1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32 
33 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a)		(*(long *)(&(a)))
36 #define USHORT_CMP_GE(a, b)	(USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
37 #define USHORT_CMP_LT(a, b)	(USHRT_MAX / 2 < (unsigned short)((a) - (b)))
38 
39 /* Exported common interfaces */
40 void call_rcu(struct rcu_head *head, rcu_callback_t func);
41 void rcu_barrier_tasks(void);
42 void rcu_barrier_tasks_rude(void);
43 void synchronize_rcu(void);
44 
45 #ifdef CONFIG_PREEMPT_RCU
46 
47 void __rcu_read_lock(void);
48 void __rcu_read_unlock(void);
49 
50 /*
51  * Defined as a macro as it is a very low level header included from
52  * areas that don't even know about current.  This gives the rcu_read_lock()
53  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
54  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
55  */
56 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
57 
58 #else /* #ifdef CONFIG_PREEMPT_RCU */
59 
60 #ifdef CONFIG_TINY_RCU
61 #define rcu_read_unlock_strict() do { } while (0)
62 #else
63 void rcu_read_unlock_strict(void);
64 #endif
65 
__rcu_read_lock(void)66 static inline void __rcu_read_lock(void)
67 {
68 	preempt_disable();
69 }
70 
__rcu_read_unlock(void)71 static inline void __rcu_read_unlock(void)
72 {
73 	preempt_enable();
74 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
75 		rcu_read_unlock_strict();
76 }
77 
rcu_preempt_depth(void)78 static inline int rcu_preempt_depth(void)
79 {
80 	return 0;
81 }
82 
83 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
84 
85 /* Internal to kernel */
86 void rcu_init(void);
87 extern int rcu_scheduler_active __read_mostly;
88 void rcu_sched_clock_irq(int user);
89 void rcu_report_dead(unsigned int cpu);
90 void rcutree_migrate_callbacks(int cpu);
91 
92 #ifdef CONFIG_TASKS_RCU_GENERIC
93 void rcu_init_tasks_generic(void);
94 #else
rcu_init_tasks_generic(void)95 static inline void rcu_init_tasks_generic(void) { }
96 #endif
97 
98 #ifdef CONFIG_RCU_STALL_COMMON
99 void rcu_sysrq_start(void);
100 void rcu_sysrq_end(void);
101 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)102 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)103 static inline void rcu_sysrq_end(void) { }
104 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
105 
106 #ifdef CONFIG_NO_HZ_FULL
107 void rcu_user_enter(void);
108 void rcu_user_exit(void);
109 #else
rcu_user_enter(void)110 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)111 static inline void rcu_user_exit(void) { }
112 #endif /* CONFIG_NO_HZ_FULL */
113 
114 #ifdef CONFIG_RCU_NOCB_CPU
115 void rcu_init_nohz(void);
116 int rcu_nocb_cpu_offload(int cpu);
117 int rcu_nocb_cpu_deoffload(int cpu);
118 void rcu_nocb_flush_deferred_wakeup(void);
119 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)120 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)121 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)122 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)123 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
124 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
125 
126 /**
127  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
128  * @a: Code that RCU needs to pay attention to.
129  *
130  * RCU read-side critical sections are forbidden in the inner idle loop,
131  * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
132  * will happily ignore any such read-side critical sections.  However,
133  * things like powertop need tracepoints in the inner idle loop.
134  *
135  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
136  * will tell RCU that it needs to pay attention, invoke its argument
137  * (in this example, calling the do_something_with_RCU() function),
138  * and then tell RCU to go back to ignoring this CPU.  It is permissible
139  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
140  * on the order of a million or so, even on 32-bit systems).  It is
141  * not legal to block within RCU_NONIDLE(), nor is it permissible to
142  * transfer control either into or out of RCU_NONIDLE()'s statement.
143  */
144 #define RCU_NONIDLE(a) \
145 	do { \
146 		rcu_irq_enter_irqson(); \
147 		do { a; } while (0); \
148 		rcu_irq_exit_irqson(); \
149 	} while (0)
150 
151 /*
152  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
153  * This is a macro rather than an inline function to avoid #include hell.
