1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18
19 #include <net/dst.h>
20 #include <net/ip.h>
21 #include <net/ipv6.h>
22 #include <net/ip6_fib.h>
23 #include <net/checksum.h>
24 #include <net/dsfield.h>
25 #include <net/mpls.h>
26 #include <net/sctp/checksum.h>
27
28 #include "datapath.h"
29 #include "flow.h"
30 #include "conntrack.h"
31 #include "vport.h"
32 #include "flow_netlink.h"
33 #include "openvswitch_trace.h"
34
35 struct deferred_action {
36 struct sk_buff *skb;
37 const struct nlattr *actions;
38 int actions_len;
39
40 /* Store pkt_key clone when creating deferred action. */
41 struct sw_flow_key pkt_key;
42 };
43
44 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45 struct ovs_frag_data {
46 unsigned long dst;
47 struct vport *vport;
48 struct ovs_skb_cb cb;
49 __be16 inner_protocol;
50 u16 network_offset; /* valid only for MPLS */
51 u16 vlan_tci;
52 __be16 vlan_proto;
53 unsigned int l2_len;
54 u8 mac_proto;
55 u8 l2_data[MAX_L2_LEN];
56 };
57
58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
59
60 #define DEFERRED_ACTION_FIFO_SIZE 10
61 #define OVS_RECURSION_LIMIT 5
62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
63 struct action_fifo {
64 int head;
65 int tail;
66 /* Deferred action fifo queue storage. */
67 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
68 };
69
70 struct action_flow_keys {
71 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
72 };
73
74 static struct action_fifo __percpu *action_fifos;
75 static struct action_flow_keys __percpu *flow_keys;
76 static DEFINE_PER_CPU(int, exec_actions_level);
77
78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79 * space. Return NULL if out of key spaces.
80 */
clone_key(const struct sw_flow_key * key_)81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
82 {
83 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 int level = this_cpu_read(exec_actions_level);
85 struct sw_flow_key *key = NULL;
86
87 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 key = &keys->key[level - 1];
89 *key = *key_;
90 }
91
92 return key;
93 }
94
action_fifo_init(struct action_fifo * fifo)95 static void action_fifo_init(struct action_fifo *fifo)
96 {
97 fifo->head = 0;
98 fifo->tail = 0;
99 }
100
action_fifo_is_empty(const struct action_fifo * fifo)101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
102 {
103 return (fifo->head == fifo->tail);
104 }
105
action_fifo_get(struct action_fifo * fifo)106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
107 {
108 if (action_fifo_is_empty(fifo))
109 return NULL;
110
111 return &fifo->fifo[fifo->tail++];
112 }
113
action_fifo_put(struct action_fifo * fifo)114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
115 {
116 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117 return NULL;
118
119 return &fifo->fifo[fifo->head++];
120 }
121
122 /* Return true if fifo is not full */
add_deferred_actions(struct sk_buff * skb,const struct sw_flow_key * key,const struct nlattr * actions,const int actions_len)123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 const struct sw_flow_key *key,
125 const struct nlattr *actions,
126 const int actions_len)
127 {
128 struct action_fifo *fifo;
129 struct deferred_action *da;
130
131 fifo = this_cpu_ptr(action_fifos);
132 da = action_fifo_put(fifo);
133 if (da) {
134 da->skb = skb;
135 da->actions = actions;
136 da->actions_len = actions_len;
137 da->pkt_key = *key;
138 }
139
140 return da;
141 }
142
invalidate_flow_key(struct sw_flow_key * key)143 static void invalidate_flow_key(struct sw_flow_key *key)
144 {
145 key->mac_proto |= SW_FLOW_KEY_INVALID;
146 }
147
is_flow_key_valid(const struct sw_flow_key * key)148 static bool is_flow_key_valid(const struct sw_flow_key *key)
149 {
150 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
151 }
152
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 struct sw_flow_key *key,
155 u32 recirc_id,
156 const struct nlattr *actions, int len,
157 bool last, bool clone_flow_key);
158
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 struct sw_flow_key *key,
161 const struct nlattr *attr, int len);
162
push_mpls(struct sk_buff * skb,struct sw_flow_key * key,__be32 mpls_lse,__be16 mpls_ethertype,__u16 mac_len)163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
165 {
166 int err;
167
168 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
169 if (err)
170 return err;
171
172 if (!mac_len)
173 key->mac_proto = MAC_PROTO_NONE;
174
175 invalidate_flow_key(key);
176 return 0;
177 }
178
pop_mpls(struct sk_buff * skb,struct sw_flow_key * key,const __be16 ethertype)179 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
180 const __be16 ethertype)
181 {
182 int err;
183
184 err = skb_mpls_pop(skb, ethertype, skb->mac_len,
185 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
186 if (err)
187 return err;
188
189 if (ethertype == htons(ETH_P_TEB))
190 key->mac_proto = MAC_PROTO_ETHERNET;
191
192 invalidate_flow_key(key);
193 return 0;
194 }
195
set_mpls(struct sk_buff * skb,struct sw_flow_key * flow_key,const __be32 * mpls_lse,const __be32 * mask)196 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
197 const __be32 *mpls_lse, const __be32 *mask)
198 {
199 struct mpls_shim_hdr *stack;
200 __be32 lse;
201 int err;
202
203 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
204 return -ENOMEM;
205
206 stack = mpls_hdr(skb);
207 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
208 err = skb_mpls_update_lse(skb, lse);
209 if (err)
210 return err;
211
212 flow_key->mpls.lse[0] = lse;
213 return 0;
214 }
215
pop_vlan(struct sk_buff * skb,struct sw_flow_key * key)216 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
217 {
218 int err;
219
220 err = skb_vlan_pop(skb);
221 if (skb_vlan_tag_present(skb)) {
222 invalidate_flow_key(key);
223 } else {
224 key->eth.vlan.tci = 0;
225 key->eth.vlan.tpid = 0;
226 }
227 return err;
228 }
229
push_vlan(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_vlan * vlan)230 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
231 const struct ovs_action_push_vlan *vlan)
232 {
233 if (skb_vlan_tag_present(skb)) {
234 invalidate_flow_key(key);
235 } else {
236 key->eth.vlan.tci = vlan->vlan_tci;
237 key->eth.vlan.tpid = vlan->vlan_tpid;
238 }
239 return skb_vlan_push(skb, vlan->vlan_tpid,
240 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
241 }
242
243 /* 'src' is already properly masked. */
ether_addr_copy_masked(u8 * dst_,const u8 * src_,const u8 * mask_)244 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
245 {
246 u16 *dst = (u16 *)dst_;
247 const u16 *src = (const u16 *)src_;
248 const u16 *mask = (const u16 *)mask_;
249
250 OVS_SET_MASKED(dst[0], src[0], mask[0]);
251 OVS_SET_MASKED(dst[1], src[1], mask[1]);
252 OVS_SET_MASKED(dst[2], src[2], mask[2]);
253 }
254
set_eth_addr(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ethernet * key,const struct ovs_key_ethernet * mask)255 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
256 const struct ovs_key_ethernet *key,
257 const struct ovs_key_ethernet *mask)
258 {
259 int err;
260
261 err = skb_ensure_writable(skb, ETH_HLEN);
262 if (unlikely(err))
263 return err;
264
265 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
266
267 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
268 mask->eth_src);
269 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
270 mask->eth_dst);
271
272 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
273
274 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
275 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
276 return 0;
277 }
278
279 /* pop_eth does not support VLAN packets as this action is never called
280 * for them.
