1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests related to logic bugs (e.g. bad dereferences,
4  * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5  * lockups) along with other things that don't fit well into existing LKDTM
6  * test source files.
7  */
8 #include "lkdtm.h"
9 #include <linux/list.h>
10 #include <linux/sched.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/uaccess.h>
14 #include <linux/slab.h>
15 
16 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
17 #include <asm/desc.h>
18 #endif
19 
20 struct lkdtm_list {
21 	struct list_head node;
22 };
23 
24 /*
25  * Make sure our attempts to over run the kernel stack doesn't trigger
26  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
27  * recurse past the end of THREAD_SIZE by default.
28  */
29 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
30 #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
31 #else
32 #define REC_STACK_SIZE (THREAD_SIZE / 8)
33 #endif
34 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
35 
36 static int recur_count = REC_NUM_DEFAULT;
37 
38 static DEFINE_SPINLOCK(lock_me_up);
39 
40 /*
41  * Make sure compiler does not optimize this function or stack frame away:
42  * - function marked noinline
43  * - stack variables are marked volatile
44  * - stack variables are written (memset()) and read (pr_info())
45  * - function has external effects (pr_info())
46  * */
recursive_loop(int remaining)47 static int noinline recursive_loop(int remaining)
48 {
49 	volatile char buf[REC_STACK_SIZE];
50 
51 	memset((void *)buf, remaining & 0xFF, sizeof(buf));
52 	pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
53 		recur_count);
54 	if (!remaining)
55 		return 0;
56 	else
57 		return recursive_loop(remaining - 1);
58 }
59 
60 /* If the depth is negative, use the default, otherwise keep parameter. */
lkdtm_bugs_init(int * recur_param)61 void __init lkdtm_bugs_init(int *recur_param)
62 {
63 	if (*recur_param < 0)
64 		*recur_param = recur_count;
65 	else
66 		recur_count = *recur_param;
67 }
68 
lkdtm_PANIC(void)69 void lkdtm_PANIC(void)
70 {
71 	panic("dumptest");
72 }
73 
lkdtm_BUG(void)74 void lkdtm_BUG(void)
75 {
76 	BUG();
77 }
78 
79 static int warn_counter;
80 
lkdtm_WARNING(void)81 void lkdtm_WARNING(void)
82 {
83 	WARN_ON(++warn_counter);
84 }
85 
lkdtm_WARNING_MESSAGE(void)86 void lkdtm_WARNING_MESSAGE(void)
87 {
88 	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
89 }
90 
lkdtm_EXCEPTION(void)91 void lkdtm_EXCEPTION(void)
92 {
93 	*((volatile int *) 0) = 0;
94 }
95 
lkdtm_LOOP(void)96 void lkdtm_LOOP(void)
97 {
98 	for (;;)
99 		;
100 }
101 
lkdtm_EXHAUST_STACK(void)102 void lkdtm_EXHAUST_STACK(void)
103 {
104 	pr_info("Calling function with %lu frame size to depth %d ...\n",
105 		REC_STACK_SIZE, recur_count);
106 	recursive_loop(recur_count);
107 	pr_info("FAIL: survived without exhausting stack?!\n");
108 }
109 
__lkdtm_CORRUPT_STACK(void * stack)110 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
111 {
112 	memset(stack, '\xff', 64);
113 }
114 
115 /* This should trip the stack canary, not corrupt the return address. */
lkdtm_CORRUPT_STACK(void)116 noinline void lkdtm_CORRUPT_STACK(void)
117 {
118 	/* Use default char array length that triggers stack protection. */
119 	char data[8] __aligned(sizeof(void *));
120 
121 	pr_info("Corrupting stack containing char array ...\n");
122 	__lkdtm_CORRUPT_STACK((void *)&data);
123 }
124 
125 /* Same as above but will only get a canary with -fstack-protector-strong */
lkdtm_CORRUPT_STACK_STRONG(void)126 noinline void lkdtm_CORRUPT_STACK_STRONG(void)
127 {
128 	union {
129 		unsigned short shorts[4];