154  */
155 #ifdef CONFIG_TASKS_RCU_GENERIC
156 
157 # ifdef CONFIG_TASKS_RCU
158 # define rcu_tasks_classic_qs(t, preempt)				\
159 	do {								\
160 		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
161 			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
162 	} while (0)
163 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
164 void synchronize_rcu_tasks(void);
165 # else
166 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
167 # define call_rcu_tasks call_rcu
168 # define synchronize_rcu_tasks synchronize_rcu
169 # endif
170 
171 # ifdef CONFIG_TASKS_TRACE_RCU
172 # define rcu_tasks_trace_qs(t)						\
173 	do {								\
174 		if (!likely(READ_ONCE((t)->trc_reader_checked)) &&	\
175 		    !unlikely(READ_ONCE((t)->trc_reader_nesting))) {	\
176 			smp_store_release(&(t)->trc_reader_checked, true); \
177 			smp_mb(); /* Readers partitioned by store. */	\
178 		}							\
179 	} while (0)
180 # else
181 # define rcu_tasks_trace_qs(t) do { } while (0)
182 # endif
183 
184 #define rcu_tasks_qs(t, preempt)					\
185 do {									\
186 	rcu_tasks_classic_qs((t), (preempt));				\
187 	rcu_tasks_trace_qs((t));					\
188 } while (0)
189 
190 # ifdef CONFIG_TASKS_RUDE_RCU
191 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
192 void synchronize_rcu_tasks_rude(void);
193 # endif
194 
195 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
196 void exit_tasks_rcu_start(void);
197 void exit_tasks_rcu_finish(void);
198 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
199 #define rcu_tasks_qs(t, preempt) do { } while (0)
200 #define rcu_note_voluntary_context_switch(t) do { } while (0)
201 #define call_rcu_tasks call_rcu
202 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)203 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)204 static inline void exit_tasks_rcu_finish(void) { }
205 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
206 
207 /**
208  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
209  *
210  * This macro resembles cond_resched(), except that it is defined to
211  * report potential quiescent states to RCU-tasks even if the cond_resched()
212  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
213  */
214 #define cond_resched_tasks_rcu_qs() \
215 do { \
216 	rcu_tasks_qs(current, false); \
217 	cond_resched(); \
218 } while (0)
219 
220 /*
221  * Infrastructure to implement the synchronize_() primitives in
222  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
223  */
224 
225 #if defined(CONFIG_TREE_RCU)
226 #include <linux/rcutree.h>
227 #elif defined(CONFIG_TINY_RCU)
228 #include <linux/rcutiny.h>
229 #else
230 #error "Unknown RCU implementation specified to kernel configuration"
231 #endif
232 
233 /*
234  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
235  * are needed for dynamic initialization and destruction of rcu_head
236  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
237  * dynamic initialization and destruction of statically allocated rcu_head
238  * structures.  However, rcu_head structures allocated dynamically in the
239  * heap don't need any initialization.
240  */
241 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
242 void init_rcu_head(struct rcu_head *head);
243 void destroy_rcu_head(struct rcu_head *head);
244 void init_rcu_head_on_stack(struct rcu_head *head);
245 void destroy_rcu_head_on_stack(struct rcu_head *head);
246 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)247 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)248 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)249 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)250 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
251 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
252 
253 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
254 bool rcu_lockdep_current_cpu_online(void);
255 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)256 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
257 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
258 
259 extern struct lockdep_map rcu_lock_map;
260 extern struct lockdep_map rcu_bh_lock_map;
261 extern struct lockdep_map rcu_sched_lock_map;
262 extern struct lockdep_map rcu_callback_map;
263 
264 #ifdef CONFIG_DEBUG_LOCK_ALLOC
265 
rcu_lock_acquire(struct lockdep_map * map)266 static inline void rcu_lock_acquire(struct lockdep_map *map)
267 {
268 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
269 }
270 
rcu_lock_release(struct lockdep_map * map)271 static inline void rcu_lock_release(struct lockdep_map *map)
272 {
273 	lock_release(map, _THIS_IP_);
