1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/sched.c
4 *
5 * Scheduling for synchronous and asynchronous RPC requests.
6 *
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 *
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11 */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32
33 /*
34 * RPC slabs and memory pools
35 */
36 #define RPC_BUFFER_MAXSIZE (2048)
37 #define RPC_BUFFER_POOLSIZE (8)
38 #define RPC_TASK_POOLSIZE (8)
39 static struct kmem_cache *rpc_task_slabp __read_mostly;
40 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
41 static mempool_t *rpc_task_mempool __read_mostly;
42 static mempool_t *rpc_buffer_mempool __read_mostly;
43
44 static void rpc_async_schedule(struct work_struct *);
45 static void rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47
48 /*
49 * RPC tasks sit here while waiting for conditions to improve.
50 */
51 static struct rpc_wait_queue delay_queue;
52
53 /*
54 * rpciod-related stuff
55 */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59
60 unsigned long
rpc_task_timeout(const struct rpc_task * task)61 rpc_task_timeout(const struct rpc_task *task)
62 {
63 unsigned long timeout = READ_ONCE(task->tk_timeout);
64
65 if (timeout != 0) {
66 unsigned long now = jiffies;
67 if (time_before(now, timeout))
68 return timeout - now;
69 }
70 return 0;
71 }
72 EXPORT_SYMBOL_GPL(rpc_task_timeout);
73
74 /*
75 * Disable the timer for a given RPC task. Should be called with
76 * queue->lock and bh_disabled in order to avoid races within
77 * rpc_run_timer().
78 */
79 static void
__rpc_disable_timer(struct rpc_wait_queue * queue,struct rpc_task * task)80 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
81 {
82 if (list_empty(&task->u.tk_wait.timer_list))
83 return;
84 task->tk_timeout = 0;
85 list_del(&task->u.tk_wait.timer_list);
86 if (list_empty(&queue->timer_list.list))
87 cancel_delayed_work(&queue->timer_list.dwork);
88 }
89
90 static void
rpc_set_queue_timer(struct rpc_wait_queue * queue,unsigned long expires)91 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
92 {
93 unsigned long now = jiffies;
94 queue->timer_list.expires = expires;
95 if (time_before_eq(expires, now))
96 expires = 0;
97 else
98 expires -= now;
99 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
100 }
101
102 /*
103 * Set up a timer for the current task.
104 */
105 static void
__rpc_add_timer(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned long timeout)106 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
107 unsigned long timeout)
108 {
109 task->tk_timeout = timeout;
110 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
111 rpc_set_queue_timer(queue, timeout);
112 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
113 }
114
rpc_set_waitqueue_priority(struct rpc_wait_queue * queue,int priority)115 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
116 {
117 if (queue->priority != priority) {
118 queue->priority = priority;
119 queue->nr = 1U << priority;
120 }
121 }
122
rpc_reset_waitqueue_priority(struct rpc_wait_queue * queue)123 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
124 {
125 rpc_set_waitqueue_priority(queue, queue->maxpriority);
126 }
127
128 /*
129 * Add a request to a queue list
130 */
131 static void
__rpc_list_enqueue_task(struct list_head * q,struct rpc_task * task)132 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
133 {
134 struct rpc_task *t;
135
136 list_for_each_entry(t, q, u.tk_wait.list) {
137 if (t->tk_owner == task->tk_owner) {
138 list_add_tail(&task->u.tk_wait.links,
139 &t->u.tk_wait.links);
140 /* Cache the queue head in task->u.tk_wait.list */
141 task->u.tk_wait.list.next = q;
142 task->u.tk_wait.list.prev = NULL;
143 return;
144 }
145 }
146 INIT_LIST_HEAD(&task->u.tk_wait.links);
147 list_add_tail(&task->u.tk_wait.list, q);
148 }
149
150 /*
151 * Remove request from a queue list
152 */
153 static void
__rpc_list_dequeue_task(struct rpc_task * task)154 __rpc_list_dequeue_task(struct rpc_task *task)
155 {
156 struct list_head *q;
157 struct rpc_task *t;
158
159 if (task->u.tk_wait.list.prev == NULL) {
160 list_del(&task->u.tk_wait.links);
161 return;
162 }
163 if (!list_empty(&task->u.tk_wait.links)) {
164 t = list_first_entry(&task->u.tk_wait.links,
165 struct rpc_task,
166 u.tk_wait.links);
167 /* Assume __rpc_list_enqueue_task() cached the queue head */
168 q = t->u.tk_wait.list.next;
169 list_add_tail(&t->u.tk_wait.list, q);
170 list_del(&task->u.tk_wait.links);
171 }
172 list_del(&task->u.tk_wait.list);
173 }
174
175 /*
176 * Add new request to a priority queue.
