1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28 
29 
30 #include "dcn20/dcn20_clk_mgr.h"
31 #include "rn_clk_mgr.h"
32 
33 
34 #include "dce100/dce_clk_mgr.h"
35 #include "rn_clk_mgr_vbios_smu.h"
36 #include "reg_helper.h"
37 #include "core_types.h"
38 #include "dm_helpers.h"
39 
40 #include "atomfirmware.h"
41 #include "clk/clk_10_0_2_offset.h"
42 #include "clk/clk_10_0_2_sh_mask.h"
43 #include "renoir_ip_offset.h"
44 
45 #include "irq/dcn21/irq_service_dcn21.h"
46 
47 /* Constants */
48 
49 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
50 #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
51 
52 /* Macros */
53 
54 #define REG(reg_name) \
55 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
56 
57 
58 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
rn_get_active_display_cnt_wa(struct dc * dc,struct dc_state * context)59 int rn_get_active_display_cnt_wa(
60 		struct dc *dc,
61 		struct dc_state *context)
62 {
63 	int i, display_count;
64 	bool tmds_present = false;
65 
66 	display_count = 0;
67 	for (i = 0; i < context->stream_count; i++) {
68 		const struct dc_stream_state *stream = context->streams[i];
69 
70 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
71 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
72 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
73 			tmds_present = true;
74 	}
75 
76 	for (i = 0; i < dc->link_count; i++) {
77 		const struct dc_link *link = dc->links[i];
78 
79 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
80 		if (link->link_enc->funcs->is_dig_enabled(link->link_enc))
81 			display_count++;
82 	}
83 
84 	/* WA for hang on HDMI after display off back back on*/
85 	if (display_count == 0 && tmds_present)
86 		display_count = 1;
87 
88 	return display_count;
89 }
90 
rn_set_low_power_state(struct clk_mgr * clk_mgr_base)91 void rn_set_low_power_state(struct clk_mgr *clk_mgr_base)
92 {
93 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
94 
95 	rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
96 	/* update power state */
97 	clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
98 }
99 
rn_update_clocks_update_dpp_dto(struct clk_mgr_internal * clk_mgr,struct dc_state * context,int ref_dpp_clk,bool safe_to_lower)100 static void rn_update_clocks_update_dpp_dto(struct clk_mgr_internal *clk_mgr,
101 		struct dc_state *context, int ref_dpp_clk, bool safe_to_lower)
102 {
103 	int i;
104 
105 	clk_mgr->dccg->ref_dppclk = ref_dpp_clk;
106 
107 	for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) {
108 		int dpp_inst, dppclk_khz, prev_dppclk_khz;
109 
110 		/* Loop index may not match dpp->inst if some pipes disabled,
111 		 * so select correct inst from res_pool
112 		 */
113 		dpp_inst = clk_mgr->base.ctx->dc->res_pool->dpps[i]->inst;
114 		dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz;
115 
116 		prev_dppclk_khz = clk_mgr->dccg->pipe_dppclk_khz[i];
117 
118 		if (safe_to_lower || prev_dppclk_khz < dppclk_khz)
119 			clk_mgr->dccg->funcs->update_dpp_dto(
120 							clk_mgr->dccg, dpp_inst, dppclk_khz);
121 	}
122 }
123 
124 
rn_update_clocks(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool safe_to_lower)125 void rn_update_clocks(struct clk_mgr *clk_mgr_base,
126 			struct dc_state *context,
127 			bool safe_to_lower)
128 {
129 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
130 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
131 	struct dc *dc = clk_mgr_base->ctx->dc;
132 	int display_count;
133 	int irq_src;
134 	bool update_dppclk = false;
135 	bool update_dispclk = false;
136 	bool dpp_clock_lowered = false;
137 	uint32_t hpd_state;
138 
139 	struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
140 
141 	if (dc->work_arounds.skip_clock_update)
142 		return;
143 
144 	/*
145 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
146 	 * also if safe to lower is false, we just go in the higher state
147 	 */
148 	if (safe_to_lower && !dc->debug.disable_48mhz_pwrdwn) {
149 		/* check that we're not already in lower */
150 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
151 
152 			display_count = rn_get_active_display_cnt_wa(dc, context);
153 
154 			for (irq_src = DC_IRQ_SOURCE_HPD1; irq_src <= DC_IRQ_SOURCE_HPD5; irq_src++) {
155 				hpd_state = dc_get_hpd_state_dcn21(dc->res_pool->irqs, irq_src);
156 				if (hpd_state)
157 					break;
158 			}
159 
160 			/* if we can go lower, go lower */
161 			if (display_count == 0 && !hpd_state) {
162 				rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
163 				/* update power state */
164 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
165 			}
166 		}
167 	} else {
168 		/* check that we're not already in D0 */
169 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
170 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
171 			/* update power state */
172 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
173 		}
174 	}
175 
176 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
177 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
178 		rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
179 	}
180 
181 	if (should_set_clock(safe_to_lower,
182 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
183 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
184 		rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
185 	}
186 
187 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
188 	// Do not adjust dppclk if dppclk is 0 to avoid unexpected result
189 	if (new_clocks->dppclk_khz < 100000 && new_clocks->dppclk_khz > 0)
190 		new_clocks->dppclk_khz = 100000;
191 
192 	/*
193 	 * Temporally ignore thew 0 cases for disp and dpp clks.