274 }
275 
276 int debug_lockdep_rcu_enabled(void);
277 int rcu_read_lock_held(void);
278 int rcu_read_lock_bh_held(void);
279 int rcu_read_lock_sched_held(void);
280 int rcu_read_lock_any_held(void);
281 
282 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
283 
284 # define rcu_lock_acquire(a)		do { } while (0)
285 # define rcu_lock_release(a)		do { } while (0)
286 
rcu_read_lock_held(void)287 static inline int rcu_read_lock_held(void)
288 {
289 	return 1;
290 }
291 
rcu_read_lock_bh_held(void)292 static inline int rcu_read_lock_bh_held(void)
293 {
294 	return 1;
295 }
296 
rcu_read_lock_sched_held(void)297 static inline int rcu_read_lock_sched_held(void)
298 {
299 	return !preemptible();
300 }
301 
rcu_read_lock_any_held(void)302 static inline int rcu_read_lock_any_held(void)
303 {
304 	return !preemptible();
305 }
306 
307 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
308 
309 #ifdef CONFIG_PROVE_RCU
310 
311 /**
312  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
313  * @c: condition to check
314  * @s: informative message
315  */
316 #define RCU_LOCKDEP_WARN(c, s)						\
317 	do {								\
318 		static bool __section(".data.unlikely") __warned;	\
319 		if ((c) && debug_lockdep_rcu_enabled() && !__warned) {	\
320 			__warned = true;				\
321 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
322 		}							\
323 	} while (0)
324 
325 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)326 static inline void rcu_preempt_sleep_check(void)
327 {
328 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
329 			 "Illegal context switch in RCU read-side critical section");
330 }
331 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)332 static inline void rcu_preempt_sleep_check(void) { }
333 #endif /* #else #ifdef CONFIG_PROVE_RCU */
334 
335 #define rcu_sleep_check()						\
336 	do {								\
337 		rcu_preempt_sleep_check();				\
338 		if (!IS_ENABLED(CONFIG_PREEMPT_RT))			\
339 		    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
340 				 "Illegal context switch in RCU-bh read-side critical section"); \
341 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
342 				 "Illegal context switch in RCU-sched read-side critical section"); \
343 	} while (0)
344 
345 #else /* #ifdef CONFIG_PROVE_RCU */
346 
347 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
348 #define rcu_sleep_check() do { } while (0)
349 
350 #endif /* #else #ifdef CONFIG_PROVE_RCU */
351 
352 /*
353  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
354  * and rcu_assign_pointer().  Some of these could be folded into their
355  * callers, but they are left separate in order to ease introduction of
356  * multiple pointers markings to match different RCU implementations
357  * (e.g., __srcu), should this make sense in the future.
358  */
359 
360 #ifdef __CHECKER__
361 #define rcu_check_sparse(p, space) \
362 	((void)(((typeof(*p) space *)p) == p))
363 #else /* #ifdef __CHECKER__ */
364 #define rcu_check_sparse(p, space)
365 #endif /* #else #ifdef __CHECKER__ */
366 
367 /**
368  * unrcu_pointer - mark a pointer as not being RCU protected
369  * @p: pointer needing to lose its __rcu property
370  *
371  * Converts @p from an __rcu pointer to a __kernel pointer.
372  * This allows an __rcu pointer to be used with xchg() and friends.
373  */
374 #define unrcu_pointer(p)						\
375 ({									\
376 	typeof(*p) *_________p1 = (typeof(*p) *__force)(p);		\
377 	rcu_check_sparse(p, __rcu);					\
378 	((typeof(*p) __force __kernel *)(_________p1)); 		\
379 })
380 
381 #define __rcu_access_pointer(p, space) \
382 ({ \
383 	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
384 	rcu_check_sparse(p, space); \
385 	((typeof(*p) __force __kernel *)(_________p1)); \
386 })
387 #define __rcu_dereference_check(p, c, space) \
388 ({ \
389 	/* Dependency order vs. p above. */ \
390 	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
391 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
392 	rcu_check_sparse(p, space); \
393 	((typeof(*p) __force __kernel *)(________p1)); \
394 })
395 #define __rcu_dereference_protected(p, c, space) \
396 ({ \
397 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
398 	rcu_check_sparse(p, space); \
399 	((typeof(*p) __force __kernel *)(p)); \
400 })
401 #define rcu_dereference_raw(p) \
402 ({ \
403 	/* Dependency order vs. p above. */ \
404 	typeof(p) ________p1 = READ_ONCE(p); \
405 	((typeof(*p) __force __kernel *)(________p1)); \
406 })
407 
408 /**
409  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
410  * @v: The value to statically initialize with.
