1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34 };
35
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <linux/static_call.h>
61 #include <asm/local.h>
62
63 struct perf_callchain_entry {
64 __u64 nr;
65 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
66 };
67
68 struct perf_callchain_entry_ctx {
69 struct perf_callchain_entry *entry;
70 u32 max_stack;
71 u32 nr;
72 short contexts;
73 bool contexts_maxed;
74 };
75
76 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
77 unsigned long off, unsigned long len);
78
79 struct perf_raw_frag {
80 union {
81 struct perf_raw_frag *next;
82 unsigned long pad;
83 };
84 perf_copy_f copy;
85 void *data;
86 u32 size;
87 } __packed;
88
89 struct perf_raw_record {
90 struct perf_raw_frag frag;
91 u32 size;
92 };
93
94 /*
95 * branch stack layout:
96 * nr: number of taken branches stored in entries[]
97 * hw_idx: The low level index of raw branch records
98 * for the most recent branch.
99 * -1ULL means invalid/unknown.
100 *
101 * Note that nr can vary from sample to sample
102 * branches (to, from) are stored from most recent
103 * to least recent, i.e., entries[0] contains the most
104 * recent branch.
105 * The entries[] is an abstraction of raw branch records,
106 * which may not be stored in age order in HW, e.g. Intel LBR.
107 * The hw_idx is to expose the low level index of raw
108 * branch record for the most recent branch aka entries[0].
109 * The hw_idx index is between -1 (unknown) and max depth,
110 * which can be retrieved in /sys/devices/cpu/caps/branches.
111 * For the architectures whose raw branch records are
112 * already stored in age order, the hw_idx should be 0.
113 */
114 struct perf_branch_stack {
115 __u64 nr;
116 __u64 hw_idx;
117 struct perf_branch_entry entries[];
118 };
119
120 struct task_struct;
121
122 /*
123 * extra PMU register associated with an event
124 */
125 struct hw_perf_event_extra {
126 u64 config; /* register value */
127 unsigned int reg; /* register address or index */
128 int alloc; /* extra register already allocated */
129 int idx; /* index in shared_regs->regs[] */
130 };
131
132 /**
133 * struct hw_perf_event - performance event hardware details:
134 */
135 struct hw_perf_event {
136 #ifdef CONFIG_PERF_EVENTS
137 union {
138 struct { /* hardware */
139 u64 config;
140 u64 last_tag;
141 unsigned long config_base;
142 unsigned long event_base;
143 int event_base_rdpmc;
144 int idx;
145 int last_cpu;
146 int flags;
147
148 struct hw_perf_event_extra extra_reg;
149 struct hw_perf_event_extra branch_reg;
150 };
151 struct { /* software */
152 struct hrtimer hrtimer;
153 };
154 struct { /* tracepoint */
155 /* for tp_event->class */
156 struct list_head tp_list;
157 };
158 struct { /* amd_power */
159 u64 pwr_acc;
160 u64 ptsc;
161 };
162 #ifdef CONFIG_HAVE_HW_BREAKPOINT
163 struct { /* breakpoint */
164 /*
165 * Crufty hack to avoid the chicken and egg
166 * problem hw_breakpoint has with context
167 * creation and event initalization.
168 */
169 struct arch_hw_breakpoint info;
170 struct list_head bp_list;
171 };
172 #endif
173 struct { /* amd_iommu */
174 u8 iommu_bank;
175 u8 iommu_cntr;
176 u16 padding;
177 u64 conf;
178 u64 conf1;
179 };
180 };
181 /*
182 * If the event is a per task event, this will point to the task in
183 * question. See the comment in perf_event_alloc().
184 */
185 struct task_struct *target;
186
187 /*
188 * PMU would store hardware filter configuration
189 * here.
190 */
191 void *addr_filters;
192
193 /* Last sync'ed generation of filters */
194 unsigned long addr_filters_gen;
195
196 /*
197 * hw_perf_event::state flags; used to track the PERF_EF_* state.
198 */
199 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
200 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
201 #define PERF_HES_ARCH 0x04
202
203 int state;
204
205 /*
206 * The last observed hardware counter value, updated with a
207 * local64_cmpxchg() such that pmu::read() can be called nested.
208 */
209 local64_t prev_count;
210
211 /*
212 * The period to start the next sample with.
213 */
214 u64 sample_period;
215
216 union {
217 struct { /* Sampling */
218 /*
219 * The period we started this sample with.
220 */
221 u64 last_period;
222
223 /*
224 * However much is left of the current period;
225 * note that this is a full 64bit value and
226 * allows for generation of periods longer
227 * than hardware might allow.
228 */
229 local64_t period_left;
230 };
231 struct { /* Topdown events counting for context switch */
232 u64 saved_metric;
233 u64 saved_slots;
234 };
235 };
236
237 /*
238 * State for throttling the event, see __perf_event_overflow() and
239 * perf_adjust_freq_unthr_context().
240 */
241 u64 interrupts_seq;
242 u64 interrupts;
243
244 /*
245 * State for freq target events, see __perf_event_overflow() and
246 * perf_adjust_freq_unthr_context().
247 */
248 u64 freq_time_stamp;
249 u64 freq_count_stamp;
250 #endif
251 };
252
253 struct perf_event;
254
255 /*
256 * Common implementation detail of pmu::{start,commit,cancel}_txn
257 */
258 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
259 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
260
261 /**
262 * pmu::capabilities flags
263 */
264 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001
265 #define PERF_PMU_CAP_NO_NMI 0x0002
266 #define PERF_PMU_CAP_AUX_NO_SG 0x0004
267 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008
268 #define PERF_PMU_CAP_EXCLUSIVE 0x0010
269 #define PERF_PMU_CAP_ITRACE 0x0020
270 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040
271 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080
272 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100
273 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200
274
275 struct perf_output_handle;
276
277 /**
278 * struct pmu - generic performance monitoring unit
279 */
280 struct pmu {
281 struct list_head entry;
282
283 struct module *module;
284 struct device *dev;
285 const struct attribute_group **attr_groups;
286 const struct attribute_group **attr_update;
287 const char *name;
288 int type;
289
290 /*
291 * various common per-pmu feature flags
292 */
293 int capabilities;
294
295 int __percpu *pmu_disable_count;
296 struct perf_cpu_context __percpu *pmu_cpu_context;
297 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
298 int task_ctx_nr;
299 int hrtimer_interval_ms;
300
301 /* number of address filters this PMU can do */
302 unsigned int nr_addr_filters;
303
304 /*
305 * Fully disable/enable this PMU, can be used to protect from the PMI
306 * as well as for lazy/batch writing of the MSRs.
