1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3 * Copyright (C) 2015 Linaro Ltd.
4 */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/cpumask.h>
8 #include <linux/export.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/qcom_scm.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/clk.h>
17 #include <linux/reset-controller.h>
18 #include <linux/arm-smccc.h>
19
20 #include "qcom_scm.h"
21
22 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
23 module_param(download_mode, bool, 0);
24
25 #define SCM_HAS_CORE_CLK BIT(0)
26 #define SCM_HAS_IFACE_CLK BIT(1)
27 #define SCM_HAS_BUS_CLK BIT(2)
28
29 struct qcom_scm {
30 struct device *dev;
31 struct clk *core_clk;
32 struct clk *iface_clk;
33 struct clk *bus_clk;
34 struct reset_controller_dev reset;
35
36 u64 dload_mode_addr;
37 };
38
39 struct qcom_scm_current_perm_info {
40 __le32 vmid;
41 __le32 perm;
42 __le64 ctx;
43 __le32 ctx_size;
44 __le32 unused;
45 };
46
47 struct qcom_scm_mem_map_info {
48 __le64 mem_addr;
49 __le64 mem_size;
50 };
51
52 #define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00
53 #define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01
54 #define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08
55 #define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20
56
57 #define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04
58 #define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02
59 #define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10
60 #define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40
61
62 struct qcom_scm_wb_entry {
63 int flag;
64 void *entry;
65 };
66
67 static struct qcom_scm_wb_entry qcom_scm_wb[] = {
68 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
69 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
70 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
71 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
72 };
73
74 static const char * const qcom_scm_convention_names[] = {
75 [SMC_CONVENTION_UNKNOWN] = "unknown",
76 [SMC_CONVENTION_ARM_32] = "smc arm 32",
77 [SMC_CONVENTION_ARM_64] = "smc arm 64",
78 [SMC_CONVENTION_LEGACY] = "smc legacy",
79 };
80
81 static struct qcom_scm *__scm;
82
qcom_scm_clk_enable(void)83 static int qcom_scm_clk_enable(void)
84 {
85 int ret;
86
87 ret = clk_prepare_enable(__scm->core_clk);
88 if (ret)
89 goto bail;
90
91 ret = clk_prepare_enable(__scm->iface_clk);
92 if (ret)
93 goto disable_core;
94
95 ret = clk_prepare_enable(__scm->bus_clk);
96 if (ret)
97 goto disable_iface;
98
99 return 0;
100
101 disable_iface:
102 clk_disable_unprepare(__scm->iface_clk);
103 disable_core:
104 clk_disable_unprepare(__scm->core_clk);
105 bail:
106 return ret;
107 }
108
qcom_scm_clk_disable(void)109 static void qcom_scm_clk_disable(void)
110 {
111 clk_disable_unprepare(__scm->core_clk);
112 clk_disable_unprepare(__scm->iface_clk);
113 clk_disable_unprepare(__scm->bus_clk);
114 }
115
116 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
117 static DEFINE_SPINLOCK(scm_query_lock);
118
__get_convention(void)119 static enum qcom_scm_convention __get_convention(void)
120 {
121 unsigned long flags;
122 struct qcom_scm_desc desc = {
123 .svc = QCOM_SCM_SVC_INFO,
124 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
125 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
126 QCOM_SCM_INFO_IS_CALL_AVAIL) |
127 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
128 .arginfo = QCOM_SCM_ARGS(1),
129 .owner = ARM_SMCCC_OWNER_SIP,
130 };
131 struct qcom_scm_res res;
132 enum qcom_scm_convention probed_convention;
133 int ret;
134 bool forced = false;
135
136 if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
137 return qcom_scm_convention;
138
139 /*
140 * Device isn't required as there is only one argument - no device
141 * needed to dma_map_single to secure world
142 */
143 probed_convention = SMC_CONVENTION_ARM_64;
144 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
145 if (!ret && res.result[0] == 1)
146 goto found;
147
148 /*
149 * Some SC7180 firmwares didn't implement the
150 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
151 * calling conventions on these firmwares. Luckily we don't make any
152 * early calls into the firmware on these SoCs so the device pointer
153 * will be valid here to check if the compatible matches.
154 */
155 if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
156 forced = true;
157 goto found;
158 }
159
160 probed_convention = SMC_CONVENTION_ARM_32;
161 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
162 if (!ret && res.result[0] == 1)
163 goto found;
164
165 probed_convention = SMC_CONVENTION_LEGACY;
166 found:
167 spin_lock_irqsave(&scm_query_lock, flags);
168 if (probed_convention != qcom_scm_convention) {
169 qcom_scm_convention = probed_convention;
170 pr_info("qcom_scm: convention: %s%s\n",
171 qcom_scm_convention_names[qcom_scm_convention],
172 forced ? " (forced)" : "");
173 }
174 spin_unlock_irqrestore(&scm_query_lock, flags);
175
176 return qcom_scm_convention;
177 }
178
179 /**
180 * qcom_scm_call() - Invoke a syscall in the secure world
181 * @dev: device
182 * @svc_id: service identifier
183 * @cmd_id: command identifier
184 * @desc: Descriptor structure containing arguments and return values
185 *
186 * Sends a command to the SCM and waits for the command to finish processing.
187 * This should *only* be called in pre-emptible context.