411  */
412 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
413 
414 /**
415  * rcu_assign_pointer() - assign to RCU-protected pointer
416  * @p: pointer to assign to
417  * @v: value to assign (publish)
418  *
419  * Assigns the specified value to the specified RCU-protected
420  * pointer, ensuring that any concurrent RCU readers will see
421  * any prior initialization.
422  *
423  * Inserts memory barriers on architectures that require them
424  * (which is most of them), and also prevents the compiler from
425  * reordering the code that initializes the structure after the pointer
426  * assignment.  More importantly, this call documents which pointers
427  * will be dereferenced by RCU read-side code.
428  *
429  * In some special cases, you may use RCU_INIT_POINTER() instead
430  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
431  * to the fact that it does not constrain either the CPU or the compiler.
432  * That said, using RCU_INIT_POINTER() when you should have used
433  * rcu_assign_pointer() is a very bad thing that results in
434  * impossible-to-diagnose memory corruption.  So please be careful.
435  * See the RCU_INIT_POINTER() comment header for details.
436  *
437  * Note that rcu_assign_pointer() evaluates each of its arguments only
438  * once, appearances notwithstanding.  One of the "extra" evaluations
439  * is in typeof() and the other visible only to sparse (__CHECKER__),
440  * neither of which actually execute the argument.  As with most cpp
441  * macros, this execute-arguments-only-once property is important, so
442  * please be careful when making changes to rcu_assign_pointer() and the
443  * other macros that it invokes.
444  */
445 #define rcu_assign_pointer(p, v)					      \
446 do {									      \
447 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
448 	rcu_check_sparse(p, __rcu);					      \
449 									      \
450 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
451 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
452 	else								      \
453 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
454 } while (0)
455 
456 /**
457  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
458  * @rcu_ptr: RCU pointer, whose old value is returned
459  * @ptr: regular pointer
460  * @c: the lockdep conditions under which the dereference will take place
461  *
462  * Perform a replacement, where @rcu_ptr is an RCU-annotated
463  * pointer and @c is the lockdep argument that is passed to the
464  * rcu_dereference_protected() call used to read that pointer.  The old
465  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
466  */
467 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
468 ({									\
469 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
470 	rcu_assign_pointer((rcu_ptr), (ptr));				\
471 	__tmp;								\
472 })
473 
474 /**
475  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
476  * @p: The pointer to read
477  *
478  * Return the value of the specified RCU-protected pointer, but omit the
479  * lockdep checks for being in an RCU read-side critical section.  This is
480  * useful when the value of this pointer is accessed, but the pointer is
481  * not dereferenced, for example, when testing an RCU-protected pointer
482  * against NULL.  Although rcu_access_pointer() may also be used in cases
483  * where update-side locks prevent the value of the pointer from changing,
484  * you should instead use rcu_dereference_protected() for this use case.
485  *
486  * It is also permissible to use rcu_access_pointer() when read-side
487  * access to the pointer was removed at least one grace period ago, as
488  * is the case in the context of the RCU callback that is freeing up
489  * the data, or after a synchronize_rcu() returns.  This can be useful
490  * when tearing down multi-linked structures after a grace period
491  * has elapsed.
492  */
493 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
494 
495 /**
496  * rcu_dereference_check() - rcu_dereference with debug checking
497  * @p: The pointer to read, prior to dereferencing
498  * @c: The conditions under which the dereference will take place
499  *
500  * Do an rcu_dereference(), but check that the conditions under which the
501  * dereference will take place are correct.  Typically the conditions
502  * indicate the various locking conditions that should be held at that
503  * point.  The check should return true if the conditions are satisfied.
504  * An implicit check for being in an RCU read-side critical section
505  * (rcu_read_lock()) is included.
506  *
507  * For example:
508  *
509  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
510  *
511  * could be used to indicate to lockdep that foo->bar may only be dereferenced
512  * if either rcu_read_lock() is held, or that the lock required to replace
513  * the bar struct at foo->bar is held.
514  *
515  * Note that the list of conditions may also include indications of when a lock
516  * need not be held, for example during initialisation or destruction of the
517  * target struct:
518  *
519  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
520  *					      atomic_read(&foo->usage) == 0);
521  *
522  * Inserts memory barriers on architectures that require them
523  * (currently only the Alpha), prevents the compiler from refetching
524  * (and from merging fetches), and, more importantly, documents exactly
525  * which pointers are protected by RCU and checks that the pointer is
526  * annotated as __rcu.