307 */
308 void (*pmu_enable) (struct pmu *pmu); /* optional */
309 void (*pmu_disable) (struct pmu *pmu); /* optional */
310
311 /*
312 * Try and initialize the event for this PMU.
313 *
314 * Returns:
315 * -ENOENT -- @event is not for this PMU
316 *
317 * -ENODEV -- @event is for this PMU but PMU not present
318 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
319 * -EINVAL -- @event is for this PMU but @event is not valid
320 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
321 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
322 *
323 * 0 -- @event is for this PMU and valid
324 *
325 * Other error return values are allowed.
326 */
327 int (*event_init) (struct perf_event *event);
328
329 /*
330 * Notification that the event was mapped or unmapped. Called
331 * in the context of the mapping task.
332 */
333 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
334 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
335
336 /*
337 * Flags for ->add()/->del()/ ->start()/->stop(). There are
338 * matching hw_perf_event::state flags.
339 */
340 #define PERF_EF_START 0x01 /* start the counter when adding */
341 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
342 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
343
344 /*
345 * Adds/Removes a counter to/from the PMU, can be done inside a
346 * transaction, see the ->*_txn() methods.
347 *
348 * The add/del callbacks will reserve all hardware resources required
349 * to service the event, this includes any counter constraint
350 * scheduling etc.
351 *
352 * Called with IRQs disabled and the PMU disabled on the CPU the event
353 * is on.
354 *
355 * ->add() called without PERF_EF_START should result in the same state
356 * as ->add() followed by ->stop().
357 *
358 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
359 * ->stop() that must deal with already being stopped without
360 * PERF_EF_UPDATE.
361 */
362 int (*add) (struct perf_event *event, int flags);
363 void (*del) (struct perf_event *event, int flags);
364
365 /*
366 * Starts/Stops a counter present on the PMU.
367 *
368 * The PMI handler should stop the counter when perf_event_overflow()
369 * returns !0. ->start() will be used to continue.
370 *
371 * Also used to change the sample period.
372 *
373 * Called with IRQs disabled and the PMU disabled on the CPU the event
374 * is on -- will be called from NMI context with the PMU generates
375 * NMIs.
376 *
377 * ->stop() with PERF_EF_UPDATE will read the counter and update
378 * period/count values like ->read() would.
379 *
380 * ->start() with PERF_EF_RELOAD will reprogram the counter
381 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
382 */
383 void (*start) (struct perf_event *event, int flags);
384 void (*stop) (struct perf_event *event, int flags);
385
386 /*
387 * Updates the counter value of the event.
388 *
389 * For sampling capable PMUs this will also update the software period
390 * hw_perf_event::period_left field.
391 */
392 void (*read) (struct perf_event *event);
393
394 /*
395 * Group events scheduling is treated as a transaction, add
396 * group events as a whole and perform one schedulability test.
397 * If the test fails, roll back the whole group
398 *
399 * Start the transaction, after this ->add() doesn't need to
400 * do schedulability tests.
401 *
402 * Optional.
403 */
404 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
405 /*
406 * If ->start_txn() disabled the ->add() schedulability test
407 * then ->commit_txn() is required to perform one. On success
408 * the transaction is closed. On error the transaction is kept
409 * open until ->cancel_txn() is called.
410 *
411 * Optional.
412 */
413 int (*commit_txn) (struct pmu *pmu);
414 /*
415 * Will cancel the transaction, assumes ->del() is called
416 * for each successful ->add() during the transaction.
417 *
418 * Optional.
419 */
420 void (*cancel_txn) (struct pmu *pmu);
421
422 /*
423 * Will return the value for perf_event_mmap_page::index for this event,
424 * if no implementation is provided it will default to: event->hw.idx + 1.
425 */
426 int (*event_idx) (struct perf_event *event); /*optional */
427
428 /*
429 * context-switches callback
430 */
431 void (*sched_task) (struct perf_event_context *ctx,
432 bool sched_in);
433
434 /*
435 * Kmem cache of PMU specific data
436 */
437 struct kmem_cache *task_ctx_cache;
438
439 /*
440 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
441 * can be synchronized using this function. See Intel LBR callstack support
442 * implementation and Perf core context switch handling callbacks for usage
443 * examples.
444 */
445 void (*swap_task_ctx) (struct perf_event_context *prev,
446 struct perf_event_context *next);
447 /* optional */
448
449 /*
450 * Set up pmu-private data structures for an AUX area
451 */
452 void *(*setup_aux) (struct perf_event *event, void **pages,
453 int nr_pages, bool overwrite);
454 /* optional */
455
456 /*
457 * Free pmu-private AUX data structures
458 */
459 void (*free_aux) (void *aux); /* optional */
460
461 /*
462 * Take a snapshot of the AUX buffer without touching the event
463 * state, so that preempting ->start()/->stop() callbacks does
464 * not interfere with their logic. Called in PMI context.
465 *
466 * Returns the size of AUX data copied to the output handle.
467 *
468 * Optional.
469 */
470 long (*snapshot_aux) (struct perf_event *event,
471 struct perf_output_handle *handle,
472 unsigned long size);
473
474 /*
475 * Validate address range filters: make sure the HW supports the
476 * requested configuration and number of filters; return 0 if the
477 * supplied filters are valid, -errno otherwise.
478 *
479 * Runs in the context of the ioctl()ing process and is not serialized
480 * with the rest of the PMU callbacks.
481 */
482 int (*addr_filters_validate) (struct list_head *filters);
483 /* optional */
484
485 /*
486 * Synchronize address range filter configuration:
487 * translate hw-agnostic filters into hardware configuration in
488 * event::hw::addr_filters.