281 */
pop_eth(struct sk_buff * skb,struct sw_flow_key * key)282 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
283 {
284 int err;
285
286 err = skb_eth_pop(skb);
287 if (err)
288 return err;
289
290 /* safe right before invalidate_flow_key */
291 key->mac_proto = MAC_PROTO_NONE;
292 invalidate_flow_key(key);
293 return 0;
294 }
295
push_eth(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_eth * ethh)296 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
297 const struct ovs_action_push_eth *ethh)
298 {
299 int err;
300
301 err = skb_eth_push(skb, ethh->addresses.eth_dst,
302 ethh->addresses.eth_src);
303 if (err)
304 return err;
305
306 /* safe right before invalidate_flow_key */
307 key->mac_proto = MAC_PROTO_ETHERNET;
308 invalidate_flow_key(key);
309 return 0;
310 }
311
push_nsh(struct sk_buff * skb,struct sw_flow_key * key,const struct nshhdr * nh)312 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
313 const struct nshhdr *nh)
314 {
315 int err;
316
317 err = nsh_push(skb, nh);
318 if (err)
319 return err;
320
321 /* safe right before invalidate_flow_key */
322 key->mac_proto = MAC_PROTO_NONE;
323 invalidate_flow_key(key);
324 return 0;
325 }
326
pop_nsh(struct sk_buff * skb,struct sw_flow_key * key)327 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
328 {
329 int err;
330
331 err = nsh_pop(skb);
332 if (err)
333 return err;
334
335 /* safe right before invalidate_flow_key */
336 if (skb->protocol == htons(ETH_P_TEB))
337 key->mac_proto = MAC_PROTO_ETHERNET;
338 else
339 key->mac_proto = MAC_PROTO_NONE;
340 invalidate_flow_key(key);
341 return 0;
342 }
343
update_ip_l4_checksum(struct sk_buff * skb,struct iphdr * nh,__be32 addr,__be32 new_addr)344 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
345 __be32 addr, __be32 new_addr)
346 {
347 int transport_len = skb->len - skb_transport_offset(skb);
348
349 if (nh->frag_off & htons(IP_OFFSET))
350 return;
351
352 if (nh->protocol == IPPROTO_TCP) {
353 if (likely(transport_len >= sizeof(struct tcphdr)))
354 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
355 addr, new_addr, true);
356 } else if (nh->protocol == IPPROTO_UDP) {
357 if (likely(transport_len >= sizeof(struct udphdr))) {
358 struct udphdr *uh = udp_hdr(skb);
359
360 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
361 inet_proto_csum_replace4(&uh->check, skb,
362 addr, new_addr, true);
363 if (!uh->check)
364 uh->check = CSUM_MANGLED_0;
365 }
366 }
367 }
368 }
369
set_ip_addr(struct sk_buff * skb,struct iphdr * nh,__be32 * addr,__be32 new_addr)370 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
371 __be32 *addr, __be32 new_addr)
372 {
373 update_ip_l4_checksum(skb, nh, *addr, new_addr);
374 csum_replace4(&nh->check, *addr, new_addr);
375 skb_clear_hash(skb);
376 *addr = new_addr;
377 }
378
update_ipv6_checksum(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4])379 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
380 __be32 addr[4], const __be32 new_addr[4])
381 {
382 int transport_len = skb->len - skb_transport_offset(skb);
383
384 if (l4_proto == NEXTHDR_TCP) {
385 if (likely(transport_len >= sizeof(struct tcphdr)))
386 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
387 addr, new_addr, true);
388 } else if (l4_proto == NEXTHDR_UDP) {
389 if (likely(transport_len >= sizeof(struct udphdr))) {
390 struct udphdr *uh = udp_hdr(skb);
391
392 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
393 inet_proto_csum_replace16(&uh->check, skb,
394 addr, new_addr, true);
395 if (!uh->check)
396 uh->check = CSUM_MANGLED_0;
397 }
398 }
399 } else if (l4_proto == NEXTHDR_ICMP) {
400 if (likely(transport_len >= sizeof(struct icmp6hdr)))
401 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
402 skb, addr, new_addr, true);
403 }
404 }
405
mask_ipv6_addr(const __be32 old[4],const __be32 addr[4],const __be32 mask[4],__be32 masked[4])406 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
407 const __be32 mask[4], __be32 masked[4])
408 {
409 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
410 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
411 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
412 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
413 }
414
set_ipv6_addr(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4],bool recalculate_csum)415 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
416 __be32 addr[4], const __be32 new_addr[4],
417 bool recalculate_csum)
418 {
419 if (recalculate_csum)
420 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
421
422 skb_clear_hash(skb);
423 memcpy(addr, new_addr, sizeof(__be32[4]));
424 }
425
set_ipv6_fl(struct ipv6hdr * nh,u32 fl,u32 mask)426 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
427 {
428 /* Bits 21-24 are always unmasked, so this retains their values. */
429 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
430 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
431 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
432 }
433
set_ip_ttl(struct sk_buff * skb,struct iphdr * nh,u8 new_ttl,u8 mask)434 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
435 u8 mask)
436 {
437 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
438
439 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
440 nh->ttl = new_ttl;
441 }
442
set_ipv4(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv4 * key,const struct ovs_key_ipv4 * mask)443 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
444 const struct ovs_key_ipv4 *key,
445 const struct ovs_key_ipv4 *mask)
446 {
447 struct iphdr *nh;
448 __be32 new_addr;
449 int err;
450
451 err = skb_ensure_writable(skb, skb_network_offset(skb) +
452 sizeof(struct iphdr));
453 if (unlikely(err))
454 return err;
455
456 nh = ip_hdr(skb);
457
458 /* Setting an IP addresses is typically only a side effect of
459 * matching on them in the current userspace implementation, so it
460 * makes sense to check if the value actually changed.