527  */
528 #define rcu_dereference_check(p, c) \
529 	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
530 
531 /**
532  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
533  * @p: The pointer to read, prior to dereferencing
534  * @c: The conditions under which the dereference will take place
535  *
536  * This is the RCU-bh counterpart to rcu_dereference_check().  However,
537  * please note that starting in v5.0 kernels, vanilla RCU grace periods
538  * wait for local_bh_disable() regions of code in addition to regions of
539  * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
540  * that synchronize_rcu(), call_rcu, and friends all take not only
541  * rcu_read_lock() but also rcu_read_lock_bh() into account.
542  */
543 #define rcu_dereference_bh_check(p, c) \
544 	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
545 
546 /**
547  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
548  * @p: The pointer to read, prior to dereferencing
549  * @c: The conditions under which the dereference will take place
550  *
551  * This is the RCU-sched counterpart to rcu_dereference_check().
552  * However, please note that starting in v5.0 kernels, vanilla RCU grace
553  * periods wait for preempt_disable() regions of code in addition to
554  * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
555  * This means that synchronize_rcu(), call_rcu, and friends all take not
556  * only rcu_read_lock() but also rcu_read_lock_sched() into account.
557  */
558 #define rcu_dereference_sched_check(p, c) \
559 	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
560 				__rcu)
561 
562 /*
563  * The tracing infrastructure traces RCU (we want that), but unfortunately
564  * some of the RCU checks causes tracing to lock up the system.
565  *
566  * The no-tracing version of rcu_dereference_raw() must not call
567  * rcu_read_lock_held().
568  */
569 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
570 
571 /**
572  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
573  * @p: The pointer to read, prior to dereferencing
574  * @c: The conditions under which the dereference will take place
575  *
576  * Return the value of the specified RCU-protected pointer, but omit
577  * the READ_ONCE().  This is useful in cases where update-side locks
578  * prevent the value of the pointer from changing.  Please note that this
579  * primitive does *not* prevent the compiler from repeating this reference
580  * or combining it with other references, so it should not be used without
581  * protection of appropriate locks.
582  *
583  * This function is only for update-side use.  Using this function
584  * when protected only by rcu_read_lock() will result in infrequent
585  * but very ugly failures.
586  */
587 #define rcu_dereference_protected(p, c) \
588 	__rcu_dereference_protected((p), (c), __rcu)
589 
590 
591 /**
592  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
593  * @p: The pointer to read, prior to dereferencing
594  *
595  * This is a simple wrapper around rcu_dereference_check().
596  */
597 #define rcu_dereference(p) rcu_dereference_check(p, 0)
598 
599 /**
600  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
601  * @p: The pointer to read, prior to dereferencing
602  *
603  * Makes rcu_dereference_check() do the dirty work.
604  */
605 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
606 
607 /**
608  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
609  * @p: The pointer to read, prior to dereferencing
610  *
611  * Makes rcu_dereference_check() do the dirty work.
612  */
613 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
614 
615 /**
616  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
617  * @p: The pointer to hand off
618  *
619  * This is simply an identity function, but it documents where a pointer
620  * is handed off from RCU to some other synchronization mechanism, for
621  * example, reference counting or locking.  In C11, it would map to
622  * kill_dependency().  It could be used as follows::
623  *
624  *	rcu_read_lock();
625  *	p = rcu_dereference(gp);
626  *	long_lived = is_long_lived(p);
627  *	if (long_lived) {
628  *		if (!atomic_inc_not_zero(p->refcnt))
629  *			long_lived = false;
630  *		else
631  *			p = rcu_pointer_handoff(p);
632  *	}
633  *	rcu_read_unlock();
634  */
635 #define rcu_pointer_handoff(p) (p)
636 
637 /**
638  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
639  *
640  * When synchronize_rcu() is invoked on one CPU while other CPUs
641  * are within RCU read-side critical sections, then the
642  * synchronize_rcu() is guaranteed to block until after all the other
643  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
644  * on one CPU while other CPUs are within RCU read-side critical
645  * sections, invocation of the corresponding RCU callback is deferred
646  * until after the all the other CPUs exit their critical sections.