194 	 * We may have a new feature that requires 0 clks in the future.
195 	 */
196 	if (new_clocks->dppclk_khz == 0 || new_clocks->dispclk_khz == 0) {
197 		new_clocks->dppclk_khz = clk_mgr_base->clks.dppclk_khz;
198 		new_clocks->dispclk_khz = clk_mgr_base->clks.dispclk_khz;
199 	}
200 
201 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr_base->clks.dppclk_khz)) {
202 		if (clk_mgr_base->clks.dppclk_khz > new_clocks->dppclk_khz)
203 			dpp_clock_lowered = true;
204 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
205 		update_dppclk = true;
206 	}
207 
208 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
209 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
210 		clk_mgr_base->clks.actual_dispclk_khz = rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
211 
212 		update_dispclk = true;
213 	}
214 
215 	if (dpp_clock_lowered) {
216 		// increase per DPP DTO before lowering global dppclk with requested dppclk
217 		rn_update_clocks_update_dpp_dto(
218 				clk_mgr,
219 				context,
220 				clk_mgr_base->clks.dppclk_khz,
221 				safe_to_lower);
222 
223 		clk_mgr_base->clks.actual_dppclk_khz =
224 				rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
225 
226 		//update dpp dto with actual dpp clk.
227 		rn_update_clocks_update_dpp_dto(
228 				clk_mgr,
229 				context,
230 				clk_mgr_base->clks.actual_dppclk_khz,
231 				safe_to_lower);
232 
233 	} else {
234 		// increase global DPPCLK before lowering per DPP DTO
235 		if (update_dppclk || update_dispclk)
236 			clk_mgr_base->clks.actual_dppclk_khz =
237 					rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
238 
239 		// always update dtos unless clock is lowered and not safe to lower
240 		rn_update_clocks_update_dpp_dto(
241 				clk_mgr,
242 				context,
243 				clk_mgr_base->clks.actual_dppclk_khz,
244 				safe_to_lower);
245 	}
246 
247 	if (update_dispclk &&
248 			dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
249 		/*update dmcu for wait_loop count*/
250 		dmcu->funcs->set_psr_wait_loop(dmcu,
251 			clk_mgr_base->clks.dispclk_khz / 1000 / 7);
252 	}
253 }
254 
get_vco_frequency_from_reg(struct clk_mgr_internal * clk_mgr)255 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
256 {
257 	/* get FbMult value */
258 	struct fixed31_32 pll_req;
259 	unsigned int fbmult_frac_val = 0;
260 	unsigned int fbmult_int_val = 0;
261 
262 
263 	/*
264 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
265 	 * to leverage the fix point operations available in driver
266 	 */
267 
268 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
269 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
270 
271 	pll_req = dc_fixpt_from_int(fbmult_int_val);
272 
273 	/*
274 	 * since fractional part is only 16 bit in register definition but is 32 bit
275 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
276 	 */
277 	pll_req.value |= fbmult_frac_val << 16;
278 
279 	/* multiply by REFCLK period */
280 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
281 
282 	/* integer part is now VCO frequency in kHz */
283 	return dc_fixpt_floor(pll_req);
284 }
285 
rn_dump_clk_registers_internal(struct rn_clk_internal * internal,struct clk_mgr * clk_mgr_base)286 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
287 {
288 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
289 
290 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
291 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
292 
293 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
294 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
295 
296 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
297 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
298 
299 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
300 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
301 
302 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
303 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
304 }
305 
306 /* This function collect raw clk register values */