188 */
qcom_scm_call(struct device * dev,const struct qcom_scm_desc * desc,struct qcom_scm_res * res)189 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
190 struct qcom_scm_res *res)
191 {
192 might_sleep();
193 switch (__get_convention()) {
194 case SMC_CONVENTION_ARM_32:
195 case SMC_CONVENTION_ARM_64:
196 return scm_smc_call(dev, desc, res, false);
197 case SMC_CONVENTION_LEGACY:
198 return scm_legacy_call(dev, desc, res);
199 default:
200 pr_err("Unknown current SCM calling convention.\n");
201 return -EINVAL;
202 }
203 }
204
205 /**
206 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
207 * @dev: device
208 * @svc_id: service identifier
209 * @cmd_id: command identifier
210 * @desc: Descriptor structure containing arguments and return values
211 * @res: Structure containing results from SMC/HVC call
212 *
213 * Sends a command to the SCM and waits for the command to finish processing.
214 * This can be called in atomic context.
215 */
qcom_scm_call_atomic(struct device * dev,const struct qcom_scm_desc * desc,struct qcom_scm_res * res)216 static int qcom_scm_call_atomic(struct device *dev,
217 const struct qcom_scm_desc *desc,
218 struct qcom_scm_res *res)
219 {
220 switch (__get_convention()) {
221 case SMC_CONVENTION_ARM_32:
222 case SMC_CONVENTION_ARM_64:
223 return scm_smc_call(dev, desc, res, true);
224 case SMC_CONVENTION_LEGACY:
225 return scm_legacy_call_atomic(dev, desc, res);
226 default:
227 pr_err("Unknown current SCM calling convention.\n");
228 return -EINVAL;
229 }
230 }
231
__qcom_scm_is_call_available(struct device * dev,u32 svc_id,u32 cmd_id)232 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
233 u32 cmd_id)
234 {
235 int ret;
236 struct qcom_scm_desc desc = {
237 .svc = QCOM_SCM_SVC_INFO,
238 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
239 .owner = ARM_SMCCC_OWNER_SIP,
240 };
241 struct qcom_scm_res res;
242
243 desc.arginfo = QCOM_SCM_ARGS(1);
244 switch (__get_convention()) {
245 case SMC_CONVENTION_ARM_32:
246 case SMC_CONVENTION_ARM_64:
247 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
248 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
249 break;
250 case SMC_CONVENTION_LEGACY:
251 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
252 break;
253 default:
254 pr_err("Unknown SMC convention being used\n");
255 return false;
256 }
257
258 ret = qcom_scm_call(dev, &desc, &res);
259
260 return ret ? false : !!res.result[0];
261 }
262
263 /**
264 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
265 * @entry: Entry point function for the cpus
266 * @cpus: The cpumask of cpus that will use the entry point
267 *
268 * Set the Linux entry point for the SCM to transfer control to when coming
269 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
270 */
qcom_scm_set_warm_boot_addr(void * entry,const cpumask_t * cpus)271 int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
272 {
273 int ret;
274 int flags = 0;
275 int cpu;
276 struct qcom_scm_desc desc = {
277 .svc = QCOM_SCM_SVC_BOOT,
278 .cmd = QCOM_SCM_BOOT_SET_ADDR,
279 .arginfo = QCOM_SCM_ARGS(2),
280 };
281
282 /*
283 * Reassign only if we are switching from hotplug entry point
284 * to cpuidle entry point or vice versa.
285 */
286 for_each_cpu(cpu, cpus) {
287 if (entry == qcom_scm_wb[cpu].entry)
288 continue;
289 flags |= qcom_scm_wb[cpu].flag;
290 }
291
292 /* No change in entry function */
293 if (!flags)
294 return 0;
295
296 desc.args[0] = flags;
297 desc.args[1] = virt_to_phys(entry);
298
299 ret = qcom_scm_call(__scm->dev, &desc, NULL);
300 if (!ret) {
301 for_each_cpu(cpu, cpus)
302 qcom_scm_wb[cpu].entry = entry;
303 }
304
305 return ret;
306 }
307 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
308
309 /**
310 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
311 * @entry: Entry point function for the cpus
312 * @cpus: The cpumask of cpus that will use the entry point
313 *
314 * Set the cold boot address of the cpus. Any cpu outside the supported
315 * range would be removed from the cpu present mask.
316 */
qcom_scm_set_cold_boot_addr(void * entry,const cpumask_t * cpus)317 int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
318 {
319 int flags = 0;
320 int cpu;
321 int scm_cb_flags[] = {
322 QCOM_SCM_FLAG_COLDBOOT_CPU0,
323 QCOM_SCM_FLAG_COLDBOOT_CPU1,
324 QCOM_SCM_FLAG_COLDBOOT_CPU2,
325 QCOM_SCM_FLAG_COLDBOOT_CPU3,
326 };
327 struct qcom_scm_desc desc = {
328 .svc = QCOM_SCM_SVC_BOOT,
329 .cmd = QCOM_SCM_BOOT_SET_ADDR,
330 .arginfo = QCOM_SCM_ARGS(2),
331 .owner = ARM_SMCCC_OWNER_SIP,
332 };
333
334 if (!cpus || cpumask_empty(cpus))
335 return -EINVAL;
336
337 for_each_cpu(cpu, cpus) {
338 if (cpu < ARRAY_SIZE(scm_cb_flags))
339 flags |= scm_cb_flags[cpu];
340 else
341 set_cpu_present(cpu, false);
342 }
343
344 desc.args[0] = flags;
345 desc.args[1] = virt_to_phys(entry);
346
347 return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
348 }
349 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
350
351 /**
352 * qcom_scm_cpu_power_down() - Power down the cpu
353 * @flags - Flags to flush cache
354 *
355 * This is an end point to power down cpu. If there was a pending interrupt,
356 * the control would return from this function, otherwise, the cpu jumps to the
357 * warm boot entry point set for this cpu upon reset.
