1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
6
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35
36 #include <uapi/linux/sched/types.h>
37
38 #include <linux/binfmts.h>
39 #include <linux/bitops.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/ratelimit.h>
61 #include <linux/rcupdate_wait.h>
62 #include <linux/security.h>
63 #include <linux/stop_machine.h>
64 #include <linux/suspend.h>
65 #include <linux/swait.h>
66 #include <linux/syscalls.h>
67 #include <linux/task_work.h>
68 #include <linux/tsacct_kern.h>
69
70 #include <asm/tlb.h>
71
72 #ifdef CONFIG_PARAVIRT
73 # include <asm/paravirt.h>
74 #endif
75
76 #include "cpupri.h"
77 #include "cpudeadline.h"
78
79 #include <trace/events/sched.h>
80
81 #ifdef CONFIG_SCHED_DEBUG
82 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
83 #else
84 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
85 #endif
86
87 struct rq;
88 struct cpuidle_state;
89
90 /* task_struct::on_rq states: */
91 #define TASK_ON_RQ_QUEUED 1
92 #define TASK_ON_RQ_MIGRATING 2
93
94 extern __read_mostly int scheduler_running;
95
96 extern unsigned long calc_load_update;
97 extern atomic_long_t calc_load_tasks;
98
99 extern void calc_global_load_tick(struct rq *this_rq);
100 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
101
102 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 /*
109 * Increase resolution of nice-level calculations for 64-bit architectures.
110 * The extra resolution improves shares distribution and load balancing of
111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112 * hierarchies, especially on larger systems. This is not a user-visible change
113 * and does not change the user-interface for setting shares/weights.
114 *
115 * We increase resolution only if we have enough bits to allow this increased
116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117 * are pretty high and the returns do not justify the increased costs.
118 *
119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120 * increase coverage and consistency always enable it on 64-bit platforms.
121 */
122 #ifdef CONFIG_64BIT
123 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w) \
126 ({ \
127 unsigned long __w = (w); \
128 if (__w) \
129 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
130 __w; \
131 })
132 #else
133 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
134 # define scale_load(w) (w)
135 # define scale_load_down(w) (w)
136 #endif
137
138 /*
139 * Task weight (visible to users) and its load (invisible to users) have
140 * independent resolution, but they should be well calibrated. We use
141 * scale_load() and scale_load_down(w) to convert between them. The
142 * following must be true:
143 *
144 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
145 *
146 */
147 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
148
149 /*
150 * Single value that decides SCHED_DEADLINE internal math precision.
151 * 10 -> just above 1us
152 * 9 -> just above 0.5us
153 */
154 #define DL_SCALE 10
155
156 /*
157 * Single value that denotes runtime == period, ie unlimited time.
158 */
159 #define RUNTIME_INF ((u64)~0ULL)
160
idle_policy(int policy)161 static inline int idle_policy(int policy)
162 {
163 return policy == SCHED_IDLE;
164 }
fair_policy(int policy)165 static inline int fair_policy(int policy)
166 {
167 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
168 }
169
rt_policy(int policy)170 static inline int rt_policy(int policy)
171 {
172 return policy == SCHED_FIFO || policy == SCHED_RR;
173 }
174
dl_policy(int policy)175 static inline int dl_policy(int policy)
176 {
177 return policy == SCHED_DEADLINE;
178 }
valid_policy(int policy)179 static inline bool valid_policy(int policy)
180 {
181 return idle_policy(policy) || fair_policy(policy) ||
182 rt_policy(policy) || dl_policy(policy);
183 }
184
task_has_idle_policy(struct task_struct * p)185 static inline int task_has_idle_policy(struct task_struct *p)
186 {
187 return idle_policy(p->policy);
188 }
189
task_has_rt_policy(struct task_struct * p)190 static inline int task_has_rt_policy(struct task_struct *p)
191 {
192 return rt_policy(p->policy);
193 }
194
task_has_dl_policy(struct task_struct * p)195 static inline int task_has_dl_policy(struct task_struct *p)
196 {
197 return dl_policy(p->policy);
198 }
199
200 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
201
update_avg(u64 * avg,u64 sample)202 static inline void update_avg(u64 *avg, u64 sample)
203 {
204 s64 diff = sample - *avg;
205 *avg += diff / 8;
206 }
207
208 /*
209 * Shifting a value by an exponent greater *or equal* to the size of said value
210 * is UB; cap at size-1.
211 */
212 #define shr_bound(val, shift) \
213 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
214
215 /*
216 * !! For sched_setattr_nocheck() (kernel) only !!
217 *
218 * This is actually gross. :(
219 *
220 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
221 * tasks, but still be able to sleep. We need this on platforms that cannot
222 * atomically change clock frequency. Remove once fast switching will be
223 * available on such platforms.
224 *
225 * SUGOV stands for SchedUtil GOVernor.
226 */
227 #define SCHED_FLAG_SUGOV 0x10000000
228
229 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
230
dl_entity_is_special(struct sched_dl_entity * dl_se)231 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
232 {
233 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
234 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
235 #else
236 return false;
237 #endif
238 }
239
240 /*
241 * Tells if entity @a should preempt entity @b.
242 */
243 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)244 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
245 {
246 return dl_entity_is_special(a) ||
247 dl_time_before(a->deadline, b->deadline);
248 }
249
250 /*
251 * This is the priority-queue data structure of the RT scheduling class:
252 */
253 struct rt_prio_array {
254 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
255 struct list_head queue[MAX_RT_PRIO];
256 };
257
258 struct rt_bandwidth {
259 /* nests inside the rq lock: */
260 raw_spinlock_t rt_runtime_lock;
261 ktime_t rt_period;
262 u64 rt_runtime;
263 struct hrtimer rt_period_timer;
264 unsigned int rt_period_active;
265 };
266
267 void __dl_clear_params(struct task_struct *p);
268
269 struct dl_bandwidth {
270 raw_spinlock_t dl_runtime_lock;
271 u64 dl_runtime;
272 u64 dl_period;
273 };
274
dl_bandwidth_enabled(void)275 static inline int dl_bandwidth_enabled(void)
276 {
277 return sysctl_sched_rt_runtime >= 0;
278 }
279
280 /*
281 * To keep the bandwidth of -deadline tasks under control
282 * we need some place where:
283 * - store the maximum -deadline bandwidth of each cpu;
284 * - cache the fraction of bandwidth that is currently allocated in
285 * each root domain;
286 *
287 * This is all done in the data structure below. It is similar to the
288 * one used for RT-throttling (rt_bandwidth), with the main difference
289 * that, since here we are only interested in admission control, we
290 * do not decrease any runtime while the group "executes", neither we
291 * need a timer to replenish it.
292 *
293 * With respect to SMP, bandwidth is given on a per root domain basis,
294 * meaning that:
295 * - bw (< 100%) is the deadline bandwidth of each CPU;
296 * - total_bw is the currently allocated bandwidth in each root domain;
297 */
298 struct dl_bw {
299 raw_spinlock_t lock;
300 u64 bw;
301 u64 total_bw;
302 };
303
304 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
305
306 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)307 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
308 {
309 dl_b->total_bw -= tsk_bw;
310 __dl_update(dl_b, (s32)tsk_bw / cpus);
311 }
312
313 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)314 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
315 {
316 dl_b->total_bw += tsk_bw;
317 __dl_update(dl_b, -((s32)tsk_bw / cpus));
318 }
319
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)320 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
321 u64 old_bw, u64 new_bw)
322 {
323 return dl_b->bw != -1 &&
324 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
325 }
326
327 /*
328 * Verify the fitness of task @p to run on @cpu taking into account the
329 * CPU original capacity and the runtime/deadline ratio of the task.
330 *
331 * The function will return true if the CPU original capacity of the
332 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
333 * task and false otherwise.
334 */
dl_task_fits_capacity(struct task_struct * p,int cpu)335 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
336 {
337 unsigned long cap = arch_scale_cpu_capacity(cpu);
338
339 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
340 }
341
342 extern void init_dl_bw(struct dl_bw *dl_b);
343 extern int sched_dl_global_validate(void);
344 extern void sched_dl_do_global(void);
345 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
346 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
347 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
348 extern bool __checkparam_dl(const struct sched_attr *attr);
349 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
350 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
351 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
352 extern bool dl_cpu_busy(unsigned int cpu);
353
354 #ifdef CONFIG_CGROUP_SCHED
355
356 #include <linux/cgroup.h>
357 #include <linux/psi.h>
358
359 struct cfs_rq;
360 struct rt_rq;
361
362 extern struct list_head task_groups;
363
364 struct cfs_bandwidth {
365 #ifdef CONFIG_CFS_BANDWIDTH
366 raw_spinlock_t lock;
367 ktime_t period;
368 u64 quota;
369 u64 runtime;
370 u64 burst;
371 u64 runtime_snap;
372 s64 hierarchical_quota;
373
374 u8 idle;
375 u8 period_active;
376 u8 slack_started;
377 struct hrtimer period_timer;
378 struct hrtimer slack_timer;
379 struct list_head throttled_cfs_rq;
380
381 /* Statistics: */
382 int nr_periods;
383 int nr_throttled;
384 int nr_burst;
385 u64 throttled_time;
386 u64 burst_time;
387 #endif
388 };
389
390 /* Task group related information */
391 struct task_group {
392 struct cgroup_subsys_state css;
393
394 #ifdef CONFIG_FAIR_GROUP_SCHED
395 /* schedulable entities of this group on each CPU */
396 struct sched_entity **se;
397 /* runqueue "owned" by this group on each CPU */
398 struct cfs_rq **cfs_rq;
399 unsigned long shares;
400
401 /* A positive value indicates that this is a SCHED_IDLE group. */
402 int idle;
403
404 #ifdef CONFIG_SMP
405 /*
406 * load_avg can be heavily contended at clock tick time, so put
407 * it in its own cacheline separated from the fields above which
408 * will also be accessed at each tick.
409 */
410 atomic_long_t load_avg ____cacheline_aligned;
411 #endif
412 #endif
413
414 #ifdef CONFIG_RT_GROUP_SCHED
415 struct sched_rt_entity **rt_se;
416 struct rt_rq **rt_rq;
417
418 struct rt_bandwidth rt_bandwidth;
419 #endif
420
421 struct rcu_head rcu;
422 struct list_head list;
423
424 struct task_group *parent;
425 struct list_head siblings;
426 struct list_head children;
427
428 #ifdef CONFIG_SCHED_AUTOGROUP
429 struct autogroup *autogroup;
430 #endif
431
432 struct cfs_bandwidth cfs_bandwidth;
433
434 #ifdef CONFIG_UCLAMP_TASK_GROUP
435 /* The two decimal precision [%] value requested from user-space */
436 unsigned int uclamp_pct[UCLAMP_CNT];
437 /* Clamp values requested for a task group */
438 struct uclamp_se uclamp_req[UCLAMP_CNT];
439 /* Effective clamp values used for a task group */
440 struct uclamp_se uclamp[UCLAMP_CNT];
441 #endif
442
443 };
444
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
447
448 /*
449 * A weight of 0 or 1 can cause arithmetics problems.
450 * A weight of a cfs_rq is the sum of weights of which entities
451 * are queued on this cfs_rq, so a weight of a entity should not be
452 * too large, so as the shares value of a task group.