177 */
__rpc_add_wait_queue_priority(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)178 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
179 struct rpc_task *task,
180 unsigned char queue_priority)
181 {
182 if (unlikely(queue_priority > queue->maxpriority))
183 queue_priority = queue->maxpriority;
184 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
185 }
186
187 /*
188 * Add new request to wait queue.
189 *
190 * Swapper tasks always get inserted at the head of the queue.
191 * This should avoid many nasty memory deadlocks and hopefully
192 * improve overall performance.
193 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
194 */
__rpc_add_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)195 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
196 struct rpc_task *task,
197 unsigned char queue_priority)
198 {
199 INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
200 if (RPC_IS_PRIORITY(queue))
201 __rpc_add_wait_queue_priority(queue, task, queue_priority);
202 else if (RPC_IS_SWAPPER(task))
203 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
204 else
205 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
206 task->tk_waitqueue = queue;
207 queue->qlen++;
208 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
209 smp_wmb();
210 rpc_set_queued(task);
211 }
212
213 /*
214 * Remove request from a priority queue.
215 */
__rpc_remove_wait_queue_priority(struct rpc_task * task)216 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
217 {
218 __rpc_list_dequeue_task(task);
219 }
220
221 /*
222 * Remove request from queue.
223 * Note: must be called with spin lock held.
224 */
__rpc_remove_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task)225 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
226 {
227 __rpc_disable_timer(queue, task);
228 if (RPC_IS_PRIORITY(queue))
229 __rpc_remove_wait_queue_priority(task);
230 else
231 list_del(&task->u.tk_wait.list);
232 queue->qlen--;
233 }
234
__rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname,unsigned char nr_queues)235 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
236 {
237 int i;
238
239 spin_lock_init(&queue->lock);
240 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
241 INIT_LIST_HEAD(&queue->tasks[i]);
242 queue->maxpriority = nr_queues - 1;
243 rpc_reset_waitqueue_priority(queue);
244 queue->qlen = 0;
245 queue->timer_list.expires = 0;
246 INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
247 INIT_LIST_HEAD(&queue->timer_list.list);
248 rpc_assign_waitqueue_name(queue, qname);
249 }
250
rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname)251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
254 }
255 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
256
rpc_init_wait_queue(struct rpc_wait_queue * queue,const char * qname)257 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 {
259 __rpc_init_priority_wait_queue(queue, qname, 1);
260 }
261 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
262
rpc_destroy_wait_queue(struct rpc_wait_queue * queue)263 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
264 {
265 cancel_delayed_work_sync(&queue->timer_list.dwork);
266 }
267 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
268
rpc_wait_bit_killable(struct wait_bit_key * key,int mode)269 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
270 {
271 freezable_schedule_unsafe();
272 if (signal_pending_state(mode, current))
273 return -ERESTARTSYS;
274 return 0;
275 }
276
277 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
rpc_task_set_debuginfo(struct rpc_task * task)278 static void rpc_task_set_debuginfo(struct rpc_task *task)
279 {
280 struct rpc_clnt *clnt = task->tk_client;
281
282 /* Might be a task carrying a reverse-direction operation */
283 if (!clnt) {
284 static atomic_t rpc_pid;
285
286 task->tk_pid = atomic_inc_return(&rpc_pid);
287 return;
288 }
289
290 task->tk_pid = atomic_inc_return(&clnt->cl_pid);
291 }
292 #else
rpc_task_set_debuginfo(struct rpc_task * task)293 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
294 {
295 }
296 #endif
297
rpc_set_active(struct rpc_task * task)298 static void rpc_set_active(struct rpc_task *task)
299 {
300 rpc_task_set_debuginfo(task);
301 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
302 trace_rpc_task_begin(task, NULL);
303 }
304
305 /*
306 * Mark an RPC call as having completed by clearing the 'active' bit
307 * and then waking up all tasks that were sleeping.
