1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "cgroup.h"
9 #include <errno.h>
10 #include <sys/utsname.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include "strbuf.h"
14
15 struct perf_env perf_env;
16
17 #ifdef HAVE_LIBBPF_SUPPORT
18 #include "bpf-event.h"
19 #include "bpf-utils.h"
20 #include <bpf/libbpf.h>
21
perf_env__insert_bpf_prog_info(struct perf_env * env,struct bpf_prog_info_node * info_node)22 void perf_env__insert_bpf_prog_info(struct perf_env *env,
23 struct bpf_prog_info_node *info_node)
24 {
25 __u32 prog_id = info_node->info_linear->info.id;
26 struct bpf_prog_info_node *node;
27 struct rb_node *parent = NULL;
28 struct rb_node **p;
29
30 down_write(&env->bpf_progs.lock);
31 p = &env->bpf_progs.infos.rb_node;
32
33 while (*p != NULL) {
34 parent = *p;
35 node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
36 if (prog_id < node->info_linear->info.id) {
37 p = &(*p)->rb_left;
38 } else if (prog_id > node->info_linear->info.id) {
39 p = &(*p)->rb_right;
40 } else {
41 pr_debug("duplicated bpf prog info %u\n", prog_id);
42 goto out;
43 }
44 }
45
46 rb_link_node(&info_node->rb_node, parent, p);
47 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
48 env->bpf_progs.infos_cnt++;
49 out:
50 up_write(&env->bpf_progs.lock);
51 }
52
perf_env__find_bpf_prog_info(struct perf_env * env,__u32 prog_id)53 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
54 __u32 prog_id)
55 {
56 struct bpf_prog_info_node *node = NULL;
57 struct rb_node *n;
58
59 down_read(&env->bpf_progs.lock);
60 n = env->bpf_progs.infos.rb_node;
61
62 while (n) {
63 node = rb_entry(n, struct bpf_prog_info_node, rb_node);
64 if (prog_id < node->info_linear->info.id)
65 n = n->rb_left;
66 else if (prog_id > node->info_linear->info.id)
67 n = n->rb_right;
68 else
69 goto out;
70 }
71 node = NULL;
72
73 out:
74 up_read(&env->bpf_progs.lock);
75 return node;
76 }
77
perf_env__insert_btf(struct perf_env * env,struct btf_node * btf_node)78 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
79 {
80 struct rb_node *parent = NULL;
81 __u32 btf_id = btf_node->id;
82 struct btf_node *node;
83 struct rb_node **p;
84 bool ret = true;
85
86 down_write(&env->bpf_progs.lock);
87 p = &env->bpf_progs.btfs.rb_node;
88
89 while (*p != NULL) {
90 parent = *p;
91 node = rb_entry(parent, struct btf_node, rb_node);
92 if (btf_id < node->id) {
93 p = &(*p)->rb_left;
94 } else if (btf_id > node->id) {
95 p = &(*p)->rb_right;
96 } else {
97 pr_debug("duplicated btf %u\n", btf_id);
98 ret = false;
99 goto out;
100 }
101 }
102
103 rb_link_node(&btf_node->rb_node, parent, p);
104 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
105 env->bpf_progs.btfs_cnt++;
106 out:
107 up_write(&env->bpf_progs.lock);
108 return ret;
109 }
110
perf_env__find_btf(struct perf_env * env,__u32 btf_id)111 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
112 {
113 struct btf_node *node = NULL;
114 struct rb_node *n;
115
116 down_read(&env->bpf_progs.lock);
117 n = env->bpf_progs.btfs.rb_node;
118
119 while (n) {
120 node = rb_entry(n, struct btf_node, rb_node);
121 if (btf_id < node->id)
122 n = n->rb_left;
123 else if (btf_id > node->id)
124 n = n->rb_right;
125 else
126 goto out;
127 }
128 node = NULL;
129
130 out:
131 up_read(&env->bpf_progs.lock);
132 return node;
133 }
134
135 /* purge data in bpf_progs.infos tree */
perf_env__purge_bpf(struct perf_env * env)136 static void perf_env__purge_bpf(struct perf_env *env)
137 {
138 struct rb_root *root;
139 struct rb_node *next;
140
