1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef __NET_SCHED_RED_H
3  #define __NET_SCHED_RED_H
4  
5  #include <linux/types.h>
6  #include <linux/bug.h>
7  #include <net/pkt_sched.h>
8  #include <net/inet_ecn.h>
9  #include <net/dsfield.h>
10  #include <linux/reciprocal_div.h>
11  
12  /*	Random Early Detection (RED) algorithm.
13  	=======================================
14  
15  	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
16  	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
17  
18  	This file codes a "divisionless" version of RED algorithm
19  	as written down in Fig.17 of the paper.
20  
21  	Short description.
22  	------------------
23  
24  	When a new packet arrives we calculate the average queue length:
25  
26  	avg = (1-W)*avg + W*current_queue_len,
27  
28  	W is the filter time constant (chosen as 2^(-Wlog)), it controls
29  	the inertia of the algorithm. To allow larger bursts, W should be
30  	decreased.
31  
32  	if (avg > th_max) -> packet marked (dropped).
33  	if (avg < th_min) -> packet passes.
34  	if (th_min < avg < th_max) we calculate probability:
35  
36  	Pb = max_P * (avg - th_min)/(th_max-th_min)
37  
38  	and mark (drop) packet with this probability.
39  	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
40  	max_P should be small (not 1), usually 0.01..0.02 is good value.
41  
42  	max_P is chosen as a number, so that max_P/(th_max-th_min)
43  	is a negative power of two in order arithmetics to contain
44  	only shifts.
45  
46  
47  	Parameters, settable by user:
48  	-----------------------------
49  
50  	qth_min		- bytes (should be < qth_max/2)
51  	qth_max		- bytes (should be at least 2*qth_min and less limit)
52  	Wlog	       	- bits (<32) log(1/W).
53  	Plog	       	- bits (<32)
54  
55  	Plog is related to max_P by formula:
56  
57  	max_P = (qth_max-qth_min)/2^Plog;
58  
59  	F.e. if qth_max=128K and qth_min=32K, then Plog=22
60  	corresponds to max_P=0.02
61  
62  	Scell_log
63  	Stab
64  
65  	Lookup table for log((1-W)^(t/t_ave).
66  
67  
68  	NOTES:
69  
70  	Upper bound on W.
71  	-----------------
72  
73  	If you want to allow bursts of L packets of size S,
74  	you should choose W:
75  
76  	L + 1 - th_min/S < (1-(1-W)^L)/W
77  
78  	th_min/S = 32         th_min/S = 4
79  
80  	log(W)	L
81  	-1	33
82  	-2	35
83  	-3	39
84  	-4	46
85  	-5	57
86  	-6	75
87  	-7	101
88  	-8	135
89  	-9	190
90  	etc.
91   */
92  
93  /*
94   * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
95   * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
96   *
97   * Every 500 ms:
98   *  if (avg > target and max_p <= 0.5)
99   *   increase max_p : max_p += alpha;
100   *  else if (avg < target and max_p >= 0.01)
101   *   decrease max_p : max_p *= beta;
102   *
103   * target :[qth_min + 0.4*(qth_min - qth_max),
104   *          qth_min + 0.6*(qth_min - qth_max)].