453 * (The default weight is 1024 - so there's no practical
454 * limitation from this.)
455 */
456 #define MIN_SHARES (1UL << 1)
457 #define MAX_SHARES (1UL << 18)
458 #endif
459
460 typedef int (*tg_visitor)(struct task_group *, void *);
461
462 extern int walk_tg_tree_from(struct task_group *from,
463 tg_visitor down, tg_visitor up, void *data);
464
465 /*
466 * Iterate the full tree, calling @down when first entering a node and @up when
467 * leaving it for the final time.
468 *
469 * Caller must hold rcu_lock or sufficient equivalent.
470 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)471 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
472 {
473 return walk_tg_tree_from(&root_task_group, down, up, data);
474 }
475
476 extern int tg_nop(struct task_group *tg, void *data);
477
478 extern void free_fair_sched_group(struct task_group *tg);
479 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
480 extern void online_fair_sched_group(struct task_group *tg);
481 extern void unregister_fair_sched_group(struct task_group *tg);
482 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
483 struct sched_entity *se, int cpu,
484 struct sched_entity *parent);
485 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
486
487 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
488 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
489 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
490
491 extern void unregister_rt_sched_group(struct task_group *tg);
492 extern void free_rt_sched_group(struct task_group *tg);
493 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
494 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
495 struct sched_rt_entity *rt_se, int cpu,
496 struct sched_rt_entity *parent);
497 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
498 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
499 extern long sched_group_rt_runtime(struct task_group *tg);
500 extern long sched_group_rt_period(struct task_group *tg);
501 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
502
503 extern struct task_group *sched_create_group(struct task_group *parent);
504 extern void sched_online_group(struct task_group *tg,
505 struct task_group *parent);
506 extern void sched_destroy_group(struct task_group *tg);
507 extern void sched_release_group(struct task_group *tg);
508
509 extern void sched_move_task(struct task_struct *tsk);
510
511 #ifdef CONFIG_FAIR_GROUP_SCHED
512 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
513
514 extern int sched_group_set_idle(struct task_group *tg, long idle);
515
516 #ifdef CONFIG_SMP
517 extern void set_task_rq_fair(struct sched_entity *se,
518 struct cfs_rq *prev, struct cfs_rq *next);
519 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)520 static inline void set_task_rq_fair(struct sched_entity *se,
521 struct cfs_rq *prev, struct cfs_rq *next) { }
522 #endif /* CONFIG_SMP */
523 #endif /* CONFIG_FAIR_GROUP_SCHED */
524
525 #else /* CONFIG_CGROUP_SCHED */
526
527 struct cfs_bandwidth { };
528
529 #endif /* CONFIG_CGROUP_SCHED */
530
531 /* CFS-related fields in a runqueue */
532 struct cfs_rq {
533 struct load_weight load;
534 unsigned int nr_running;
535 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
536 unsigned int idle_nr_running; /* SCHED_IDLE */
537 unsigned int idle_h_nr_running; /* SCHED_IDLE */
538
539 u64 exec_clock;
540 u64 min_vruntime;
541 #ifdef CONFIG_SCHED_CORE
542 unsigned int forceidle_seq;
543 u64 min_vruntime_fi;
544 #endif
545
546 #ifndef CONFIG_64BIT
547 u64 min_vruntime_copy;
548 #endif
549
550 struct rb_root_cached tasks_timeline;
551
552 /*
553 * 'curr' points to currently running entity on this cfs_rq.
554 * It is set to NULL otherwise (i.e when none are currently running).
555 */
556 struct sched_entity *curr;
557 struct sched_entity *next;
558 struct sched_entity *last;
559 struct sched_entity *skip;
560
561 #ifdef CONFIG_SCHED_DEBUG
562 unsigned int nr_spread_over;
563 #endif
564
565 #ifdef CONFIG_SMP
566 /*
567 * CFS load tracking
568 */
569 struct sched_avg avg;
570 #ifndef CONFIG_64BIT
571 u64 load_last_update_time_copy;
572 #endif
573 struct {
574 raw_spinlock_t lock ____cacheline_aligned;
575 int nr;
576 unsigned long load_avg;
577 unsigned long util_avg;
578 unsigned long runnable_avg;
579 } removed;
580
581 #ifdef CONFIG_FAIR_GROUP_SCHED
582 unsigned long tg_load_avg_contrib;
583 long propagate;
584 long prop_runnable_sum;
585
586 /*
587 * h_load = weight * f(tg)
588 *
589 * Where f(tg) is the recursive weight fraction assigned to
590 * this group.
591 */
592 unsigned long h_load;
593 u64 last_h_load_update;
594 struct sched_entity *h_load_next;
595 #endif /* CONFIG_FAIR_GROUP_SCHED */
596 #endif /* CONFIG_SMP */
597
598 #ifdef CONFIG_FAIR_GROUP_SCHED
599 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
600
601 /*
602 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
603 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
604 * (like users, containers etc.)
605 *
606 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
607 * This list is used during load balance.
608 */
609 int on_list;
610 struct list_head leaf_cfs_rq_list;
611 struct task_group *tg; /* group that "owns" this runqueue */
612
613 /* Locally cached copy of our task_group's idle value */
614 int idle;
615
616 #ifdef CONFIG_CFS_BANDWIDTH
617 int runtime_enabled;
618 s64 runtime_remaining;
619
620 u64 throttled_clock;
621 u64 throttled_clock_task;
622 u64 throttled_clock_task_time;
623 int throttled;
624 int throttle_count;
625 struct list_head throttled_list;
626 #endif /* CONFIG_CFS_BANDWIDTH */
627 #endif /* CONFIG_FAIR_GROUP_SCHED */
628 };
629
rt_bandwidth_enabled(void)630 static inline int rt_bandwidth_enabled(void)
631 {
632 return sysctl_sched_rt_runtime >= 0;
633 }
634
635 /* RT IPI pull logic requires IRQ_WORK */
636 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
637 # define HAVE_RT_PUSH_IPI
638 #endif
639
640 /* Real-Time classes' related field in a runqueue: */
641 struct rt_rq {
642 struct rt_prio_array active;
643 unsigned int rt_nr_running;
644 unsigned int rr_nr_running;
645 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
646 struct {
647 int curr; /* highest queued rt task prio */
648 #ifdef CONFIG_SMP
649 int next; /* next highest */
650 #endif
651 } highest_prio;
652 #endif
653 #ifdef CONFIG_SMP
654 unsigned int rt_nr_migratory;
655 unsigned int rt_nr_total;
656 int overloaded;
657 struct plist_head pushable_tasks;
658
659 #endif /* CONFIG_SMP */
660 int rt_queued;
661
662 int rt_throttled;
663 u64 rt_time;
664 u64 rt_runtime;
665 /* Nests inside the rq lock: */
666 raw_spinlock_t rt_runtime_lock;
667
668 #ifdef CONFIG_RT_GROUP_SCHED
669 unsigned int rt_nr_boosted;
670
671 struct rq *rq;
672 struct task_group *tg;
673 #endif
674 };
675
rt_rq_is_runnable(struct rt_rq * rt_rq)676 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
677 {
678 return rt_rq->rt_queued && rt_rq->rt_nr_running;
679 }
680
681 /* Deadline class' related fields in a runqueue */
682 struct dl_rq {
683 /* runqueue is an rbtree, ordered by deadline */
684 struct rb_root_cached root;
685
686 unsigned int dl_nr_running;
687
688 #ifdef CONFIG_SMP
689 /*
690 * Deadline values of the currently executing and the
691 * earliest ready task on this rq. Caching these facilitates
692 * the decision whether or not a ready but not running task
693 * should migrate somewhere else.
694 */
695 struct {
696 u64 curr;
697 u64 next;
698 } earliest_dl;
699
700 unsigned int dl_nr_migratory;
701 int overloaded;
702
703 /*
704 * Tasks on this rq that can be pushed away. They are kept in
705 * an rb-tree, ordered by tasks' deadlines, with caching
706 * of the leftmost (earliest deadline) element.
707 */
708 struct rb_root_cached pushable_dl_tasks_root;
709 #else
710 struct dl_bw dl_bw;
711 #endif
712 /*
713 * "Active utilization" for this runqueue: increased when a
714 * task wakes up (becomes TASK_RUNNING) and decreased when a
715 * task blocks
716 */
717 u64 running_bw;
718
719 /*
720 * Utilization of the tasks "assigned" to this runqueue (including
721 * the tasks that are in runqueue and the tasks that executed on this
722 * CPU and blocked). Increased when a task moves to this runqueue, and
723 * decreased when the task moves away (migrates, changes scheduling
724 * policy, or terminates).
725 * This is needed to compute the "inactive utilization" for the
726 * runqueue (inactive utilization = this_bw - running_bw).
727 */
728 u64 this_bw;
729 u64 extra_bw;
730
731 /*
732 * Inverse of the fraction of CPU utilization that can be reclaimed
733 * by the GRUB algorithm.
734 */
735 u64 bw_ratio;
736 };
737
738 #ifdef CONFIG_FAIR_GROUP_SCHED
739 /* An entity is a task if it doesn't "own" a runqueue */
740 #define entity_is_task(se) (!se->my_q)
741
se_update_runnable(struct sched_entity * se)742 static inline void se_update_runnable(struct sched_entity *se)
743 {
744 if (!entity_is_task(se))
745 se->runnable_weight = se->my_q->h_nr_running;
746 }
747
se_runnable(struct sched_entity * se)748 static inline long se_runnable(struct sched_entity *se)
749 {
750 if (entity_is_task(se))
751 return !!se->on_rq;
752 else
753 return se->runnable_weight;
754 }
755
756 #else
757 #define entity_is_task(se) 1
758
se_update_runnable(struct sched_entity * se)759 static inline void se_update_runnable(struct sched_entity *se) {}
760
se_runnable(struct sched_entity * se)761 static inline long se_runnable(struct sched_entity *se)
762 {
763 return !!se->on_rq;
764 }
765 #endif
766
767 #ifdef CONFIG_SMP
768 /*
769 * XXX we want to get rid of these helpers and use the full load resolution.
770 */
se_weight(struct sched_entity * se)771 static inline long se_weight(struct sched_entity *se)
772 {
773 return scale_load_down(se->load.weight);
774 }
775
776
sched_asym_prefer(int a,int b)777 static inline bool sched_asym_prefer(int a, int b)
778 {
779 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
780 }
781
782 struct perf_domain {
783 struct em_perf_domain *em_pd;
784 struct perf_domain *next;
785 struct rcu_head rcu;
786 };
787
788 /* Scheduling group status flags */
789 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
790 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
791
792 /*
793 * We add the notion of a root-domain which will be used to define per-domain
794 * variables. Each exclusive cpuset essentially defines an island domain by
795 * fully partitioning the member CPUs from any other cpuset. Whenever a new
796 * exclusive cpuset is created, we also create and attach a new root-domain
797 * object.
798 *
799 */
800 struct root_domain {
801 atomic_t refcount;
802 atomic_t rto_count;
803 struct rcu_head rcu;
804 cpumask_var_t span;
805 cpumask_var_t online;
806
807 /*
808 * Indicate pullable load on at least one CPU, e.g:
809 * - More than one runnable task
810 * - Running task is misfit
811 */
812 int overload;
813
814 /* Indicate one or more cpus over-utilized (tipping point) */
815 int overutilized;
816
817 /*
818 * The bit corresponding to a CPU gets set here if such CPU has more
819 * than one runnable -deadline task (as it is below for RT tasks).