489 *
490 * Runs as a part of filter sync sequence that is done in ->start()
491 * callback by calling perf_event_addr_filters_sync().
492 *
493 * May (and should) traverse event::addr_filters::list, for which its
494 * caller provides necessary serialization.
495 */
496 void (*addr_filters_sync) (struct perf_event *event);
497 /* optional */
498
499 /*
500 * Check if event can be used for aux_output purposes for
501 * events of this PMU.
502 *
503 * Runs from perf_event_open(). Should return 0 for "no match"
504 * or non-zero for "match".
505 */
506 int (*aux_output_match) (struct perf_event *event);
507 /* optional */
508
509 /*
510 * Filter events for PMU-specific reasons.
511 */
512 int (*filter_match) (struct perf_event *event); /* optional */
513
514 /*
515 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
516 */
517 int (*check_period) (struct perf_event *event, u64 value); /* optional */
518 };
519
520 enum perf_addr_filter_action_t {
521 PERF_ADDR_FILTER_ACTION_STOP = 0,
522 PERF_ADDR_FILTER_ACTION_START,
523 PERF_ADDR_FILTER_ACTION_FILTER,
524 };
525
526 /**
527 * struct perf_addr_filter - address range filter definition
528 * @entry: event's filter list linkage
529 * @path: object file's path for file-based filters
530 * @offset: filter range offset
531 * @size: filter range size (size==0 means single address trigger)
532 * @action: filter/start/stop
533 *
534 * This is a hardware-agnostic filter configuration as specified by the user.
535 */
536 struct perf_addr_filter {
537 struct list_head entry;
538 struct path path;
539 unsigned long offset;
540 unsigned long size;
541 enum perf_addr_filter_action_t action;
542 };
543
544 /**
545 * struct perf_addr_filters_head - container for address range filters
546 * @list: list of filters for this event
547 * @lock: spinlock that serializes accesses to the @list and event's
548 * (and its children's) filter generations.
549 * @nr_file_filters: number of file-based filters
550 *
551 * A child event will use parent's @list (and therefore @lock), so they are
552 * bundled together; see perf_event_addr_filters().
553 */
554 struct perf_addr_filters_head {
555 struct list_head list;
556 raw_spinlock_t lock;
557 unsigned int nr_file_filters;
558 };
559
560 struct perf_addr_filter_range {
561 unsigned long start;
562 unsigned long size;
563 };
564
565 /**
566 * enum perf_event_state - the states of an event:
567 */
568 enum perf_event_state {
569 PERF_EVENT_STATE_DEAD = -4,
570 PERF_EVENT_STATE_EXIT = -3,
571 PERF_EVENT_STATE_ERROR = -2,
572 PERF_EVENT_STATE_OFF = -1,
573 PERF_EVENT_STATE_INACTIVE = 0,
574 PERF_EVENT_STATE_ACTIVE = 1,
575 };
576
577 struct file;
578 struct perf_sample_data;
579
580 typedef void (*perf_overflow_handler_t)(struct perf_event *,
581 struct perf_sample_data *,
582 struct pt_regs *regs);
583
584 /*
585 * Event capabilities. For event_caps and groups caps.
586 *
587 * PERF_EV_CAP_SOFTWARE: Is a software event.
588 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
589 * from any CPU in the package where it is active.
590 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
591 * cannot be a group leader. If an event with this flag is detached from the
592 * group it is scheduled out and moved into an unrecoverable ERROR state.
593 */
594 #define PERF_EV_CAP_SOFTWARE BIT(0)
595 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
596 #define PERF_EV_CAP_SIBLING BIT(2)
597
598 #define SWEVENT_HLIST_BITS 8
599 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
600
601 struct swevent_hlist {
602 struct hlist_head heads[SWEVENT_HLIST_SIZE];
603 struct rcu_head rcu_head;
604 };
605
606 #define PERF_ATTACH_CONTEXT 0x01
607 #define PERF_ATTACH_GROUP 0x02
608 #define PERF_ATTACH_TASK 0x04
609 #define PERF_ATTACH_TASK_DATA 0x08
610 #define PERF_ATTACH_ITRACE 0x10
611 #define PERF_ATTACH_SCHED_CB 0x20
612 #define PERF_ATTACH_CHILD 0x40
613
614 struct perf_cgroup;
615 struct perf_buffer;
616
617 struct pmu_event_list {
618 raw_spinlock_t lock;
619 struct list_head list;
620 };
621
622 #define for_each_sibling_event(sibling, event) \
623 if ((event)->group_leader == (event)) \
624 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
625
626 /**
627 * struct perf_event - performance event kernel representation:
628 */
629 struct perf_event {
630 #ifdef CONFIG_PERF_EVENTS
631 /*
632 * entry onto perf_event_context::event_list;
633 * modifications require ctx->lock
634 * RCU safe iterations.
635 */
636 struct list_head event_entry;
637
638 /*
639 * Locked for modification by both ctx->mutex and ctx->lock; holding
640 * either sufficies for read.
641 */
642 struct list_head sibling_list;
643 struct list_head active_list;
644 /*
645 * Node on the pinned or flexible tree located at the event context;
646 */
647 struct rb_node group_node;
648 u64 group_index;
649 /*
650 * We need storage to track the entries in perf_pmu_migrate_context; we
651 * cannot use the event_entry because of RCU and we want to keep the
652 * group in tact which avoids us using the other two entries.
653 */
654 struct list_head migrate_entry;
655
656 struct hlist_node hlist_entry;
657 struct list_head active_entry;
658 int nr_siblings;
659
660 /* Not serialized. Only written during event initialization. */
661 int event_caps;
662 /* The cumulative AND of all event_caps for events in this group. */
663 int group_caps;
664
665 struct perf_event *group_leader;
666 struct pmu *pmu;
667 void *pmu_private;
668
669 enum perf_event_state state;
670 unsigned int attach_state;
671 local64_t count;
672 atomic64_t child_count;
673
674 /*
675 * These are the total time in nanoseconds that the event
676 * has been enabled (i.e. eligible to run, and the task has
677 * been scheduled in, if this is a per-task event)
678 * and running (scheduled onto the CPU), respectively.