461 */
462 if (mask->ipv4_src) {
463 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
464
465 if (unlikely(new_addr != nh->saddr)) {
466 set_ip_addr(skb, nh, &nh->saddr, new_addr);
467 flow_key->ipv4.addr.src = new_addr;
468 }
469 }
470 if (mask->ipv4_dst) {
471 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
472
473 if (unlikely(new_addr != nh->daddr)) {
474 set_ip_addr(skb, nh, &nh->daddr, new_addr);
475 flow_key->ipv4.addr.dst = new_addr;
476 }
477 }
478 if (mask->ipv4_tos) {
479 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
480 flow_key->ip.tos = nh->tos;
481 }
482 if (mask->ipv4_ttl) {
483 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
484 flow_key->ip.ttl = nh->ttl;
485 }
486
487 return 0;
488 }
489
is_ipv6_mask_nonzero(const __be32 addr[4])490 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
491 {
492 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
493 }
494
set_ipv6(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv6 * key,const struct ovs_key_ipv6 * mask)495 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
496 const struct ovs_key_ipv6 *key,
497 const struct ovs_key_ipv6 *mask)
498 {
499 struct ipv6hdr *nh;
500 int err;
501
502 err = skb_ensure_writable(skb, skb_network_offset(skb) +
503 sizeof(struct ipv6hdr));
504 if (unlikely(err))
505 return err;
506
507 nh = ipv6_hdr(skb);
508
509 /* Setting an IP addresses is typically only a side effect of
510 * matching on them in the current userspace implementation, so it
511 * makes sense to check if the value actually changed.
512 */
513 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
514 __be32 *saddr = (__be32 *)&nh->saddr;
515 __be32 masked[4];
516
517 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
518
519 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
520 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
521 true);
522 memcpy(&flow_key->ipv6.addr.src, masked,
523 sizeof(flow_key->ipv6.addr.src));
524 }
525 }
526 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
527 unsigned int offset = 0;
528 int flags = IP6_FH_F_SKIP_RH;
529 bool recalc_csum = true;
530 __be32 *daddr = (__be32 *)&nh->daddr;
531 __be32 masked[4];
532
533 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
534
535 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
536 if (ipv6_ext_hdr(nh->nexthdr))
537 recalc_csum = (ipv6_find_hdr(skb, &offset,
538 NEXTHDR_ROUTING,
539 NULL, &flags)
540 != NEXTHDR_ROUTING);
541
542 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
543 recalc_csum);
544 memcpy(&flow_key->ipv6.addr.dst, masked,
545 sizeof(flow_key->ipv6.addr.dst));
546 }
547 }
548 if (mask->ipv6_tclass) {
549 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
550 flow_key->ip.tos = ipv6_get_dsfield(nh);
551 }
552 if (mask->ipv6_label) {
553 set_ipv6_fl(nh, ntohl(key->ipv6_label),
554 ntohl(mask->ipv6_label));
555 flow_key->ipv6.label =
556 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
557 }
558 if (mask->ipv6_hlimit) {
559 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
560 mask->ipv6_hlimit);
561 flow_key->ip.ttl = nh->hop_limit;
562 }
563 return 0;
564 }
565
set_nsh(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)566 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
567 const struct nlattr *a)
568 {
569 struct nshhdr *nh;
570 size_t length;
571 int err;
572 u8 flags;
573 u8 ttl;
574 int i;
575
576 struct ovs_key_nsh key;
577 struct ovs_key_nsh mask;
578
579 err = nsh_key_from_nlattr(a, &key, &mask);
580 if (err)
581 return err;
582
583 /* Make sure the NSH base header is there */
584 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
585 return -ENOMEM;
586
587 nh = nsh_hdr(skb);
588 length = nsh_hdr_len(nh);
589
590 /* Make sure the whole NSH header is there */
591 err = skb_ensure_writable(skb, skb_network_offset(skb) +
592 length);
593 if (unlikely(err))
594 return err;
595
596 nh = nsh_hdr(skb);
597 skb_postpull_rcsum(skb, nh, length);
598 flags = nsh_get_flags(nh);
599 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
600 flow_key->nsh.base.flags = flags;
601 ttl = nsh_get_ttl(nh);
602 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
603 flow_key->nsh.base.ttl = ttl;
604 nsh_set_flags_and_ttl(nh, flags, ttl);
605 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
606 mask.base.path_hdr);
607 flow_key->nsh.base.path_hdr = nh->path_hdr;
608 switch (nh->mdtype) {
609 case NSH_M_TYPE1:
610 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
611 nh->md1.context[i] =
612 OVS_MASKED(nh->md1.context[i], key.context[i],
613 mask.context[i]);
614 }
615 memcpy(flow_key->nsh.context, nh->md1.context,
616 sizeof(nh->md1.context));
617 break;
618 case NSH_M_TYPE2:
619 memset(flow_key->nsh.context, 0,
620 sizeof(flow_key->nsh.context));
621 break;
622 default:
623 return -EINVAL;
624 }
625 skb_postpush_rcsum(skb, nh, length);
626 return 0;
627 }
628