820 */
821 cpumask_var_t dlo_mask;
822 atomic_t dlo_count;
823 struct dl_bw dl_bw;
824 struct cpudl cpudl;
825
826 /*
827 * Indicate whether a root_domain's dl_bw has been checked or
828 * updated. It's monotonously increasing value.
829 *
830 * Also, some corner cases, like 'wrap around' is dangerous, but given
831 * that u64 is 'big enough'. So that shouldn't be a concern.
832 */
833 u64 visit_gen;
834
835 #ifdef HAVE_RT_PUSH_IPI
836 /*
837 * For IPI pull requests, loop across the rto_mask.
838 */
839 struct irq_work rto_push_work;
840 raw_spinlock_t rto_lock;
841 /* These are only updated and read within rto_lock */
842 int rto_loop;
843 int rto_cpu;
844 /* These atomics are updated outside of a lock */
845 atomic_t rto_loop_next;
846 atomic_t rto_loop_start;
847 #endif
848 /*
849 * The "RT overload" flag: it gets set if a CPU has more than
850 * one runnable RT task.
851 */
852 cpumask_var_t rto_mask;
853 struct cpupri cpupri;
854
855 unsigned long max_cpu_capacity;
856
857 /*
858 * NULL-terminated list of performance domains intersecting with the
859 * CPUs of the rd. Protected by RCU.
860 */
861 struct perf_domain __rcu *pd;
862 };
863
864 extern void init_defrootdomain(void);
865 extern int sched_init_domains(const struct cpumask *cpu_map);
866 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
867 extern void sched_get_rd(struct root_domain *rd);
868 extern void sched_put_rd(struct root_domain *rd);
869
870 #ifdef HAVE_RT_PUSH_IPI
871 extern void rto_push_irq_work_func(struct irq_work *work);
872 #endif
873 #endif /* CONFIG_SMP */
874
875 #ifdef CONFIG_UCLAMP_TASK
876 /*
877 * struct uclamp_bucket - Utilization clamp bucket
878 * @value: utilization clamp value for tasks on this clamp bucket
879 * @tasks: number of RUNNABLE tasks on this clamp bucket
880 *
881 * Keep track of how many tasks are RUNNABLE for a given utilization
882 * clamp value.
883 */
884 struct uclamp_bucket {
885 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
886 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
887 };
888
889 /*
890 * struct uclamp_rq - rq's utilization clamp
891 * @value: currently active clamp values for a rq
892 * @bucket: utilization clamp buckets affecting a rq
893 *
894 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
895 * A clamp value is affecting a rq when there is at least one task RUNNABLE
896 * (or actually running) with that value.
897 *
898 * There are up to UCLAMP_CNT possible different clamp values, currently there
899 * are only two: minimum utilization and maximum utilization.
900 *
901 * All utilization clamping values are MAX aggregated, since:
902 * - for util_min: we want to run the CPU at least at the max of the minimum
903 * utilization required by its currently RUNNABLE tasks.
904 * - for util_max: we want to allow the CPU to run up to the max of the
905 * maximum utilization allowed by its currently RUNNABLE tasks.
906 *
907 * Since on each system we expect only a limited number of different
908 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
909 * the metrics required to compute all the per-rq utilization clamp values.
910 */
911 struct uclamp_rq {
912 unsigned int value;
913 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
914 };
915
916 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
917 #endif /* CONFIG_UCLAMP_TASK */
918
919 /*
920 * This is the main, per-CPU runqueue data structure.
921 *
922 * Locking rule: those places that want to lock multiple runqueues
923 * (such as the load balancing or the thread migration code), lock
924 * acquire operations must be ordered by ascending &runqueue.
925 */
926 struct rq {
927 /* runqueue lock: */
928 raw_spinlock_t __lock;
929
930 /*
931 * nr_running and cpu_load should be in the same cacheline because
932 * remote CPUs use both these fields when doing load calculation.
933 */
934 unsigned int nr_running;
935 #ifdef CONFIG_NUMA_BALANCING
936 unsigned int nr_numa_running;
937 unsigned int nr_preferred_running;
938 unsigned int numa_migrate_on;
939 #endif
940 #ifdef CONFIG_NO_HZ_COMMON
941 #ifdef CONFIG_SMP
942 unsigned long last_blocked_load_update_tick;
943 unsigned int has_blocked_load;
944 call_single_data_t nohz_csd;
945 #endif /* CONFIG_SMP */
946 unsigned int nohz_tick_stopped;
947 atomic_t nohz_flags;
948 #endif /* CONFIG_NO_HZ_COMMON */
949
950 #ifdef CONFIG_SMP
951 unsigned int ttwu_pending;
952 #endif
953 u64 nr_switches;
954
955 #ifdef CONFIG_UCLAMP_TASK
956 /* Utilization clamp values based on CPU's RUNNABLE tasks */
957 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
958 unsigned int uclamp_flags;
959 #define UCLAMP_FLAG_IDLE 0x01
960 #endif
961
962 struct cfs_rq cfs;
963 struct rt_rq rt;
964 struct dl_rq dl;
965
966 #ifdef CONFIG_FAIR_GROUP_SCHED
967 /* list of leaf cfs_rq on this CPU: */
968 struct list_head leaf_cfs_rq_list;
969 struct list_head *tmp_alone_branch;
970 #endif /* CONFIG_FAIR_GROUP_SCHED */
971
972 /*
973 * This is part of a global counter where only the total sum
974 * over all CPUs matters. A task can increase this counter on
975 * one CPU and if it got migrated afterwards it may decrease
976 * it on another CPU. Always updated under the runqueue lock:
977 */
978 unsigned int nr_uninterruptible;
979
980 struct task_struct __rcu *curr;
981 struct task_struct *idle;
982 struct task_struct *stop;
983 unsigned long next_balance;
984 struct mm_struct *prev_mm;
985
986 unsigned int clock_update_flags;
987 u64 clock;
988 /* Ensure that all clocks are in the same cache line */
989 u64 clock_task ____cacheline_aligned;
990 u64 clock_pelt;
991 unsigned long lost_idle_time;
992
993 atomic_t nr_iowait;
994
995 #ifdef CONFIG_SCHED_DEBUG
996 u64 last_seen_need_resched_ns;
997 int ticks_without_resched;
998 #endif
999
1000 #ifdef CONFIG_MEMBARRIER
1001 int membarrier_state;
1002 #endif
1003
1004 #ifdef CONFIG_SMP
1005 struct root_domain *rd;
1006 struct sched_domain __rcu *sd;
1007
1008 unsigned long cpu_capacity;
1009 unsigned long cpu_capacity_orig;
1010
1011 struct callback_head *balance_callback;
1012
1013 unsigned char nohz_idle_balance;
1014 unsigned char idle_balance;
1015
1016 unsigned long misfit_task_load;
1017
1018 /* For active balancing */
1019 int active_balance;
1020 int push_cpu;
1021 struct cpu_stop_work active_balance_work;
1022
1023 /* CPU of this runqueue: */
1024 int cpu;
1025 int online;
1026
1027 struct list_head cfs_tasks;
1028
1029 struct sched_avg avg_rt;
1030 struct sched_avg avg_dl;
1031 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1032 struct sched_avg avg_irq;
1033 #endif
1034 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1035 struct sched_avg avg_thermal;
1036 #endif
1037 u64 idle_stamp;
1038 u64 avg_idle;
1039
1040 unsigned long wake_stamp;
1041 u64 wake_avg_idle;
1042
1043 /* This is used to determine avg_idle's max value */
1044 u64 max_idle_balance_cost;
1045
1046 #ifdef CONFIG_HOTPLUG_CPU
1047 struct rcuwait hotplug_wait;
1048 #endif
1049 #endif /* CONFIG_SMP */
1050
1051 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1052 u64 prev_irq_time;
1053 #endif
1054 #ifdef CONFIG_PARAVIRT
1055 u64 prev_steal_time;
1056 #endif
1057 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1058 u64 prev_steal_time_rq;
1059 #endif
1060
1061 /* calc_load related fields */
1062 unsigned long calc_load_update;
1063 long calc_load_active;
1064
1065 #ifdef CONFIG_SCHED_HRTICK
1066 #ifdef CONFIG_SMP
1067 call_single_data_t hrtick_csd;
1068 #endif
1069 struct hrtimer hrtick_timer;
1070 ktime_t hrtick_time;
1071 #endif
1072
1073 #ifdef CONFIG_SCHEDSTATS
1074 /* latency stats */
1075 struct sched_info rq_sched_info;
1076 unsigned long long rq_cpu_time;
1077 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1078
1079 /* sys_sched_yield() stats */
1080 unsigned int yld_count;
1081
1082 /* schedule() stats */
1083 unsigned int sched_count;
1084 unsigned int sched_goidle;
1085
1086 /* try_to_wake_up() stats */
1087 unsigned int ttwu_count;
1088 unsigned int ttwu_local;
1089 #endif
1090
1091 #ifdef CONFIG_CPU_IDLE
1092 /* Must be inspected within a rcu lock section */
1093 struct cpuidle_state *idle_state;
1094 #endif
1095
1096 #ifdef CONFIG_SMP
1097 unsigned int nr_pinned;
1098 #endif
1099 unsigned int push_busy;
1100 struct cpu_stop_work push_work;
1101
1102 #ifdef CONFIG_SCHED_CORE
1103 /* per rq */
1104 struct rq *core;
1105 struct task_struct *core_pick;
1106 unsigned int core_enabled;
1107 unsigned int core_sched_seq;
1108 struct rb_root core_tree;
1109
1110 /* shared state -- careful with sched_core_cpu_deactivate() */
1111 unsigned int core_task_seq;
1112 unsigned int core_pick_seq;
1113 unsigned long core_cookie;
1114 unsigned char core_forceidle;
1115 unsigned int core_forceidle_seq;
1116 #endif
1117 };
1118
1119 #ifdef CONFIG_FAIR_GROUP_SCHED
1120
1121 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1122 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1123 {
1124 return cfs_rq->rq;
1125 }
1126
1127 #else
1128
rq_of(struct cfs_rq * cfs_rq)1129 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1130 {
1131 return container_of(cfs_rq, struct rq, cfs);
1132 }
1133 #endif
1134
cpu_of(struct rq * rq)1135 static inline int cpu_of(struct rq *rq)
1136 {
1137 #ifdef CONFIG_SMP
1138 return rq->cpu;
1139 #else
1140 return 0;
1141 #endif
1142 }
1143
1144 #define MDF_PUSH 0x01
1145
is_migration_disabled(struct task_struct * p)1146 static inline bool is_migration_disabled(struct task_struct *p)
1147 {
1148 #ifdef CONFIG_SMP
1149 return p->migration_disabled;
1150 #else
1151 return false;
1152 #endif
1153 }
1154
1155 struct sched_group;
1156 #ifdef CONFIG_SCHED_CORE
1157 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1158
1159 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1160
sched_core_enabled(struct rq * rq)1161 static inline bool sched_core_enabled(struct rq *rq)
1162 {
1163 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1164 }
1165
sched_core_disabled(void)1166 static inline bool sched_core_disabled(void)
1167 {
1168 return !static_branch_unlikely(&__sched_core_enabled);
1169 }
1170
1171 /*
1172 * Be careful with this function; not for general use. The return value isn't
1173 * stable unless you actually hold a relevant rq->__lock.