679 */
680 u64 total_time_enabled;
681 u64 total_time_running;
682 u64 tstamp;
683
684 /*
685 * timestamp shadows the actual context timing but it can
686 * be safely used in NMI interrupt context. It reflects the
687 * context time as it was when the event was last scheduled in,
688 * or when ctx_sched_in failed to schedule the event because we
689 * run out of PMC.
690 *
691 * ctx_time already accounts for ctx->timestamp. Therefore to
692 * compute ctx_time for a sample, simply add perf_clock().
693 */
694 u64 shadow_ctx_time;
695
696 struct perf_event_attr attr;
697 u16 header_size;
698 u16 id_header_size;
699 u16 read_size;
700 struct hw_perf_event hw;
701
702 struct perf_event_context *ctx;
703 atomic_long_t refcount;
704
705 /*
706 * These accumulate total time (in nanoseconds) that children
707 * events have been enabled and running, respectively.
708 */
709 atomic64_t child_total_time_enabled;
710 atomic64_t child_total_time_running;
711
712 /*
713 * Protect attach/detach and child_list:
714 */
715 struct mutex child_mutex;
716 struct list_head child_list;
717 struct perf_event *parent;
718
719 int oncpu;
720 int cpu;
721
722 struct list_head owner_entry;
723 struct task_struct *owner;
724
725 /* mmap bits */
726 struct mutex mmap_mutex;
727 atomic_t mmap_count;
728
729 struct perf_buffer *rb;
730 struct list_head rb_entry;
731 unsigned long rcu_batches;
732 int rcu_pending;
733
734 /* poll related */
735 wait_queue_head_t waitq;
736 struct fasync_struct *fasync;
737
738 /* delayed work for NMIs and such */
739 int pending_wakeup;
740 int pending_kill;
741 int pending_disable;
742 unsigned long pending_addr; /* SIGTRAP */
743 struct irq_work pending;
744
745 atomic_t event_limit;
746
747 /* address range filters */
748 struct perf_addr_filters_head addr_filters;
749 /* vma address array for file-based filders */
750 struct perf_addr_filter_range *addr_filter_ranges;
751 unsigned long addr_filters_gen;
752
753 /* for aux_output events */
754 struct perf_event *aux_event;
755
756 void (*destroy)(struct perf_event *);
757 struct rcu_head rcu_head;
758
759 struct pid_namespace *ns;
760 u64 id;
761
762 u64 (*clock)(void);
763 perf_overflow_handler_t overflow_handler;
764 void *overflow_handler_context;
765 #ifdef CONFIG_BPF_SYSCALL
766 perf_overflow_handler_t orig_overflow_handler;
767 struct bpf_prog *prog;
768 u64 bpf_cookie;
769 #endif
770
771 #ifdef CONFIG_EVENT_TRACING
772 struct trace_event_call *tp_event;
773 struct event_filter *filter;
774 #ifdef CONFIG_FUNCTION_TRACER
775 struct ftrace_ops ftrace_ops;
776 #endif
777 #endif
778
779 #ifdef CONFIG_CGROUP_PERF
780 struct perf_cgroup *cgrp; /* cgroup event is attach to */
781 #endif
782
783 #ifdef CONFIG_SECURITY
784 void *security;
785 #endif
786 struct list_head sb_list;
787 #endif /* CONFIG_PERF_EVENTS */
788 };
789
790
791 struct perf_event_groups {
792 struct rb_root tree;
793 u64 index;
794 };
795
796 /**
797 * struct perf_event_context - event context structure
798 *
799 * Used as a container for task events and CPU events as well:
800 */
801 struct perf_event_context {
802 struct pmu *pmu;
803 /*
804 * Protect the states of the events in the list,
805 * nr_active, and the list:
806 */
807 raw_spinlock_t lock;
808 /*
809 * Protect the list of events. Locking either mutex or lock
810 * is sufficient to ensure the list doesn't change; to change
811 * the list you need to lock both the mutex and the spinlock.
812 */
813 struct mutex mutex;
814
815 struct list_head active_ctx_list;
816 struct perf_event_groups pinned_groups;
817 struct perf_event_groups flexible_groups;
818 struct list_head event_list;
819
820 struct list_head pinned_active;
821 struct list_head flexible_active;
822
823 int nr_events;
824 int nr_active;
825 int is_active;
826 int nr_stat;
827 int nr_freq;
828 int rotate_disable;
829 /*
830 * Set when nr_events != nr_active, except tolerant to events not
831 * necessary to be active due to scheduling constraints, such as cgroups.
832 */
833 int rotate_necessary;
834 refcount_t refcount;
835 struct task_struct *task;
836
837 /*
838 * Context clock, runs when context enabled.
839 */
840 u64 time;
841 u64 timestamp;
842
843 /*
844 * These fields let us detect when two contexts have both
845 * been cloned (inherited) from a common ancestor.
846 */
847 struct perf_event_context *parent_ctx;
848 u64 parent_gen;
849 u64 generation;
850 int pin_count;
851 #ifdef CONFIG_CGROUP_PERF
852 int nr_cgroups; /* cgroup evts */
853 #endif
854 void *task_ctx_data; /* pmu specific data */
855 struct rcu_head rcu_head;
856 };
857
858 /*
859 * Number of contexts where an event can trigger:
860 * task, softirq, hardirq, nmi.
861 */
862 #define PERF_NR_CONTEXTS 4
863
864 /**
865 * struct perf_event_cpu_context - per cpu event context structure
866 */
867 struct perf_cpu_context {
868 struct perf_event_context ctx;
869 struct perf_event_context *task_ctx;
870 int active_oncpu;
871 int exclusive;
872
873 raw_spinlock_t hrtimer_lock;
874 struct hrtimer hrtimer;
875 ktime_t hrtimer_interval;
876 unsigned int hrtimer_active;
877
878 #ifdef CONFIG_CGROUP_PERF
879 struct perf_cgroup *cgrp;
880 struct list_head cgrp_cpuctx_entry;
881 #endif
882
883 struct list_head sched_cb_entry;
884 int sched_cb_usage;
885
886 int online;
887 /*
888 * Per-CPU storage for iterators used in visit_groups_merge. The default
889 * storage is of size 2 to hold the CPU and any CPU event iterators.