105   * alpha : min(0.01, max_p / 4)
106   * beta : 0.9
107   * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
108   * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
109   */
110  #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
111  
112  #define MAX_P_MIN (1 * RED_ONE_PERCENT)
113  #define MAX_P_MAX (50 * RED_ONE_PERCENT)
114  #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
115  
116  #define RED_STAB_SIZE	256
117  #define RED_STAB_MASK	(RED_STAB_SIZE - 1)
118  
119  struct red_stats {
120  	u32		prob_drop;	/* Early probability drops */
121  	u32		prob_mark;	/* Early probability marks */
122  	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
123  	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
124  	u32		pdrop;          /* Drops due to queue limits */
125  	u32		other;          /* Drops due to drop() calls */
126  };
127  
128  struct red_parms {
129  	/* Parameters */
130  	u32		qth_min;	/* Min avg length threshold: Wlog scaled */
131  	u32		qth_max;	/* Max avg length threshold: Wlog scaled */
132  	u32		Scell_max;
133  	u32		max_P;		/* probability, [0 .. 1.0] 32 scaled */
134  	/* reciprocal_value(max_P / qth_delta) */
135  	struct reciprocal_value	max_P_reciprocal;
136  	u32		qth_delta;	/* max_th - min_th */
137  	u32		target_min;	/* min_th + 0.4*(max_th - min_th) */
138  	u32		target_max;	/* min_th + 0.6*(max_th - min_th) */
139  	u8		Scell_log;
140  	u8		Wlog;		/* log(W)		*/
141  	u8		Plog;		/* random number bits	*/
142  	u8		Stab[RED_STAB_SIZE];
143  };
144  
145  struct red_vars {
146  	/* Variables */
147  	int		qcount;		/* Number of packets since last random
148  					   number generation */
149  	u32		qR;		/* Cached random number */
150  
151  	unsigned long	qavg;		/* Average queue length: Wlog scaled */
152  	ktime_t		qidlestart;	/* Start of current idle period */
153  };
154  
red_maxp(u8 Plog)155  static inline u32 red_maxp(u8 Plog)
156  {
157  	return Plog < 32 ? (~0U >> Plog) : ~0U;
158  }
159  
red_set_vars(struct red_vars * v)160  static inline void red_set_vars(struct red_vars *v)
161  {
162  	/* Reset average queue length, the value is strictly bound
163  	 * to the parameters below, reseting hurts a bit but leaving
164  	 * it might result in an unreasonable qavg for a while. --TGR
165  	 */
166  	v->qavg		= 0;
167  
168  	v->qcount	= -1;
169  }
170  
red_check_params(u32 qth_min,u32 qth_max,u8 Wlog,u8 Scell_log,u8 * stab)171  static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog,
172  				    u8 Scell_log, u8 *stab)
173  {
174  	if (fls(qth_min) + Wlog >= 32)
175  		return false;
176  	if (fls(qth_max) + Wlog >= 32)
177  		return false;
178  	if (Scell_log >= 32)
179  		return false;
180  	if (qth_max < qth_min)
181  		return false;
182  	if (stab) {
183  		int i;
184  
185  		for (i = 0; i < RED_STAB_SIZE; i++)
186  			if (stab[i] >= 32)
187  				return false;
188  	}
189  	return true;
190  }
191  
red_get_flags(unsigned char qopt_flags,unsigned char historic_mask,struct nlattr * flags_attr,unsigned char supported_mask,struct nla_bitfield32 * p_flags,unsigned char * p_userbits,struct netlink_ext_ack * extack)192  static inline int red_get_flags(unsigned char qopt_flags,
193  				unsigned char historic_mask,
194  				struct nlattr *flags_attr,
195  				unsigned char supported_mask,
196  				struct nla_bitfield32 *p_flags,
197  				unsigned char *p_userbits,
198  				struct netlink_ext_ack *extack)
199  {
200  	struct nla_bitfield32 flags;
201  
202  	if (qopt_flags && flags_attr) {
203  		NL_SET_ERR_MSG_MOD(extack, "flags should be passed either through qopt, or through a dedicated attribute");
204  		return -EINVAL;
205  	}
206  
207  	if (flags_attr) {
208  		flags = nla_get_bitfield32(flags_attr);
209  	} else {
210  		flags.selector = historic_mask;
211  		flags.value = qopt_flags & historic_mask;
212  	}
213  
214  	*p_flags = flags;
215  	*p_userbits = qopt_flags & ~historic_mask;
216  	return 0;
217  }
218  
red_validate_flags(unsigned char flags,struct netlink_ext_ack * extack)219  static inline int red_validate_flags(unsigned char flags,
220  				     struct netlink_ext_ack *extack)
221  {
222  	if ((flags & TC_RED_NODROP) && !(flags & TC_RED_ECN)) {
223  		NL_SET_ERR_MSG_MOD(extack, "nodrop mode is only meaningful with ECN");
224  		return -EINVAL;
225  	}
226  
227  	return 0;
228  }
229  
red_set_parms(struct red_parms * p,u32 qth_min,u32 qth_max,u8 Wlog,u8 Plog,u8 Scell_log,u8 * stab,u32 max_P)230  static inline void red_set_parms(struct red_parms *p,
231  				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
232  				 u8 Scell_log, u8 *stab, u32 max_P)
233  {
234  	int delta = qth_max - qth_min;
235  	u32 max_p_delta;
236  
237  	p->qth_min	= qth_min << Wlog;
238  	p->qth_max	= qth_max << Wlog;
239  	p->Wlog		= Wlog;
240  	p->Plog		= Plog;
241  	if (delta <= 0)
242  		delta = 1;
243  	p->qth_delta	= delta;
244  	if (!max_P) {
245  		max_P = red_maxp(Plog);
246  		max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
247  	}
248  	p->max_P = max_P;
249  	max_p_delta = max_P / delta;
250  	max_p_delta = max(max_p_delta, 1U);
251  	p->max_P_reciprocal  = reciprocal_value(max_p_delta);
252  
253  	/* RED Adaptative target :
254  	 * [min_th + 0.4*(min_th - max_th),
255  	 *  min_th + 0.6*(min_th - max_th)].