629 /* Must follow skb_ensure_writable() since that can move the skb data. */
set_tp_port(struct sk_buff * skb,__be16 * port,__be16 new_port,__sum16 * check)630 static void set_tp_port(struct sk_buff *skb, __be16 *port,
631 __be16 new_port, __sum16 *check)
632 {
633 inet_proto_csum_replace2(check, skb, *port, new_port, false);
634 *port = new_port;
635 }
636
set_udp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_udp * key,const struct ovs_key_udp * mask)637 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
638 const struct ovs_key_udp *key,
639 const struct ovs_key_udp *mask)
640 {
641 struct udphdr *uh;
642 __be16 src, dst;
643 int err;
644
645 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
646 sizeof(struct udphdr));
647 if (unlikely(err))
648 return err;
649
650 uh = udp_hdr(skb);
651 /* Either of the masks is non-zero, so do not bother checking them. */
652 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
653 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
654
655 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
656 if (likely(src != uh->source)) {
657 set_tp_port(skb, &uh->source, src, &uh->check);
658 flow_key->tp.src = src;
659 }
660 if (likely(dst != uh->dest)) {
661 set_tp_port(skb, &uh->dest, dst, &uh->check);
662 flow_key->tp.dst = dst;
663 }
664
665 if (unlikely(!uh->check))
666 uh->check = CSUM_MANGLED_0;
667 } else {
668 uh->source = src;
669 uh->dest = dst;
670 flow_key->tp.src = src;
671 flow_key->tp.dst = dst;
672 }
673
674 skb_clear_hash(skb);
675
676 return 0;
677 }
678
set_tcp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_tcp * key,const struct ovs_key_tcp * mask)679 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
680 const struct ovs_key_tcp *key,
681 const struct ovs_key_tcp *mask)
682 {
683 struct tcphdr *th;
684 __be16 src, dst;
685 int err;
686
687 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
688 sizeof(struct tcphdr));
689 if (unlikely(err))
690 return err;
691
692 th = tcp_hdr(skb);
693 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
694 if (likely(src != th->source)) {
695 set_tp_port(skb, &th->source, src, &th->check);
696 flow_key->tp.src = src;
697 }
698 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
699 if (likely(dst != th->dest)) {
700 set_tp_port(skb, &th->dest, dst, &th->check);
701 flow_key->tp.dst = dst;
702 }
703 skb_clear_hash(skb);
704
705 return 0;
706 }
707
set_sctp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_sctp * key,const struct ovs_key_sctp * mask)708 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
709 const struct ovs_key_sctp *key,
710 const struct ovs_key_sctp *mask)
711 {
712 unsigned int sctphoff = skb_transport_offset(skb);
713 struct sctphdr *sh;
714 __le32 old_correct_csum, new_csum, old_csum;
715 int err;
716
717 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
718 if (unlikely(err))
719 return err;
720
721 sh = sctp_hdr(skb);
722 old_csum = sh->checksum;
723 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
724
725 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
726 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
727
728 new_csum = sctp_compute_cksum(skb, sctphoff);
729
730 /* Carry any checksum errors through. */
731 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
732
733 skb_clear_hash(skb);
734 flow_key->tp.src = sh->source;
735 flow_key->tp.dst = sh->dest;
736
737 return 0;
738 }
739
ovs_vport_output(struct net * net,struct sock * sk,struct sk_buff * skb)740 static int ovs_vport_output(struct net *net, struct sock *sk,
741 struct sk_buff *skb)
742 {
743 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
744 struct vport *vport = data->vport;
745
746 if (skb_cow_head(skb, data->l2_len) < 0) {
747 kfree_skb(skb);
748 return -ENOMEM;
749 }
750
751 __skb_dst_copy(skb, data->dst);
752 *OVS_CB(skb) = data->cb;
753 skb->inner_protocol = data->inner_protocol;
754 if (data->vlan_tci & VLAN_CFI_MASK)
755 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
756 else
757 __vlan_hwaccel_clear_tag(skb);
758
759 /* Reconstruct the MAC header. */
760 skb_push(skb, data->l2_len);
761 memcpy(skb->data, &data->l2_data, data->l2_len);
762 skb_postpush_rcsum(skb, skb->data, data->l2_len);
763 skb_reset_mac_header(skb);
764
765 if (eth_p_mpls(skb->protocol)) {
766 skb->inner_network_header = skb->network_header;
767 skb_set_network_header(skb, data->network_offset);
768 skb_reset_mac_len(skb);
769 }
770
771 ovs_vport_send(vport, skb, data->mac_proto);
772 return 0;
773 }
774
775 static unsigned int
ovs_dst_get_mtu(const struct dst_entry * dst)776 ovs_dst_get_mtu(const struct dst_entry *dst)
777 {
778 return dst->dev->mtu;
779 }
780
781 static struct dst_ops ovs_dst_ops = {
782 .family = AF_UNSPEC,
783 .mtu = ovs_dst_get_mtu,
784 };
785
786 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
787 * ovs_vport_output(), which is called once per fragmented packet.
