dev->device);
662
663 return ret;
664 }
665
666 /* New power management framework */
667
pci_pm_prepare(struct device * dev)668 static int pci_pm_prepare(struct device *dev)
669 {
670 struct pci_dev *pci_dev = to_pci_dev(dev);
671 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
672
673 if (pm && pm->prepare) {
674 int error = pm->prepare(dev);
675 if (error < 0)
676 return error;
677
678 if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
679 return 0;
680 }
681 if (pci_dev_need_resume(pci_dev))
682 return 0;
683
684 /*
685 * The PME setting needs to be adjusted here in case the direct-complete
686 * optimization is used with respect to this device.
687 */
688 pci_dev_adjust_pme(pci_dev);
689 return 1;
690 }
691
pci_pm_complete(struct device * dev)692 static void pci_pm_complete(struct device *dev)
693 {
694 struct pci_dev *pci_dev = to_pci_dev(dev);
695
696 pci_dev_complete_resume(pci_dev);
697 pm_generic_complete(dev);
698
699 /* Resume device if platform firmware has put it in reset-power-on */
700 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) {
701 pci_power_t pre_sleep_state = pci_dev->current_state;
702
703 pci_refresh_power_state(pci_dev);
704 /*
705 * On platforms with ACPI this check may also trigger for
706 * devices sharing power resources if one of those power
707 * resources has been activated as a result of a change of the
708 * power state of another device sharing it. However, in that
709 * case it is also better to resume the device, in general.
710 */
711 if (pci_dev->current_state < pre_sleep_state)
712 pm_request_resume(dev);
713 }
714 }
715
716 #else /* !CONFIG_PM_SLEEP */
717
718 #define pci_pm_prepare NULL
719 #define pci_pm_complete NULL
720
721 #endif /* !CONFIG_PM_SLEEP */
722
723 #ifdef CONFIG_SUSPEND
pcie_pme_root_status_cleanup(struct pci_dev * pci_dev)724 static void pcie_pme_root_status_cleanup(struct pci_dev *pci_dev)
725 {
726 /*
727 * Some BIOSes forget to clear Root PME Status bits after system
728 * wakeup, which breaks ACPI-based runtime wakeup on PCI Express.
729 * Clear those bits now just in case (shouldn't hurt).
730 */
731 if (pci_is_pcie(pci_dev) &&
732 (pci_pcie_type(pci_dev) == PCI_EXP_TYPE_ROOT_PORT ||
733 pci_pcie_type(pci_dev) == PCI_EXP_TYPE_RC_EC))
734 pcie_clear_root_pme_status(pci_dev);
735 }
736
pci_pm_suspend(struct device * dev)737 static int pci_pm_suspend(struct device *dev)
738 {
739 struct pci_dev *pci_dev = to_pci_dev(dev);
740 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
741
742 pci_dev->skip_bus_pm = false;
743
744 if (pci_has_legacy_pm_support(pci_dev))
745 return pci_legacy_suspend(dev, PMSG_SUSPEND);
746
747 if (!pm) {
748 pci_pm_default_suspend(pci_dev);
749 return 0;
750 }
751
752 /*
753 * PCI devices suspended at run time may need to be resumed at this
754 * point, because in general it may be necessary to reconfigure them for
755 * system suspend. Namely, if the device is expected to wake up the
756 * system from the sleep state, it may have to be reconfigured for this
757 * purpose, or if the device is not expected to wake up the system from
758 * the sleep state, it should be prevented from signaling wakeup events
759 * going forward.
760 *
761 * Also if the driver of the device does not indicate that its system
762 * suspend callbacks can cope with runtime-suspended devices, it is
763 * better to resume the device from runtime suspend here.