rn_dump_clk_registers(struct clk_state_registers_and_bypass * regs_and_bypass,struct clk_mgr * clk_mgr_base,struct clk_log_info * log_info)307 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
308 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
309 {
310 	struct rn_clk_internal internal = {0};
311 	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
312 	unsigned int chars_printed = 0;
313 	unsigned int remaining_buffer = log_info->bufSize;
314 
315 	rn_dump_clk_registers_internal(&internal, clk_mgr_base);
316 
317 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
318 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
319 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
320 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
321 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
322 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
323 
324 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
325 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
326 		regs_and_bypass->dppclk_bypass = 0;
327 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
328 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
329 		regs_and_bypass->dcfclk_bypass = 0;
330 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
331 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
332 		regs_and_bypass->dispclk_bypass = 0;
333 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
334 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
335 		regs_and_bypass->dprefclk_bypass = 0;
336 
337 	if (log_info->enabled) {
338 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
339 		remaining_buffer -= chars_printed;
340 		*log_info->sum_chars_printed += chars_printed;
341 		log_info->pBuf += chars_printed;
342 
343 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
344 			regs_and_bypass->dcfclk,
345 			regs_and_bypass->dcf_deep_sleep_divider,
346 			regs_and_bypass->dcf_deep_sleep_allow,
347 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
348 		remaining_buffer -= chars_printed;
349 		*log_info->sum_chars_printed += chars_printed;
350 		log_info->pBuf += chars_printed;
351 
352 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
353 			regs_and_bypass->dprefclk,
354 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
355 		remaining_buffer -= chars_printed;
356 		*log_info->sum_chars_printed += chars_printed;
357 		log_info->pBuf += chars_printed;
358 
359 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
360 			regs_and_bypass->dispclk,
361 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
362 		remaining_buffer -= chars_printed;
363 		*log_info->sum_chars_printed += chars_printed;
364 		log_info->pBuf += chars_printed;
365 
366 		//split
367 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
368 		remaining_buffer -= chars_printed;
369 		*log_info->sum_chars_printed += chars_printed;
370 		log_info->pBuf += chars_printed;
371 
372 		// REGISTER VALUES
373 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
374 		remaining_buffer -= chars_printed;
375 		*log_info->sum_chars_printed += chars_printed;
376 		log_info->pBuf += chars_printed;
377 
378 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
379 				internal.CLK1_CLK3_CURRENT_CNT);
380 		remaining_buffer -= chars_printed;
381 		*log_info->sum_chars_printed += chars_printed;
382 		log_info->pBuf += chars_printed;
383 
384 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
385 					internal.CLK1_CLK3_DS_CNTL);
386 		remaining_buffer -= chars_printed;
387 		*log_info->sum_chars_printed += chars_printed;
388 		log_info->pBuf += chars_printed;
389 
390 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
391 					internal.CLK1_CLK3_ALLOW_DS);
392 		remaining_buffer -= chars_printed;
393 		*log_info->sum_chars_printed += chars_printed;
394 		log_info->pBuf += chars_printed;
395 
396 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
397 					internal.CLK1_CLK2_CURRENT_CNT);
398 		remaining_buffer -= chars_printed;