890 */
891 int heap_size;
892 struct perf_event **heap;
893 struct perf_event *heap_default[2];
894 };
895
896 struct perf_output_handle {
897 struct perf_event *event;
898 struct perf_buffer *rb;
899 unsigned long wakeup;
900 unsigned long size;
901 u64 aux_flags;
902 union {
903 void *addr;
904 unsigned long head;
905 };
906 int page;
907 };
908
909 struct bpf_perf_event_data_kern {
910 bpf_user_pt_regs_t *regs;
911 struct perf_sample_data *data;
912 struct perf_event *event;
913 };
914
915 #ifdef CONFIG_CGROUP_PERF
916
917 /*
918 * perf_cgroup_info keeps track of time_enabled for a cgroup.
919 * This is a per-cpu dynamically allocated data structure.
920 */
921 struct perf_cgroup_info {
922 u64 time;
923 u64 timestamp;
924 };
925
926 struct perf_cgroup {
927 struct cgroup_subsys_state css;
928 struct perf_cgroup_info __percpu *info;
929 };
930
931 /*
932 * Must ensure cgroup is pinned (css_get) before calling
933 * this function. In other words, we cannot call this function
934 * if there is no cgroup event for the current CPU context.
935 */
936 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)937 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
938 {
939 return container_of(task_css_check(task, perf_event_cgrp_id,
940 ctx ? lockdep_is_held(&ctx->lock)
941 : true),
942 struct perf_cgroup, css);
943 }
944 #endif /* CONFIG_CGROUP_PERF */
945
946 #ifdef CONFIG_PERF_EVENTS
947
948 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
949 struct perf_event *event);
950 extern void perf_aux_output_end(struct perf_output_handle *handle,
951 unsigned long size);
952 extern int perf_aux_output_skip(struct perf_output_handle *handle,
953 unsigned long size);
954 extern void *perf_get_aux(struct perf_output_handle *handle);
955 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
956 extern void perf_event_itrace_started(struct perf_event *event);
957
958 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
959 extern void perf_pmu_unregister(struct pmu *pmu);
960
961 extern void __perf_event_task_sched_in(struct task_struct *prev,
962 struct task_struct *task);
963 extern void __perf_event_task_sched_out(struct task_struct *prev,
964 struct task_struct *next);
965 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
966 extern void perf_event_exit_task(struct task_struct *child);
967 extern void perf_event_free_task(struct task_struct *task);
968 extern void perf_event_delayed_put(struct task_struct *task);
969 extern struct file *perf_event_get(unsigned int fd);
970 extern const struct perf_event *perf_get_event(struct file *file);
971 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
972 extern void perf_event_print_debug(void);
973 extern void perf_pmu_disable(struct pmu *pmu);
974 extern void perf_pmu_enable(struct pmu *pmu);
975 extern void perf_sched_cb_dec(struct pmu *pmu);
976 extern void perf_sched_cb_inc(struct pmu *pmu);
977 extern int perf_event_task_disable(void);
978 extern int perf_event_task_enable(void);
979
980 extern void perf_pmu_resched(struct pmu *pmu);
981
982 extern int perf_event_refresh(struct perf_event *event, int refresh);
983 extern void perf_event_update_userpage(struct perf_event *event);
984 extern int perf_event_release_kernel(struct perf_event *event);
985 extern struct perf_event *
986 perf_event_create_kernel_counter(struct perf_event_attr *attr,
987 int cpu,
988 struct task_struct *task,
989 perf_overflow_handler_t callback,
990 void *context);
991 extern void perf_pmu_migrate_context(struct pmu *pmu,
992 int src_cpu, int dst_cpu);
993 int perf_event_read_local(struct perf_event *event, u64 *value,
994 u64 *enabled, u64 *running);
995 extern u64 perf_event_read_value(struct perf_event *event,
996 u64 *enabled, u64 *running);
997
998
999 struct perf_sample_data {
1000 /*
1001 * Fields set by perf_sample_data_init(), group so as to
1002 * minimize the cachelines touched.
1003 */
1004 u64 addr;
1005 struct perf_raw_record *raw;
1006 struct perf_branch_stack *br_stack;
1007 u64 period;
1008 union perf_sample_weight weight;
1009 u64 txn;
1010 union perf_mem_data_src data_src;
1011
1012 /*
1013 * The other fields, optionally {set,used} by
1014 * perf_{prepare,output}_sample().