764 */
765 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
766 pci_dev_need_resume(pci_dev)) {
767 pm_runtime_resume(dev);
768 pci_dev->state_saved = false;
769 } else {
770 pci_dev_adjust_pme(pci_dev);
771 }
772
773 if (pm->suspend) {
774 pci_power_t prev = pci_dev->current_state;
775 int error;
776
777 error = pm->suspend(dev);
778 suspend_report_result(pm->suspend, error);
779 if (error)
780 return error;
781
782 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
783 && pci_dev->current_state != PCI_UNKNOWN) {
784 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
785 "PCI PM: State of device not saved by %pS\n",
786 pm->suspend);
787 }
788 }
789
790 return 0;
791 }
792
pci_pm_suspend_late(struct device * dev)793 static int pci_pm_suspend_late(struct device *dev)
794 {
795 if (dev_pm_skip_suspend(dev))
796 return 0;
797
798 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
799
800 return pm_generic_suspend_late(dev);
801 }
802
pci_pm_suspend_noirq(struct device * dev)803 static int pci_pm_suspend_noirq(struct device *dev)
804 {
805 struct pci_dev *pci_dev = to_pci_dev(dev);
806 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
807
808 if (dev_pm_skip_suspend(dev))
809 return 0;
810
811 if (pci_has_legacy_pm_support(pci_dev))
812 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
813
814 if (!pm) {
815 pci_save_state(pci_dev);
816 goto Fixup;
817 }
818
819 if (pm->suspend_noirq) {
820 pci_power_t prev = pci_dev->current_state;
821 int error;
822
823 error = pm->suspend_noirq(dev);
824 suspend_report_result(pm->suspend_noirq, error);
825 if (error)
826 return error;
827
828 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
829 && pci_dev->current_state != PCI_UNKNOWN) {
830 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
831 "PCI PM: State of device not saved by %pS\n",
832 pm->suspend_noirq);
833 goto Fixup;
834 }
835 }
836
837 if (pci_dev->skip_bus_pm) {
838 /*
839 * Either the device is a bridge with a child in D0 below it, or
840 * the function is running for the second time in a row without
841 * going through full resume, which is possible only during
842 * suspend-to-idle in a spurious wakeup case. The device should
843 * be in D0 at this point, but if it is a bridge, it may be
844 * necessary to save its state.
845 */
846 if (!pci_dev->state_saved)
847 pci_save_state(pci_dev);
848 } else if (!pci_dev->state_saved) {
849 pci_save_state(pci_dev);
850 if (pci_power_manageable(pci_dev))
851 pci_prepare_to_sleep(pci_dev);
852 }
853
854 pci_dbg(pci_dev, "PCI PM: Suspend power state: %s\n",
855 pci_power_name(pci_dev->current_state));
856
857 if (pci_dev->current_state == PCI_D0) {
858 pci_dev->skip_bus_pm = true;
859 /*
860 * Per PCI PM r1.2, table 6-1, a bridge must be in D0 if any
861 * downstream device is in D0, so avoid changing the power state
862 * of the parent bridge by setting the skip_bus_pm flag for it.
863 */
864 if (pci_dev->bus->self)
865 pci_dev->bus->self->skip_bus_pm = true;
866 }
867
868 if (pci_dev->skip_bus_pm && pm_suspend_no_platform()) {
869 pci_dbg(pci_dev, "PCI PM: Skipped\n");
870 goto Fixup;
871 }
872
873 pci_pm_set_unknown_state(pci_dev);
874
875 /*
876 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
877 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
878 * hasn't been quiesced and tries to turn it off. If the controller
879 * is already in D3, this can hang or cause memory corruption.
880 *
881 * Since the value of the COMMAND register doesn't matter once the
882 * device has been suspended, we can safely set it to 0 here.
883 */
884 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
885 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
886
887 Fixup:
888 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
889
890 /*
891 * If the target system sleep state is suspend-to-idle, it is sufficient
892 * to check whether or not the device's wakeup settings are good for
893 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause
894 * pci_pm_complete() to take care of fixing up the device's state
895 * anyway, if need be.
896 */
897 if (device_can_wakeup(dev) && !device_may_wakeup(dev))
898 dev->power.may_skip_resume = false;
899
900 return 0;
901 }
902
pci_pm_resume_noirq(struct device * dev)903 static int pci_pm_resume_noirq(struct device *dev)
904 {
905 struct pci_dev *pci_dev = to_pci_dev(dev);
906 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
907 pci_power_t prev_state = pci_dev->current_state;
908 bool skip_bus_pm = pci_dev->skip_bus_pm;
909
910 if (dev_pm_skip_resume(dev))
911 return 0;
912
913 /*
914 * In the suspend-to-idle case, devices left in D0 during suspend will
915 * stay in D0, so it is not necessary to restore or update their
916 * configuration here and attempting to put them into D0 again is
917 * pointless, so avoid doing that.