130 		unsigned long *ptr;
131 	} data __aligned(sizeof(void *));
132 
133 	pr_info("Corrupting stack containing union ...\n");
134 	__lkdtm_CORRUPT_STACK((void *)&data);
135 }
136 
137 static pid_t stack_pid;
138 static unsigned long stack_addr;
139 
lkdtm_REPORT_STACK(void)140 void lkdtm_REPORT_STACK(void)
141 {
142 	volatile uintptr_t magic;
143 	pid_t pid = task_pid_nr(current);
144 
145 	if (pid != stack_pid) {
146 		pr_info("Starting stack offset tracking for pid %d\n", pid);
147 		stack_pid = pid;
148 		stack_addr = (uintptr_t)&magic;
149 	}
150 
151 	pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
152 }
153 
154 static pid_t stack_canary_pid;
155 static unsigned long stack_canary;
156 static unsigned long stack_canary_offset;
157 
__lkdtm_REPORT_STACK_CANARY(void * stack)158 static noinline void __lkdtm_REPORT_STACK_CANARY(void *stack)
159 {
160 	int i = 0;
161 	pid_t pid = task_pid_nr(current);
162 	unsigned long *canary = (unsigned long *)stack;
163 	unsigned long current_offset = 0, init_offset = 0;
164 
165 	/* Do our best to find the canary in a 16 word window ... */
166 	for (i = 1; i < 16; i++) {
167 		canary = (unsigned long *)stack + i;
168 #ifdef CONFIG_STACKPROTECTOR
169 		if (*canary == current->stack_canary)
170 			current_offset = i;
171 		if (*canary == init_task.stack_canary)
172 			init_offset = i;
173 #endif
174 	}
175 
176 	if (current_offset == 0) {
177 		/*
178 		 * If the canary doesn't match what's in the task_struct,
179 		 * we're either using a global canary or the stack frame
180 		 * layout changed.
181 		 */
182 		if (init_offset != 0) {
183 			pr_err("FAIL: global stack canary found at offset %ld (canary for pid %d matches init_task's)!\n",
184 			       init_offset, pid);
185 		} else {
186 			pr_warn("FAIL: did not correctly locate stack canary :(\n");
187 			pr_expected_config(CONFIG_STACKPROTECTOR);
188 		}
189 
190 		return;
191 	} else if (init_offset != 0) {
192 		pr_warn("WARNING: found both current and init_task canaries nearby?!\n");
193 	}
194 
195 	canary = (unsigned long *)stack + current_offset;
196 	if (stack_canary_pid == 0) {
197 		stack_canary = *canary;
198 		stack_canary_pid = pid;
199 		stack_canary_offset = current_offset;
200 		pr_info("Recorded stack canary for pid %d at offset %ld\n",
201 			stack_canary_pid, stack_canary_offset);
202 	} else if (pid == stack_canary_pid) {
203 		pr_warn("ERROR: saw pid %d again -- please use a new pid\n", pid);
204 	} else {
205 		if (current_offset != stack_canary_offset) {
206 			pr_warn("ERROR: canary offset changed from %ld to %ld!?\n",
207 				stack_canary_offset, current_offset);
208 			return;
209 		}
210 
211 		if (*canary == stack_canary) {
212 			pr_warn("FAIL: canary identical for pid %d and pid %d at offset %ld!\n",
213 				stack_canary_pid, pid, current_offset);
214 		} else {
215 			pr_info("ok: stack canaries differ between pid %d and pid %d at offset %ld.\n",
216 				stack_canary_pid, pid, current_offset);
217 			/* Reset the test. */
218 			stack_canary_pid = 0;
219 		}
220 	}
221 }
222 
lkdtm_REPORT_STACK_CANARY(void)223 void lkdtm_REPORT_STACK_CANARY(void)
224 {
225 	/* Use default char array length that triggers stack protection. */
226 	char data[8] __aligned(sizeof(void *)) = { };
227 
228 	__lkdtm_REPORT_STACK_CANARY((void *)&data);
229 }
230 
lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)231 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
232 {
233 	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
234 	u32 *p;
235 	u32 val = 0x12345678;
236 
237 	p = (u32 *)(data + 1);
238 	if (*p == 0)
239 		val = 0x87654321;
240 	*p = val;
241 