358 */
qcom_scm_cpu_power_down(u32 flags)359 void qcom_scm_cpu_power_down(u32 flags)
360 {
361 struct qcom_scm_desc desc = {
362 .svc = QCOM_SCM_SVC_BOOT,
363 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
364 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
365 .arginfo = QCOM_SCM_ARGS(1),
366 .owner = ARM_SMCCC_OWNER_SIP,
367 };
368
369 qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
370 }
371 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
372
qcom_scm_set_remote_state(u32 state,u32 id)373 int qcom_scm_set_remote_state(u32 state, u32 id)
374 {
375 struct qcom_scm_desc desc = {
376 .svc = QCOM_SCM_SVC_BOOT,
377 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
378 .arginfo = QCOM_SCM_ARGS(2),
379 .args[0] = state,
380 .args[1] = id,
381 .owner = ARM_SMCCC_OWNER_SIP,
382 };
383 struct qcom_scm_res res;
384 int ret;
385
386 ret = qcom_scm_call(__scm->dev, &desc, &res);
387
388 return ret ? : res.result[0];
389 }
390 EXPORT_SYMBOL(qcom_scm_set_remote_state);
391
__qcom_scm_set_dload_mode(struct device * dev,bool enable)392 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
393 {
394 struct qcom_scm_desc desc = {
395 .svc = QCOM_SCM_SVC_BOOT,
396 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
397 .arginfo = QCOM_SCM_ARGS(2),
398 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
399 .owner = ARM_SMCCC_OWNER_SIP,
400 };
401
402 desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
403
404 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
405 }
406
qcom_scm_set_download_mode(bool enable)407 static void qcom_scm_set_download_mode(bool enable)
408 {
409 bool avail;
410 int ret = 0;
411
412 avail = __qcom_scm_is_call_available(__scm->dev,
413 QCOM_SCM_SVC_BOOT,
414 QCOM_SCM_BOOT_SET_DLOAD_MODE);
415 if (avail) {
416 ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
417 } else if (__scm->dload_mode_addr) {
418 ret = qcom_scm_io_writel(__scm->dload_mode_addr,
419 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
420 } else {
421 dev_err(__scm->dev,
422 "No available mechanism for setting download mode\n");
423 }
424
425 if (ret)
426 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
427 }
428
429 /**
430 * qcom_scm_pas_init_image() - Initialize peripheral authentication service
431 * state machine for a given peripheral, using the
432 * metadata
433 * @peripheral: peripheral id
434 * @metadata: pointer to memory containing ELF header, program header table
435 * and optional blob of data used for authenticating the metadata
436 * and the rest of the firmware
437 * @size: size of the metadata
438 *
439 * Returns 0 on success.
440 */
qcom_scm_pas_init_image(u32 peripheral,const void * metadata,size_t size)441 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
442 {
443 dma_addr_t mdata_phys;
444 void *mdata_buf;
445 int ret;
446 struct qcom_scm_desc desc = {
447 .svc = QCOM_SCM_SVC_PIL,
448 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
449 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
450 .args[0] = peripheral,
451 .owner = ARM_SMCCC_OWNER_SIP,
452 };
453 struct qcom_scm_res res;
454
455 /*
456 * During the scm call memory protection will be enabled for the meta
457 * data blob, so make sure it's physically contiguous, 4K aligned and
458 * non-cachable to avoid XPU violations.
459 */
460 mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
461 GFP_KERNEL);
462 if (!mdata_buf) {
463 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
464 return -ENOMEM;
465 }
466 memcpy(mdata_buf, metadata, size);
467
468 ret = qcom_scm_clk_enable();
469 if (ret)
470 goto free_metadata;
471
472 desc.args[1] = mdata_phys;
473
474 ret = qcom_scm_call(__scm->dev, &desc, &res);
475
476 qcom_scm_clk_disable();
477
478 free_metadata:
479 dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
480
481 return ret ? : res.result[0];
482 }
483 EXPORT_SYMBOL(qcom_scm_pas_init_image);
484
485 /**
486 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
487 * for firmware loading
488 * @peripheral: peripheral id
489 * @addr: start address of memory area to prepare
490 * @size: size of the memory area to prepare
491 *
492 * Returns 0 on success.
493 */
qcom_scm_pas_mem_setup(u32 peripheral,phys_addr_t addr,phys_addr_t size)494 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
495 {
496 int ret;
497 struct qcom_scm_desc desc = {
498 .svc = QCOM_SCM_SVC_PIL,
499 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
500 .arginfo = QCOM_SCM_ARGS(3),
501 .args[0] = peripheral,
502 .args[1] = addr,
503 .args[2] = size,
504 .owner = ARM_SMCCC_OWNER_SIP,
505 };
506 struct qcom_scm_res res;
507
508 ret = qcom_scm_clk_enable();
509 if (ret)
510 return ret;
511
512 ret = qcom_scm_call(__scm->dev, &desc, &res);
513 qcom_scm_clk_disable();
514
515 return ret ? : res.result[0];
516 }
517 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
518
519 /**
520 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
521 * and reset the remote processor
522 * @peripheral: peripheral id
523 *
524 * Return 0 on success.