918 */
919 if (!(skip_bus_pm && pm_suspend_no_platform()))
920 pci_pm_default_resume_early(pci_dev);
921
922 pci_fixup_device(pci_fixup_resume_early, pci_dev);
923 pcie_pme_root_status_cleanup(pci_dev);
924
925 if (!skip_bus_pm && prev_state == PCI_D3cold)
926 pci_bridge_wait_for_secondary_bus(pci_dev);
927
928 if (pci_has_legacy_pm_support(pci_dev))
929 return 0;
930
931 if (pm && pm->resume_noirq)
932 return pm->resume_noirq(dev);
933
934 return 0;
935 }
936
pci_pm_resume_early(struct device * dev)937 static int pci_pm_resume_early(struct device *dev)
938 {
939 if (dev_pm_skip_resume(dev))
940 return 0;
941
942 return pm_generic_resume_early(dev);
943 }
944
pci_pm_resume(struct device * dev)945 static int pci_pm_resume(struct device *dev)
946 {
947 struct pci_dev *pci_dev = to_pci_dev(dev);
948 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
949
950 /*
951 * This is necessary for the suspend error path in which resume is
952 * called without restoring the standard config registers of the device.
953 */
954 if (pci_dev->state_saved)
955 pci_restore_standard_config(pci_dev);
956
957 if (pci_has_legacy_pm_support(pci_dev))
958 return pci_legacy_resume(dev);
959
960 pci_pm_default_resume(pci_dev);
961
962 if (pm) {
963 if (pm->resume)
964 return pm->resume(dev);
965 } else {
966 pci_pm_reenable_device(pci_dev);
967 }
968
969 return 0;
970 }
971
972 #else /* !CONFIG_SUSPEND */
973
974 #define pci_pm_suspend NULL
975 #define pci_pm_suspend_late NULL
976 #define pci_pm_suspend_noirq NULL
977 #define pci_pm_resume NULL
978 #define pci_pm_resume_early NULL
979 #define pci_pm_resume_noirq NULL
980
981 #endif /* !CONFIG_SUSPEND */
982
983 #ifdef CONFIG_HIBERNATE_CALLBACKS
984
pci_pm_freeze(struct device * dev)985 static int pci_pm_freeze(struct device *dev)
986 {
987 struct pci_dev *pci_dev = to_pci_dev(dev);
988 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
989
990 if (pci_has_legacy_pm_support(pci_dev))
991 return pci_legacy_suspend(dev, PMSG_FREEZE);
992
993 if (!pm) {
994 pci_pm_default_suspend(pci_dev);
995 return 0;
996 }
997
998 /*
999 * Resume all runtime-suspended devices before creating a snapshot
1000 * image of system memory, because the restore kernel generally cannot
1001 * be expected to always handle them consistently and they need to be
1002 * put into the runtime-active metastate during system resume anyway,
1003 * so it is better to ensure that the state saved in the image will be
1004 * always consistent with that.
1005 */
1006 pm_runtime_resume(dev);
1007 pci_dev->state_saved = false;
1008
1009 if (pm->freeze) {
1010 int error;
1011
1012 error = pm->freeze(dev);
1013 suspend_report_result(pm->freeze, error);
1014 if (error)
1015 return error;
1016 }
1017
1018 return 0;
1019 }
1020
pci_pm_freeze_noirq(struct device * dev)1021 static int pci_pm_freeze_noirq(struct device *dev)
1022 {
1023 struct pci_dev *pci_dev = to_pci_dev(dev);
1024 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1025
1026 if (pci_has_legacy_pm_support(pci_dev))
1027 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
1028
1029 if (pm && pm->freeze_noirq) {
1030 int error;
1031
1032 error = pm->freeze_noirq(dev);
1033 suspend_report_result(pm->freeze_noirq, error);
1034 if (error)
1035 return error;
1036 }
1037
1038 if (!pci_dev->state_saved)
1039 pci_save_state(pci_dev);
1040
1041 pci_pm_set_unknown_state(pci_dev);
1042
1043 return 0;
1044 }
1045
pci_pm_thaw_noirq(struct device * dev)1046 static int pci_pm_thaw_noirq(struct device *dev)
1047 {
1048 struct pci_dev *pci_dev = to_pci_dev(dev);
1049 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1050
1051 /*
1052 * The pm->thaw_noirq() callback assumes the device has been
1053 * returned to D0 and its config state has been restored.