242 	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
243 		pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
244 }
245 
lkdtm_SOFTLOCKUP(void)246 void lkdtm_SOFTLOCKUP(void)
247 {
248 	preempt_disable();
249 	for (;;)
250 		cpu_relax();
251 }
252 
lkdtm_HARDLOCKUP(void)253 void lkdtm_HARDLOCKUP(void)
254 {
255 	local_irq_disable();
256 	for (;;)
257 		cpu_relax();
258 }
259 
lkdtm_SPINLOCKUP(void)260 void lkdtm_SPINLOCKUP(void)
261 {
262 	/* Must be called twice to trigger. */
263 	spin_lock(&lock_me_up);
264 	/* Let sparse know we intended to exit holding the lock. */
265 	__release(&lock_me_up);
266 }
267 
lkdtm_HUNG_TASK(void)268 void lkdtm_HUNG_TASK(void)
269 {
270 	set_current_state(TASK_UNINTERRUPTIBLE);
271 	schedule();
272 }
273 
274 volatile unsigned int huge = INT_MAX - 2;
275 volatile unsigned int ignored;
276 
lkdtm_OVERFLOW_SIGNED(void)277 void lkdtm_OVERFLOW_SIGNED(void)
278 {
279 	int value;
280 
281 	value = huge;
282 	pr_info("Normal signed addition ...\n");
283 	value += 1;
284 	ignored = value;
285 
286 	pr_info("Overflowing signed addition ...\n");
287 	value += 4;
288 	ignored = value;
289 }
290 
291 
lkdtm_OVERFLOW_UNSIGNED(void)292 void lkdtm_OVERFLOW_UNSIGNED(void)
293 {
294 	unsigned int value;
295 
296 	value = huge;
297 	pr_info("Normal unsigned addition ...\n");
298 	value += 1;
299 	ignored = value;
300 
301 	pr_info("Overflowing unsigned addition ...\n");
302 	value += 4;
303 	ignored = value;
304 }
305 
306 /* Intentionally using old-style flex array definition of 1 byte. */
307 struct array_bounds_flex_array {
308 	int one;
309 	int two;
310 	char data[1];
311 };
312 
313 struct array_bounds {
314 	int one;
315 	int two;
316 	char data[8];
317 	int three;
318 };
319 
lkdtm_ARRAY_BOUNDS(void)320 void lkdtm_ARRAY_BOUNDS(void)
321 {
322 	struct array_bounds_flex_array *not_checked;
323 	struct array_bounds *checked;
324 	volatile int i;
325 
326 	not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
327 	checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
328 
329 	pr_info("Array access within bounds ...\n");
330 	/* For both, touch all bytes in the actual member size. */
331 	for (i = 0; i < sizeof(checked->data); i++)
332 		checked->data[i] = 'A';
333 	/*
334 	 * For the uninstrumented flex array member, also touch 1 byte
335 	 * beyond to verify it is correctly uninstrumented.
336 	 */
337 	for (i = 0; i < sizeof(not_checked->data) + 1; i++)
338 		not_checked->data[i] = 'A';
339 
340 	pr_info("Array access beyond bounds ...\n");
341 	for (i = 0; i < sizeof(checked->data) + 1; i++)
342 		checked->data[i] = 'B';
343 
344 	kfree(not_checked);
345 	kfree(checked);
346 	pr_err("FAIL: survived array bounds overflow!\n");
347 	pr_expected_config(CONFIG_UBSAN_BOUNDS);
348 }
349 
lkdtm_CORRUPT_LIST_ADD(void)350 void lkdtm_CORRUPT_LIST_ADD(void)
351 {
352 	/*
353 	 * Initially, an empty list via LIST_HEAD:
354 	 *	test_head.next = &test_head
355 	 *	test_head.prev = &test_head
356 	 */
357 	LIST_HEAD(test_head);
358 	struct lkdtm_list good, bad;
359 	void *target[2] = { };
360 	void *redirection = &target;
361 
362 	pr_info("attempting good list addition\n");
363 
364 	/*
365 	 * Adding to the list performs these actions:
366 	 *	test_head.next->prev = &good.node
367 	 *	good.node.next = test_head.next
368 	 *	good.node.prev = test_head
369 	 *	test_head.next = good.node
370 	 */
371 	list_add(&good.node, &test_head);
372 
373 	pr_info("attempting corrupted list addition\n");
374 	/*
375 	 * In simulating this "write what where" primitive, the "what" is
376 	 * the address of &bad.node, and the "where" is the address held
377 	 * by "redirection".