788 */
prepare_frag(struct vport * vport,struct sk_buff * skb,u16 orig_network_offset,u8 mac_proto)789 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
790 u16 orig_network_offset, u8 mac_proto)
791 {
792 unsigned int hlen = skb_network_offset(skb);
793 struct ovs_frag_data *data;
794
795 data = this_cpu_ptr(&ovs_frag_data_storage);
796 data->dst = skb->_skb_refdst;
797 data->vport = vport;
798 data->cb = *OVS_CB(skb);
799 data->inner_protocol = skb->inner_protocol;
800 data->network_offset = orig_network_offset;
801 if (skb_vlan_tag_present(skb))
802 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
803 else
804 data->vlan_tci = 0;
805 data->vlan_proto = skb->vlan_proto;
806 data->mac_proto = mac_proto;
807 data->l2_len = hlen;
808 memcpy(&data->l2_data, skb->data, hlen);
809
810 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
811 skb_pull(skb, hlen);
812 }
813
ovs_fragment(struct net * net,struct vport * vport,struct sk_buff * skb,u16 mru,struct sw_flow_key * key)814 static void ovs_fragment(struct net *net, struct vport *vport,
815 struct sk_buff *skb, u16 mru,
816 struct sw_flow_key *key)
817 {
818 u16 orig_network_offset = 0;
819
820 if (eth_p_mpls(skb->protocol)) {
821 orig_network_offset = skb_network_offset(skb);
822 skb->network_header = skb->inner_network_header;
823 }
824
825 if (skb_network_offset(skb) > MAX_L2_LEN) {
826 OVS_NLERR(1, "L2 header too long to fragment");
827 goto err;
828 }
829
830 if (key->eth.type == htons(ETH_P_IP)) {
831 struct rtable ovs_rt = { 0 };
832 unsigned long orig_dst;
833
834 prepare_frag(vport, skb, orig_network_offset,
835 ovs_key_mac_proto(key));
836 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
837 DST_OBSOLETE_NONE, DST_NOCOUNT);
838 ovs_rt.dst.dev = vport->dev;
839
840 orig_dst = skb->_skb_refdst;
841 skb_dst_set_noref(skb, &ovs_rt.dst);
842 IPCB(skb)->frag_max_size = mru;
843
844 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
845 refdst_drop(orig_dst);
846 } else if (key->eth.type == htons(ETH_P_IPV6)) {
847 unsigned long orig_dst;
848 struct rt6_info ovs_rt;
849
850 prepare_frag(vport, skb, orig_network_offset,
851 ovs_key_mac_proto(key));
852 memset(&ovs_rt, 0, sizeof(ovs_rt));
853 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
854 DST_OBSOLETE_NONE, DST_NOCOUNT);
855 ovs_rt.dst.dev = vport->dev;
856
857 orig_dst = skb->_skb_refdst;
858 skb_dst_set_noref(skb, &ovs_rt.dst);
859 IP6CB(skb)->frag_max_size = mru;
860
861 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
862 refdst_drop(orig_dst);
863 } else {
864 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
865 ovs_vport_name(vport), ntohs(key->eth.type), mru,
866 vport->dev->mtu);
867 goto err;
868 }
869
870 return;
871 err:
872 kfree_skb(skb);
873 }
874
do_output(struct datapath * dp,struct sk_buff * skb,int out_port,struct sw_flow_key * key)875 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
876 struct sw_flow_key *key)
877 {
878 struct vport *vport = ovs_vport_rcu(dp, out_port);
879
880 if (likely(vport)) {
881 u16 mru = OVS_CB(skb)->mru;
882 u32 cutlen = OVS_CB(skb)->cutlen;
883
884 if (unlikely(cutlen > 0)) {
885 if (skb->len - cutlen > ovs_mac_header_len(key))
886 pskb_trim(skb, skb->len - cutlen);
887 else
888 pskb_trim(skb, ovs_mac_header_len(key));
889 }
890
891 if (likely(!mru ||
892 (skb->len <= mru + vport->dev->hard_header_len))) {
893 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
894 } else if (mru <= vport->dev->mtu) {
895 struct net *net = read_pnet(&dp->net);
896
897 ovs_fragment(net, vport, skb, mru, key);
898 } else {
899 kfree_skb(skb);
900 }
901 } else {
902 kfree_skb(skb);
903 }
904 }
905
output_userspace(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,const struct nlattr * actions,int actions_len,uint32_t cutlen)906 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
907 struct sw_flow_key *key, const struct nlattr *attr,
908 const struct nlattr *actions, int actions_len,
909 uint32_t cutlen)
910 {
911 struct dp_upcall_info upcall;
912 const struct nlattr *a;
913 int rem;
914
915 memset(&upcall, 0, sizeof(upcall));
916 upcall.cmd = OVS_PACKET_CMD_ACTION;
917 upcall.mru = OVS_CB(skb)->mru;
918
919 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
920 a = nla_next(a, &rem)) {
921 switch (nla_type(a)) {
922 case OVS_USERSPACE_ATTR_USERDATA:
923 upcall.userdata = a;
924 break;
925
926 case OVS_USERSPACE_ATTR_PID:
927 if (dp->user_features &
928 OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
929 upcall.portid =
930 ovs_dp_get_upcall_portid(dp,
931 smp_processor_id());
932 else
933 upcall.portid = nla_get_u32(a);
934 break;
935
936 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
937 /* Get out tunnel info. */
938 struct vport *vport;
939
940 vport = ovs_vport_rcu(dp, nla_get_u32(a));
941 if (vport) {
942 int err;
943
944 err = dev_fill_metadata_dst(vport->dev, skb);
945 if (!err)
946 upcall.egress_tun_info = skb_tunnel_info(skb);
947 }
948
949 break;
950 }
951
952 case OVS_USERSPACE_ATTR_ACTIONS: {
953 /* Include actions. */
954 upcall.actions = actions;
955 upcall.actions_len = actions_len;
956 break;
957 }
958
959 } /* End of switch. */
960 }
961
962 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
963 }
964
dec_ttl_exception_handler(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)965 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
966 struct sw_flow_key *key,
967 const struct nlattr *attr)
968 {
969 /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
970 struct nlattr *actions = nla_data(attr);
971
972 if (nla_len(actions))
973 return clone_execute(dp, skb, key, 0, nla_data(actions),
974 nla_len(actions), true, false);
975
976 consume_skb(skb);
977 return 0;
978 }
979
980 /* When 'last' is true, sample() should always consume the 'skb'.
981 * Otherwise, sample() should keep 'skb' intact regardless what
982 * actions are executed within sample().
983 */
sample(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)984 static int sample(struct datapath *dp, struct sk_buff *skb,
985 struct sw_flow_key *key, const struct nlattr *attr,
986 bool last)
987 {
988 struct nlattr *actions;
989 struct nlattr *sample_arg;
990 int rem = nla_len(attr);
991 const struct sample_arg *arg;
992 bool clone_flow_key;
993
994 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
995 sample_arg = nla_data(attr);
996 arg = nla_data(sample_arg);
997 actions = nla_next(sample_arg, &rem);
998
999 if ((arg->probability != U32_MAX) &&
1000 (!arg->probability || prandom_u32() > arg->probability)) {
1001 if (last)
1002 consume_skb(skb);
1003 return 0;
1004 }
1005
1006 clone_flow_key = !arg->exec;
1007 return clone_execute(dp, skb, key, 0, actions, rem, last,
1008 clone_flow_key);
1009 }
1010
1011 /* When 'last' is true, clone() should always consume the 'skb'.
1012 * Otherwise, clone() should keep 'skb' intact regardless what
1013 * actions are executed within clone().