525 */
qcom_scm_pas_auth_and_reset(u32 peripheral)526 int qcom_scm_pas_auth_and_reset(u32 peripheral)
527 {
528 int ret;
529 struct qcom_scm_desc desc = {
530 .svc = QCOM_SCM_SVC_PIL,
531 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
532 .arginfo = QCOM_SCM_ARGS(1),
533 .args[0] = peripheral,
534 .owner = ARM_SMCCC_OWNER_SIP,
535 };
536 struct qcom_scm_res res;
537
538 ret = qcom_scm_clk_enable();
539 if (ret)
540 return ret;
541
542 ret = qcom_scm_call(__scm->dev, &desc, &res);
543 qcom_scm_clk_disable();
544
545 return ret ? : res.result[0];
546 }
547 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
548
549 /**
550 * qcom_scm_pas_shutdown() - Shut down the remote processor
551 * @peripheral: peripheral id
552 *
553 * Returns 0 on success.
554 */
qcom_scm_pas_shutdown(u32 peripheral)555 int qcom_scm_pas_shutdown(u32 peripheral)
556 {
557 int ret;
558 struct qcom_scm_desc desc = {
559 .svc = QCOM_SCM_SVC_PIL,
560 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
561 .arginfo = QCOM_SCM_ARGS(1),
562 .args[0] = peripheral,
563 .owner = ARM_SMCCC_OWNER_SIP,
564 };
565 struct qcom_scm_res res;
566
567 ret = qcom_scm_clk_enable();
568 if (ret)
569 return ret;
570
571 ret = qcom_scm_call(__scm->dev, &desc, &res);
572
573 qcom_scm_clk_disable();
574
575 return ret ? : res.result[0];
576 }
577 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
578
579 /**
580 * qcom_scm_pas_supported() - Check if the peripheral authentication service is
581 * available for the given peripherial
582 * @peripheral: peripheral id
583 *
584 * Returns true if PAS is supported for this peripheral, otherwise false.
585 */
qcom_scm_pas_supported(u32 peripheral)586 bool qcom_scm_pas_supported(u32 peripheral)
587 {
588 int ret;
589 struct qcom_scm_desc desc = {
590 .svc = QCOM_SCM_SVC_PIL,
591 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
592 .arginfo = QCOM_SCM_ARGS(1),
593 .args[0] = peripheral,
594 .owner = ARM_SMCCC_OWNER_SIP,
595 };
596 struct qcom_scm_res res;
597
598 if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
599 QCOM_SCM_PIL_PAS_IS_SUPPORTED))
600 return false;
601
602 ret = qcom_scm_call(__scm->dev, &desc, &res);
603
604 return ret ? false : !!res.result[0];
605 }
606 EXPORT_SYMBOL(qcom_scm_pas_supported);
607
__qcom_scm_pas_mss_reset(struct device * dev,bool reset)608 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
609 {
610 struct qcom_scm_desc desc = {
611 .svc = QCOM_SCM_SVC_PIL,
612 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
613 .arginfo = QCOM_SCM_ARGS(2),
614 .args[0] = reset,
615 .args[1] = 0,
616 .owner = ARM_SMCCC_OWNER_SIP,
617 };
618 struct qcom_scm_res res;
619 int ret;
620
621 ret = qcom_scm_call(__scm->dev, &desc, &res);
622
623 return ret ? : res.result[0];
624 }
625
qcom_scm_pas_reset_assert(struct reset_controller_dev * rcdev,unsigned long idx)626 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
627 unsigned long idx)
628 {
629 if (idx != 0)
630 return -EINVAL;
631
632 return __qcom_scm_pas_mss_reset(__scm->dev, 1);
633 }
634
qcom_scm_pas_reset_deassert(struct reset_controller_dev * rcdev,unsigned long idx)635 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
636 unsigned long idx)
637 {
638 if (idx != 0)
639 return -EINVAL;
640
641 return __qcom_scm_pas_mss_reset(__scm->dev, 0);
642 }
643
644 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
645 .assert = qcom_scm_pas_reset_assert,
646 .deassert = qcom_scm_pas_reset_deassert,
647 };
648
qcom_scm_io_readl(phys_addr_t addr,unsigned int * val)649 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
650 {
651 struct qcom_scm_desc desc = {
652 .svc = QCOM_SCM_SVC_IO,
653 .cmd = QCOM_SCM_IO_READ,
654 .arginfo = QCOM_SCM_ARGS(1),
655 .args[0] = addr,
656 .owner = ARM_SMCCC_OWNER_SIP,
657 };
658 struct qcom_scm_res res;
659 int ret;
660
661
662 ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
663 if (ret >= 0)
664 *val = res.result[0];
665
666 return ret < 0 ? ret : 0;
667 }
668 EXPORT_SYMBOL(qcom_scm_io_readl);
669
qcom_scm_io_writel(phys_addr_t addr,unsigned int val)670 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
671 {
672 struct qcom_scm_desc desc = {
673 .svc = QCOM_SCM_SVC_IO,
674 .cmd = QCOM_SCM_IO_WRITE,
675 .arginfo = QCOM_SCM_ARGS(2),
676 .args[0] = addr,
677 .args[1] = val,
678 .owner = ARM_SMCCC_OWNER_SIP,
679 };
680
681 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
682 }
683 EXPORT_SYMBOL(qcom_scm_io_writel);
684
685 /**
686 * qcom_scm_restore_sec_cfg_available() - Check if secure environment
687 * supports restore security config interface.
688 *
689 * Return true if restore-cfg interface is supported, false if not.