399 		*log_info->sum_chars_printed += chars_printed;
400 		log_info->pBuf += chars_printed;
401 
402 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
403 					internal.CLK1_CLK0_CURRENT_CNT);
404 		remaining_buffer -= chars_printed;
405 		*log_info->sum_chars_printed += chars_printed;
406 		log_info->pBuf += chars_printed;
407 
408 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
409 					internal.CLK1_CLK1_CURRENT_CNT);
410 		remaining_buffer -= chars_printed;
411 		*log_info->sum_chars_printed += chars_printed;
412 		log_info->pBuf += chars_printed;
413 
414 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
415 					internal.CLK1_CLK3_BYPASS_CNTL);
416 		remaining_buffer -= chars_printed;
417 		*log_info->sum_chars_printed += chars_printed;
418 		log_info->pBuf += chars_printed;
419 
420 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
421 					internal.CLK1_CLK2_BYPASS_CNTL);
422 		remaining_buffer -= chars_printed;
423 		*log_info->sum_chars_printed += chars_printed;
424 		log_info->pBuf += chars_printed;
425 
426 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
427 					internal.CLK1_CLK0_BYPASS_CNTL);
428 		remaining_buffer -= chars_printed;
429 		*log_info->sum_chars_printed += chars_printed;
430 		log_info->pBuf += chars_printed;
431 
432 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
433 					internal.CLK1_CLK1_BYPASS_CNTL);
434 		remaining_buffer -= chars_printed;
435 		*log_info->sum_chars_printed += chars_printed;
436 		log_info->pBuf += chars_printed;
437 	}
438 }
439 
440 /* This function produce translated logical clk state values*/
rn_get_clk_states(struct clk_mgr * clk_mgr_base,struct clk_states * s)441 void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
442 {
443 	struct clk_state_registers_and_bypass sb = { 0 };
444 	struct clk_log_info log_info = { 0 };
445 
446 	rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
447 
448 	s->dprefclk_khz = sb.dprefclk * 1000;
449 }
450 
rn_enable_pme_wa(struct clk_mgr * clk_mgr_base)451 void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
452 {
453 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
454 
455 	rn_vbios_smu_enable_pme_wa(clk_mgr);
456 }
457 
rn_init_clocks(struct clk_mgr * clk_mgr)458 void rn_init_clocks(struct clk_mgr *clk_mgr)
459 {
460 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
461 	// Assumption is that boot state always supports pstate
462 	clk_mgr->clks.p_state_change_support = true;
463 	clk_mgr->clks.prev_p_state_change_support = true;
464 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
465 }
466 
build_watermark_ranges(struct clk_bw_params * bw_params,struct pp_smu_wm_range_sets * ranges)467 static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
468 {
469 	int i, num_valid_sets;
470 
471 	num_valid_sets = 0;
472 
473 	for (i = 0; i < WM_SET_COUNT; i++) {
474 		/* skip empty entries, the smu array has no holes*/
475 		if (!bw_params->wm_table.entries[i].valid)
476 			continue;
477 
478 		ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
479 		ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
480 		/* We will not select WM based on fclk, so leave it as unconstrained */
481 		ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
482 		ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
483 		/* dcfclk wil be used to select WM*/
484 
485 		if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
486 			if (i == 0)
487 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
488 			else {
489 				/* add 1 to make it non-overlapping with next lvl */
490 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
491 			}
492 			ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
493 
494 		} else {
495 			/* unconstrained for memory retraining */
496 			ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
497 			ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
498 
499 			/* Modify previous watermark range to cover up to max */
500 			ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
501 		}