378 	 */
379 	test_head.next = redirection;
380 	list_add(&bad.node, &test_head);
381 
382 	if (target[0] == NULL && target[1] == NULL)
383 		pr_err("Overwrite did not happen, but no BUG?!\n");
384 	else {
385 		pr_err("list_add() corruption not detected!\n");
386 		pr_expected_config(CONFIG_DEBUG_LIST);
387 	}
388 }
389 
lkdtm_CORRUPT_LIST_DEL(void)390 void lkdtm_CORRUPT_LIST_DEL(void)
391 {
392 	LIST_HEAD(test_head);
393 	struct lkdtm_list item;
394 	void *target[2] = { };
395 	void *redirection = &target;
396 
397 	list_add(&item.node, &test_head);
398 
399 	pr_info("attempting good list removal\n");
400 	list_del(&item.node);
401 
402 	pr_info("attempting corrupted list removal\n");
403 	list_add(&item.node, &test_head);
404 
405 	/* As with the list_add() test above, this corrupts "next". */
406 	item.node.next = redirection;
407 	list_del(&item.node);
408 
409 	if (target[0] == NULL && target[1] == NULL)
410 		pr_err("Overwrite did not happen, but no BUG?!\n");
411 	else {
412 		pr_err("list_del() corruption not detected!\n");
413 		pr_expected_config(CONFIG_DEBUG_LIST);
414 	}
415 }
416 
417 /* Test that VMAP_STACK is actually allocating with a leading guard page */
lkdtm_STACK_GUARD_PAGE_LEADING(void)418 void lkdtm_STACK_GUARD_PAGE_LEADING(void)
419 {
420 	const unsigned char *stack = task_stack_page(current);
421 	const unsigned char *ptr = stack - 1;
422 	volatile unsigned char byte;
423 
424 	pr_info("attempting bad read from page below current stack\n");
425 
426 	byte = *ptr;
427 
428 	pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
429 }
430 
431 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
lkdtm_STACK_GUARD_PAGE_TRAILING(void)432 void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
433 {
434 	const unsigned char *stack = task_stack_page(current);
435 	const unsigned char *ptr = stack + THREAD_SIZE;
436 	volatile unsigned char byte;
437 
438 	pr_info("attempting bad read from page above current stack\n");
439 
440 	byte = *ptr;
441 
442 	pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
443 }
444 
lkdtm_UNSET_SMEP(void)445 void lkdtm_UNSET_SMEP(void)
446 {
447 #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
448 #define MOV_CR4_DEPTH	64
449 	void (*direct_write_cr4)(unsigned long val);
450 	unsigned char *insn;
451 	unsigned long cr4;
452 	int i;
453 
454 	cr4 = native_read_cr4();
455 
456 	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
457 		pr_err("FAIL: SMEP not in use\n");
458 		return;
459 	}
460 	cr4 &= ~(X86_CR4_SMEP);
461 
462 	pr_info("trying to clear SMEP normally\n");
463 	native_write_cr4(cr4);
464 	if (cr4 == native_read_cr4()) {
465 		pr_err("FAIL: pinning SMEP failed!\n");
466 		cr4 |= X86_CR4_SMEP;
467 		pr_info("restoring SMEP\n");
468 		native_write_cr4(cr4);
469 		return;
470 	}
471 	pr_info("ok: SMEP did not get cleared\n");
472 
473 	/*
474 	 * To test the post-write pinning verification we need to call
475 	 * directly into the middle of native_write_cr4() where the
476 	 * cr4 write happens, skipping any pinning. This searches for
477 	 * the cr4 writing instruction.