690 */
qcom_scm_restore_sec_cfg_available(void)691 bool qcom_scm_restore_sec_cfg_available(void)
692 {
693 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
694 QCOM_SCM_MP_RESTORE_SEC_CFG);
695 }
696 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
697
qcom_scm_restore_sec_cfg(u32 device_id,u32 spare)698 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
699 {
700 struct qcom_scm_desc desc = {
701 .svc = QCOM_SCM_SVC_MP,
702 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
703 .arginfo = QCOM_SCM_ARGS(2),
704 .args[0] = device_id,
705 .args[1] = spare,
706 .owner = ARM_SMCCC_OWNER_SIP,
707 };
708 struct qcom_scm_res res;
709 int ret;
710
711 ret = qcom_scm_call(__scm->dev, &desc, &res);
712
713 return ret ? : res.result[0];
714 }
715 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
716
qcom_scm_iommu_secure_ptbl_size(u32 spare,size_t * size)717 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
718 {
719 struct qcom_scm_desc desc = {
720 .svc = QCOM_SCM_SVC_MP,
721 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
722 .arginfo = QCOM_SCM_ARGS(1),
723 .args[0] = spare,
724 .owner = ARM_SMCCC_OWNER_SIP,
725 };
726 struct qcom_scm_res res;
727 int ret;
728
729 ret = qcom_scm_call(__scm->dev, &desc, &res);
730
731 if (size)
732 *size = res.result[0];
733
734 return ret ? : res.result[1];
735 }
736 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
737
qcom_scm_iommu_secure_ptbl_init(u64 addr,u32 size,u32 spare)738 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
739 {
740 struct qcom_scm_desc desc = {
741 .svc = QCOM_SCM_SVC_MP,
742 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
743 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
744 QCOM_SCM_VAL),
745 .args[0] = addr,
746 .args[1] = size,
747 .args[2] = spare,
748 .owner = ARM_SMCCC_OWNER_SIP,
749 };
750 int ret;
751
752 desc.args[0] = addr;
753 desc.args[1] = size;
754 desc.args[2] = spare;
755 desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
756 QCOM_SCM_VAL);
757
758 ret = qcom_scm_call(__scm->dev, &desc, NULL);
759
760 /* the pg table has been initialized already, ignore the error */
761 if (ret == -EPERM)
762 ret = 0;
763
764 return ret;
765 }
766 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
767
qcom_scm_mem_protect_video_var(u32 cp_start,u32 cp_size,u32 cp_nonpixel_start,u32 cp_nonpixel_size)768 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
769 u32 cp_nonpixel_start,
770 u32 cp_nonpixel_size)
771 {
772 int ret;
773 struct qcom_scm_desc desc = {
774 .svc = QCOM_SCM_SVC_MP,
775 .cmd = QCOM_SCM_MP_VIDEO_VAR,
776 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
777 QCOM_SCM_VAL, QCOM_SCM_VAL),
778 .args[0] = cp_start,
779 .args[1] = cp_size,
780 .args[2] = cp_nonpixel_start,
781 .args[3] = cp_nonpixel_size,
782 .owner = ARM_SMCCC_OWNER_SIP,
783 };
784 struct qcom_scm_res res;
785
786 ret = qcom_scm_call(__scm->dev, &desc, &res);
787
788 return ret ? : res.result[0];
789 }
790 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
791
__qcom_scm_assign_mem(struct device * dev,phys_addr_t mem_region,size_t mem_sz,phys_addr_t src,size_t src_sz,phys_addr_t dest,size_t dest_sz)792 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
793 size_t mem_sz, phys_addr_t src, size_t src_sz,
794 phys_addr_t dest, size_t dest_sz)
795 {
796 int ret;
797 struct qcom_scm_desc desc = {
798 .svc = QCOM_SCM_SVC_MP,
799 .cmd = QCOM_SCM_MP_ASSIGN,
800 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
801 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
802 QCOM_SCM_VAL, QCOM_SCM_VAL),
803 .args[0] = mem_region,
804 .args[1] = mem_sz,
805 .args[2] = src,
806 .args[3] = src_sz,
807 .args[4] = dest,
808 .args[5] = dest_sz,
809 .args[6] = 0,
810 .owner = ARM_SMCCC_OWNER_SIP,
811 };
812 struct qcom_scm_res res;
813
814 ret = qcom_scm_call(dev, &desc, &res);
815
816 return ret ? : res.result[0];
817 }
818
819 /**
820 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
821 * @mem_addr: mem region whose ownership need to be reassigned
822 * @mem_sz: size of the region.
823 * @srcvm: vmid for current set of owners, each set bit in
824 * flag indicate a unique owner
825 * @newvm: array having new owners and corresponding permission
826 * flags
827 * @dest_cnt: number of owners in next set.
828 *
829 * Return negative errno on failure or 0 on success with @srcvm updated.