502 		num_valid_sets++;
503 	}
504 
505 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
506 	ranges->num_reader_wm_sets = num_valid_sets;
507 
508 	/* modify the min and max to make sure we cover the whole range*/
509 	ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
510 	ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
511 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
512 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
513 
514 	/* This is for writeback only, does not matter currently as no writeback support*/
515 	ranges->num_writer_wm_sets = 1;
516 	ranges->writer_wm_sets[0].wm_inst = WM_A;
517 	ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
518 	ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
519 	ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
520 	ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
521 
522 }
523 
rn_notify_wm_ranges(struct clk_mgr * clk_mgr_base)524 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
525 {
526 	struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
527 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
528 	struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
529 
530 	if (!debug->disable_pplib_wm_range) {
531 		build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
532 
533 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
534 		if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
535 			pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
536 	}
537 
538 }
539 
rn_are_clock_states_equal(struct dc_clocks * a,struct dc_clocks * b)540 static bool rn_are_clock_states_equal(struct dc_clocks *a,
541 		struct dc_clocks *b)
542 {
543 	if (a->dispclk_khz != b->dispclk_khz)
544 		return false;
545 	else if (a->dppclk_khz != b->dppclk_khz)
546 		return false;
547 	else if (a->dcfclk_khz != b->dcfclk_khz)
548 		return false;
549 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
550 		return false;
551 
552 	return true;
553 }
554 
555 
556 /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
rn_notify_link_rate_change(struct clk_mgr * clk_mgr_base,struct dc_link * link)557 static void rn_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
558 {
559 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
560 	unsigned int i, max_phyclk_req = 0;
561 
562 	clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
563 
564 	for (i = 0; i < MAX_PIPES * 2; i++) {
565 		if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
566 			max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
567 	}
568 
569 	if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
570 		clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
571 		rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
572 	}
573 }
574 
575 static struct clk_mgr_funcs dcn21_funcs = {
576 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
577 	.update_clocks = rn_update_clocks,
578 	.init_clocks = rn_init_clocks,
579 	.enable_pme_wa = rn_enable_pme_wa,
580 	.are_clock_states_equal = rn_are_clock_states_equal,
581 	.set_low_power_state = rn_set_low_power_state,
582 	.notify_wm_ranges = rn_notify_wm_ranges,
583 	.notify_link_rate_change = rn_notify_link_rate_change,
584 };
585 
586 static struct clk_bw_params rn_bw_params = {
587 	.vram_type = Ddr4MemType,
588 	.num_channels = 1,
589 	.clk_table = {
590 		.entries = {
591 			{
592 				.voltage = 0,
593 				.dcfclk_mhz = 400,
594 				.fclk_mhz = 400,
595 				.memclk_mhz = 800,
596 				.socclk_mhz = 0,
597 			},
598 			{
599 				.voltage = 0,
600 				.dcfclk_mhz = 483,
601 				.fclk_mhz = 800,
602 				.memclk_mhz = 1600,
603 				.socclk_mhz = 0,
604 			},
605 			{
606 				.voltage = 0,
607 				.dcfclk_mhz = 602,
608 				.fclk_mhz = 1067,
609 				.memclk_mhz = 1067,
610 				.socclk_mhz = 0,
611 			},
612 			{
613 				.voltage = 0,
614 				.dcfclk_mhz = 738,
615 				.fclk_mhz = 1333,
616 				.memclk_mhz = 1600,
617 				.socclk_mhz = 0,
618 			},
619 		},
620 
621 		.num_entries = 4,
622 	},
623 
624 };
625 