478 	 */
479 	insn = (unsigned char *)native_write_cr4;
480 	for (i = 0; i < MOV_CR4_DEPTH; i++) {
481 		/* mov %rdi, %cr4 */
482 		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
483 			break;
484 		/* mov %rdi,%rax; mov %rax, %cr4 */
485 		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
486 		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
487 		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
488 			break;
489 	}
490 	if (i >= MOV_CR4_DEPTH) {
491 		pr_info("ok: cannot locate cr4 writing call gadget\n");
492 		return;
493 	}
494 	direct_write_cr4 = (void *)(insn + i);
495 
496 	pr_info("trying to clear SMEP with call gadget\n");
497 	direct_write_cr4(cr4);
498 	if (native_read_cr4() & X86_CR4_SMEP) {
499 		pr_info("ok: SMEP removal was reverted\n");
500 	} else {
501 		pr_err("FAIL: cleared SMEP not detected!\n");
502 		cr4 |= X86_CR4_SMEP;
503 		pr_info("restoring SMEP\n");
504 		native_write_cr4(cr4);
505 	}
506 #else
507 	pr_err("XFAIL: this test is x86_64-only\n");
508 #endif
509 }
510 
lkdtm_DOUBLE_FAULT(void)511 void lkdtm_DOUBLE_FAULT(void)
512 {
513 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
514 	/*
515 	 * Trigger #DF by setting the stack limit to zero.  This clobbers
516 	 * a GDT TLS slot, which is okay because the current task will die
517 	 * anyway due to the double fault.
518 	 */
519 	struct desc_struct d = {
520 		.type = 3,	/* expand-up, writable, accessed data */
521 		.p = 1,		/* present */
522 		.d = 1,		/* 32-bit */
523 		.g = 0,		/* limit in bytes */
524 		.s = 1,		/* not system */
525 	};
526 
527 	local_irq_disable();
528 	write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
529 			GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
530 
531 	/*
532 	 * Put our zero-limit segment in SS and then trigger a fault.  The
533 	 * 4-byte access to (%esp) will fault with #SS, and the attempt to
534 	 * deliver the fault will recursively cause #SS and result in #DF.
535 	 * This whole process happens while NMIs and MCEs are blocked by the
536 	 * MOV SS window.  This is nice because an NMI with an invalid SS
537 	 * would also double-fault, resulting in the NMI or MCE being lost.
538 	 */
539 	asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
540 		      "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
541 
542 	pr_err("FAIL: tried to double fault but didn't die\n");
543 #else
544 	pr_err("XFAIL: this test is ia32-only\n");
545 #endif
546 }
547 
548 #ifdef CONFIG_ARM64
change_pac_parameters(void)549 static noinline void change_pac_parameters(void)
550 {
551 	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) {
552 		/* Reset the keys of current task */
553 		ptrauth_thread_init_kernel(current);
554 		ptrauth_thread_switch_kernel(current);
555 	}
556 }
557 #endif
558 
lkdtm_CORRUPT_PAC(void)559 noinline void lkdtm_CORRUPT_PAC(void)
560 {
561 #ifdef CONFIG_ARM64
562 #define CORRUPT_PAC_ITERATE	10
563 	int i;
564 
565 	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
566 		pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n");
567 
568 	if (!system_supports_address_auth()) {
569 		pr_err("FAIL: CPU lacks pointer authentication feature\n");
570 		return;
571 	}
572 
573 	pr_info("changing PAC parameters to force function return failure...\n");
574 	/*
575 	 * PAC is a hash value computed from input keys, return address and
576 	 * stack pointer. As pac has fewer bits so there is a chance of
577 	 * collision, so iterate few times to reduce the collision probability.
578 	 */
579 	for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
580 		change_pac_parameters();
581 
582 	pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
583 #else
584 	pr_err("XFAIL: this test is arm64-only\n");
585 #endif
586 }
587