1174 */
rq_lockp(struct rq * rq)1175 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1176 {
1177 if (sched_core_enabled(rq))
1178 return &rq->core->__lock;
1179
1180 return &rq->__lock;
1181 }
1182
__rq_lockp(struct rq * rq)1183 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1184 {
1185 if (rq->core_enabled)
1186 return &rq->core->__lock;
1187
1188 return &rq->__lock;
1189 }
1190
1191 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1192
1193 /*
1194 * Helpers to check if the CPU's core cookie matches with the task's cookie
1195 * when core scheduling is enabled.
1196 * A special case is that the task's cookie always matches with CPU's core
1197 * cookie if the CPU is in an idle core.
1198 */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1199 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1200 {
1201 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1202 if (!sched_core_enabled(rq))
1203 return true;
1204
1205 return rq->core->core_cookie == p->core_cookie;
1206 }
1207
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1208 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1209 {
1210 bool idle_core = true;
1211 int cpu;
1212
1213 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1214 if (!sched_core_enabled(rq))
1215 return true;
1216
1217 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1218 if (!available_idle_cpu(cpu)) {
1219 idle_core = false;
1220 break;
1221 }
1222 }
1223
1224 /*
1225 * A CPU in an idle core is always the best choice for tasks with
1226 * cookies.
1227 */
1228 return idle_core || rq->core->core_cookie == p->core_cookie;
1229 }
1230
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1231 static inline bool sched_group_cookie_match(struct rq *rq,
1232 struct task_struct *p,
1233 struct sched_group *group)
1234 {
1235 int cpu;
1236
1237 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1238 if (!sched_core_enabled(rq))
1239 return true;
1240
1241 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1242 if (sched_core_cookie_match(rq, p))
1243 return true;
1244 }
1245 return false;
1246 }
1247
1248 extern void queue_core_balance(struct rq *rq);
1249
sched_core_enqueued(struct task_struct * p)1250 static inline bool sched_core_enqueued(struct task_struct *p)
1251 {
1252 return !RB_EMPTY_NODE(&p->core_node);
1253 }
1254
1255 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1256 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p);
1257
1258 extern void sched_core_get(void);
1259 extern void sched_core_put(void);
1260
1261 #else /* !CONFIG_SCHED_CORE */
1262
sched_core_enabled(struct rq * rq)1263 static inline bool sched_core_enabled(struct rq *rq)
1264 {
1265 return false;
1266 }
1267
sched_core_disabled(void)1268 static inline bool sched_core_disabled(void)
1269 {
1270 return true;
1271 }
1272
rq_lockp(struct rq * rq)1273 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1274 {
1275 return &rq->__lock;
1276 }
1277
__rq_lockp(struct rq * rq)1278 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1279 {
1280 return &rq->__lock;
1281 }
1282
queue_core_balance(struct rq * rq)1283 static inline void queue_core_balance(struct rq *rq)
1284 {
1285 }
1286
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1287 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1288 {
1289 return true;
1290 }
1291
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1292 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1293 {
1294 return true;
1295 }
1296
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1297 static inline bool sched_group_cookie_match(struct rq *rq,
1298 struct task_struct *p,
1299 struct sched_group *group)
1300 {
1301 return true;
1302 }
1303 #endif /* CONFIG_SCHED_CORE */
1304
lockdep_assert_rq_held(struct rq * rq)1305 static inline void lockdep_assert_rq_held(struct rq *rq)
1306 {
1307 lockdep_assert_held(__rq_lockp(rq));
1308 }
1309
1310 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1311 extern bool raw_spin_rq_trylock(struct rq *rq);
1312 extern void raw_spin_rq_unlock(struct rq *rq);
1313
raw_spin_rq_lock(struct rq * rq)1314 static inline void raw_spin_rq_lock(struct rq *rq)
1315 {
1316 raw_spin_rq_lock_nested(rq, 0);
1317 }
1318
raw_spin_rq_lock_irq(struct rq * rq)1319 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1320 {
1321 local_irq_disable();
1322 raw_spin_rq_lock(rq);
1323 }
1324
raw_spin_rq_unlock_irq(struct rq * rq)1325 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1326 {
1327 raw_spin_rq_unlock(rq);
1328 local_irq_enable();
1329 }
1330
_raw_spin_rq_lock_irqsave(struct rq * rq)1331 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1332 {
1333 unsigned long flags;
1334 local_irq_save(flags);
1335 raw_spin_rq_lock(rq);
1336 return flags;
1337 }
1338
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1339 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1340 {
1341 raw_spin_rq_unlock(rq);
1342 local_irq_restore(flags);
1343 }
1344
1345 #define raw_spin_rq_lock_irqsave(rq, flags) \
1346 do { \
1347 flags = _raw_spin_rq_lock_irqsave(rq); \
1348 } while (0)
1349
1350 #ifdef CONFIG_SCHED_SMT
1351 extern void __update_idle_core(struct rq *rq);
1352
update_idle_core(struct rq * rq)1353 static inline void update_idle_core(struct rq *rq)
1354 {
1355 if (static_branch_unlikely(&sched_smt_present))
1356 __update_idle_core(rq);
1357 }
1358
1359 #else
update_idle_core(struct rq * rq)1360 static inline void update_idle_core(struct rq *rq) { }
1361 #endif
1362
1363 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1364
1365 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1366 #define this_rq() this_cpu_ptr(&runqueues)
1367 #define task_rq(p) cpu_rq(task_cpu(p))
1368 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1369 #define raw_rq() raw_cpu_ptr(&runqueues)
1370
1371 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)1372 static inline struct task_struct *task_of(struct sched_entity *se)
1373 {
1374 SCHED_WARN_ON(!entity_is_task(se));
1375 return container_of(se, struct task_struct, se);
1376 }
1377
task_cfs_rq(struct task_struct * p)1378 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1379 {
1380 return p->se.cfs_rq;
1381 }
1382
1383 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)1384 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1385 {
1386 return se->cfs_rq;
1387 }
1388
1389 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1390 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1391 {
1392 return grp->my_q;
1393 }
1394
1395 #else
1396
task_of(struct sched_entity * se)1397 static inline struct task_struct *task_of(struct sched_entity *se)
1398 {
1399 return container_of(se, struct task_struct, se);
1400 }
1401
task_cfs_rq(struct task_struct * p)1402 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1403 {
1404 return &task_rq(p)->cfs;
1405 }
1406
cfs_rq_of(struct sched_entity * se)1407 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1408 {
1409 struct task_struct *p = task_of(se);
1410 struct rq *rq = task_rq(p);
1411
1412 return &rq->cfs;
1413 }
1414
1415 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1416 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1417 {
1418 return NULL;
1419 }
1420 #endif
1421
1422 extern void update_rq_clock(struct rq *rq);
1423
1424 /*
1425 * rq::clock_update_flags bits
1426 *
1427 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1428 * call to __schedule(). This is an optimisation to avoid
1429 * neighbouring rq clock updates.
1430 *
1431 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1432 * in effect and calls to update_rq_clock() are being ignored.
1433 *
1434 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1435 * made to update_rq_clock() since the last time rq::lock was pinned.
1436 *
1437 * If inside of __schedule(), clock_update_flags will have been
1438 * shifted left (a left shift is a cheap operation for the fast path
1439 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1440 *
1441 * if (rq-clock_update_flags >= RQCF_UPDATED)
1442 *
1443 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1444 * one position though, because the next rq_unpin_lock() will shift it
1445 * back.
1446 */
1447 #define RQCF_REQ_SKIP 0x01
1448 #define RQCF_ACT_SKIP 0x02
1449 #define RQCF_UPDATED 0x04
1450
assert_clock_updated(struct rq * rq)1451 static inline void assert_clock_updated(struct rq *rq)
1452 {
1453 /*
1454 * The only reason for not seeing a clock update since the
1455 * last rq_pin_lock() is if we're currently skipping updates.
1456 */
1457 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1458 }
1459
rq_clock(struct rq * rq)1460 static inline u64 rq_clock(struct rq *rq)
1461 {
1462 lockdep_assert_rq_held(rq);
1463 assert_clock_updated(rq);
1464
1465 return rq->clock;
1466 }
1467
rq_clock_task(struct rq * rq)1468 static inline u64 rq_clock_task(struct rq *rq)
1469 {
1470 lockdep_assert_rq_held(rq);
1471 assert_clock_updated(rq);
1472
1473 return rq->clock_task;
1474 }
1475
1476 /**
1477 * By default the decay is the default pelt decay period.
1478 * The decay shift can change the decay period in
1479 * multiples of 32.
1480 * Decay shift Decay period(ms)
1481 * 0 32
1482 * 1 64
1483 * 2 128
1484 * 3 256
1485 * 4 512
1486 */
1487 extern int sched_thermal_decay_shift;
1488
rq_clock_thermal(struct rq * rq)1489 static inline u64 rq_clock_thermal(struct rq *rq)
1490 {
1491 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1492 }
1493
rq_clock_skip_update(struct rq * rq)1494 static inline void rq_clock_skip_update(struct rq *rq)
1495 {
1496 lockdep_assert_rq_held(rq);
1497 rq->clock_update_flags |= RQCF_REQ_SKIP;
1498 }
1499
1500 /*
1501 * See rt task throttling, which is the only time a skip
1502 * request is canceled.
1503 */
rq_clock_cancel_skipupdate(struct rq * rq)1504 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1505 {
1506 lockdep_assert_rq_held(rq);
1507 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1508 }
1509
1510 struct rq_flags {
1511 unsigned long flags;
1512 struct pin_cookie cookie;
1513 #ifdef CONFIG_SCHED_DEBUG
1514 /*
1515 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1516 * current pin context is stashed here in case it needs to be
1517 * restored in rq_repin_lock().
1518 */
1519 unsigned int clock_update_flags;
1520 #endif
1521 };
1522
1523 extern struct callback_head balance_push_callback;
1524
1525 /*
1526 * Lockdep annotation that avoids accidental unlocks; it's like a
1527 * sticky/continuous lockdep_assert_held().
1528 *
1529 * This avoids code that has access to 'struct rq *rq' (basically everything in
1530 * the scheduler) from accidentally unlocking the rq if they do not also have a
1531 * copy of the (on-stack) 'struct rq_flags rf'.
1532 *
1533 * Also see Documentation/locking/lockdep-design.rst.
1534 */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1535 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1536 {
1537 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1538
1539 #ifdef CONFIG_SCHED_DEBUG
1540 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1541 rf->clock_update_flags = 0;
1542 #ifdef CONFIG_SMP
1543 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1544 #endif
1545 #endif
1546 }
1547
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1548 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1549 {
1550 #ifdef CONFIG_SCHED_DEBUG
1551 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1552 rf->clock_update_flags = RQCF_UPDATED;
1553 #endif
1554
1555 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1556 }
1557
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1558 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1559 {
1560 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1561
1562 #ifdef CONFIG_SCHED_DEBUG
1563 /*
1564 * Restore the value we stashed in @rf for this pin context.