626 static struct wm_table ddr4_wm_table_gs = {
627 	.entries = {
628 		{
629 			.wm_inst = WM_A,
630 			.wm_type = WM_TYPE_PSTATE_CHG,
631 			.pstate_latency_us = 11.72,
632 			.sr_exit_time_us = 7.09,
633 			.sr_enter_plus_exit_time_us = 8.14,
634 			.valid = true,
635 		},
636 		{
637 			.wm_inst = WM_B,
638 			.wm_type = WM_TYPE_PSTATE_CHG,
639 			.pstate_latency_us = 11.72,
640 			.sr_exit_time_us = 10.12,
641 			.sr_enter_plus_exit_time_us = 11.48,
642 			.valid = true,
643 		},
644 		{
645 			.wm_inst = WM_C,
646 			.wm_type = WM_TYPE_PSTATE_CHG,
647 			.pstate_latency_us = 11.72,
648 			.sr_exit_time_us = 10.12,
649 			.sr_enter_plus_exit_time_us = 11.48,
650 			.valid = true,
651 		},
652 		{
653 			.wm_inst = WM_D,
654 			.wm_type = WM_TYPE_PSTATE_CHG,
655 			.pstate_latency_us = 11.72,
656 			.sr_exit_time_us = 10.12,
657 			.sr_enter_plus_exit_time_us = 11.48,
658 			.valid = true,
659 		},
660 	}
661 };
662 
663 static struct wm_table lpddr4_wm_table_gs = {
664 	.entries = {
665 		{
666 			.wm_inst = WM_A,
667 			.wm_type = WM_TYPE_PSTATE_CHG,
668 			.pstate_latency_us = 11.65333,
669 			.sr_exit_time_us = 5.32,
670 			.sr_enter_plus_exit_time_us = 6.38,
671 			.valid = true,
672 		},
673 		{
674 			.wm_inst = WM_B,
675 			.wm_type = WM_TYPE_PSTATE_CHG,
676 			.pstate_latency_us = 11.65333,
677 			.sr_exit_time_us = 9.82,
678 			.sr_enter_plus_exit_time_us = 11.196,
679 			.valid = true,
680 		},
681 		{
682 			.wm_inst = WM_C,
683 			.wm_type = WM_TYPE_PSTATE_CHG,
684 			.pstate_latency_us = 11.65333,
685 			.sr_exit_time_us = 9.89,
686 			.sr_enter_plus_exit_time_us = 11.24,
687 			.valid = true,
688 		},
689 		{
690 			.wm_inst = WM_D,
691 			.wm_type = WM_TYPE_PSTATE_CHG,
692 			.pstate_latency_us = 11.65333,
693 			.sr_exit_time_us = 9.748,
694 			.sr_enter_plus_exit_time_us = 11.102,
695 			.valid = true,
696 		},
697 	}
698 };
699 
700 static struct wm_table lpddr4_wm_table_with_disabled_ppt = {
701 	.entries = {
702 		{
703 			.wm_inst = WM_A,
704 			.wm_type = WM_TYPE_PSTATE_CHG,
705 			.pstate_latency_us = 11.65333,
706 			.sr_exit_time_us = 8.32,
707 			.sr_enter_plus_exit_time_us = 9.38,
708 			.valid = true,
709 		},
710 		{
711 			.wm_inst = WM_B,
712 			.wm_type = WM_TYPE_PSTATE_CHG,
713 			.pstate_latency_us = 11.65333,
714 			.sr_exit_time_us = 9.82,
715 			.sr_enter_plus_exit_time_us = 11.196,
716 			.valid = true,
717 		},
718 		{
719 			.wm_inst = WM_C,
720 			.wm_type = WM_TYPE_PSTATE_CHG,
721 			.pstate_latency_us = 11.65333,
722 			.sr_exit_time_us = 9.89,
723 			.sr_enter_plus_exit_time_us = 11.24,
724 			.valid = true,
725 		},
726 		{
727 			.wm_inst = WM_D,
728 			.wm_type = WM_TYPE_PSTATE_CHG,
729 			.pstate_latency_us = 11.65333,
730 			.sr_exit_time_us = 9.748,
731 			.sr_enter_plus_exit_time_us = 11.102,
732 			.valid = true,
733 		},
734 	}
735 };
736 
737 static struct wm_table ddr4_wm_table_rn = {
738 	.entries = {
739 		{
740 			.wm_inst = WM_A,
741 			.wm_type = WM_TYPE_PSTATE_CHG,
742 			.pstate_latency_us = 11.72,
743 			.sr_exit_time_us = 11.90,
744 			.sr_enter_plus_exit_time_us = 12.80,
745 			.valid = true,
746 		},
747 		{
748 			.wm_inst = WM_B,
749 			.wm_type = WM_TYPE_PSTATE_CHG,
750 			.pstate_latency_us = 11.72,
751 			.sr_exit_time_us = 13.18,
752 			.sr_enter_plus_exit_time_us = 14.30,
753 			.valid = true,
754 		},
755 		{
756 			.wm_inst = WM_C,
757 			.wm_type = WM_TYPE_PSTATE_CHG,
758 			.pstate_latency_us = 11.72,
759 			.sr_exit_time_us = 13.18,
760 			.sr_enter_plus_exit_time_us = 14.30,
761 			.valid = true,
762 		},
763 		{
764 			.wm_inst = WM_D,
765 			.wm_type = WM_TYPE_PSTATE_CHG,
766 			.pstate_latency_us = 11.72,
767 			.sr_exit_time_us = 13.18,
768 			.sr_enter_plus_exit_time_us = 14.30,
769 			.valid = true,
770 		},
771 	}
772 };
773 
774 static struct wm_table ddr4_1R_wm_table_rn = {
775 	.entries = {
776 		{
777 			.wm_inst = WM_A,
778 			.wm_type = WM_TYPE_PSTATE_CHG,
779 			.pstate_latency_us = 11.72,
780 			.sr_exit_time_us = 13.90,