1054 *
1055 * In addition, pci_restore_state() restores MSI-X state in MMIO
1056 * space, which requires the device to be in D0, so return it to D0
1057 * in case the driver's "freeze" callbacks put it into a low-power
1058 * state.
1059 */
1060 pci_set_power_state(pci_dev, PCI_D0);
1061 pci_restore_state(pci_dev);
1062
1063 if (pci_has_legacy_pm_support(pci_dev))
1064 return 0;
1065
1066 if (pm && pm->thaw_noirq)
1067 return pm->thaw_noirq(dev);
1068
1069 return 0;
1070 }
1071
pci_pm_thaw(struct device * dev)1072 static int pci_pm_thaw(struct device *dev)
1073 {
1074 struct pci_dev *pci_dev = to_pci_dev(dev);
1075 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1076 int error = 0;
1077
1078 if (pci_has_legacy_pm_support(pci_dev))
1079 return pci_legacy_resume(dev);
1080
1081 if (pm) {
1082 if (pm->thaw)
1083 error = pm->thaw(dev);
1084 } else {
1085 pci_pm_reenable_device(pci_dev);
1086 }
1087
1088 pci_dev->state_saved = false;
1089
1090 return error;
1091 }
1092
pci_pm_poweroff(struct device * dev)1093 static int pci_pm_poweroff(struct device *dev)
1094 {
1095 struct pci_dev *pci_dev = to_pci_dev(dev);
1096 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1097
1098 if (pci_has_legacy_pm_support(pci_dev))
1099 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
1100
1101 if (!pm) {
1102 pci_pm_default_suspend(pci_dev);
1103 return 0;
1104 }
1105
1106 /* The reason to do that is the same as in pci_pm_suspend(). */
1107 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1108 pci_dev_need_resume(pci_dev)) {
1109 pm_runtime_resume(dev);
1110 pci_dev->state_saved = false;
1111 } else {
1112 pci_dev_adjust_pme(pci_dev);
1113 }
1114
1115 if (pm->poweroff) {
1116 int error;
1117
1118 error = pm->poweroff(dev);
1119 suspend_report_result(pm->poweroff, error);
1120 if (error)
1121 return error;
1122 }
1123
1124 return 0;
1125 }
1126
pci_pm_poweroff_late(struct device * dev)1127 static int pci_pm_poweroff_late(struct device *dev)
1128 {
1129 if (dev_pm_skip_suspend(dev))
1130 return 0;
1131
1132 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
1133
1134 return pm_generic_poweroff_late(dev);
1135 }
1136
pci_pm_poweroff_noirq(struct device * dev)1137 static int pci_pm_poweroff_noirq(struct device *dev)
1138 {
1139 struct pci_dev *pci_dev = to_pci_dev(dev);
1140 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1141
1142 if (dev_pm_skip_suspend(dev))
1143 return 0;
1144
1145 if (pci_has_legacy_pm_support(pci_dev))
1146 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1147
1148 if (!pm) {
1149 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1150 return 0;
1151 }
1152
1153 if (pm->poweroff_noirq) {
1154 int error;
1155
1156 error = pm->poweroff_noirq(dev);
1157 suspend_report_result(pm->poweroff_noirq, error);
1158 if (error)
1159 return error;
1160 }
1161
1162 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1163 pci_prepare_to_sleep(pci_dev);
1164
1165 /*
1166 * The reason for doing this here is the same as for the analogous code
1167 * in pci_pm_suspend_noirq().
1168 */
1169 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1170 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1171
1172 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1173
1174 return 0;
1175 }
1176
pci_pm_restore_noirq(struct device * dev)1177 static int pci_pm_restore_noirq(struct device *dev)
1178 {
1179 struct pci_dev *pci_dev = to_pci_dev(dev);
1180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1181
1182 pci_pm_default_resume_early(pci_dev);
1183 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1184
1185 if (pci_has_legacy_pm_support(pci_dev))
1186 return 0;
1187
1188 if (pm && pm->restore_noirq)
1189 return pm->restore_noirq(dev);
1190
1191 return 0;
1192 }
1193
pci_pm_restore(struct device * dev)1194 static int pci_pm_restore(struct device *dev)
1195 {
1196 struct pci_dev *pci_dev = to_pci_dev(dev);
1197 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1198
1199 /*
1200 * This is necessary for the hibernation error path in which restore is
1201 * called without restoring the standard config registers of the device.