647  *
648  * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
649  * wait for regions of code with preemption disabled, including regions of
650  * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
651  * define synchronize_sched(), only code enclosed within rcu_read_lock()
652  * and rcu_read_unlock() are guaranteed to be waited for.
653  *
654  * Note, however, that RCU callbacks are permitted to run concurrently
655  * with new RCU read-side critical sections.  One way that this can happen
656  * is via the following sequence of events: (1) CPU 0 enters an RCU
657  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
658  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
659  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
660  * callback is invoked.  This is legal, because the RCU read-side critical
661  * section that was running concurrently with the call_rcu() (and which
662  * therefore might be referencing something that the corresponding RCU
663  * callback would free up) has completed before the corresponding
664  * RCU callback is invoked.
665  *
666  * RCU read-side critical sections may be nested.  Any deferred actions
667  * will be deferred until the outermost RCU read-side critical section
668  * completes.
669  *
670  * You can avoid reading and understanding the next paragraph by
671  * following this rule: don't put anything in an rcu_read_lock() RCU
672  * read-side critical section that would block in a !PREEMPTION kernel.
673  * But if you want the full story, read on!
674  *
675  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
676  * it is illegal to block while in an RCU read-side critical section.
677  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
678  * kernel builds, RCU read-side critical sections may be preempted,
679  * but explicit blocking is illegal.  Finally, in preemptible RCU
680  * implementations in real-time (with -rt patchset) kernel builds, RCU
681  * read-side critical sections may be preempted and they may also block, but
682  * only when acquiring spinlocks that are subject to priority inheritance.
683  */
rcu_read_lock(void)684 static __always_inline void rcu_read_lock(void)
685 {
686 	__rcu_read_lock();
687 	__acquire(RCU);
688 	rcu_lock_acquire(&rcu_lock_map);
689 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
690 			 "rcu_read_lock() used illegally while idle");
691 }
692 
693 /*
694  * So where is rcu_write_lock()?  It does not exist, as there is no
695  * way for writers to lock out RCU readers.  This is a feature, not
696  * a bug -- this property is what provides RCU's performance benefits.
697  * Of course, writers must coordinate with each other.  The normal
698  * spinlock primitives work well for this, but any other technique may be
699  * used as well.  RCU does not care how the writers keep out of each
700  * others' way, as long as they do so.
701  */
702 
703 /**
704  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
705  *
706  * In almost all situations, rcu_read_unlock() is immune from deadlock.
707  * In recent kernels that have consolidated synchronize_sched() and
708  * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
709  * also extends to the scheduler's runqueue and priority-inheritance
710  * spinlocks, courtesy of the quiescent-state deferral that is carried
711  * out when rcu_read_unlock() is invoked with interrupts disabled.
712  *
713  * See rcu_read_lock() for more information.
714  */
rcu_read_unlock(void)715 static inline void rcu_read_unlock(void)
716 {
717 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
718 			 "rcu_read_unlock() used illegally while idle");
719 	__release(RCU);
720 	__rcu_read_unlock();
721 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
722 }
723 
724 /**
725  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
726  *
727  * This is equivalent to rcu_read_lock(), but also disables softirqs.
728  * Note that anything else that disables softirqs can also serve as an RCU
729  * read-side critical section.  However, please note that this equivalence
730  * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
731  * rcu_read_lock_bh() were unrelated.
732  *
733  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
734  * must occur in the same context, for example, it is illegal to invoke
735  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
736  * was invoked from some other task.
737  */
rcu_read_lock_bh(void)738 static inline void rcu_read_lock_bh(void)
739 {
740 	local_bh_disable();
741 	__acquire(RCU_BH);
742 	rcu_lock_acquire(&rcu_bh_lock_map);
743 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
744 			 "rcu_read_lock_bh() used illegally while idle");
745 }
746 
747 /**
748  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
749  *
750  * See rcu_read_lock_bh() for more information.
751  */
rcu_read_unlock_bh(void)752 static inline void rcu_read_unlock_bh(void)
753 {
754 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
755 			 "rcu_read_unlock_bh() used illegally while idle");
756 	rcu_lock_release(&rcu_bh_lock_map);
757 	__release(RCU_BH);
758 	local_bh_enable();
759 }
760 
761 /**
762  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
763  *
764  * This is equivalent to rcu_read_lock(), but also disables preemption.