1565 */
1566 rq->clock_update_flags |= rf->clock_update_flags;
1567 #endif
1568 }
1569
1570 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1571 __acquires(rq->lock);
1572
1573 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1574 __acquires(p->pi_lock)
1575 __acquires(rq->lock);
1576
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1577 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1578 __releases(rq->lock)
1579 {
1580 rq_unpin_lock(rq, rf);
1581 raw_spin_rq_unlock(rq);
1582 }
1583
1584 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1585 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1586 __releases(rq->lock)
1587 __releases(p->pi_lock)
1588 {
1589 rq_unpin_lock(rq, rf);
1590 raw_spin_rq_unlock(rq);
1591 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1592 }
1593
1594 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1595 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1596 __acquires(rq->lock)
1597 {
1598 raw_spin_rq_lock_irqsave(rq, rf->flags);
1599 rq_pin_lock(rq, rf);
1600 }
1601
1602 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1603 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1604 __acquires(rq->lock)
1605 {
1606 raw_spin_rq_lock_irq(rq);
1607 rq_pin_lock(rq, rf);
1608 }
1609
1610 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1611 rq_lock(struct rq *rq, struct rq_flags *rf)
1612 __acquires(rq->lock)
1613 {
1614 raw_spin_rq_lock(rq);
1615 rq_pin_lock(rq, rf);
1616 }
1617
1618 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1619 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1620 __releases(rq->lock)
1621 {
1622 rq_unpin_lock(rq, rf);
1623 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1624 }
1625
1626 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1627 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1628 __releases(rq->lock)
1629 {
1630 rq_unpin_lock(rq, rf);
1631 raw_spin_rq_unlock_irq(rq);
1632 }
1633
1634 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1635 rq_unlock(struct rq *rq, struct rq_flags *rf)
1636 __releases(rq->lock)
1637 {
1638 rq_unpin_lock(rq, rf);
1639 raw_spin_rq_unlock(rq);
1640 }
1641
1642 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1643 this_rq_lock_irq(struct rq_flags *rf)
1644 __acquires(rq->lock)
1645 {
1646 struct rq *rq;
1647
1648 local_irq_disable();
1649 rq = this_rq();
1650 rq_lock(rq, rf);
1651 return rq;
1652 }
1653
1654 #ifdef CONFIG_NUMA
1655 enum numa_topology_type {
1656 NUMA_DIRECT,
1657 NUMA_GLUELESS_MESH,
1658 NUMA_BACKPLANE,
1659 };
1660 extern enum numa_topology_type sched_numa_topology_type;
1661 extern int sched_max_numa_distance;
1662 extern bool find_numa_distance(int distance);
1663 extern void sched_init_numa(void);
1664 extern void sched_domains_numa_masks_set(unsigned int cpu);
1665 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1666 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1667 #else
sched_init_numa(void)1668 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1669 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1670 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1671 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1672 {
1673 return nr_cpu_ids;
1674 }
1675 #endif
1676
1677 #ifdef CONFIG_NUMA_BALANCING
1678 /* The regions in numa_faults array from task_struct */
1679 enum numa_faults_stats {
1680 NUMA_MEM = 0,
1681 NUMA_CPU,
1682 NUMA_MEMBUF,
1683 NUMA_CPUBUF
1684 };
1685 extern void sched_setnuma(struct task_struct *p, int node);
1686 extern int migrate_task_to(struct task_struct *p, int cpu);
1687 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1688 int cpu, int scpu);
1689 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1690 #else
1691 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1692 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1693 {
1694 }
1695 #endif /* CONFIG_NUMA_BALANCING */
1696
1697 #ifdef CONFIG_SMP
1698
1699 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1700 queue_balance_callback(struct rq *rq,
1701 struct callback_head *head,
1702 void (*func)(struct rq *rq))
1703 {
1704 lockdep_assert_rq_held(rq);
1705
1706 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1707 return;
1708
1709 head->func = (void (*)(struct callback_head *))func;
1710 head->next = rq->balance_callback;
1711 rq->balance_callback = head;
1712 }
1713
1714 #define rcu_dereference_check_sched_domain(p) \
1715 rcu_dereference_check((p), \
1716 lockdep_is_held(&sched_domains_mutex))
1717
1718 /*
1719 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1720 * See destroy_sched_domains: call_rcu for details.
1721 *
1722 * The domain tree of any CPU may only be accessed from within
1723 * preempt-disabled sections.
1724 */
1725 #define for_each_domain(cpu, __sd) \
1726 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1727 __sd; __sd = __sd->parent)
1728
1729 /**
1730 * highest_flag_domain - Return highest sched_domain containing flag.
1731 * @cpu: The CPU whose highest level of sched domain is to
1732 * be returned.
1733 * @flag: The flag to check for the highest sched_domain
1734 * for the given CPU.
1735 *
1736 * Returns the highest sched_domain of a CPU which contains the given flag.
1737 */
highest_flag_domain(int cpu,int flag)1738 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1739 {
1740 struct sched_domain *sd, *hsd = NULL;
1741
1742 for_each_domain(cpu, sd) {
1743 if (!(sd->flags & flag))
1744 break;
1745 hsd = sd;
1746 }
1747
1748 return hsd;
1749 }
1750
lowest_flag_domain(int cpu,int flag)1751 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1752 {
1753 struct sched_domain *sd;
1754
1755 for_each_domain(cpu, sd) {
1756 if (sd->flags & flag)
1757 break;
1758 }
1759
1760 return sd;
1761 }
1762
1763 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1764 DECLARE_PER_CPU(int, sd_llc_size);
1765 DECLARE_PER_CPU(int, sd_llc_id);
1766 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1767 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1768 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1769 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1770 extern struct static_key_false sched_asym_cpucapacity;
1771
1772 struct sched_group_capacity {
1773 atomic_t ref;
1774 /*
1775 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1776 * for a single CPU.
1777 */
1778 unsigned long capacity;
1779 unsigned long min_capacity; /* Min per-CPU capacity in group */
1780 unsigned long max_capacity; /* Max per-CPU capacity in group */
1781 unsigned long next_update;
1782 int imbalance; /* XXX unrelated to capacity but shared group state */
1783
1784 #ifdef CONFIG_SCHED_DEBUG
1785 int id;
1786 #endif
1787
1788 unsigned long cpumask[]; /* Balance mask */
1789 };
1790
1791 struct sched_group {
1792 struct sched_group *next; /* Must be a circular list */
1793 atomic_t ref;
1794
1795 unsigned int group_weight;
1796 struct sched_group_capacity *sgc;
1797 int asym_prefer_cpu; /* CPU of highest priority in group */
1798 int flags;
1799
1800 /*
1801 * The CPUs this group covers.
1802 *
1803 * NOTE: this field is variable length. (Allocated dynamically
1804 * by attaching extra space to the end of the structure,
1805 * depending on how many CPUs the kernel has booted up with)
1806 */
1807 unsigned long cpumask[];
1808 };
1809
sched_group_span(struct sched_group * sg)1810 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1811 {
1812 return to_cpumask(sg->cpumask);
1813 }
1814
1815 /*
1816 * See build_balance_mask().
1817 */
group_balance_mask(struct sched_group * sg)1818 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1819 {
1820 return to_cpumask(sg->sgc->cpumask);
1821 }
1822
1823 /**
1824 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1825 * @group: The group whose first CPU is to be returned.
1826 */
group_first_cpu(struct sched_group * group)1827 static inline unsigned int group_first_cpu(struct sched_group *group)
1828 {
1829 return cpumask_first(sched_group_span(group));
1830 }
1831
1832 extern int group_balance_cpu(struct sched_group *sg);
1833
1834 #ifdef CONFIG_SCHED_DEBUG
1835 void update_sched_domain_debugfs(void);
1836 void dirty_sched_domain_sysctl(int cpu);
1837 #else
update_sched_domain_debugfs(void)1838 static inline void update_sched_domain_debugfs(void)
1839 {
1840 }
dirty_sched_domain_sysctl(int cpu)1841 static inline void dirty_sched_domain_sysctl(int cpu)
1842 {
1843 }
1844 #endif
1845
1846 extern int sched_update_scaling(void);
1847
1848 extern void flush_smp_call_function_from_idle(void);
1849
1850 #else /* !CONFIG_SMP: */
flush_smp_call_function_from_idle(void)1851 static inline void flush_smp_call_function_from_idle(void) { }
1852 #endif
1853
1854 #include "stats.h"
1855 #include "autogroup.h"
1856
1857 #ifdef CONFIG_CGROUP_SCHED
1858
1859 /*
1860 * Return the group to which this tasks belongs.
1861 *
1862 * We cannot use task_css() and friends because the cgroup subsystem
1863 * changes that value before the cgroup_subsys::attach() method is called,
1864 * therefore we cannot pin it and might observe the wrong value.
1865 *
1866 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1867 * core changes this before calling sched_move_task().
1868 *
1869 * Instead we use a 'copy' which is updated from sched_move_task() while
1870 * holding both task_struct::pi_lock and rq::lock.
1871 */
task_group(struct task_struct * p)1872 static inline struct task_group *task_group(struct task_struct *p)
1873 {
1874 return p->sched_task_group;
1875 }
1876
1877 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1878 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1879 {
1880 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1881 struct task_group *tg = task_group(p);
1882 #endif
1883
1884 #ifdef CONFIG_FAIR_GROUP_SCHED
1885 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1886 p->se.cfs_rq = tg->cfs_rq[cpu];
1887 p->se.parent = tg->se[cpu];
1888 #endif
1889
1890 #ifdef CONFIG_RT_GROUP_SCHED
1891 p->rt.rt_rq = tg->rt_rq[cpu];
1892 p->rt.parent = tg->rt_se[cpu];
1893 #endif
1894 }
1895
1896 #else /* CONFIG_CGROUP_SCHED */
1897
set_task_rq(struct task_struct * p,unsigned int cpu)1898 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1899 static inline struct task_group *task_group(struct task_struct *p)
1900 {
1901 return NULL;
1902 }
1903
1904 #endif /* CONFIG_CGROUP_SCHED */
1905
__set_task_cpu(struct task_struct * p,unsigned int cpu)1906 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1907 {
1908 set_task_rq(p, cpu);
1909 #ifdef CONFIG_SMP
1910 /*
1911 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1912 * successfully executed on another CPU. We must ensure that updates of
1913 * per-task data have been completed by this moment.
1914 */
1915 smp_wmb();
1916 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1917 p->wake_cpu = cpu;
1918 #endif
1919 }
1920
1921 /*
1922 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1923 */
1924 #ifdef CONFIG_SCHED_DEBUG
1925 # include <linux/static_key.h>
1926 # define const_debug __read_mostly
1927 #else
1928 # define const_debug const
1929 #endif
1930
1931 #define SCHED_FEAT(name, enabled) \
1932 __SCHED_FEAT_##name ,
1933
1934 enum {
1935 #include "features.h"
1936 __SCHED_FEAT_NR,
1937 };
1938
1939 #undef SCHED_FEAT
1940
1941 #ifdef CONFIG_SCHED_DEBUG
1942
1943 /*
1944 * To support run-time toggling of sched features, all the translation units
1945 * (but core.c) reference the sysctl_sched_features defined in core.c.