1202 */
1203 if (pci_dev->state_saved)
1204 pci_restore_standard_config(pci_dev);
1205
1206 if (pci_has_legacy_pm_support(pci_dev))
1207 return pci_legacy_resume(dev);
1208
1209 pci_pm_default_resume(pci_dev);
1210
1211 if (pm) {
1212 if (pm->restore)
1213 return pm->restore(dev);
1214 } else {
1215 pci_pm_reenable_device(pci_dev);
1216 }
1217
1218 return 0;
1219 }
1220
1221 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1222
1223 #define pci_pm_freeze NULL
1224 #define pci_pm_freeze_noirq NULL
1225 #define pci_pm_thaw NULL
1226 #define pci_pm_thaw_noirq NULL
1227 #define pci_pm_poweroff NULL
1228 #define pci_pm_poweroff_late NULL
1229 #define pci_pm_poweroff_noirq NULL
1230 #define pci_pm_restore NULL
1231 #define pci_pm_restore_noirq NULL
1232
1233 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1234
1235 #ifdef CONFIG_PM
1236
pci_pm_runtime_suspend(struct device * dev)1237 static int pci_pm_runtime_suspend(struct device *dev)
1238 {
1239 struct pci_dev *pci_dev = to_pci_dev(dev);
1240 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1241 pci_power_t prev = pci_dev->current_state;
1242 int error;
1243
1244 /*
1245 * If pci_dev->driver is not set (unbound), we leave the device in D0,
1246 * but it may go to D3cold when the bridge above it runtime suspends.
1247 * Save its config space in case that happens.
1248 */
1249 if (!pci_dev->driver) {
1250 pci_save_state(pci_dev);
1251 return 0;
1252 }
1253
1254 pci_dev->state_saved = false;
1255 if (pm && pm->runtime_suspend) {
1256 error = pm->runtime_suspend(dev);
1257 /*
1258 * -EBUSY and -EAGAIN is used to request the runtime PM core
1259 * to schedule a new suspend, so log the event only with debug
1260 * log level.
1261 */
1262 if (error == -EBUSY || error == -EAGAIN) {
1263 pci_dbg(pci_dev, "can't suspend now (%ps returned %d)\n",
1264 pm->runtime_suspend, error);
1265 return error;
1266 } else if (error) {
1267 pci_err(pci_dev, "can't suspend (%ps returned %d)\n",
1268 pm->runtime_suspend, error);
1269 return error;
1270 }
1271 }
1272
1273 pci_fixup_device(pci_fixup_suspend, pci_dev);
1274
1275 if (pm && pm->runtime_suspend
1276 && !pci_dev->state_saved && pci_dev->current_state != PCI_D0
1277 && pci_dev->current_state != PCI_UNKNOWN) {
1278 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
1279 "PCI PM: State of device not saved by %pS\n",
1280 pm->runtime_suspend);
1281 return 0;
1282 }
1283
1284 if (!pci_dev->state_saved) {
1285 pci_save_state(pci_dev);
1286 pci_finish_runtime_suspend(pci_dev);
1287 }
1288
1289 return 0;
1290 }
1291
pci_pm_runtime_resume(struct device * dev)1292 static int pci_pm_runtime_resume(struct device *dev)
1293 {
1294 struct pci_dev *pci_dev = to_pci_dev(dev);
1295 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1296 pci_power_t prev_state = pci_dev->current_state;
1297 int error = 0;
1298
1299 /*
1300 * Restoring config space is necessary even if the device is not bound
1301 * to a driver because although we left it in D0, it may have gone to
1302 * D3cold when the bridge above it runtime suspended.