1014 */
clone(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1015 static int clone(struct datapath *dp, struct sk_buff *skb,
1016 struct sw_flow_key *key, const struct nlattr *attr,
1017 bool last)
1018 {
1019 struct nlattr *actions;
1020 struct nlattr *clone_arg;
1021 int rem = nla_len(attr);
1022 bool dont_clone_flow_key;
1023
1024 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1025 clone_arg = nla_data(attr);
1026 dont_clone_flow_key = nla_get_u32(clone_arg);
1027 actions = nla_next(clone_arg, &rem);
1028
1029 return clone_execute(dp, skb, key, 0, actions, rem, last,
1030 !dont_clone_flow_key);
1031 }
1032
execute_hash(struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1033 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1034 const struct nlattr *attr)
1035 {
1036 struct ovs_action_hash *hash_act = nla_data(attr);
1037 u32 hash = 0;
1038
1039 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
1040 hash = skb_get_hash(skb);
1041 hash = jhash_1word(hash, hash_act->hash_basis);
1042 if (!hash)
1043 hash = 0x1;
1044
1045 key->ovs_flow_hash = hash;
1046 }
1047
execute_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1048 static int execute_set_action(struct sk_buff *skb,
1049 struct sw_flow_key *flow_key,
1050 const struct nlattr *a)
1051 {
1052 /* Only tunnel set execution is supported without a mask. */
1053 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1054 struct ovs_tunnel_info *tun = nla_data(a);
1055
1056 skb_dst_drop(skb);
1057 dst_hold((struct dst_entry *)tun->tun_dst);
1058 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1059 return 0;
1060 }
1061
1062 return -EINVAL;
1063 }
1064
1065 /* Mask is at the midpoint of the data. */
1066 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1067
execute_masked_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1068 static int execute_masked_set_action(struct sk_buff *skb,
1069 struct sw_flow_key *flow_key,
1070 const struct nlattr *a)
1071 {
1072 int err = 0;
1073
1074 switch (nla_type(a)) {
1075 case OVS_KEY_ATTR_PRIORITY:
1076 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1077 *get_mask(a, u32 *));
1078 flow_key->phy.priority = skb->priority;
1079 break;
1080
1081 case OVS_KEY_ATTR_SKB_MARK:
1082 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1083 flow_key->phy.skb_mark = skb->mark;
1084 break;
1085
1086 case OVS_KEY_ATTR_TUNNEL_INFO:
1087 /* Masked data not supported for tunnel. */
1088 err = -EINVAL;
1089 break;
1090
1091 case OVS_KEY_ATTR_ETHERNET:
1092 err = set_eth_addr(skb, flow_key, nla_data(a),
1093 get_mask(a, struct ovs_key_ethernet *));
1094 break;
1095
1096 case OVS_KEY_ATTR_NSH:
1097 err = set_nsh(skb, flow_key, a);
1098 break;
1099
1100 case OVS_KEY_ATTR_IPV4:
1101 err = set_ipv4(skb, flow_key, nla_data(a),
1102 get_mask(a, struct ovs_key_ipv4 *));
1103 break;
1104
1105 case OVS_KEY_ATTR_IPV6:
1106 err = set_ipv6(skb, flow_key, nla_data(a),
1107 get_mask(a, struct ovs_key_ipv6 *));
1108 break;
1109
1110 case OVS_KEY_ATTR_TCP:
1111 err = set_tcp(skb, flow_key, nla_data(a),
1112 get_mask(a, struct ovs_key_tcp *));
1113 break;
1114
1115 case OVS_KEY_ATTR_UDP:
1116 err = set_udp(skb, flow_key, nla_data(a),
1117 get_mask(a, struct ovs_key_udp *));
1118 break;
1119
1120 case OVS_KEY_ATTR_SCTP:
1121 err = set_sctp(skb, flow_key, nla_data(a),
1122 get_mask(a, struct ovs_key_sctp *));
1123 break;
1124
1125 case OVS_KEY_ATTR_MPLS:
1126 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1127 __be32 *));
1128 break;
1129
1130 case OVS_KEY_ATTR_CT_STATE:
1131 case OVS_KEY_ATTR_CT_ZONE:
1132 case OVS_KEY_ATTR_CT_MARK:
1133 case OVS_KEY_ATTR_CT_LABELS:
1134 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1135 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1136 err = -EINVAL;
1137 break;
1138 }
1139
1140 return err;
1141 }
1142
execute_recirc(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * a,bool last)1143 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1144 struct sw_flow_key *key,
1145 const struct nlattr *a, bool last)
1146 {
1147 u32 recirc_id;
1148
1149 if (!is_flow_key_valid(key)) {
1150 int err;
1151
1152 err = ovs_flow_key_update(skb, key);
1153 if (err)
1154 return err;
1155 }
1156 BUG_ON(!is_flow_key_valid(key));
1157
1158 recirc_id = nla_get_u32(a);
1159 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1160 }
1161
execute_check_pkt_len(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1162 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1163 struct sw_flow_key *key,
1164 const struct nlattr *attr, bool last)
1165 {
1166 struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1167 const struct nlattr *actions, *cpl_arg;
1168 int len, max_len, rem = nla_len(attr);
1169 const struct check_pkt_len_arg *arg;
1170 bool clone_flow_key;
1171
1172 /* The first netlink attribute in 'attr' is always
1173 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1174 */
1175 cpl_arg = nla_data(attr);
1176 arg = nla_data(cpl_arg);
1177
1178 len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1179 max_len = arg->pkt_len;
1180
1181 if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1182 len <= max_len) {
1183 /* Second netlink attribute in 'attr' is always
1184 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1185 */
1186 actions = nla_next(cpl_arg, &rem);
1187 clone_flow_key = !arg->exec_for_lesser_equal;
1188 } else {
1189 /* Third netlink attribute in 'attr' is always
1190 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1191 */
1192 actions = nla_next(cpl_arg, &rem);
1193 actions = nla_next(actions, &rem);
1194 clone_flow_key = !arg->exec_for_greater;
1195 }
1196
1197 return clone_execute(dp, skb, key, 0, nla_data(actions),
1198 nla_len(actions), last, clone_flow_key);
1199 }
1200
execute_dec_ttl(struct sk_buff * skb,struct sw_flow_key * key)1201 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1202 {
1203 int err;
1204
1205 if (skb->protocol == htons(ETH_P_IPV6)) {
1206 struct ipv6hdr *nh;
1207
1208 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1209 sizeof(*nh));
1210 if (unlikely(err))
1211 return err;
1212
1213 nh = ipv6_hdr(skb);
1214
1215 if (nh->hop_limit <= 1)
1216 return -EHOSTUNREACH;
1217
1218 key->ip.ttl = --nh->hop_limit;
1219 } else if (skb->protocol == htons(ETH_P_IP)) {
1220 struct iphdr *nh;
1221 u8 old_ttl;
1222
1223 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1224 sizeof(*nh));
1225 if (unlikely(err))
1226 return err;
1227
1228 nh = ip_hdr(skb);
1229 if (nh->ttl <= 1)
1230 return -EHOSTUNREACH;
1231
1232 old_ttl = nh->ttl--;
1233 csum_replace2(&nh->check, htons(old_ttl << 8),
1234 htons(nh->ttl << 8));
1235 key->ip.ttl = nh->ttl;
1236 }
1237 return 0;
1238 }
1239
1240 /* Execute a list of actions against 'skb'. */
do_execute_actions(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,int len)1241 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1242 struct sw_flow_key *key,
1243 const struct nlattr *attr, int len)
1244 {
1245 const struct nlattr *a;
1246 int rem;
1247
1248 for (a = attr, rem = len; rem > 0;
1249 a = nla_next(a, &rem)) {
1250 int err = 0;
1251
1252 if (trace_ovs_do_execute_action_enabled())
1253 trace_ovs_do_execute_action(dp, skb, key, a, rem);
1254
1255 switch (nla_type(a)) {
1256 case OVS_ACTION_ATTR_OUTPUT: {
1257 int port = nla_get_u32(a);
1258 struct sk_buff *clone;
1259
1260 /* Every output action needs a separate clone
1261 * of 'skb', In case the output action is the
1262 * last action, cloning can be avoided.