1946 */
1947 extern const_debug unsigned int sysctl_sched_features;
1948
1949 #ifdef CONFIG_JUMP_LABEL
1950 #define SCHED_FEAT(name, enabled) \
1951 static __always_inline bool static_branch_##name(struct static_key *key) \
1952 { \
1953 return static_key_##enabled(key); \
1954 }
1955
1956 #include "features.h"
1957 #undef SCHED_FEAT
1958
1959 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1960 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1961
1962 #else /* !CONFIG_JUMP_LABEL */
1963
1964 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1965
1966 #endif /* CONFIG_JUMP_LABEL */
1967
1968 #else /* !SCHED_DEBUG */
1969
1970 /*
1971 * Each translation unit has its own copy of sysctl_sched_features to allow
1972 * constants propagation at compile time and compiler optimization based on
1973 * features default.
1974 */
1975 #define SCHED_FEAT(name, enabled) \
1976 (1UL << __SCHED_FEAT_##name) * enabled |
1977 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1978 #include "features.h"
1979 0;
1980 #undef SCHED_FEAT
1981
1982 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1983
1984 #endif /* SCHED_DEBUG */
1985
1986 extern struct static_key_false sched_numa_balancing;
1987 extern struct static_key_false sched_schedstats;
1988
global_rt_period(void)1989 static inline u64 global_rt_period(void)
1990 {
1991 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1992 }
1993
global_rt_runtime(void)1994 static inline u64 global_rt_runtime(void)
1995 {
1996 if (sysctl_sched_rt_runtime < 0)
1997 return RUNTIME_INF;
1998
1999 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2000 }
2001
task_current(struct rq * rq,struct task_struct * p)2002 static inline int task_current(struct rq *rq, struct task_struct *p)
2003 {
2004 return rq->curr == p;
2005 }
2006
task_running(struct rq * rq,struct task_struct * p)2007 static inline int task_running(struct rq *rq, struct task_struct *p)
2008 {
2009 #ifdef CONFIG_SMP
2010 return p->on_cpu;
2011 #else
2012 return task_current(rq, p);
2013 #endif
2014 }
2015
task_on_rq_queued(struct task_struct * p)2016 static inline int task_on_rq_queued(struct task_struct *p)
2017 {
2018 return p->on_rq == TASK_ON_RQ_QUEUED;
2019 }
2020
task_on_rq_migrating(struct task_struct * p)2021 static inline int task_on_rq_migrating(struct task_struct *p)
2022 {
2023 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2024 }
2025
2026 /* Wake flags. The first three directly map to some SD flag value */
2027 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2028 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2029 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
2030
2031 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2032 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2033 #define WF_ON_CPU 0x40 /* Wakee is on_cpu */
2034
2035 #ifdef CONFIG_SMP
2036 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2037 static_assert(WF_FORK == SD_BALANCE_FORK);
2038 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2039 #endif
2040
2041 /*
2042 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2043 * of tasks with abnormal "nice" values across CPUs the contribution that
2044 * each task makes to its run queue's load is weighted according to its
2045 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2046 * scaled version of the new time slice allocation that they receive on time
2047 * slice expiry etc.
2048 */
2049
2050 #define WEIGHT_IDLEPRIO 3
2051 #define WMULT_IDLEPRIO 1431655765
2052
2053 extern const int sched_prio_to_weight[40];
2054 extern const u32 sched_prio_to_wmult[40];
2055
2056 /*
2057 * {de,en}queue flags:
2058 *
2059 * DEQUEUE_SLEEP - task is no longer runnable
2060 * ENQUEUE_WAKEUP - task just became runnable
2061 *
2062 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2063 * are in a known state which allows modification. Such pairs
2064 * should preserve as much state as possible.
2065 *
2066 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2067 * in the runqueue.
2068 *
2069 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2070 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2071 * ENQUEUE_MIGRATED - the task was migrated during wakeup
2072 *
2073 */
2074
2075 #define DEQUEUE_SLEEP 0x01
2076 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2077 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2078 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
2079
2080 #define ENQUEUE_WAKEUP 0x01
2081 #define ENQUEUE_RESTORE 0x02
2082 #define ENQUEUE_MOVE 0x04
2083 #define ENQUEUE_NOCLOCK 0x08
2084
2085 #define ENQUEUE_HEAD 0x10
2086 #define ENQUEUE_REPLENISH 0x20
2087 #ifdef CONFIG_SMP
2088 #define ENQUEUE_MIGRATED 0x40
2089 #else
2090 #define ENQUEUE_MIGRATED 0x00
2091 #endif
2092
2093 #define RETRY_TASK ((void *)-1UL)
2094
2095 struct sched_class {
2096
2097 #ifdef CONFIG_UCLAMP_TASK
2098 int uclamp_enabled;
2099 #endif
2100
2101 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2102 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2103 void (*yield_task) (struct rq *rq);
2104 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2105
2106 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2107
2108 struct task_struct *(*pick_next_task)(struct rq *rq);
2109
2110 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2111 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2112
2113 #ifdef CONFIG_SMP
2114 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2115 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2116
2117 struct task_struct * (*pick_task)(struct rq *rq);
2118
2119 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2120
2121 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2122
2123 void (*set_cpus_allowed)(struct task_struct *p,
2124 const struct cpumask *newmask,
2125 u32 flags);
2126
2127 void (*rq_online)(struct rq *rq);
2128 void (*rq_offline)(struct rq *rq);
2129
2130 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2131 #endif
2132
2133 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2134 void (*task_fork)(struct task_struct *p);
2135 void (*task_dead)(struct task_struct *p);
2136
2137 /*
2138 * The switched_from() call is allowed to drop rq->lock, therefore we
2139 * cannot assume the switched_from/switched_to pair is serialized by
2140 * rq->lock. They are however serialized by p->pi_lock.
2141 */
2142 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2143 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
2144 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2145 int oldprio);
2146
2147 unsigned int (*get_rr_interval)(struct rq *rq,
2148 struct task_struct *task);
2149
2150 void (*update_curr)(struct rq *rq);
2151
2152 #define TASK_SET_GROUP 0
2153 #define TASK_MOVE_GROUP 1
2154
2155 #ifdef CONFIG_FAIR_GROUP_SCHED
2156 void (*task_change_group)(struct task_struct *p, int type);
2157 #endif
2158 };
2159
put_prev_task(struct rq * rq,struct task_struct * prev)2160 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2161 {
2162 WARN_ON_ONCE(rq->curr != prev);
2163 prev->sched_class->put_prev_task(rq, prev);
2164 }
2165
set_next_task(struct rq * rq,struct task_struct * next)2166 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2167 {
2168 next->sched_class->set_next_task(rq, next, false);
2169 }
2170
2171
2172 /*
2173 * Helper to define a sched_class instance; each one is placed in a separate
2174 * section which is ordered by the linker script:
2175 *
2176 * include/asm-generic/vmlinux.lds.h
2177 *
2178 * Also enforce alignment on the instance, not the type, to guarantee layout.
2179 */
2180 #define DEFINE_SCHED_CLASS(name) \
2181 const struct sched_class name##_sched_class \
2182 __aligned(__alignof__(struct sched_class)) \
2183 __section("__" #name "_sched_class")
2184
2185 /* Defined in include/asm-generic/vmlinux.lds.h */
2186 extern struct sched_class __begin_sched_classes[];
2187 extern struct sched_class __end_sched_classes[];
2188
2189 #define sched_class_highest (__end_sched_classes - 1)
2190 #define sched_class_lowest (__begin_sched_classes - 1)
2191
2192 #define for_class_range(class, _from, _to) \
2193 for (class = (_from); class != (_to); class--)
2194
2195 #define for_each_class(class) \
2196 for_class_range(class, sched_class_highest, sched_class_lowest)
2197
2198 extern const struct sched_class stop_sched_class;
2199 extern const struct sched_class dl_sched_class;
2200 extern const struct sched_class rt_sched_class;
2201 extern const struct sched_class fair_sched_class;
2202 extern const struct sched_class idle_sched_class;
2203
sched_stop_runnable(struct rq * rq)2204 static inline bool sched_stop_runnable(struct rq *rq)
2205 {
2206 return rq->stop && task_on_rq_queued(rq->stop);
2207 }
2208
sched_dl_runnable(struct rq * rq)2209 static inline bool sched_dl_runnable(struct rq *rq)
2210 {
2211 return rq->dl.dl_nr_running > 0;
2212 }
2213
sched_rt_runnable(struct rq * rq)2214 static inline bool sched_rt_runnable(struct rq *rq)
2215 {
2216 return rq->rt.rt_queued > 0;
2217 }
2218
sched_fair_runnable(struct rq * rq)2219 static inline bool sched_fair_runnable(struct rq *rq)
2220 {
2221 return rq->cfs.nr_running > 0;
2222 }
2223
2224 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2225 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2226
2227 #define SCA_CHECK 0x01
2228 #define SCA_MIGRATE_DISABLE 0x02
2229 #define SCA_MIGRATE_ENABLE 0x04
2230 #define SCA_USER 0x08
2231
2232 #ifdef CONFIG_SMP
2233
2234 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2235
2236 extern void trigger_load_balance(struct rq *rq);
2237
2238 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2239
get_push_task(struct rq * rq)2240 static inline struct task_struct *get_push_task(struct rq *rq)
2241 {
2242 struct task_struct *p = rq->curr;
2243
2244 lockdep_assert_rq_held(rq);
2245
2246 if (rq->push_busy)
2247 return NULL;
2248
2249 if (p->nr_cpus_allowed == 1)
2250 return NULL;
2251
2252 if (p->migration_disabled)
2253 return NULL;
2254
2255 rq->push_busy = true;
2256 return get_task_struct(p);
2257 }
2258
2259 extern int push_cpu_stop(void *arg);
2260
2261 #endif
2262
2263 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2264 static inline void idle_set_state(struct rq *rq,
2265 struct cpuidle_state *idle_state)
2266 {
2267 rq->idle_state = idle_state;
2268 }
2269
idle_get_state(struct rq * rq)2270 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2271 {
2272 SCHED_WARN_ON(!rcu_read_lock_held());
2273
2274 return rq->idle_state;
2275 }
2276 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2277 static inline void idle_set_state(struct rq *rq,
2278 struct cpuidle_state *idle_state)
2279 {
2280 }
2281
idle_get_state(struct rq * rq)2282 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2283 {
2284 return NULL;
2285 }
2286 #endif
2287
2288 extern void schedule_idle(void);
2289
2290 extern void sysrq_sched_debug_show(void);
2291 extern void sched_init_granularity(void);
2292 extern void update_max_interval(void);
2293
2294 extern void init_sched_dl_class(void);
2295 extern void init_sched_rt_class(void);
2296 extern void init_sched_fair_class(void);
2297
2298 extern void reweight_task(struct task_struct *p, int prio);
2299
2300 extern void resched_curr(struct rq *rq);
2301 extern void resched_cpu(int cpu);
2302
2303 extern struct rt_bandwidth def_rt_bandwidth;
2304 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2305
2306 extern struct dl_bandwidth def_dl_bandwidth;
2307 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2308 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2309 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2310
2311 #define BW_SHIFT 20
2312 #define BW_UNIT (1 << BW_SHIFT)
2313 #define RATIO_SHIFT 8
2314 #define MAX_BW_BITS (64 - BW_SHIFT)
2315 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2316 unsigned long to_ratio(u64 period, u64 runtime);
2317
2318 extern void init_entity_runnable_average(struct sched_entity *se);
2319 extern void post_init_entity_util_avg(struct task_struct *p);
2320
2321 #ifdef CONFIG_NO_HZ_FULL
2322 extern bool sched_can_stop_tick(struct rq *rq);
2323 extern int __init sched_tick_offload_init(void);
2324
2325 /*
2326 * Tick may be needed by tasks in the runqueue depending on their policy and
2327 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2328 * nohz mode if necessary.