1303 */
1304 pci_restore_standard_config(pci_dev);
1305
1306 if (!pci_dev->driver)
1307 return 0;
1308
1309 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1310 pci_pm_default_resume(pci_dev);
1311
1312 if (prev_state == PCI_D3cold)
1313 pci_bridge_wait_for_secondary_bus(pci_dev);
1314
1315 if (pm && pm->runtime_resume)
1316 error = pm->runtime_resume(dev);
1317
1318 pci_dev->runtime_d3cold = false;
1319
1320 return error;
1321 }
1322
pci_pm_runtime_idle(struct device * dev)1323 static int pci_pm_runtime_idle(struct device *dev)
1324 {
1325 struct pci_dev *pci_dev = to_pci_dev(dev);
1326 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1327
1328 /*
1329 * If pci_dev->driver is not set (unbound), the device should
1330 * always remain in D0 regardless of the runtime PM status
1331 */
1332 if (!pci_dev->driver)
1333 return 0;
1334
1335 if (!pm)
1336 return -ENOSYS;
1337
1338 if (pm->runtime_idle)
1339 return pm->runtime_idle(dev);
1340
1341 return 0;
1342 }
1343
1344 static const struct dev_pm_ops pci_dev_pm_ops = {
1345 .prepare = pci_pm_prepare,
1346 .complete = pci_pm_complete,
1347 .suspend = pci_pm_suspend,
1348 .suspend_late = pci_pm_suspend_late,
1349 .resume = pci_pm_resume,
1350 .resume_early = pci_pm_resume_early,
1351 .freeze = pci_pm_freeze,
1352 .thaw = pci_pm_thaw,
1353 .poweroff = pci_pm_poweroff,
1354 .poweroff_late = pci_pm_poweroff_late,
1355 .restore = pci_pm_restore,
1356 .suspend_noirq = pci_pm_suspend_noirq,
1357 .resume_noirq = pci_pm_resume_noirq,
1358 .freeze_noirq = pci_pm_freeze_noirq,
1359 .thaw_noirq = pci_pm_thaw_noirq,
1360 .poweroff_noirq = pci_pm_poweroff_noirq,
1361 .restore_noirq = pci_pm_restore_noirq,
1362 .runtime_suspend = pci_pm_runtime_suspend,
1363 .runtime_resume = pci_pm_runtime_resume,
1364 .runtime_idle = pci_pm_runtime_idle,
1365 };
1366
1367 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1368
1369 #else /* !CONFIG_PM */
1370
1371 #define pci_pm_runtime_suspend NULL
1372 #define pci_pm_runtime_resume NULL
1373 #define pci_pm_runtime_idle NULL
1374
1375 #define PCI_PM_OPS_PTR NULL
1376
1377 #endif /* !CONFIG_PM */
1378
1379 /**
1380 * __pci_register_driver - register a new pci driver
1381 * @drv: the driver structure to register
1382 * @owner: owner module of drv
1383 * @mod_name: module name string
1384 *
1385 * Adds the driver structure to the list of registered drivers.
1386 * Returns a negative value on error, otherwise 0.
1387 * If no error occurred, the driver remains registered even if
1388 * no device was claimed during registration.
1389 */
__pci_register_driver(struct pci_driver * drv,struct module * owner,const char * mod_name)1390 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1391 const char *mod_name)
1392 {
1393 /* initialize common driver fields */
1394 drv->driver.name = drv->name;
1395 drv->driver.bus = &pci_bus_type;
1396 drv->driver.owner = owner;
1397 drv->driver.mod_name = mod_name;
1398 drv->driver.groups = drv->groups;
1399 drv->driver.dev_groups = drv->dev_groups;
1400
1401 spin_lock_init(&drv->dynids.lock);
1402 INIT_LIST_HEAD(&drv->dynids.list);
1403
1404 /* register with core */
1405 return driver_register(&drv->driver);
1406 }
1407 EXPORT_SYMBOL(__pci_register_driver);
1408
1409 /**
1410 * pci_unregister_driver - unregister a pci driver
1411 * @drv: the driver structure to unregister
1412 *
1413 * Deletes the driver structure from the list of registered PCI drivers,
1414 * gives it a chance to clean up by calling its remove() function for
1415 * each device it was responsible for, and marks those devices as
1416 * driverless.
1417 */
1418
pci_unregister_driver(struct pci_driver * drv)1419 void pci_unregister_driver(struct pci_driver *drv)
1420 {
1421 driver_unregister(&drv->driver);
1422 pci_free_dynids(drv);
1423 }
1424 EXPORT_SYMBOL(pci_unregister_driver);
1425
1426 static struct pci_driver pci_compat_driver = {
1427 .name = "compat"
1428 };
1429
1430 /**
1431 * pci_dev_driver - get the pci_driver of a device
1432 * @dev: the device to query
1433 *
1434 * Returns the appropriate pci_driver structure or %NULL if there is no
1435 * registered driver for the device.