1015 */
1016 u64 type;
1017 u64 ip;
1018 struct {
1019 u32 pid;
1020 u32 tid;
1021 } tid_entry;
1022 u64 time;
1023 u64 id;
1024 u64 stream_id;
1025 struct {
1026 u32 cpu;
1027 u32 reserved;
1028 } cpu_entry;
1029 struct perf_callchain_entry *callchain;
1030 u64 aux_size;
1031
1032 struct perf_regs regs_user;
1033 struct perf_regs regs_intr;
1034 u64 stack_user_size;
1035
1036 u64 phys_addr;
1037 u64 cgroup;
1038 u64 data_page_size;
1039 u64 code_page_size;
1040 } ____cacheline_aligned;
1041
1042 /* default value for data source */
1043 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1044 PERF_MEM_S(LVL, NA) |\
1045 PERF_MEM_S(SNOOP, NA) |\
1046 PERF_MEM_S(LOCK, NA) |\
1047 PERF_MEM_S(TLB, NA))
1048
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1049 static inline void perf_sample_data_init(struct perf_sample_data *data,
1050 u64 addr, u64 period)
1051 {
1052 /* remaining struct members initialized in perf_prepare_sample() */
1053 data->addr = addr;
1054 data->raw = NULL;
1055 data->br_stack = NULL;
1056 data->period = period;
1057 data->weight.full = 0;
1058 data->data_src.val = PERF_MEM_NA;
1059 data->txn = 0;
1060 }
1061
1062 extern void perf_output_sample(struct perf_output_handle *handle,
1063 struct perf_event_header *header,
1064 struct perf_sample_data *data,
1065 struct perf_event *event);
1066 extern void perf_prepare_sample(struct perf_event_header *header,
1067 struct perf_sample_data *data,
1068 struct perf_event *event,
1069 struct pt_regs *regs);
1070
1071 extern int perf_event_overflow(struct perf_event *event,
1072 struct perf_sample_data *data,
1073 struct pt_regs *regs);
1074
1075 extern void perf_event_output_forward(struct perf_event *event,
1076 struct perf_sample_data *data,
1077 struct pt_regs *regs);
1078 extern void perf_event_output_backward(struct perf_event *event,
1079 struct perf_sample_data *data,
1080 struct pt_regs *regs);
1081 extern int perf_event_output(struct perf_event *event,
1082 struct perf_sample_data *data,
1083 struct pt_regs *regs);
1084
1085 static inline bool
is_default_overflow_handler(struct perf_event * event)1086 is_default_overflow_handler(struct perf_event *event)
1087 {
1088 if (likely(event->overflow_handler == perf_event_output_forward))
1089 return true;
1090 if (unlikely(event->overflow_handler == perf_event_output_backward))
1091 return true;
1092 return false;
1093 }
1094
1095 extern void
1096 perf_event_header__init_id(struct perf_event_header *header,
1097 struct perf_sample_data *data,
1098 struct perf_event *event);
1099 extern void
1100 perf_event__output_id_sample(struct perf_event *event,
1101 struct perf_output_handle *handle,
1102 struct perf_sample_data *sample);
1103
1104 extern void
1105 perf_log_lost_samples(struct perf_event *event, u64 lost);
1106
event_has_any_exclude_flag(struct perf_event * event)1107 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1108 {
1109 struct perf_event_attr *attr = &event->attr;
1110
1111 return attr->exclude_idle || attr->exclude_user ||
1112 attr->exclude_kernel || attr->exclude_hv ||
1113 attr->exclude_guest || attr->exclude_host;
1114 }
1115
is_sampling_event(struct perf_event * event)1116 static inline bool is_sampling_event(struct perf_event *event)
1117 {
1118 return event->attr.sample_period != 0;
1119 }
1120
1121 /*
1122 * Return 1 for a software event, 0 for a hardware event
1123 */
is_software_event(struct perf_event * event)1124 static inline int is_software_event(struct perf_event *event)
1125 {
1126 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1127 }
1128
1129 /*
1130 * Return 1 for event in sw context, 0 for event in hw context
1131 */
in_software_context(struct perf_event * event)1132 static inline int in_software_context(struct perf_event *event)
1133 {
1134 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1135 }
1136
is_exclusive_pmu(struct pmu * pmu)1137 static inline int is_exclusive_pmu(struct pmu *pmu)
1138 {
1139 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1140 }
1141
1142 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1143
1144 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1145 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1146
1147 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1148 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1149 #endif
1150
1151 /*
1152 * When generating a perf sample in-line, instead of from an interrupt /
1153 * exception, we lack a pt_regs. This is typically used from software events
1154 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1155 *
1156 * We typically don't need a full set, but (for x86) do require:
1157 * - ip for PERF_SAMPLE_IP
1158 * - cs for user_mode() tests
1159 * - sp for PERF_SAMPLE_CALLCHAIN
1160 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1161 *
1162 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1163 * things like PERF_SAMPLE_REGS_INTR.
1164 */
perf_fetch_caller_regs(struct pt_regs * regs)1165 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1166 {
1167 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1168 }
1169
1170 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1171 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1172 {
1173 if (static_key_false(&perf_swevent_enabled[event_id]))
1174 __perf_sw_event(event_id, nr, regs, addr);
1175 }
1176
1177 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1178
1179 /*
1180 * 'Special' version for the scheduler, it hard assumes no recursion,
1181 * which is guaranteed by us not actually scheduling inside other swevents
1182 * because those disable preemption.
1183 */
__perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1184 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1185 {
1186 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1187
1188 perf_fetch_caller_regs(regs);
1189 ___perf_sw_event(event_id, nr, regs, addr);
1190 }
1191
1192 extern struct static_key_false perf_sched_events;
1193
__perf_sw_enabled(int swevt)1194 static __always_inline bool __perf_sw_enabled(int swevt)
1195 {
1196 return static_key_false(&perf_swevent_enabled[swevt]);
1197 }
1198
perf_event_task_migrate(struct task_struct * task)1199 static inline void perf_event_task_migrate(struct task_struct *task)
1200 {
1201 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1202 task->sched_migrated = 1;
1203 }
1204
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1205 static inline void perf_event_task_sched_in(struct task_struct *prev,
1206 struct task_struct *task)
1207 {
1208 if (static_branch_unlikely(&perf_sched_events))
1209 __perf_event_task_sched_in(prev, task);
1210
1211 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1212 task->sched_migrated) {
1213 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1214 task->sched_migrated = 0;
1215 }
1216 }
1217
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1218 static inline void perf_event_task_sched_out(struct task_struct *prev,
1219 struct task_struct *next)
1220 {
1221 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1222 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1223
1224 #ifdef CONFIG_CGROUP_PERF
1225 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1226 perf_cgroup_from_task(prev, NULL) !=
1227 perf_cgroup_from_task(next, NULL))
1228 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1229 #endif
1230
1231 if (static_branch_unlikely(&perf_sched_events))
1232 __perf_event_task_sched_out(prev, next);
1233 }
1234
1235 extern void perf_event_mmap(struct vm_area_struct *vma);
1236
1237 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1238 bool unregister, const char *sym);
1239 extern void perf_event_bpf_event(struct bpf_prog *prog,