2329 */
sched_update_tick_dependency(struct rq * rq)2330 static inline void sched_update_tick_dependency(struct rq *rq)
2331 {
2332 int cpu = cpu_of(rq);
2333
2334 if (!tick_nohz_full_cpu(cpu))
2335 return;
2336
2337 if (sched_can_stop_tick(rq))
2338 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2339 else
2340 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2341 }
2342 #else
sched_tick_offload_init(void)2343 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2344 static inline void sched_update_tick_dependency(struct rq *rq) { }
2345 #endif
2346
add_nr_running(struct rq * rq,unsigned count)2347 static inline void add_nr_running(struct rq *rq, unsigned count)
2348 {
2349 unsigned prev_nr = rq->nr_running;
2350
2351 rq->nr_running = prev_nr + count;
2352 if (trace_sched_update_nr_running_tp_enabled()) {
2353 call_trace_sched_update_nr_running(rq, count);
2354 }
2355
2356 #ifdef CONFIG_SMP
2357 if (prev_nr < 2 && rq->nr_running >= 2) {
2358 if (!READ_ONCE(rq->rd->overload))
2359 WRITE_ONCE(rq->rd->overload, 1);
2360 }
2361 #endif
2362
2363 sched_update_tick_dependency(rq);
2364 }
2365
sub_nr_running(struct rq * rq,unsigned count)2366 static inline void sub_nr_running(struct rq *rq, unsigned count)
2367 {
2368 rq->nr_running -= count;
2369 if (trace_sched_update_nr_running_tp_enabled()) {
2370 call_trace_sched_update_nr_running(rq, -count);
2371 }
2372
2373 /* Check if we still need preemption */
2374 sched_update_tick_dependency(rq);
2375 }
2376
2377 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2378 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2379
2380 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2381
2382 extern const_debug unsigned int sysctl_sched_nr_migrate;
2383 extern const_debug unsigned int sysctl_sched_migration_cost;
2384
2385 #ifdef CONFIG_SCHED_DEBUG
2386 extern unsigned int sysctl_sched_latency;
2387 extern unsigned int sysctl_sched_min_granularity;
2388 extern unsigned int sysctl_sched_idle_min_granularity;
2389 extern unsigned int sysctl_sched_wakeup_granularity;
2390 extern int sysctl_resched_latency_warn_ms;
2391 extern int sysctl_resched_latency_warn_once;
2392
2393 extern unsigned int sysctl_sched_tunable_scaling;
2394
2395 extern unsigned int sysctl_numa_balancing_scan_delay;
2396 extern unsigned int sysctl_numa_balancing_scan_period_min;
2397 extern unsigned int sysctl_numa_balancing_scan_period_max;
2398 extern unsigned int sysctl_numa_balancing_scan_size;
2399 #endif
2400
2401 #ifdef CONFIG_SCHED_HRTICK
2402
2403 /*
2404 * Use hrtick when:
2405 * - enabled by features
2406 * - hrtimer is actually high res
2407 */
hrtick_enabled(struct rq * rq)2408 static inline int hrtick_enabled(struct rq *rq)
2409 {
2410 if (!cpu_active(cpu_of(rq)))
2411 return 0;
2412 return hrtimer_is_hres_active(&rq->hrtick_timer);
2413 }
2414
hrtick_enabled_fair(struct rq * rq)2415 static inline int hrtick_enabled_fair(struct rq *rq)
2416 {
2417 if (!sched_feat(HRTICK))
2418 return 0;
2419 return hrtick_enabled(rq);
2420 }
2421
hrtick_enabled_dl(struct rq * rq)2422 static inline int hrtick_enabled_dl(struct rq *rq)
2423 {
2424 if (!sched_feat(HRTICK_DL))
2425 return 0;
2426 return hrtick_enabled(rq);
2427 }
2428
2429 void hrtick_start(struct rq *rq, u64 delay);
2430
2431 #else
2432
hrtick_enabled_fair(struct rq * rq)2433 static inline int hrtick_enabled_fair(struct rq *rq)
2434 {
2435 return 0;
2436 }
2437
hrtick_enabled_dl(struct rq * rq)2438 static inline int hrtick_enabled_dl(struct rq *rq)
2439 {
2440 return 0;
2441 }
2442
hrtick_enabled(struct rq * rq)2443 static inline int hrtick_enabled(struct rq *rq)
2444 {
2445 return 0;
2446 }
2447
2448 #endif /* CONFIG_SCHED_HRTICK */
2449
2450 #ifndef arch_scale_freq_tick
2451 static __always_inline
arch_scale_freq_tick(void)2452 void arch_scale_freq_tick(void)
2453 {
2454 }
2455 #endif
2456
2457 #ifndef arch_scale_freq_capacity
2458 /**
2459 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2460 * @cpu: the CPU in question.
2461 *
2462 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2463 *
2464 * f_curr
2465 * ------ * SCHED_CAPACITY_SCALE
2466 * f_max
2467 */
2468 static __always_inline
arch_scale_freq_capacity(int cpu)2469 unsigned long arch_scale_freq_capacity(int cpu)
2470 {
2471 return SCHED_CAPACITY_SCALE;
2472 }
2473 #endif
2474
2475
2476 #ifdef CONFIG_SMP
2477
rq_order_less(struct rq * rq1,struct rq * rq2)2478 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2479 {
2480 #ifdef CONFIG_SCHED_CORE
2481 /*
2482 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2483 * order by core-id first and cpu-id second.
2484 *
2485 * Notably:
2486 *
2487 * double_rq_lock(0,3); will take core-0, core-1 lock
2488 * double_rq_lock(1,2); will take core-1, core-0 lock
2489 *
2490 * when only cpu-id is considered.
2491 */
2492 if (rq1->core->cpu < rq2->core->cpu)
2493 return true;
2494 if (rq1->core->cpu > rq2->core->cpu)
2495 return false;
2496
2497 /*
2498 * __sched_core_flip() relies on SMT having cpu-id lock order.
2499 */
2500 #endif
2501 return rq1->cpu < rq2->cpu;
2502 }
2503
2504 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2505
2506 #ifdef CONFIG_PREEMPTION
2507
2508 /*
2509 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2510 * way at the expense of forcing extra atomic operations in all
2511 * invocations. This assures that the double_lock is acquired using the
2512 * same underlying policy as the spinlock_t on this architecture, which
2513 * reduces latency compared to the unfair variant below. However, it
2514 * also adds more overhead and therefore may reduce throughput.
2515 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2516 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2517 __releases(this_rq->lock)
2518 __acquires(busiest->lock)
2519 __acquires(this_rq->lock)
2520 {
2521 raw_spin_rq_unlock(this_rq);
2522 double_rq_lock(this_rq, busiest);
2523
2524 return 1;
2525 }
2526
2527 #else
2528 /*
2529 * Unfair double_lock_balance: Optimizes throughput at the expense of
2530 * latency by eliminating extra atomic operations when the locks are
2531 * already in proper order on entry. This favors lower CPU-ids and will
2532 * grant the double lock to lower CPUs over higher ids under contention,
2533 * regardless of entry order into the function.
2534 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2535 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2536 __releases(this_rq->lock)
2537 __acquires(busiest->lock)
2538 __acquires(this_rq->lock)
2539 {
2540 if (__rq_lockp(this_rq) == __rq_lockp(busiest))
2541 return 0;
2542
2543 if (likely(raw_spin_rq_trylock(busiest)))
2544 return 0;
2545
2546 if (rq_order_less(this_rq, busiest)) {
2547 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2548 return 0;
2549 }
2550
2551 raw_spin_rq_unlock(this_rq);
2552 double_rq_lock(this_rq, busiest);
2553
2554 return 1;
2555 }
2556
2557 #endif /* CONFIG_PREEMPTION */
2558
2559 /*
2560 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2561 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2562 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2563 {
2564 lockdep_assert_irqs_disabled();
2565
2566 return _double_lock_balance(this_rq, busiest);
2567 }
2568
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2569 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2570 __releases(busiest->lock)
2571 {
2572 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2573 raw_spin_rq_unlock(busiest);
2574 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2575 }
2576
double_lock(spinlock_t * l1,spinlock_t * l2)2577 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2578 {
2579 if (l1 > l2)
2580 swap(l1, l2);
2581
2582 spin_lock(l1);
2583 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2584 }
2585
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2586 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2587 {
2588 if (l1 > l2)
2589 swap(l1, l2);
2590
2591 spin_lock_irq(l1);
2592 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2593 }
2594
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2595 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2596 {
2597 if (l1 > l2)
2598 swap(l1, l2);
2599
2600 raw_spin_lock(l1);
2601 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2602 }
2603
2604 /*
2605 * double_rq_unlock - safely unlock two runqueues
2606 *
2607 * Note this does not restore interrupts like task_rq_unlock,
2608 * you need to do so manually after calling.
2609 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2610 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2611 __releases(rq1->lock)
2612 __releases(rq2->lock)
2613 {
2614 if (__rq_lockp(rq1) != __rq_lockp(rq2))
2615 raw_spin_rq_unlock(rq2);
2616 else
2617 __release(rq2->lock);
2618 raw_spin_rq_unlock(rq1);
2619 }
2620
2621 extern void set_rq_online (struct rq *rq);
2622 extern void set_rq_offline(struct rq *rq);
2623 extern bool sched_smp_initialized;
2624
2625 #else /* CONFIG_SMP */
2626
2627 /*
2628 * double_rq_lock - safely lock two runqueues
2629 *
2630 * Note this does not disable interrupts like task_rq_lock,
2631 * you need to do so manually before calling.
2632 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2633 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2634 __acquires(rq1->lock)
2635 __acquires(rq2->lock)
2636 {
2637 BUG_ON(!irqs_disabled());
2638 BUG_ON(rq1 != rq2);
2639 raw_spin_rq_lock(rq1);
2640 __acquire(rq2->lock); /* Fake it out ;) */
2641 }
2642
2643 /*
2644 * double_rq_unlock - safely unlock two runqueues
2645 *
2646 * Note this does not restore interrupts like task_rq_unlock,
2647 * you need to do so manually after calling.