830 */
qcom_scm_assign_mem(phys_addr_t mem_addr,size_t mem_sz,unsigned int * srcvm,const struct qcom_scm_vmperm * newvm,unsigned int dest_cnt)831 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
832 unsigned int *srcvm,
833 const struct qcom_scm_vmperm *newvm,
834 unsigned int dest_cnt)
835 {
836 struct qcom_scm_current_perm_info *destvm;
837 struct qcom_scm_mem_map_info *mem_to_map;
838 phys_addr_t mem_to_map_phys;
839 phys_addr_t dest_phys;
840 dma_addr_t ptr_phys;
841 size_t mem_to_map_sz;
842 size_t dest_sz;
843 size_t src_sz;
844 size_t ptr_sz;
845 int next_vm;
846 __le32 *src;
847 void *ptr;
848 int ret, i, b;
849 unsigned long srcvm_bits = *srcvm;
850
851 src_sz = hweight_long(srcvm_bits) * sizeof(*src);
852 mem_to_map_sz = sizeof(*mem_to_map);
853 dest_sz = dest_cnt * sizeof(*destvm);
854 ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
855 ALIGN(dest_sz, SZ_64);
856
857 ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
858 if (!ptr)
859 return -ENOMEM;
860
861 /* Fill source vmid detail */
862 src = ptr;
863 i = 0;
864 for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
865 src[i++] = cpu_to_le32(b);
866
867 /* Fill details of mem buff to map */
868 mem_to_map = ptr + ALIGN(src_sz, SZ_64);
869 mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
870 mem_to_map->mem_addr = cpu_to_le64(mem_addr);
871 mem_to_map->mem_size = cpu_to_le64(mem_sz);
872
873 next_vm = 0;
874 /* Fill details of next vmid detail */
875 destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
876 dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
877 for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
878 destvm->vmid = cpu_to_le32(newvm->vmid);
879 destvm->perm = cpu_to_le32(newvm->perm);
880 destvm->ctx = 0;
881 destvm->ctx_size = 0;
882 next_vm |= BIT(newvm->vmid);
883 }
884
885 ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
886 ptr_phys, src_sz, dest_phys, dest_sz);
887 dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
888 if (ret) {
889 dev_err(__scm->dev,
890 "Assign memory protection call failed %d\n", ret);
891 return -EINVAL;
892 }
893
894 *srcvm = next_vm;
895 return 0;
896 }
897 EXPORT_SYMBOL(qcom_scm_assign_mem);
898
899 /**
900 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
901 */
qcom_scm_ocmem_lock_available(void)902 bool qcom_scm_ocmem_lock_available(void)
903 {
904 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
905 QCOM_SCM_OCMEM_LOCK_CMD);
906 }
907 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
908
909 /**
910 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
911 * region to the specified initiator
912 *
913 * @id: tz initiator id
914 * @offset: OCMEM offset
915 * @size: OCMEM size
916 * @mode: access mode (WIDE/NARROW)
917 */
qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id,u32 offset,u32 size,u32 mode)918 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
919 u32 mode)
920 {
921 struct qcom_scm_desc desc = {
922 .svc = QCOM_SCM_SVC_OCMEM,
923 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
924 .args[0] = id,
925 .args[1] = offset,
926 .args[2] = size,
927 .args[3] = mode,
928 .arginfo = QCOM_SCM_ARGS(4),
929 };
930
931 return qcom_scm_call(__scm->dev, &desc, NULL);
932 }
933 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
934
935 /**
936 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
937 * region from the specified initiator
938 *
939 * @id: tz initiator id
940 * @offset: OCMEM offset
941 * @size: OCMEM size
942 */
qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id,u32 offset,u32 size)943 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
944 {
945 struct qcom_scm_desc desc = {
946 .svc = QCOM_SCM_SVC_OCMEM,
947 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
948 .args[0] = id,
949 .args[1] = offset,
950 .args[2] = size,
951 .arginfo = QCOM_SCM_ARGS(3),
952 };
953
954 return qcom_scm_call(__scm->dev, &desc, NULL);
955 }
956 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
957
958 /**
959 * qcom_scm_ice_available() - Is the ICE key programming interface available?
960 *
961 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
962 * qcom_scm_ice_set_key() are available.
963 */
qcom_scm_ice_available(void)964 bool qcom_scm_ice_available(void)
965 {
966 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
967 QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
968 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
969 QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
970 }
971 EXPORT_SYMBOL(qcom_scm_ice_available);
972
973 /**
974 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
975 * @index: the keyslot to invalidate
976 *
977 * The UFSHCI and eMMC standards define a standard way to do this, but it
978 * doesn't work on these SoCs; only this SCM call does.
979 *
980 * It is assumed that the SoC has only one ICE instance being used, as this SCM
981 * call doesn't specify which ICE instance the keyslot belongs to.
982 *
983 * Return: 0 on success; -errno on failure.
984 */
qcom_scm_ice_invalidate_key(u32 index)985 int qcom_scm_ice_invalidate_key(u32 index)
986 {
987 struct qcom_scm_desc desc = {
988 .svc = QCOM_SCM_SVC_ES,
989 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
990 .arginfo = QCOM_SCM_ARGS(1),
991 .args[0] = index,
992 .owner = ARM_SMCCC_OWNER_SIP,
993 };
994
995 return qcom_scm_call(__scm->dev, &desc, NULL);
996 }
997 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
998
999 /**
1000 * qcom_scm_ice_set_key() - Set an inline encryption key
1001 * @index: the keyslot into which to set the key
1002 * @key: the key to program
1003 * @key_size: the size of the key in bytes
1004 * @cipher: the encryption algorithm the key is for
1005 * @data_unit_size: the encryption data unit size, i.e. the size of each
1006 * individual plaintext and ciphertext. Given in 512-byte
1007 * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1008 *
1009 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1010 * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1011 *
1012 * The UFSHCI and eMMC standards define a standard way to do this, but it
1013 * doesn't work on these SoCs; only this SCM call does.
1014 *
1015 * It is assumed that the SoC has only one ICE instance being used, as this SCM
1016 * call doesn't specify which ICE instance the keyslot belongs to.
1017 *
1018 * Return: 0 on success; -errno on failure.
1019 */
qcom_scm_ice_set_key(u32 index,const u8 * key,u32 key_size,enum qcom_scm_ice_cipher cipher,u32 data_unit_size)1020 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1021 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1022 {
1023 struct qcom_scm_desc desc = {
1024 .svc = QCOM_SCM_SVC_ES,
1025 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1026 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1027 QCOM_SCM_VAL, QCOM_SCM_VAL,
1028 QCOM_SCM_VAL),
1029 .args[0] = index,
1030 .args[2] = key_size,
1031 .args[3] = cipher,
1032 .args[4] = data_unit_size,
1033 .owner = ARM_SMCCC_OWNER_SIP,
1034 };
1035 void *keybuf;
1036 dma_addr_t key_phys;
1037 int ret;
1038
1039 /*
1040 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1041 * physical address that's been properly flushed. The sanctioned way to
1042 * do this is by using the DMA API. But as is best practice for crypto
1043 * keys, we also must wipe the key after use. This makes kmemdup() +
1044 * dma_map_single() not clearly correct, since the DMA API can use
1045 * bounce buffers. Instead, just use dma_alloc_coherent(). Programming
1046 * keys is normally rare and thus not performance-critical.