781 			.sr_enter_plus_exit_time_us = 14.80,
782 			.valid = true,
783 		},
784 		{
785 			.wm_inst = WM_B,
786 			.wm_type = WM_TYPE_PSTATE_CHG,
787 			.pstate_latency_us = 11.72,
788 			.sr_exit_time_us = 13.90,
789 			.sr_enter_plus_exit_time_us = 14.80,
790 			.valid = true,
791 		},
792 		{
793 			.wm_inst = WM_C,
794 			.wm_type = WM_TYPE_PSTATE_CHG,
795 			.pstate_latency_us = 11.72,
796 			.sr_exit_time_us = 13.90,
797 			.sr_enter_plus_exit_time_us = 14.80,
798 			.valid = true,
799 		},
800 		{
801 			.wm_inst = WM_D,
802 			.wm_type = WM_TYPE_PSTATE_CHG,
803 			.pstate_latency_us = 11.72,
804 			.sr_exit_time_us = 13.90,
805 			.sr_enter_plus_exit_time_us = 14.80,
806 			.valid = true,
807 		},
808 	}
809 };
810 
811 static struct wm_table lpddr4_wm_table_rn = {
812 	.entries = {
813 		{
814 			.wm_inst = WM_A,
815 			.wm_type = WM_TYPE_PSTATE_CHG,
816 			.pstate_latency_us = 11.65333,
817 			.sr_exit_time_us = 7.32,
818 			.sr_enter_plus_exit_time_us = 8.38,
819 			.valid = true,
820 		},
821 		{
822 			.wm_inst = WM_B,
823 			.wm_type = WM_TYPE_PSTATE_CHG,
824 			.pstate_latency_us = 11.65333,
825 			.sr_exit_time_us = 9.82,
826 			.sr_enter_plus_exit_time_us = 11.196,
827 			.valid = true,
828 		},
829 		{
830 			.wm_inst = WM_C,
831 			.wm_type = WM_TYPE_PSTATE_CHG,
832 			.pstate_latency_us = 11.65333,
833 			.sr_exit_time_us = 9.89,
834 			.sr_enter_plus_exit_time_us = 11.24,
835 			.valid = true,
836 		},
837 		{
838 			.wm_inst = WM_D,
839 			.wm_type = WM_TYPE_PSTATE_CHG,
840 			.pstate_latency_us = 11.65333,
841 			.sr_exit_time_us = 9.748,
842 			.sr_enter_plus_exit_time_us = 11.102,
843 			.valid = true,
844 		},
845 	}
846 };
847 
find_socclk_for_voltage(struct dpm_clocks * clock_table,unsigned int voltage)848 static unsigned int find_socclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
849 {
850 	int i;
851 
852 	for (i = 0; i < PP_SMU_NUM_SOCCLK_DPM_LEVELS; i++) {
853 		if (clock_table->SocClocks[i].Vol == voltage)
854 			return clock_table->SocClocks[i].Freq;
855 	}
856 
857 	ASSERT(0);
858 	return 0;
859 }
860 
find_dcfclk_for_voltage(struct dpm_clocks * clock_table,unsigned int voltage)861 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
862 {
863 	int i;
864 
865 	for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
866 		if (clock_table->DcfClocks[i].Vol == voltage)
867 			return clock_table->DcfClocks[i].Freq;
868 	}
869 
870 	ASSERT(0);
871 	return 0;
872 }
873 
rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params * bw_params,struct dpm_clocks * clock_table,struct integrated_info * bios_info)874 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
875 {
876 	int i, j = 0;
877 
878 	j = -1;
879 
880 	ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
881 
882 	/* Find lowest DPM, FCLK is filled in reverse order*/
883 
884 	for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
885 		if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
886 			j = i;
887 			break;
888 		}
889 	}
890 
891 	if (j == -1) {
892 		/* clock table is all 0s, just use our own hardcode */
893 		ASSERT(0);
894 		return;
895 	}
896 
897 	bw_params->clk_table.num_entries = j + 1;
898 
899 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
900 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
901 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
902 		bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
903 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
904 		bw_params->clk_table.entries[i].socclk_mhz = find_socclk_for_voltage(clock_table,
905 									bw_params->clk_table.entries[i].voltage);
906 	}
907 
908 	bw_params->vram_type = bios_info->memory_type;
909 	bw_params->num_channels = bios_info->ma_channel_number;
910 
911 	for (i = 0; i < WM_SET_COUNT; i++) {
912 		bw_params->wm_table.entries[i].wm_inst = i;
913 
914 		if (i >= bw_params->clk_table.num_entries) {
915 			bw_params->wm_table.entries[i].valid = false;
916 			continue;
917 		}
918 
919 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