141 down_write(&env->bpf_progs.lock);
142
143 root = &env->bpf_progs.infos;
144 next = rb_first(root);
145
146 while (next) {
147 struct bpf_prog_info_node *node;
148
149 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
150 next = rb_next(&node->rb_node);
151 rb_erase(&node->rb_node, root);
152 free(node->info_linear);
153 free(node);
154 }
155
156 env->bpf_progs.infos_cnt = 0;
157
158 root = &env->bpf_progs.btfs;
159 next = rb_first(root);
160
161 while (next) {
162 struct btf_node *node;
163
164 node = rb_entry(next, struct btf_node, rb_node);
165 next = rb_next(&node->rb_node);
166 rb_erase(&node->rb_node, root);
167 free(node);
168 }
169
170 env->bpf_progs.btfs_cnt = 0;
171
172 up_write(&env->bpf_progs.lock);
173 }
174 #else // HAVE_LIBBPF_SUPPORT
perf_env__purge_bpf(struct perf_env * env __maybe_unused)175 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
176 {
177 }
178 #endif // HAVE_LIBBPF_SUPPORT
179
perf_env__exit(struct perf_env * env)180 void perf_env__exit(struct perf_env *env)
181 {
182 int i;
183
184 perf_env__purge_bpf(env);
185 perf_env__purge_cgroups(env);
186 zfree(&env->hostname);
187 zfree(&env->os_release);
188 zfree(&env->version);
189 zfree(&env->arch);
190 zfree(&env->cpu_desc);
191 zfree(&env->cpuid);
192 zfree(&env->cmdline);
193 zfree(&env->cmdline_argv);
194 zfree(&env->sibling_dies);
195 zfree(&env->sibling_cores);
196 zfree(&env->sibling_threads);
197 zfree(&env->pmu_mappings);
198 zfree(&env->cpu);
199 zfree(&env->cpu_pmu_caps);
200 zfree(&env->numa_map);
201
202 for (i = 0; i < env->nr_numa_nodes; i++)
203 perf_cpu_map__put(env->numa_nodes[i].map);
204 zfree(&env->numa_nodes);
205
206 for (i = 0; i < env->caches_cnt; i++)
207 cpu_cache_level__free(&env->caches[i]);
208 zfree(&env->caches);
209
210 for (i = 0; i < env->nr_memory_nodes; i++)
211 zfree(&env->memory_nodes[i].set);
212 zfree(&env->memory_nodes);
213
214 for (i = 0; i < env->nr_hybrid_nodes; i++) {
215 zfree(&env->hybrid_nodes[i].pmu_name);
216 zfree(&env->hybrid_nodes[i].cpus);
217 }
218 zfree(&env->hybrid_nodes);
219
220 for (i = 0; i < env->nr_hybrid_cpc_nodes; i++) {
221 zfree(&env->hybrid_cpc_nodes[i].cpu_pmu_caps);
222 zfree(&env->hybrid_cpc_nodes[i].pmu_name);
223 }
224 zfree(&env->hybrid_cpc_nodes);
225 }
226
perf_env__init(struct perf_env * env)227 void perf_env__init(struct perf_env *env)
228 {
229 #ifdef HAVE_LIBBPF_SUPPORT
230 env->bpf_progs.infos = RB_ROOT;
231 env->bpf_progs.btfs = RB_ROOT;
232 init_rwsem(&env->bpf_progs.lock);
233 #endif
234 env->kernel_is_64_bit = -1;
235 }
236
perf_env__init_kernel_mode(struct perf_env * env)237 static void perf_env__init_kernel_mode(struct perf_env *env)
238 {
239 const char *arch = perf_env__raw_arch(env);
240
241 if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
242 !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
243 !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
244 !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
245 env->kernel_is_64_bit = 1;
246 else
247 env->kernel_is_64_bit = 0;
248 }
249
perf_env__kernel_is_64_bit(struct perf_env * env)250 int perf_env__kernel_is_64_bit(struct perf_env *env)
251 {
252 if (env->kernel_is_64_bit == -1)
253 perf_env__init_kernel_mode(env);
254
255 return env->kernel_is_64_bit;
256 }
257
perf_env__set_cmdline(struct perf_env * env,int argc,const char * argv[])258 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
259 {
260 int i;
261
262 /* do not include NULL termination */
263 env->cmdline_argv = calloc(argc, sizeof(char *));
264 if (env->cmdline_argv == NULL)