1436 */
pci_dev_driver(const struct pci_dev * dev)1437 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1438 {
1439 if (dev->driver)
1440 return dev->driver;
1441 else {
1442 int i;
1443 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1444 if (dev->resource[i].flags & IORESOURCE_BUSY)
1445 return &pci_compat_driver;
1446 }
1447 return NULL;
1448 }
1449 EXPORT_SYMBOL(pci_dev_driver);
1450
1451 /**
1452 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1453 * @dev: the PCI device structure to match against
1454 * @drv: the device driver to search for matching PCI device id structures
1455 *
1456 * Used by a driver to check whether a PCI device present in the
1457 * system is in its list of supported devices. Returns the matching
1458 * pci_device_id structure or %NULL if there is no match.
1459 */
pci_bus_match(struct device * dev,struct device_driver * drv)1460 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1461 {
1462 struct pci_dev *pci_dev = to_pci_dev(dev);
1463 struct pci_driver *pci_drv;
1464 const struct pci_device_id *found_id;
1465
1466 if (!pci_dev->match_driver)
1467 return 0;
1468
1469 pci_drv = to_pci_driver(drv);
1470 found_id = pci_match_device(pci_drv, pci_dev);
1471 if (found_id)
1472 return 1;
1473
1474 return 0;
1475 }
1476
1477 /**
1478 * pci_dev_get - increments the reference count of the pci device structure
1479 * @dev: the device being referenced
1480 *
1481 * Each live reference to a device should be refcounted.
1482 *
1483 * Drivers for PCI devices should normally record such references in
1484 * their probe() methods, when they bind to a device, and release
1485 * them by calling pci_dev_put(), in their disconnect() methods.
1486 *
1487 * A pointer to the device with the incremented reference counter is returned.
1488 */
pci_dev_get(struct pci_dev * dev)1489 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1490 {
1491 if (dev)
1492 get_device(&dev->dev);
1493 return dev;
1494 }
1495 EXPORT_SYMBOL(pci_dev_get);
1496
1497 /**
1498 * pci_dev_put - release a use of the pci device structure
1499 * @dev: device that's been disconnected
1500 *
1501 * Must be called when a user of a device is finished with it. When the last
1502 * user of the device calls this function, the memory of the device is freed.
1503 */
pci_dev_put(struct pci_dev * dev)1504 void pci_dev_put(struct pci_dev *dev)
1505 {
1506 if (dev)
1507 put_device(&dev->dev);
1508 }
1509 EXPORT_SYMBOL(pci_dev_put);
1510
pci_uevent(struct device * dev,struct kobj_uevent_env * env)1511 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1512 {
1513 struct pci_dev *pdev;
1514
1515 if (!dev)
1516 return -ENODEV;
1517
1518 pdev = to_pci_dev(dev);
1519
1520 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1521 return -ENOMEM;
1522
1523 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1524 return -ENOMEM;
1525
1526 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1527 pdev->subsystem_device))
1528 return -ENOMEM;
1529
1530 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1531 return -ENOMEM;
1532
1533 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1534 pdev->vendor, pdev->device,
1535 pdev->subsystem_vendor, pdev->subsystem_device,
1536 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1537 (u8)(pdev->class)))
1538 return -ENOMEM;
1539
1540 return 0;
1541 }
1542
1543 #if defined(CONFIG_PCIEAER) || defined(CONFIG_EEH)
1544 /**
1545 * pci_uevent_ers - emit a uevent during recovery path of PCI device
1546 * @pdev: PCI device undergoing error recovery
1547 * @err_type: type of error event
1548 */
pci_uevent_ers(struct pci_dev * pdev,enum pci_ers_result err_type)1549 void pci_uevent_ers(struct pci_dev *pdev, enum pci_ers_result err_type)
1550 {
1551 int idx = 0;
1552 char *envp[3];
1553
1554 switch (err_type) {
1555 case PCI_ERS_RESULT_NONE:
1556 case PCI_ERS_RESULT_CAN_RECOVER:
1557 envp[idx++] = "ERROR_EVENT=BEGIN_RECOVERY";
1558 envp[idx++] = "DEVICE_ONLINE=0";
1559 break;
1560 case PCI_ERS_RESULT_RECOVERED:
1561 envp[idx++] = "ERROR_EVENT=SUCCESSFUL_RECOVERY";
1562 envp[idx++] = "DEVICE_ONLINE=1";
1563 break;
1564 case PCI_ERS_RESULT_DISCONNECT:
1565 envp[idx++] = "ERROR_EVENT=FAILED_RECOVERY";
1566 envp[idx++] = "DEVICE_ONLINE=0";
1567 break;
1568 default:
1569 break;
1570 }
1571
1572 if (idx > 0) {
1573 envp[idx++] = NULL;
1574 kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, envp);
1575 }
1576 }
1577 #endif
1578
pci_bus_num_vf(struct device * dev)1579 static int pci_bus_num_vf(struct device *dev)
1580 {
1581 return pci_num_vf(to_pci_dev(dev));
1582 }
1583
1584 /**
1585 * pci_dma_configure - Setup DMA configuration
1586 * @dev: ptr to dev structure
1587 *
1588 * Function to update PCI devices's DMA configuration using the same
1589 * info from the OF node or ACPI node of host bridge's parent (if any).