920 		bw_params->wm_table.entries[i].valid = true;
921 	}
922 
923 	if (bw_params->vram_type == LpDdr4MemType) {
924 		/*
925 		 * WM set D will be re-purposed for memory retraining
926 		 */
927 		bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
928 		bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
929 		bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
930 		bw_params->wm_table.entries[WM_D].valid = true;
931 	}
932 
933 }
934 
rn_clk_mgr_construct(struct dc_context * ctx,struct clk_mgr_internal * clk_mgr,struct pp_smu_funcs * pp_smu,struct dccg * dccg)935 void rn_clk_mgr_construct(
936 		struct dc_context *ctx,
937 		struct clk_mgr_internal *clk_mgr,
938 		struct pp_smu_funcs *pp_smu,
939 		struct dccg *dccg)
940 {
941 	struct dc_debug_options *debug = &ctx->dc->debug;
942 	struct dpm_clocks clock_table = { 0 };
943 	enum pp_smu_status status = 0;
944 	int is_green_sardine = 0;
945 
946 #if defined(CONFIG_DRM_AMD_DC_DCN)
947 	is_green_sardine = ASICREV_IS_GREEN_SARDINE(ctx->asic_id.hw_internal_rev);
948 #endif
949 
950 	clk_mgr->base.ctx = ctx;
951 	clk_mgr->base.funcs = &dcn21_funcs;
952 
953 	clk_mgr->pp_smu = pp_smu;
954 
955 	clk_mgr->dccg = dccg;
956 	clk_mgr->dfs_bypass_disp_clk = 0;
957 
958 	clk_mgr->dprefclk_ss_percentage = 0;
959 	clk_mgr->dprefclk_ss_divider = 1000;
960 	clk_mgr->ss_on_dprefclk = false;
961 	clk_mgr->dfs_ref_freq_khz = 48000;
962 
963 	clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
964 
965 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
966 		dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
967 		clk_mgr->base.dentist_vco_freq_khz = 3600000;
968 	} else {
969 		struct clk_log_info log_info = {0};
970 
971 		clk_mgr->periodic_retraining_disabled = rn_vbios_smu_is_periodic_retraining_disabled(clk_mgr);
972 
973 		/* SMU Version 55.51.0 and up no longer have an issue
974 		 * that needs to limit minimum dispclk */
975 		if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
976 			debug->min_disp_clk_khz = 0;
977 
978 		/* TODO: Check we get what we expect during bringup */
979 		clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
980 
981 		/* in case we don't get a value from the register, use default */
982 		if (clk_mgr->base.dentist_vco_freq_khz == 0)
983 			clk_mgr->base.dentist_vco_freq_khz = 3600000;
984 
985 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
986 			if (clk_mgr->periodic_retraining_disabled) {
987 				rn_bw_params.wm_table = lpddr4_wm_table_with_disabled_ppt;
988 			} else {
989 				if (is_green_sardine)
990 					rn_bw_params.wm_table = lpddr4_wm_table_gs;
991 				else
992 					rn_bw_params.wm_table = lpddr4_wm_table_rn;
993 			}
994 		} else {
995 			if (is_green_sardine)
996 				rn_bw_params.wm_table = ddr4_wm_table_gs;
997 			else {
998 				if (ctx->dc->config.is_single_rank_dimm)
999 					rn_bw_params.wm_table = ddr4_1R_wm_table_rn;
1000 				else
1001 					rn_bw_params.wm_table = ddr4_wm_table_rn;
1002 			}
1003 		}
1004 		/* Saved clocks configured at boot for debug purposes */
1005 		rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
1006 	}
1007 
1008 	clk_mgr->base.dprefclk_khz = 600000;
1009 	dce_clock_read_ss_info(clk_mgr);
1010 
1011 
1012 	clk_mgr->base.bw_params = &rn_bw_params;
1013 
1014 	if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
1015 		status = pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
1016 
1017 		if (status == PP_SMU_RESULT_OK &&
1018 		    ctx->dc_bios && ctx->dc_bios->integrated_info) {
1019 			rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
1020 			/* treat memory config as single channel if memory is asymmetrics. */
1021 			if (ctx->dc->config.is_asymmetric_memory)
1022 				clk_mgr->base.bw_params->num_channels = 1;
1023 		}
1024 	}
1025 
1026 	if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
1027 		/* enable powerfeatures when displaycount goes to 0 */
1028 		rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
1029 	}
1030 }
1031 
1032