1240 enum perf_bpf_event_type type,
1241 u16 flags);
1242
1243 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1244 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1245 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1246
1247 extern void perf_event_exec(void);
1248 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1249 extern void perf_event_namespaces(struct task_struct *tsk);
1250 extern void perf_event_fork(struct task_struct *tsk);
1251 extern void perf_event_text_poke(const void *addr,
1252 const void *old_bytes, size_t old_len,
1253 const void *new_bytes, size_t new_len);
1254
1255 /* Callchains */
1256 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1257
1258 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1259 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1260 extern struct perf_callchain_entry *
1261 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1262 u32 max_stack, bool crosstask, bool add_mark);
1263 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1264 extern int get_callchain_buffers(int max_stack);
1265 extern void put_callchain_buffers(void);
1266 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1267 extern void put_callchain_entry(int rctx);
1268
1269 extern int sysctl_perf_event_max_stack;
1270 extern int sysctl_perf_event_max_contexts_per_stack;
1271
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1272 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1273 {
1274 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1275 struct perf_callchain_entry *entry = ctx->entry;
1276 entry->ip[entry->nr++] = ip;
1277 ++ctx->contexts;
1278 return 0;
1279 } else {
1280 ctx->contexts_maxed = true;
1281 return -1; /* no more room, stop walking the stack */
1282 }
1283 }
1284
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1285 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1286 {
1287 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1288 struct perf_callchain_entry *entry = ctx->entry;
1289 entry->ip[entry->nr++] = ip;
1290 ++ctx->nr;
1291 return 0;
1292 } else {
1293 return -1; /* no more room, stop walking the stack */
1294 }
1295 }
1296
1297 extern int sysctl_perf_event_paranoid;
1298 extern int sysctl_perf_event_mlock;
1299 extern int sysctl_perf_event_sample_rate;
1300 extern int sysctl_perf_cpu_time_max_percent;
1301
1302 extern void perf_sample_event_took(u64 sample_len_ns);
1303
1304 int perf_proc_update_handler(struct ctl_table *table, int write,
1305 void *buffer, size_t *lenp, loff_t *ppos);
1306 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1307 void *buffer, size_t *lenp, loff_t *ppos);
1308 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1309 void *buffer, size_t *lenp, loff_t *ppos);
1310
1311 /* Access to perf_event_open(2) syscall. */
1312 #define PERF_SECURITY_OPEN 0
1313
1314 /* Finer grained perf_event_open(2) access control. */
1315 #define PERF_SECURITY_CPU 1
1316 #define PERF_SECURITY_KERNEL 2
1317 #define PERF_SECURITY_TRACEPOINT 3
1318
perf_is_paranoid(void)1319 static inline int perf_is_paranoid(void)
1320 {
1321 return sysctl_perf_event_paranoid > -1;
1322 }
1323
perf_allow_kernel(struct perf_event_attr * attr)1324 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1325 {
1326 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1327 return -EACCES;
1328
1329 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1330 }
1331
perf_allow_cpu(struct perf_event_attr * attr)1332 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1333 {
1334 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1335 return -EACCES;
1336
1337 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1338 }
1339
perf_allow_tracepoint(struct perf_event_attr * attr)1340 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1341 {
1342 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1343 return -EPERM;
1344
1345 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1346 }
1347
1348 extern void perf_event_init(void);
1349 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1350 int entry_size, struct pt_regs *regs,
1351 struct hlist_head *head, int rctx,
1352 struct task_struct *task);
1353 extern void perf_bp_event(struct perf_event *event, void *data);
1354
1355 #ifndef perf_misc_flags
1356 # define perf_misc_flags(regs) \
1357 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1358 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1359 #endif
1360 #ifndef perf_arch_bpf_user_pt_regs
1361 # define perf_arch_bpf_user_pt_regs(regs) regs
1362 #endif
1363
has_branch_stack(struct perf_event * event)1364 static inline bool has_branch_stack(struct perf_event *event)
1365 {
1366 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1367 }
1368
needs_branch_stack(struct perf_event * event)1369 static inline bool needs_branch_stack(struct perf_event *event)
1370 {
1371 return event->attr.branch_sample_type != 0;
1372 }
1373
has_aux(struct perf_event * event)1374 static inline bool has_aux(struct perf_event *event)
1375 {
1376 return event->pmu->setup_aux;
1377 }
1378
is_write_backward(struct perf_event * event)1379 static inline bool is_write_backward(struct perf_event *event)
1380 {
1381 return !!event->attr.write_backward;
1382 }
1383
has_addr_filter(struct perf_event * event)1384 static inline bool has_addr_filter(struct perf_event *event)
1385 {
1386 return event->pmu->nr_addr_filters;
1387 }
1388
1389 /*
1390 * An inherited event uses parent's filters
1391 */
1392 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1393 perf_event_addr_filters(struct perf_event *event)
1394 {
1395 struct perf_addr_filters_head *ifh = &event->addr_filters;
1396
1397 if (event->parent)
1398 ifh = &event->parent->addr_filters;
1399
1400 return ifh;
1401 }
1402
1403 extern void perf_event_addr_filters_sync(struct perf_event *event);
1404 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1405
1406 extern int perf_output_begin(struct perf_output_handle *handle,
1407 struct perf_sample_data *data,
1408 struct perf_event *event, unsigned int size);
1409 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1410 struct perf_sample_data *data,
1411 struct perf_event *event,
1412 unsigned int size);
1413 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1414 struct perf_sample_data *data,
1415 struct perf_event *event,
1416 unsigned int size);
1417
1418 extern void perf_output_end(struct perf_output_handle *handle);
1419 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1420 const void *buf, unsigned int len);
1421 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1422 unsigned int len);
1423 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1424 struct perf_output_handle *handle,
1425 unsigned long from, unsigned long to);
1426 extern int perf_swevent_get_recursion_context(void);
1427 extern void perf_swevent_put_recursion_context(int rctx);
1428 extern u64 perf_swevent_set_period(struct perf_event *event);
1429 extern void perf_event_enable(struct perf_event *event);
1430 extern void perf_event_disable(struct perf_event *event);
1431 extern void perf_event_disable_local(struct perf_event *event);
1432 extern void perf_event_disable_inatomic(struct perf_event *event);
1433 extern void perf_event_task_tick(void);
1434 extern int perf_event_account_interrupt(struct perf_event *event);
1435 extern int perf_event_period(struct perf_event *event, u64 value);
1436 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1437 #else /* !CONFIG_PERF_EVENTS: */
1438 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1439 perf_aux_output_begin(struct perf_output_handle *handle,
1440 struct perf_event *event) { return NULL; }