1047 */
1048
1049 keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1050 GFP_KERNEL);
1051 if (!keybuf)
1052 return -ENOMEM;
1053 memcpy(keybuf, key, key_size);
1054 desc.args[1] = key_phys;
1055
1056 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1057
1058 memzero_explicit(keybuf, key_size);
1059
1060 dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1061 return ret;
1062 }
1063 EXPORT_SYMBOL(qcom_scm_ice_set_key);
1064
1065 /**
1066 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1067 *
1068 * Return true if HDCP is supported, false if not.
1069 */
qcom_scm_hdcp_available(void)1070 bool qcom_scm_hdcp_available(void)
1071 {
1072 bool avail;
1073 int ret = qcom_scm_clk_enable();
1074
1075 if (ret)
1076 return ret;
1077
1078 avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1079 QCOM_SCM_HDCP_INVOKE);
1080
1081 qcom_scm_clk_disable();
1082
1083 return avail;
1084 }
1085 EXPORT_SYMBOL(qcom_scm_hdcp_available);
1086
1087 /**
1088 * qcom_scm_hdcp_req() - Send HDCP request.
1089 * @req: HDCP request array
1090 * @req_cnt: HDCP request array count
1091 * @resp: response buffer passed to SCM
1092 *
1093 * Write HDCP register(s) through SCM.
1094 */
qcom_scm_hdcp_req(struct qcom_scm_hdcp_req * req,u32 req_cnt,u32 * resp)1095 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1096 {
1097 int ret;
1098 struct qcom_scm_desc desc = {
1099 .svc = QCOM_SCM_SVC_HDCP,
1100 .cmd = QCOM_SCM_HDCP_INVOKE,
1101 .arginfo = QCOM_SCM_ARGS(10),
1102 .args = {
1103 req[0].addr,
1104 req[0].val,
1105 req[1].addr,
1106 req[1].val,
1107 req[2].addr,
1108 req[2].val,
1109 req[3].addr,
1110 req[3].val,
1111 req[4].addr,
1112 req[4].val
1113 },
1114 .owner = ARM_SMCCC_OWNER_SIP,
1115 };
1116 struct qcom_scm_res res;
1117
1118 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1119 return -ERANGE;
1120
1121 ret = qcom_scm_clk_enable();
1122 if (ret)
1123 return ret;
1124
1125 ret = qcom_scm_call(__scm->dev, &desc, &res);
1126 *resp = res.result[0];
1127
1128 qcom_scm_clk_disable();
1129
1130 return ret;
1131 }
1132 EXPORT_SYMBOL(qcom_scm_hdcp_req);
1133
qcom_scm_qsmmu500_wait_safe_toggle(bool en)1134 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1135 {
1136 struct qcom_scm_desc desc = {
1137 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1138 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1139 .arginfo = QCOM_SCM_ARGS(2),
1140 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1141 .args[1] = en,
1142 .owner = ARM_SMCCC_OWNER_SIP,
1143 };
1144
1145
1146 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1147 }
1148 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1149
qcom_scm_lmh_dcvsh_available(void)1150 bool qcom_scm_lmh_dcvsh_available(void)
1151 {
1152 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1153 }
1154 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available);
1155
qcom_scm_lmh_profile_change(u32 profile_id)1156 int qcom_scm_lmh_profile_change(u32 profile_id)
1157 {
1158 struct qcom_scm_desc desc = {
1159 .svc = QCOM_SCM_SVC_LMH,
1160 .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1161 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1162 .args[0] = profile_id,
1163 .owner = ARM_SMCCC_OWNER_SIP,
1164 };
1165
1166 return qcom_scm_call(__scm->dev, &desc, NULL);
1167 }
1168 EXPORT_SYMBOL(qcom_scm_lmh_profile_change);
1169
qcom_scm_lmh_dcvsh(u32 payload_fn,u32 payload_reg,u32 payload_val,u64 limit_node,u32 node_id,u64 version)1170 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1171 u64 limit_node, u32 node_id, u64 version)
1172 {
1173 dma_addr_t payload_phys;
1174 u32 *payload_buf;
1175 int ret, payload_size = 5 * sizeof(u32);
1176
1177 struct qcom_scm_desc desc = {
1178 .svc = QCOM_SCM_SVC_LMH,
1179 .cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1180 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1181 QCOM_SCM_VAL, QCOM_SCM_VAL),
1182 .args[1] = payload_size,
1183 .args[2] = limit_node,
1184 .args[3] = node_id,
1185 .args[4] = version,
1186 .owner = ARM_SMCCC_OWNER_SIP,
1187 };
1188
1189 payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1190 if (!payload_buf)
1191 return -ENOMEM;
1192
1193 payload_buf[0] = payload_fn;
1194 payload_buf[1] = 0;
1195 payload_buf[2] = payload_reg;
1196 payload_buf[3] = 1;
1197 payload_buf[4] = payload_val;
1198
1199 desc.args[0] = payload_phys;
1200
1201 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1202
1203 dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1204 return ret;
1205 }
1206 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh);
1207
qcom_scm_find_dload_address(struct device * dev,u64 * addr)1208 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1209 {
1210 struct device_node *tcsr;
1211 struct device_node *np = dev->of_node;
1212 struct resource res;
1213 u32 offset;
1214 int ret;
1215