265 goto out_enomem;
266
267 /*
268 * Must copy argv contents because it gets moved around during option
269 * parsing:
270 */
271 for (i = 0; i < argc ; i++) {
272 env->cmdline_argv[i] = argv[i];
273 if (env->cmdline_argv[i] == NULL)
274 goto out_free;
275 }
276
277 env->nr_cmdline = argc;
278
279 return 0;
280 out_free:
281 zfree(&env->cmdline_argv);
282 out_enomem:
283 return -ENOMEM;
284 }
285
perf_env__read_cpu_topology_map(struct perf_env * env)286 int perf_env__read_cpu_topology_map(struct perf_env *env)
287 {
288 int cpu, nr_cpus;
289
290 if (env->cpu != NULL)
291 return 0;
292
293 if (env->nr_cpus_avail == 0)
294 env->nr_cpus_avail = cpu__max_present_cpu();
295
296 nr_cpus = env->nr_cpus_avail;
297 if (nr_cpus == -1)
298 return -EINVAL;
299
300 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
301 if (env->cpu == NULL)
302 return -ENOMEM;
303
304 for (cpu = 0; cpu < nr_cpus; ++cpu) {
305 env->cpu[cpu].core_id = cpu_map__get_core_id(cpu);
306 env->cpu[cpu].socket_id = cpu_map__get_socket_id(cpu);
307 env->cpu[cpu].die_id = cpu_map__get_die_id(cpu);
308 }
309
310 env->nr_cpus_avail = nr_cpus;
311 return 0;
312 }
313
perf_env__read_pmu_mappings(struct perf_env * env)314 int perf_env__read_pmu_mappings(struct perf_env *env)
315 {
316 struct perf_pmu *pmu = NULL;
317 u32 pmu_num = 0;
318 struct strbuf sb;
319
320 while ((pmu = perf_pmu__scan(pmu))) {
321 if (!pmu->name)
322 continue;
323 pmu_num++;
324 }
325 if (!pmu_num) {
326 pr_debug("pmu mappings not available\n");
327 return -ENOENT;
328 }
329 env->nr_pmu_mappings = pmu_num;
330
331 if (strbuf_init(&sb, 128 * pmu_num) < 0)
332 return -ENOMEM;
333
334 while ((pmu = perf_pmu__scan(pmu))) {
335 if (!pmu->name)
336 continue;
337 if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
338 goto error;
339 /* include a NULL character at the end */
340 if (strbuf_add(&sb, "", 1) < 0)
341 goto error;
342 }
343
344 env->pmu_mappings = strbuf_detach(&sb, NULL);
345
346 return 0;
347
348 error:
349 strbuf_release(&sb);
350 return -1;
351 }
352
perf_env__read_cpuid(struct perf_env * env)353 int perf_env__read_cpuid(struct perf_env *env)
354 {
355 char cpuid[128];
356 int err = get_cpuid(cpuid, sizeof(cpuid));
357
358 if (err)
359 return err;
360
361 free(env->cpuid);
362 env->cpuid = strdup(cpuid);
363 if (env->cpuid == NULL)
364 return ENOMEM;
365 return 0;
366 }
367
perf_env__read_arch(struct perf_env * env)368 static int perf_env__read_arch(struct perf_env *env)
369 {
370 struct utsname uts;
371
372 if (env->arch)
373 return 0;
374
375 if (!uname(&uts))
376 env->arch = strdup(uts.machine);
377
378 return env->arch ? 0 : -ENOMEM;
379 }
380
perf_env__read_nr_cpus_avail(struct perf_env * env)381 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
382 {
383 if (env->nr_cpus_avail == 0)
384 env->nr_cpus_avail = cpu__max_present_cpu();
385
386 return env->nr_cpus_avail ? 0 : -ENOENT;
387 }
388
perf_env__raw_arch(struct perf_env * env)389 const char *perf_env__raw_arch(struct perf_env *env)
390 {
391 return env && !perf_env__read_arch(env) ? env->arch : "unknown";
392 }
393
perf_env__nr_cpus_avail(struct perf_env * env)394 int perf_env__nr_cpus_avail(struct perf_env *env)
395 {
396 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
397 }
398
cpu_cache_level__free(struct cpu_cache_level * cache)399 void cpu_cache_level__free(struct cpu_cache_level *cache)
400 {
401 zfree(&cache->type);
402 zfree(&cache->map);
403 zfree(&cache->size);
404 }
405
406 /*
407 * Return architecture name in a normalized form.