765  * Read-side critical sections can also be introduced by anything else that
766  * disables preemption, including local_irq_disable() and friends.  However,
767  * please note that the equivalence to rcu_read_lock() applies only to
768  * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
769  * were unrelated.
770  *
771  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
772  * must occur in the same context, for example, it is illegal to invoke
773  * rcu_read_unlock_sched() from process context if the matching
774  * rcu_read_lock_sched() was invoked from an NMI handler.
775  */
rcu_read_lock_sched(void)776 static inline void rcu_read_lock_sched(void)
777 {
778 	preempt_disable();
779 	__acquire(RCU_SCHED);
780 	rcu_lock_acquire(&rcu_sched_lock_map);
781 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
782 			 "rcu_read_lock_sched() used illegally while idle");
783 }
784 
785 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)786 static inline notrace void rcu_read_lock_sched_notrace(void)
787 {
788 	preempt_disable_notrace();
789 	__acquire(RCU_SCHED);
790 }
791 
792 /**
793  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
794  *
795  * See rcu_read_lock_sched() for more information.
796  */
rcu_read_unlock_sched(void)797 static inline void rcu_read_unlock_sched(void)
798 {
799 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
800 			 "rcu_read_unlock_sched() used illegally while idle");
801 	rcu_lock_release(&rcu_sched_lock_map);
802 	__release(RCU_SCHED);
803 	preempt_enable();
804 }
805 
806 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)807 static inline notrace void rcu_read_unlock_sched_notrace(void)
808 {
809 	__release(RCU_SCHED);
810 	preempt_enable_notrace();
811 }
812 
813 /**
814  * RCU_INIT_POINTER() - initialize an RCU protected pointer
815  * @p: The pointer to be initialized.
816  * @v: The value to initialized the pointer to.
817  *
818  * Initialize an RCU-protected pointer in special cases where readers
819  * do not need ordering constraints on the CPU or the compiler.  These
820  * special cases are:
821  *
822  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
823  * 2.	The caller has taken whatever steps are required to prevent
824  *	RCU readers from concurrently accessing this pointer *or*
825  * 3.	The referenced data structure has already been exposed to
826  *	readers either at compile time or via rcu_assign_pointer() *and*
827  *
828  *	a.	You have not made *any* reader-visible changes to
829  *		this structure since then *or*
830  *	b.	It is OK for readers accessing this structure from its
831  *		new location to see the old state of the structure.  (For
832  *		example, the changes were to statistical counters or to
833  *		other state where exact synchronization is not required.)
834  *
835  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
836  * result in impossible-to-diagnose memory corruption.  As in the structures
837  * will look OK in crash dumps, but any concurrent RCU readers might
838  * see pre-initialized values of the referenced data structure.  So
839  * please be very careful how you use RCU_INIT_POINTER()!!!
840  *
841  * If you are creating an RCU-protected linked structure that is accessed
842  * by a single external-to-structure RCU-protected pointer, then you may
843  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
844  * pointers, but you must use rcu_assign_pointer() to initialize the
845  * external-to-structure pointer *after* you have completely initialized
846  * the reader-accessible portions of the linked structure.
847  *
848  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
849  * ordering guarantees for either the CPU or the compiler.
850  */
851 #define RCU_INIT_POINTER(p, v) \
852 	do { \
853 		rcu_check_sparse(p, __rcu); \
854 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
855 	} while (0)
856 
857 /**
858  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
859  * @p: The pointer to be initialized.
860  * @v: The value to initialized the pointer to.
861  *
862  * GCC-style initialization for an RCU-protected pointer in a structure field.
863  */
864 #define RCU_POINTER_INITIALIZER(p, v) \
865 		.p = RCU_INITIALIZER(v)
866 
867 /*
868  * Does the specified offset indicate that the corresponding rcu_head
869  * structure can be handled by kvfree_rcu()?
870  */
871 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
872 
873 /**
874  * kfree_rcu() - kfree an object after a grace period.
875  * @ptr: pointer to kfree for both single- and double-argument invocations.
876  * @rhf: the name of the struct rcu_head within the type of @ptr,
877  *       but only for double-argument invocations.
878  *
879  * Many rcu callbacks functions just call kfree() on the base structure.
880  * These functions are trivial, but their size adds up, and furthermore
881  * when they are used in a kernel module, that module must invoke the
882  * high-latency rcu_barrier() function at module-unload time.