1590 */
pci_dma_configure(struct device * dev)1591 static int pci_dma_configure(struct device *dev)
1592 {
1593 struct device *bridge;
1594 int ret = 0;
1595
1596 bridge = pci_get_host_bridge_device(to_pci_dev(dev));
1597
1598 if (IS_ENABLED(CONFIG_OF) && bridge->parent &&
1599 bridge->parent->of_node) {
1600 ret = of_dma_configure(dev, bridge->parent->of_node, true);
1601 } else if (has_acpi_companion(bridge)) {
1602 struct acpi_device *adev = to_acpi_device_node(bridge->fwnode);
1603
1604 ret = acpi_dma_configure(dev, acpi_get_dma_attr(adev));
1605 }
1606
1607 pci_put_host_bridge_device(bridge);
1608 return ret;
1609 }
1610
1611 struct bus_type pci_bus_type = {
1612 .name = "pci",
1613 .match = pci_bus_match,
1614 .uevent = pci_uevent,
1615 .probe = pci_device_probe,
1616 .remove = pci_device_remove,
1617 .shutdown = pci_device_shutdown,
1618 .dev_groups = pci_dev_groups,
1619 .bus_groups = pci_bus_groups,
1620 .drv_groups = pci_drv_groups,
1621 .pm = PCI_PM_OPS_PTR,
1622 .num_vf = pci_bus_num_vf,
1623 .dma_configure = pci_dma_configure,
1624 };
1625 EXPORT_SYMBOL(pci_bus_type);
1626
1627 #ifdef CONFIG_PCIEPORTBUS
pcie_port_bus_match(struct device * dev,struct device_driver * drv)1628 static int pcie_port_bus_match(struct device *dev, struct device_driver *drv)
1629 {
1630 struct pcie_device *pciedev;
1631 struct pcie_port_service_driver *driver;
1632
1633 if (drv->bus != &pcie_port_bus_type || dev->bus != &pcie_port_bus_type)
1634 return 0;
1635
1636 pciedev = to_pcie_device(dev);
1637 driver = to_service_driver(drv);
1638
1639 if (driver->service != pciedev->service)
1640 return 0;
1641
1642 if (driver->port_type != PCIE_ANY_PORT &&
1643 driver->port_type != pci_pcie_type(pciedev->port))
1644 return 0;
1645
1646 return 1;
1647 }
1648
1649 struct bus_type pcie_port_bus_type = {
1650 .name = "pci_express",
1651 .match = pcie_port_bus_match,
1652 };
1653 EXPORT_SYMBOL_GPL(pcie_port_bus_type);
1654 #endif
1655
pci_driver_init(void)1656 static int __init pci_driver_init(void)
1657 {
1658 int ret;
1659
1660 ret = bus_register(&pci_bus_type);
1661 if (ret)
1662 return ret;
1663
1664 #ifdef CONFIG_PCIEPORTBUS
1665 ret = bus_register(&pcie_port_bus_type);
1666 if (ret)
1667 return ret;
1668 #endif
1669 dma_debug_add_bus(&pci_bus_type);
1670 return 0;
1671 }
1672 postcore_initcall(pci_driver_init);
1673