1216 tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1217 if (!tcsr)
1218 return 0;
1219
1220 ret = of_address_to_resource(tcsr, 0, &res);
1221 of_node_put(tcsr);
1222 if (ret)
1223 return ret;
1224
1225 ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1226 if (ret < 0)
1227 return ret;
1228
1229 *addr = res.start + offset;
1230
1231 return 0;
1232 }
1233
1234 /**
1235 * qcom_scm_is_available() - Checks if SCM is available
1236 */
qcom_scm_is_available(void)1237 bool qcom_scm_is_available(void)
1238 {
1239 return !!__scm;
1240 }
1241 EXPORT_SYMBOL(qcom_scm_is_available);
1242
qcom_scm_probe(struct platform_device * pdev)1243 static int qcom_scm_probe(struct platform_device *pdev)
1244 {
1245 struct qcom_scm *scm;
1246 unsigned long clks;
1247 int ret;
1248
1249 scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1250 if (!scm)
1251 return -ENOMEM;
1252
1253 ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1254 if (ret < 0)
1255 return ret;
1256
1257 clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1258
1259 scm->core_clk = devm_clk_get(&pdev->dev, "core");
1260 if (IS_ERR(scm->core_clk)) {
1261 if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1262 return PTR_ERR(scm->core_clk);
1263
1264 if (clks & SCM_HAS_CORE_CLK) {
1265 dev_err(&pdev->dev, "failed to acquire core clk\n");
1266 return PTR_ERR(scm->core_clk);
1267 }
1268
1269 scm->core_clk = NULL;
1270 }
1271
1272 scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1273 if (IS_ERR(scm->iface_clk)) {
1274 if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1275 return PTR_ERR(scm->iface_clk);
1276
1277 if (clks & SCM_HAS_IFACE_CLK) {
1278 dev_err(&pdev->dev, "failed to acquire iface clk\n");
1279 return PTR_ERR(scm->iface_clk);
1280 }
1281
1282 scm->iface_clk = NULL;
1283 }
1284
1285 scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1286 if (IS_ERR(scm->bus_clk)) {
1287 if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1288 return PTR_ERR(scm->bus_clk);
1289
1290 if (clks & SCM_HAS_BUS_CLK) {
1291 dev_err(&pdev->dev, "failed to acquire bus clk\n");
1292 return PTR_ERR(scm->bus_clk);
1293 }
1294
1295 scm->bus_clk = NULL;
1296 }
1297
1298 scm->reset.ops = &qcom_scm_pas_reset_ops;
1299 scm->reset.nr_resets = 1;
1300 scm->reset.of_node = pdev->dev.of_node;
1301 ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1302 if (ret)
1303 return ret;
1304
1305 /* vote for max clk rate for highest performance */
1306 ret = clk_set_rate(scm->core_clk, INT_MAX);
1307 if (ret)
1308 return ret;
1309
1310 __scm = scm;
1311 __scm->dev = &pdev->dev;
1312
1313 __get_convention();
1314
1315 /*
1316 * If requested enable "download mode", from this point on warmboot
1317 * will cause the the boot stages to enter download mode, unless
1318 * disabled below by a clean shutdown/reboot.
1319 */
1320 if (download_mode)
1321 qcom_scm_set_download_mode(true);
1322
1323 return 0;
1324 }
1325
qcom_scm_shutdown(struct platform_device * pdev)1326 static void qcom_scm_shutdown(struct platform_device *pdev)
1327 {
1328 /* Clean shutdown, disable download mode to allow normal restart */
1329 if (download_mode)
1330 qcom_scm_set_download_mode(false);
1331 }
1332
1333 static const struct of_device_id qcom_scm_dt_match[] = {
1334 { .compatible = "qcom,scm-apq8064",
1335 /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1336 },
1337 { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1338 SCM_HAS_IFACE_CLK |
1339 SCM_HAS_BUS_CLK)
1340 },
1341 { .compatible = "qcom,scm-ipq4019" },
1342 { .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK |
1343 SCM_HAS_IFACE_CLK |
1344 SCM_HAS_BUS_CLK) },
1345 { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1346 { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1347 { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1348 SCM_HAS_IFACE_CLK |
1349 SCM_HAS_BUS_CLK)
1350 },
1351 { .compatible = "qcom,scm-msm8953", .data = (void *)(SCM_HAS_CORE_CLK |
1352 SCM_HAS_IFACE_CLK |
1353 SCM_HAS_BUS_CLK)
1354 },
1355 { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1356 SCM_HAS_IFACE_CLK |
1357 SCM_HAS_BUS_CLK)
1358 },
1359 { .compatible = "qcom,scm-msm8994" },
1360 { .compatible = "qcom,scm-msm8996" },
1361 { .compatible = "qcom,scm" },
1362 {}
1363 };
1364 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1365
1366 static struct platform_driver qcom_scm_driver = {
1367 .driver = {
1368 .name = "qcom_scm",
1369 .of_match_table = qcom_scm_dt_match,
1370 .suppress_bind_attrs = true,
1371 },
1372 .probe = qcom_scm_probe,
1373 .shutdown = qcom_scm_shutdown,
1374 };
1375
qcom_scm_init(void)1376 static int __init qcom_scm_init(void)
1377 {
1378 return platform_driver_register(&qcom_scm_driver);
1379 }
1380 subsys_initcall(qcom_scm_init);
1381
1382 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1383 MODULE_LICENSE("GPL v2");
1384