2648 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2649 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2650 __releases(rq1->lock)
2651 __releases(rq2->lock)
2652 {
2653 BUG_ON(rq1 != rq2);
2654 raw_spin_rq_unlock(rq1);
2655 __release(rq2->lock);
2656 }
2657
2658 #endif
2659
2660 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2661 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2662
2663 #ifdef CONFIG_SCHED_DEBUG
2664 extern bool sched_debug_verbose;
2665
2666 extern void print_cfs_stats(struct seq_file *m, int cpu);
2667 extern void print_rt_stats(struct seq_file *m, int cpu);
2668 extern void print_dl_stats(struct seq_file *m, int cpu);
2669 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2670 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2671 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2672
2673 extern void resched_latency_warn(int cpu, u64 latency);
2674 #ifdef CONFIG_NUMA_BALANCING
2675 extern void
2676 show_numa_stats(struct task_struct *p, struct seq_file *m);
2677 extern void
2678 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2679 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2680 #endif /* CONFIG_NUMA_BALANCING */
2681 #else
resched_latency_warn(int cpu,u64 latency)2682 static inline void resched_latency_warn(int cpu, u64 latency) {}
2683 #endif /* CONFIG_SCHED_DEBUG */
2684
2685 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2686 extern void init_rt_rq(struct rt_rq *rt_rq);
2687 extern void init_dl_rq(struct dl_rq *dl_rq);
2688
2689 extern void cfs_bandwidth_usage_inc(void);
2690 extern void cfs_bandwidth_usage_dec(void);
2691
2692 #ifdef CONFIG_NO_HZ_COMMON
2693 #define NOHZ_BALANCE_KICK_BIT 0
2694 #define NOHZ_STATS_KICK_BIT 1
2695 #define NOHZ_NEWILB_KICK_BIT 2
2696 #define NOHZ_NEXT_KICK_BIT 3
2697
2698 /* Run rebalance_domains() */
2699 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2700 /* Update blocked load */
2701 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2702 /* Update blocked load when entering idle */
2703 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
2704 /* Update nohz.next_balance */
2705 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
2706
2707 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2708
2709 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2710
2711 extern void nohz_balance_exit_idle(struct rq *rq);
2712 #else
nohz_balance_exit_idle(struct rq * rq)2713 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2714 #endif
2715
2716 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2717 extern void nohz_run_idle_balance(int cpu);
2718 #else
nohz_run_idle_balance(int cpu)2719 static inline void nohz_run_idle_balance(int cpu) { }
2720 #endif
2721
2722 #ifdef CONFIG_SMP
2723 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2724 void __dl_update(struct dl_bw *dl_b, s64 bw)
2725 {
2726 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2727 int i;
2728
2729 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2730 "sched RCU must be held");
2731 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2732 struct rq *rq = cpu_rq(i);
2733
2734 rq->dl.extra_bw += bw;
2735 }
2736 }
2737 #else
2738 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2739 void __dl_update(struct dl_bw *dl_b, s64 bw)
2740 {
2741 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2742
2743 dl->extra_bw += bw;
2744 }
2745 #endif
2746
2747
2748 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2749 struct irqtime {
2750 u64 total;
2751 u64 tick_delta;
2752 u64 irq_start_time;
2753 struct u64_stats_sync sync;
2754 };
2755
2756 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2757
2758 /*
2759 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2760 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2761 * and never move forward.
2762 */
irq_time_read(int cpu)2763 static inline u64 irq_time_read(int cpu)
2764 {
2765 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2766 unsigned int seq;
2767 u64 total;
2768
2769 do {
2770 seq = __u64_stats_fetch_begin(&irqtime->sync);
2771 total = irqtime->total;
2772 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2773
2774 return total;
2775 }
2776 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2777
2778 #ifdef CONFIG_CPU_FREQ
2779 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2780
2781 /**
2782 * cpufreq_update_util - Take a note about CPU utilization changes.
2783 * @rq: Runqueue to carry out the update for.
2784 * @flags: Update reason flags.
2785 *
2786 * This function is called by the scheduler on the CPU whose utilization is
2787 * being updated.
2788 *
2789 * It can only be called from RCU-sched read-side critical sections.
2790 *
2791 * The way cpufreq is currently arranged requires it to evaluate the CPU
2792 * performance state (frequency/voltage) on a regular basis to prevent it from
2793 * being stuck in a completely inadequate performance level for too long.
2794 * That is not guaranteed to happen if the updates are only triggered from CFS
2795 * and DL, though, because they may not be coming in if only RT tasks are
2796 * active all the time (or there are RT tasks only).
2797 *
2798 * As a workaround for that issue, this function is called periodically by the
2799 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2800 * but that really is a band-aid. Going forward it should be replaced with
2801 * solutions targeted more specifically at RT tasks.
2802 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2803 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2804 {
2805 struct update_util_data *data;
2806
2807 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2808 cpu_of(rq)));
2809 if (data)
2810 data->func(data, rq_clock(rq), flags);
2811 }
2812 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2813 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2814 #endif /* CONFIG_CPU_FREQ */
2815
2816 #ifdef CONFIG_UCLAMP_TASK
2817 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2818
2819 /**
2820 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2821 * @rq: The rq to clamp against. Must not be NULL.
2822 * @util: The util value to clamp.
2823 * @p: The task to clamp against. Can be NULL if you want to clamp
2824 * against @rq only.
2825 *
2826 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2827 *
2828 * If sched_uclamp_used static key is disabled, then just return the util
2829 * without any clamping since uclamp aggregation at the rq level in the fast
2830 * path is disabled, rendering this operation a NOP.
2831 *
2832 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2833 * will return the correct effective uclamp value of the task even if the
2834 * static key is disabled.
2835 */
2836 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2837 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2838 struct task_struct *p)
2839 {
2840 unsigned long min_util = 0;
2841 unsigned long max_util = 0;
2842
2843 if (!static_branch_likely(&sched_uclamp_used))
2844 return util;
2845
2846 if (p) {
2847 min_util = uclamp_eff_value(p, UCLAMP_MIN);
2848 max_util = uclamp_eff_value(p, UCLAMP_MAX);
2849
2850 /*
2851 * Ignore last runnable task's max clamp, as this task will
2852 * reset it. Similarly, no need to read the rq's min clamp.
2853 */
2854 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2855 goto out;
2856 }
2857
2858 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2859 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2860 out:
2861 /*
2862 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2863 * RUNNABLE tasks with _different_ clamps, we can end up with an
2864 * inversion. Fix it now when the clamps are applied.
2865 */
2866 if (unlikely(min_util >= max_util))
2867 return min_util;
2868
2869 return clamp(util, min_util, max_util);
2870 }
2871
2872 /*
2873 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2874 * by default in the fast path and only gets turned on once userspace performs
2875 * an operation that requires it.
2876 *
2877 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2878 * hence is active.
2879 */
uclamp_is_used(void)2880 static inline bool uclamp_is_used(void)
2881 {
2882 return static_branch_likely(&sched_uclamp_used);
2883 }
2884 #else /* CONFIG_UCLAMP_TASK */
2885 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2886 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2887 struct task_struct *p)
2888 {
2889 return util;
2890 }
2891
uclamp_is_used(void)2892 static inline bool uclamp_is_used(void)
2893 {
2894 return false;
2895 }
2896 #endif /* CONFIG_UCLAMP_TASK */
2897
2898 #ifdef arch_scale_freq_capacity
2899 # ifndef arch_scale_freq_invariant
2900 # define arch_scale_freq_invariant() true
2901 # endif
2902 #else
2903 # define arch_scale_freq_invariant() false
2904 #endif
2905
2906 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2907 static inline unsigned long capacity_orig_of(int cpu)
2908 {
2909 return cpu_rq(cpu)->cpu_capacity_orig;
2910 }
2911
2912 /**
2913 * enum cpu_util_type - CPU utilization type
2914 * @FREQUENCY_UTIL: Utilization used to select frequency
2915 * @ENERGY_UTIL: Utilization used during energy calculation
2916 *
2917 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2918 * need to be aggregated differently depending on the usage made of them. This
2919 * enum is used within effective_cpu_util() to differentiate the types of
2920 * utilization expected by the callers, and adjust the aggregation accordingly.
2921 */
2922 enum cpu_util_type {
2923 FREQUENCY_UTIL,
2924 ENERGY_UTIL,
2925 };
2926
2927 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2928 unsigned long max, enum cpu_util_type type,
2929 struct task_struct *p);
2930
cpu_bw_dl(struct rq * rq)2931 static inline unsigned long cpu_bw_dl(struct rq *rq)
2932 {
2933 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2934 }
2935
cpu_util_dl(struct rq * rq)2936 static inline unsigned long cpu_util_dl(struct rq *rq)
2937 {
2938 return READ_ONCE(rq->avg_dl.util_avg);
2939 }
2940
cpu_util_cfs(struct rq * rq)2941 static inline unsigned long cpu_util_cfs(struct rq *rq)
2942 {
2943 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2944
2945 if (sched_feat(UTIL_EST)) {
2946 util = max_t(unsigned long, util,
2947 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2948 }
2949
2950 return util;
2951 }
2952
cpu_util_rt(struct rq * rq)2953 static inline unsigned long cpu_util_rt(struct rq *rq)
2954 {
2955 return READ_ONCE(rq->avg_rt.util_avg);
2956 }
2957 #endif
2958
2959 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2960 static inline unsigned long cpu_util_irq(struct rq *rq)
2961 {
2962 return rq->avg_irq.util_avg;
2963 }
2964
2965 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2966 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2967 {
2968 util *= (max - irq);
2969 util /= max;
2970
2971 return util;
2972
2973 }
2974 #else
cpu_util_irq(struct rq * rq)2975 static inline unsigned long cpu_util_irq(struct rq *rq)
2976 {
2977 return 0;
2978 }
2979
2980 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2981 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2982 {
2983 return util;
2984 }
2985 #endif
2986
2987 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2988
2989 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2990
2991 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2992
sched_energy_enabled(void)2993 static inline bool sched_energy_enabled(void)
2994 {
2995 return static_branch_unlikely(&sched_energy_present);
2996 }
2997
2998 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2999
3000 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)3001 static inline bool sched_energy_enabled(void) { return false; }
3002
3003 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3004
3005 #ifdef CONFIG_MEMBARRIER
3006 /*
3007 * The scheduler provides memory barriers required by membarrier between:
3008 * - prior user-space memory accesses and store to rq->membarrier_state,
3009 * - store to rq->membarrier_state and following user-space memory accesses.
3010 * In the same way it provides those guarantees around store to rq->curr.
3011 */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3012 static inline void membarrier_switch_mm(struct rq *rq,
3013 struct mm_struct *prev_mm,
3014 struct mm_struct *next_mm)
3015 {
3016 int membarrier_state;
3017
3018 if (prev_mm == next_mm)
3019 return;
3020
3021 membarrier_state = atomic_read(&next_mm->membarrier_state);
3022 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3023 return;
3024
3025 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3026 }
3027 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3028 static inline void membarrier_switch_mm(struct rq *rq,
3029 struct mm_struct *prev_mm,
3030 struct mm_struct *next_mm)
3031 {
3032 }
3033 #endif
3034
3035 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3036 static inline bool is_per_cpu_kthread(struct task_struct *p)
3037 {
3038 if (!(p->flags & PF_KTHREAD))
3039 return false;
3040
3041 if (p->nr_cpus_allowed != 1)
3042 return false;
3043
3044 return true;
3045 }
3046 #endif
3047
3048 extern void swake_up_all_locked(struct swait_queue_head *q);
3049 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3050
3051 #ifdef CONFIG_PREEMPT_DYNAMIC
3052 extern int preempt_dynamic_mode;
3053 extern int sched_dynamic_mode(const char *str);
3054 extern void sched_dynamic_update(int mode);
3055 #endif
3056
3057