1263 */
1264 if (nla_is_last(a, rem)) {
1265 do_output(dp, skb, port, key);
1266 /* 'skb' has been used for output.
1267 */
1268 return 0;
1269 }
1270
1271 clone = skb_clone(skb, GFP_ATOMIC);
1272 if (clone)
1273 do_output(dp, clone, port, key);
1274 OVS_CB(skb)->cutlen = 0;
1275 break;
1276 }
1277
1278 case OVS_ACTION_ATTR_TRUNC: {
1279 struct ovs_action_trunc *trunc = nla_data(a);
1280
1281 if (skb->len > trunc->max_len)
1282 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1283 break;
1284 }
1285
1286 case OVS_ACTION_ATTR_USERSPACE:
1287 output_userspace(dp, skb, key, a, attr,
1288 len, OVS_CB(skb)->cutlen);
1289 OVS_CB(skb)->cutlen = 0;
1290 break;
1291
1292 case OVS_ACTION_ATTR_HASH:
1293 execute_hash(skb, key, a);
1294 break;
1295
1296 case OVS_ACTION_ATTR_PUSH_MPLS: {
1297 struct ovs_action_push_mpls *mpls = nla_data(a);
1298
1299 err = push_mpls(skb, key, mpls->mpls_lse,
1300 mpls->mpls_ethertype, skb->mac_len);
1301 break;
1302 }
1303 case OVS_ACTION_ATTR_ADD_MPLS: {
1304 struct ovs_action_add_mpls *mpls = nla_data(a);
1305 __u16 mac_len = 0;
1306
1307 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1308 mac_len = skb->mac_len;
1309
1310 err = push_mpls(skb, key, mpls->mpls_lse,
1311 mpls->mpls_ethertype, mac_len);
1312 break;
1313 }
1314 case OVS_ACTION_ATTR_POP_MPLS:
1315 err = pop_mpls(skb, key, nla_get_be16(a));
1316 break;
1317
1318 case OVS_ACTION_ATTR_PUSH_VLAN:
1319 err = push_vlan(skb, key, nla_data(a));
1320 break;
1321
1322 case OVS_ACTION_ATTR_POP_VLAN:
1323 err = pop_vlan(skb, key);
1324 break;
1325
1326 case OVS_ACTION_ATTR_RECIRC: {
1327 bool last = nla_is_last(a, rem);
1328
1329 err = execute_recirc(dp, skb, key, a, last);
1330 if (last) {
1331 /* If this is the last action, the skb has
1332 * been consumed or freed.
1333 * Return immediately.
1334 */
1335 return err;
1336 }
1337 break;
1338 }
1339
1340 case OVS_ACTION_ATTR_SET:
1341 err = execute_set_action(skb, key, nla_data(a));
1342 break;
1343
1344 case OVS_ACTION_ATTR_SET_MASKED:
1345 case OVS_ACTION_ATTR_SET_TO_MASKED:
1346 err = execute_masked_set_action(skb, key, nla_data(a));
1347 break;
1348
1349 case OVS_ACTION_ATTR_SAMPLE: {
1350 bool last = nla_is_last(a, rem);
1351
1352 err = sample(dp, skb, key, a, last);
1353 if (last)
1354 return err;
1355
1356 break;
1357 }
1358
1359 case OVS_ACTION_ATTR_CT:
1360 if (!is_flow_key_valid(key)) {
1361 err = ovs_flow_key_update(skb, key);
1362 if (err)
1363 return err;
1364 }
1365
1366 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1367 nla_data(a));
1368
1369 /* Hide stolen IP fragments from user space. */
1370 if (err)
1371 return err == -EINPROGRESS ? 0 : err;
1372 break;
1373
1374 case OVS_ACTION_ATTR_CT_CLEAR:
1375 err = ovs_ct_clear(skb, key);
1376 break;
1377
1378 case OVS_ACTION_ATTR_PUSH_ETH:
1379 err = push_eth(skb, key, nla_data(a));
1380 break;
1381
1382 case OVS_ACTION_ATTR_POP_ETH:
1383 err = pop_eth(skb, key);
1384 break;
1385
1386 case OVS_ACTION_ATTR_PUSH_NSH: {
1387 u8 buffer[NSH_HDR_MAX_LEN];
1388 struct nshhdr *nh = (struct nshhdr *)buffer;
1389
1390 err = nsh_hdr_from_nlattr(nla_data(a), nh,
1391 NSH_HDR_MAX_LEN);
1392 if (unlikely(err))
1393 break;
1394 err = push_nsh(skb, key, nh);
1395 break;
1396 }
1397
1398 case OVS_ACTION_ATTR_POP_NSH:
1399 err = pop_nsh(skb, key);
1400 break;
1401
1402 case OVS_ACTION_ATTR_METER:
1403 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1404 consume_skb(skb);
1405 return 0;
1406 }
1407 break;
1408
1409 case OVS_ACTION_ATTR_CLONE: {
1410 bool last = nla_is_last(a, rem);
1411
1412 err = clone(dp, skb, key, a, last);
1413 if (last)
1414 return err;
1415
1416 break;
1417 }
1418
1419 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1420 bool last = nla_is_last(a, rem);
1421
1422 err = execute_check_pkt_len(dp, skb, key, a, last);
1423 if (last)
1424 return err;
1425
1426 break;
1427 }
1428
1429 case OVS_ACTION_ATTR_DEC_TTL:
1430 err = execute_dec_ttl(skb, key);
1431 if (err == -EHOSTUNREACH)
1432 return dec_ttl_exception_handler(dp, skb,
1433 key, a);
1434 break;
1435 }
1436
1437 if (unlikely(err)) {
1438 kfree_skb(skb);
1439 return err;
1440 }
1441 }
1442
1443 consume_skb(skb);
1444 return 0;
1445 }
1446
1447 /* Execute the actions on the clone of the packet. The effect of the
1448 * execution does not affect the original 'skb' nor the original 'key'.