883  *
884  * The kfree_rcu() function handles this issue.  Rather than encoding a
885  * function address in the embedded rcu_head structure, kfree_rcu() instead
886  * encodes the offset of the rcu_head structure within the base structure.
887  * Because the functions are not allowed in the low-order 4096 bytes of
888  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
889  * If the offset is larger than 4095 bytes, a compile-time error will
890  * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
891  * either fall back to use of call_rcu() or rearrange the structure to
892  * position the rcu_head structure into the first 4096 bytes.
893  *
894  * Note that the allowable offset might decrease in the future, for example,
895  * to allow something like kmem_cache_free_rcu().
896  *
897  * The BUILD_BUG_ON check must not involve any function calls, hence the
898  * checks are done in macros here.
899  */
900 #define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
901 
902 /**
903  * kvfree_rcu() - kvfree an object after a grace period.
904  *
905  * This macro consists of one or two arguments and it is
906  * based on whether an object is head-less or not. If it
907  * has a head then a semantic stays the same as it used
908  * to be before:
909  *
910  *     kvfree_rcu(ptr, rhf);
911  *
912  * where @ptr is a pointer to kvfree(), @rhf is the name
913  * of the rcu_head structure within the type of @ptr.
914  *
915  * When it comes to head-less variant, only one argument
916  * is passed and that is just a pointer which has to be
917  * freed after a grace period. Therefore the semantic is
918  *
919  *     kvfree_rcu(ptr);
920  *
921  * where @ptr is a pointer to kvfree().
922  *
923  * Please note, head-less way of freeing is permitted to
924  * use from a context that has to follow might_sleep()
925  * annotation. Otherwise, please switch and embed the
926  * rcu_head structure within the type of @ptr.
927  */
928 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,		\
929 	kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
930 
931 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
932 #define kvfree_rcu_arg_2(ptr, rhf)					\
933 do {									\
934 	typeof (ptr) ___p = (ptr);					\
935 									\
936 	if (___p) {									\
937 		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));	\
938 		kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long)		\
939 			(offsetof(typeof(*(ptr)), rhf)));				\
940 	}										\
941 } while (0)
942 
943 #define kvfree_rcu_arg_1(ptr)					\
944 do {								\
945 	typeof(ptr) ___p = (ptr);				\
946 								\
947 	if (___p)						\
948 		kvfree_call_rcu(NULL, (rcu_callback_t) (___p));	\
949 } while (0)
950 
951 /*
952  * Place this after a lock-acquisition primitive to guarantee that
953  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
954  * if the UNLOCK and LOCK are executed by the same CPU or if the
955  * UNLOCK and LOCK operate on the same lock variable.
956  */
957 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
958 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
959 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
960 #define smp_mb__after_unlock_lock()	do { } while (0)
961 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
962 
963 
964 /* Has the specified rcu_head structure been handed to call_rcu()? */
965 
966 /**
967  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
968  * @rhp: The rcu_head structure to initialize.
969  *
970  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
971  * given rcu_head structure has already been passed to call_rcu(), then
972  * you must also invoke this rcu_head_init() function on it just after
973  * allocating that structure.  Calls to this function must not race with
974  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
975  */
rcu_head_init(struct rcu_head * rhp)976 static inline void rcu_head_init(struct rcu_head *rhp)
977 {
978 	rhp->func = (rcu_callback_t)~0L;
979 }
980 
981 /**
982  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
983  * @rhp: The rcu_head structure to test.
984  * @f: The function passed to call_rcu() along with @rhp.
985  *
986  * Returns @true if the @rhp has been passed to call_rcu() with @func,
987  * and @false otherwise.  Emits a warning in any other case, including
988  * the case where @rhp has already been invoked after a grace period.
989  * Calls to this function must not race with callback invocation.  One way
990  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
991  * in an RCU read-side critical section that includes a read-side fetch
992  * of the pointer to the structure containing @rhp.
993  */
994 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)995 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
996 {
997 	rcu_callback_t func = READ_ONCE(rhp->func);
998 
999 	if (func == f)
1000 		return true;
1001 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1002 	return false;
1003 }
1004 
1005 /* kernel/ksysfs.c definitions */
1006 extern int rcu_expedited;
1007 extern int rcu_normal;
1008 
1009 #endif /* __LINUX_RCUPDATE_H */
1010