256  	 */
257  	delta /= 5;
258  	p->target_min = qth_min + 2*delta;
259  	p->target_max = qth_min + 3*delta;
260  
261  	p->Scell_log	= Scell_log;
262  	p->Scell_max	= (255 << Scell_log);
263  
264  	if (stab)
265  		memcpy(p->Stab, stab, sizeof(p->Stab));
266  }
267  
red_is_idling(const struct red_vars * v)268  static inline int red_is_idling(const struct red_vars *v)
269  {
270  	return v->qidlestart != 0;
271  }
272  
red_start_of_idle_period(struct red_vars * v)273  static inline void red_start_of_idle_period(struct red_vars *v)
274  {
275  	v->qidlestart = ktime_get();
276  }
277  
red_end_of_idle_period(struct red_vars * v)278  static inline void red_end_of_idle_period(struct red_vars *v)
279  {
280  	v->qidlestart = 0;
281  }
282  
red_restart(struct red_vars * v)283  static inline void red_restart(struct red_vars *v)
284  {
285  	red_end_of_idle_period(v);
286  	v->qavg = 0;
287  	v->qcount = -1;
288  }
289  
red_calc_qavg_from_idle_time(const struct red_parms * p,const struct red_vars * v)290  static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
291  							 const struct red_vars *v)
292  {
293  	s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
294  	long us_idle = min_t(s64, delta, p->Scell_max);
295  	int  shift;
296  
297  	/*
298  	 * The problem: ideally, average length queue recalculation should
299  	 * be done over constant clock intervals. This is too expensive, so
300  	 * that the calculation is driven by outgoing packets.
301  	 * When the queue is idle we have to model this clock by hand.
302  	 *
303  	 * SF+VJ proposed to "generate":
304  	 *
305  	 *	m = idletime / (average_pkt_size / bandwidth)
306  	 *
307  	 * dummy packets as a burst after idle time, i.e.
308  	 *
309  	 * 	v->qavg *= (1-W)^m
310  	 *
311  	 * This is an apparently overcomplicated solution (f.e. we have to
312  	 * precompute a table to make this calculation in reasonable time)
313  	 * I believe that a simpler model may be used here,
314  	 * but it is field for experiments.
315  	 */
316  
317  	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
318  
319  	if (shift)
320  		return v->qavg >> shift;
321  	else {
322  		/* Approximate initial part of exponent with linear function:
323  		 *
324  		 * 	(1-W)^m ~= 1-mW + ...
325  		 *
326  		 * Seems, it is the best solution to
327  		 * problem of too coarse exponent tabulation.
328  		 */
329  		us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
330  
331  		if (us_idle < (v->qavg >> 1))
332  			return v->qavg - us_idle;
333  		else
334  			return v->qavg >> 1;
335  	}
336  }
337  
red_calc_qavg_no_idle_time(const struct red_parms * p,const struct red_vars * v,unsigned int backlog)338  static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
339  						       const struct red_vars *v,
340  						       unsigned int backlog)
341  {
342  	/*
343  	 * NOTE: v->qavg is fixed point number with point at Wlog.