1449 *
1450 * The execution may be deferred in case the actions can not be executed
1451 * immediately.
1452 */
clone_execute(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,u32 recirc_id,const struct nlattr * actions,int len,bool last,bool clone_flow_key)1453 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1454 struct sw_flow_key *key, u32 recirc_id,
1455 const struct nlattr *actions, int len,
1456 bool last, bool clone_flow_key)
1457 {
1458 struct deferred_action *da;
1459 struct sw_flow_key *clone;
1460
1461 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1462 if (!skb) {
1463 /* Out of memory, skip this action.
1464 */
1465 return 0;
1466 }
1467
1468 /* When clone_flow_key is false, the 'key' will not be change
1469 * by the actions, then the 'key' can be used directly.
1470 * Otherwise, try to clone key from the next recursion level of
1471 * 'flow_keys'. If clone is successful, execute the actions
1472 * without deferring.
1473 */
1474 clone = clone_flow_key ? clone_key(key) : key;
1475 if (clone) {
1476 int err = 0;
1477
1478 if (actions) { /* Sample action */
1479 if (clone_flow_key)
1480 __this_cpu_inc(exec_actions_level);
1481
1482 err = do_execute_actions(dp, skb, clone,
1483 actions, len);
1484
1485 if (clone_flow_key)
1486 __this_cpu_dec(exec_actions_level);
1487 } else { /* Recirc action */
1488 clone->recirc_id = recirc_id;
1489 ovs_dp_process_packet(skb, clone);
1490 }
1491 return err;
1492 }
1493
1494 /* Out of 'flow_keys' space. Defer actions */
1495 da = add_deferred_actions(skb, key, actions, len);
1496 if (da) {
1497 if (!actions) { /* Recirc action */
1498 key = &da->pkt_key;
1499 key->recirc_id = recirc_id;
1500 }
1501 } else {
1502 /* Out of per CPU action FIFO space. Drop the 'skb' and
1503 * log an error.
1504 */
1505 kfree_skb(skb);
1506
1507 if (net_ratelimit()) {
1508 if (actions) { /* Sample action */
1509 pr_warn("%s: deferred action limit reached, drop sample action\n",
1510 ovs_dp_name(dp));
1511 } else { /* Recirc action */
1512 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1513 ovs_dp_name(dp));
1514 }
1515 }
1516 }
1517 return 0;
1518 }
1519
process_deferred_actions(struct datapath * dp)1520 static void process_deferred_actions(struct datapath *dp)
1521 {
1522 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1523
1524 /* Do not touch the FIFO in case there is no deferred actions. */
1525 if (action_fifo_is_empty(fifo))
1526 return;
1527
1528 /* Finishing executing all deferred actions. */
1529 do {
1530 struct deferred_action *da = action_fifo_get(fifo);
1531 struct sk_buff *skb = da->skb;
1532 struct sw_flow_key *key = &da->pkt_key;
1533 const struct nlattr *actions = da->actions;
1534 int actions_len = da->actions_len;
1535
1536 if (actions)
1537 do_execute_actions(dp, skb, key, actions, actions_len);
1538 else
1539 ovs_dp_process_packet(skb, key);
1540 } while (!action_fifo_is_empty(fifo));
1541
1542 /* Reset FIFO for the next packet. */
1543 action_fifo_init(fifo);
1544 }
1545
1546 /* Execute a list of actions against 'skb'. */
ovs_execute_actions(struct datapath * dp,struct sk_buff * skb,const struct sw_flow_actions * acts,struct sw_flow_key * key)1547 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1548 const struct sw_flow_actions *acts,
1549 struct sw_flow_key *key)
1550 {
1551 int err, level;
1552
1553 level = __this_cpu_inc_return(exec_actions_level);
1554 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1555 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1556 ovs_dp_name(dp));
1557 kfree_skb(skb);
1558 err = -ENETDOWN;
1559 goto out;
1560 }
1561
1562 OVS_CB(skb)->acts_origlen = acts->orig_len;
1563 err = do_execute_actions(dp, skb, key,
1564 acts->actions, acts->actions_len);
1565
1566 if (level == 1)
1567 process_deferred_actions(dp);
1568
1569 out:
1570 __this_cpu_dec(exec_actions_level);
1571 return err;
1572 }
1573
action_fifos_init(void)1574 int action_fifos_init(void)
1575 {
1576 action_fifos = alloc_percpu(struct action_fifo);
1577 if (!action_fifos)
1578 return -ENOMEM;
1579
1580 flow_keys = alloc_percpu(struct action_flow_keys);
1581 if (!flow_keys) {
1582 free_percpu(action_fifos);
1583 return -ENOMEM;
1584 }
1585
1586 return 0;
1587 }
1588
action_fifos_exit(void)1589 void action_fifos_exit(void)
1590 {
1591 free_percpu(action_fifos);
1592 free_percpu(flow_keys);
1593 }
1594