1441 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1442 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1443 { }
1444 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1445 perf_aux_output_skip(struct perf_output_handle *handle,
1446 unsigned long size) { return -EINVAL; }
1447 static inline void *
perf_get_aux(struct perf_output_handle * handle)1448 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1449 static inline void
perf_event_task_migrate(struct task_struct * task)1450 perf_event_task_migrate(struct task_struct *task) { }
1451 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1452 perf_event_task_sched_in(struct task_struct *prev,
1453 struct task_struct *task) { }
1454 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1455 perf_event_task_sched_out(struct task_struct *prev,
1456 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child,u64 clone_flags)1457 static inline int perf_event_init_task(struct task_struct *child,
1458 u64 clone_flags) { return 0; }
perf_event_exit_task(struct task_struct * child)1459 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1460 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1461 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1462 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1463 static inline const struct perf_event *perf_get_event(struct file *file)
1464 {
1465 return ERR_PTR(-EINVAL);
1466 }
perf_event_attrs(struct perf_event * event)1467 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1468 {
1469 return ERR_PTR(-EINVAL);
1470 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1471 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1472 u64 *enabled, u64 *running)
1473 {
1474 return -EINVAL;
1475 }
perf_event_print_debug(void)1476 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1477 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1478 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1479 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1480 {
1481 return -EINVAL;
1482 }
1483
1484 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1485 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1486 static inline void
perf_bp_event(struct perf_event * event,void * data)1487 perf_bp_event(struct perf_event *event, void *data) { }
1488
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1489 static inline int perf_register_guest_info_callbacks
1490 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1491 static inline int perf_unregister_guest_info_callbacks
1492 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1493
perf_event_mmap(struct vm_area_struct * vma)1494 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1495
1496 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1497 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1498 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1499 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1500 enum perf_bpf_event_type type,
1501 u16 flags) { }
perf_event_exec(void)1502 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1503 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1504 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1505 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1506 static inline void perf_event_text_poke(const void *addr,
1507 const void *old_bytes,
1508 size_t old_len,
1509 const void *new_bytes,
1510 size_t new_len) { }
perf_event_init(void)1511 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1512 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1513 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1514 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1515 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1516 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1517 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1518 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1519 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1520 static inline int perf_event_period(struct perf_event *event, u64 value)
1521 {
1522 return -EINVAL;
1523 }
perf_event_pause(struct perf_event * event,bool reset)1524 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1525 {
1526 return 0;
1527 }
1528 #endif
1529
1530 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1531 extern void perf_restore_debug_store(void);
1532 #else
perf_restore_debug_store(void)1533 static inline void perf_restore_debug_store(void) { }
1534 #endif
1535
perf_raw_frag_last(const struct perf_raw_frag * frag)1536 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1537 {
1538 return frag->pad < sizeof(u64);
1539 }
1540
1541 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1542
1543 struct perf_pmu_events_attr {
1544 struct device_attribute attr;
1545 u64 id;
1546 const char *event_str;
1547 };
1548
1549 struct perf_pmu_events_ht_attr {
1550 struct device_attribute attr;
1551 u64 id;
1552 const char *event_str_ht;
1553 const char *event_str_noht;
1554 };
1555
1556 struct perf_pmu_events_hybrid_attr {
1557 struct device_attribute attr;
1558 u64 id;
1559 const char *event_str;
1560 u64 pmu_type;
1561 };
1562
1563 struct perf_pmu_format_hybrid_attr {
1564 struct device_attribute attr;
1565 u64 pmu_type;
1566 };
1567
1568 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1569 char *page);
1570
1571 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1572 static struct perf_pmu_events_attr _var = { \
1573 .attr = __ATTR(_name, 0444, _show, NULL), \
1574 .id = _id, \
1575 };
1576
1577 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1578 static struct perf_pmu_events_attr _var = { \
1579 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1580 .id = 0, \
1581 .event_str = _str, \
1582 };
1583
1584 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1585 (&((struct perf_pmu_events_attr[]) { \
1586 { .attr = __ATTR(_name, 0444, _show, NULL), \
1587 .id = _id, } \
1588 })[0].attr.attr)
1589
1590 #define PMU_FORMAT_ATTR(_name, _format) \
1591 static ssize_t \
1592 _name##_show(struct device *dev, \
1593 struct device_attribute *attr, \
1594 char *page) \
1595 { \
1596 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1597 return sprintf(page, _format "\n"); \
1598 } \
1599 \
1600 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1601
1602 /* Performance counter hotplug functions */
1603 #ifdef CONFIG_PERF_EVENTS
1604 int perf_event_init_cpu(unsigned int cpu);
1605 int perf_event_exit_cpu(unsigned int cpu);
1606 #else
1607 #define perf_event_init_cpu NULL
1608 #define perf_event_exit_cpu NULL
1609 #endif
1610
1611 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1612 struct perf_event_mmap_page *userpg,
1613 u64 now);
1614
1615 #ifdef CONFIG_MMU
1616 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1617 #endif
1618
1619 /*
1620 * Snapshot branch stack on software events.
1621 *
1622 * Branch stack can be very useful in understanding software events. For
1623 * example, when a long function, e.g. sys_perf_event_open, returns an
1624 * errno, it is not obvious why the function failed. Branch stack could
1625 * provide very helpful information in this type of scenarios.
1626 *
1627 * On software event, it is necessary to stop the hardware branch recorder
1628 * fast. Otherwise, the hardware register/buffer will be flushed with
1629 * entries of the triggering event. Therefore, static call is used to
1630 * stop the hardware recorder.
1631 */
1632
1633 /*
1634 * cnt is the number of entries allocated for entries.
1635 * Return number of entries copied to .
1636 */
1637 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1638 unsigned int cnt);
1639 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1640
1641 #endif /* _LINUX_PERF_EVENT_H */
1642