344  	 * The formula below is equvalent to floating point
345  	 * version:
346  	 *
347  	 * 	qavg = qavg*(1-W) + backlog*W;
348  	 *
349  	 * --ANK (980924)
350  	 */
351  	return v->qavg + (backlog - (v->qavg >> p->Wlog));
352  }
353  
red_calc_qavg(const struct red_parms * p,const struct red_vars * v,unsigned int backlog)354  static inline unsigned long red_calc_qavg(const struct red_parms *p,
355  					  const struct red_vars *v,
356  					  unsigned int backlog)
357  {
358  	if (!red_is_idling(v))
359  		return red_calc_qavg_no_idle_time(p, v, backlog);
360  	else
361  		return red_calc_qavg_from_idle_time(p, v);
362  }
363  
364  
red_random(const struct red_parms * p)365  static inline u32 red_random(const struct red_parms *p)
366  {
367  	return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
368  }
369  
red_mark_probability(const struct red_parms * p,const struct red_vars * v,unsigned long qavg)370  static inline int red_mark_probability(const struct red_parms *p,
371  				       const struct red_vars *v,
372  				       unsigned long qavg)
373  {
374  	/* The formula used below causes questions.
375  
376  	   OK. qR is random number in the interval
377  		(0..1/max_P)*(qth_max-qth_min)
378  	   i.e. 0..(2^Plog). If we used floating point
379  	   arithmetics, it would be: (2^Plog)*rnd_num,
380  	   where rnd_num is less 1.
381  
382  	   Taking into account, that qavg have fixed
383  	   point at Wlog, two lines
384  	   below have the following floating point equivalent:
385  
386  	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
387  
388  	   Any questions? --ANK (980924)
389  	 */
390  	return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
391  }
392  
393  enum {
394  	RED_BELOW_MIN_THRESH,
395  	RED_BETWEEN_TRESH,
396  	RED_ABOVE_MAX_TRESH,
397  };
398  
red_cmp_thresh(const struct red_parms * p,unsigned long qavg)399  static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
400  {
401  	if (qavg < p->qth_min)
402  		return RED_BELOW_MIN_THRESH;
403  	else if (qavg >= p->qth_max)
404  		return RED_ABOVE_MAX_TRESH;
405  	else
406  		return RED_BETWEEN_TRESH;
407  }
408  
409  enum {
410  	RED_DONT_MARK,
411  	RED_PROB_MARK,
412  	RED_HARD_MARK,
413  };
414  
red_action(const struct red_parms * p,struct red_vars * v,unsigned long qavg)415  static inline int red_action(const struct red_parms *p,
416  			     struct red_vars *v,
417  			     unsigned long qavg)
418  {
419  	switch (red_cmp_thresh(p, qavg)) {
420  		case RED_BELOW_MIN_THRESH:
421  			v->qcount = -1;
422  			return RED_DONT_MARK;
423  
424  		case RED_BETWEEN_TRESH:
425  			if (++v->qcount) {
426  				if (red_mark_probability(p, v, qavg)) {
427  					v->qcount = 0;
428  					v->qR = red_random(p);
429  					return RED_PROB_MARK;
430  				}
431  			} else
432  				v->qR = red_random(p);
433  
434  			return RED_DONT_MARK;
435  
436  		case RED_ABOVE_MAX_TRESH:
437  			v->qcount = -1;
438  			return RED_HARD_MARK;
439  	}
440  
441  	BUG();
442  	return RED_DONT_MARK;
443  }
444  
red_adaptative_algo(struct red_parms * p,struct red_vars * v)445  static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
446  {
447  	unsigned long qavg;
448  	u32 max_p_delta;
449  
450  	qavg = v->qavg;
451  	if (red_is_idling(v))
452  		qavg = red_calc_qavg_from_idle_time(p, v);
453  
454  	/* v->qavg is fixed point number with point at Wlog */
455  	qavg >>= p->Wlog;
456  
457  	if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
458  		p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
459  	else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
460  		p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
461  
462  	max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
463  	max_p_delta = max(max_p_delta, 1U);
464  	p->max_P_reciprocal = reciprocal_value(max_p_delta);
465  }
466  #endif
467