408 * The conversion logic comes from the Makefile.
409 */
normalize_arch(char * arch)410 static const char *normalize_arch(char *arch)
411 {
412 if (!strcmp(arch, "x86_64"))
413 return "x86";
414 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
415 return "x86";
416 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
417 return "sparc";
418 if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
419 return "arm64";
420 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
421 return "arm";
422 if (!strncmp(arch, "s390", 4))
423 return "s390";
424 if (!strncmp(arch, "parisc", 6))
425 return "parisc";
426 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
427 return "powerpc";
428 if (!strncmp(arch, "mips", 4))
429 return "mips";
430 if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
431 return "sh";
432
433 return arch;
434 }
435
perf_env__arch(struct perf_env * env)436 const char *perf_env__arch(struct perf_env *env)
437 {
438 char *arch_name;
439
440 if (!env || !env->arch) { /* Assume local operation */
441 static struct utsname uts = { .machine[0] = '\0', };
442 if (uts.machine[0] == '\0' && uname(&uts) < 0)
443 return NULL;
444 arch_name = uts.machine;
445 } else
446 arch_name = env->arch;
447
448 return normalize_arch(arch_name);
449 }
450
perf_env__cpuid(struct perf_env * env)451 const char *perf_env__cpuid(struct perf_env *env)
452 {
453 int status;
454
455 if (!env || !env->cpuid) { /* Assume local operation */
456 status = perf_env__read_cpuid(env);
457 if (status)
458 return NULL;
459 }
460
461 return env->cpuid;
462 }
463
perf_env__nr_pmu_mappings(struct perf_env * env)464 int perf_env__nr_pmu_mappings(struct perf_env *env)
465 {
466 int status;
467
468 if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
469 status = perf_env__read_pmu_mappings(env);
470 if (status)
471 return 0;
472 }
473
474 return env->nr_pmu_mappings;
475 }
476
perf_env__pmu_mappings(struct perf_env * env)477 const char *perf_env__pmu_mappings(struct perf_env *env)
478 {
479 int status;
480
481 if (!env || !env->pmu_mappings) { /* Assume local operation */
482 status = perf_env__read_pmu_mappings(env);
483 if (status)
484 return NULL;
485 }
486
487 return env->pmu_mappings;
488 }
489
perf_env__numa_node(struct perf_env * env,int cpu)490 int perf_env__numa_node(struct perf_env *env, int cpu)
491 {
492 if (!env->nr_numa_map) {
493 struct numa_node *nn;
494 int i, nr = 0;
495
496 for (i = 0; i < env->nr_numa_nodes; i++) {
497 nn = &env->numa_nodes[i];
498 nr = max(nr, perf_cpu_map__max(nn->map));
499 }
500
501 nr++;
502
503 /*
504 * We initialize the numa_map array to prepare
505 * it for missing cpus, which return node -1
506 */
507 env->numa_map = malloc(nr * sizeof(int));
508 if (!env->numa_map)
509 return -1;
510
511 for (i = 0; i < nr; i++)
512 env->numa_map[i] = -1;
513
514 env->nr_numa_map = nr;
515
516 for (i = 0; i < env->nr_numa_nodes; i++) {
517 int tmp, j;
518
519 nn = &env->numa_nodes[i];
520 perf_cpu_map__for_each_cpu(j, tmp, nn->map)
521 env->numa_map[j] = i;
522 }
523 }
524
525 return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1;
526 }
527