308 */
rpc_complete_task(struct rpc_task * task)309 static int rpc_complete_task(struct rpc_task *task)
310 {
311 void *m = &task->tk_runstate;
312 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
313 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
314 unsigned long flags;
315 int ret;
316
317 trace_rpc_task_complete(task, NULL);
318
319 spin_lock_irqsave(&wq->lock, flags);
320 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
321 ret = atomic_dec_and_test(&task->tk_count);
322 if (waitqueue_active(wq))
323 __wake_up_locked_key(wq, TASK_NORMAL, &k);
324 spin_unlock_irqrestore(&wq->lock, flags);
325 return ret;
326 }
327
328 /*
329 * Allow callers to wait for completion of an RPC call
330 *
331 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
332 * to enforce taking of the wq->lock and hence avoid races with
333 * rpc_complete_task().
334 */
__rpc_wait_for_completion_task(struct rpc_task * task,wait_bit_action_f * action)335 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
336 {
337 if (action == NULL)
338 action = rpc_wait_bit_killable;
339 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
340 action, TASK_KILLABLE);
341 }
342 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
343
344 /*
345 * Make an RPC task runnable.
346 *
347 * Note: If the task is ASYNC, and is being made runnable after sitting on an
348 * rpc_wait_queue, this must be called with the queue spinlock held to protect
349 * the wait queue operation.
350 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
351 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
352 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
353 * the RPC_TASK_RUNNING flag.
354 */
rpc_make_runnable(struct workqueue_struct * wq,struct rpc_task * task)355 static void rpc_make_runnable(struct workqueue_struct *wq,
356 struct rpc_task *task)
357 {
358 bool need_wakeup = !rpc_test_and_set_running(task);
359
360 rpc_clear_queued(task);
361 if (!need_wakeup)
362 return;
363 if (RPC_IS_ASYNC(task)) {
364 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
365 queue_work(wq, &task->u.tk_work);
366 } else
367 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
368 }
369
370 /*
371 * Prepare for sleeping on a wait queue.
372 * By always appending tasks to the list we ensure FIFO behavior.
373 * NB: An RPC task will only receive interrupt-driven events as long
374 * as it's on a wait queue.
375 */
__rpc_do_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,unsigned char queue_priority)376 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
377 struct rpc_task *task,
378 unsigned char queue_priority)
379 {
380 trace_rpc_task_sleep(task, q);
381
382 __rpc_add_wait_queue(q, task, queue_priority);
383 }
384
__rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,unsigned char queue_priority)385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
386 struct rpc_task *task,
387 unsigned char queue_priority)
388 {
389 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
390 return;
391 __rpc_do_sleep_on_priority(q, task, queue_priority);
392 }
393
__rpc_sleep_on_priority_timeout(struct rpc_wait_queue * q,struct rpc_task * task,unsigned long timeout,unsigned char queue_priority)394 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
395 struct rpc_task *task, unsigned long timeout,
396 unsigned char queue_priority)
397 {
398 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
399 return;
400 if (time_is_after_jiffies(timeout)) {
401 __rpc_do_sleep_on_priority(q, task, queue_priority);
402 __rpc_add_timer(q, task, timeout);
403 } else
404 task->tk_status = -ETIMEDOUT;
405 }
406
rpc_set_tk_callback(struct rpc_task * task,rpc_action action)407 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
408 {
409 if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
410 task->tk_callback = action;
411 }
412
rpc_sleep_check_activated(struct rpc_task * task)413 static bool rpc_sleep_check_activated(struct rpc_task *task)
414 {
415 /* We shouldn't ever put an inactive task to sleep */
416 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
417 task->tk_status = -EIO;
418 rpc_put_task_async(task);
419 return false;
420 }
421 return true;
422 }
423
rpc_sleep_on_timeout(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,unsigned long timeout)424 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
425 rpc_action action, unsigned long timeout)
426 {
427 if (!rpc_sleep_check_activated(task))
428 return;
429
430 rpc_set_tk_callback(task, action);
431
432 /*
433 * Protect the queue operations.
434 */
435 spin_lock(&q->lock);
436 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
437 spin_unlock(&q->lock);
438 }
439 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
440
rpc_sleep_on(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action)441 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
442 rpc_action action)
443 {
444 if (!rpc_sleep_check_activated(task))
445 return;
446
447 rpc_set_tk_callback(task, action);
448
449 WARN_ON_ONCE(task->tk_timeout != 0);
450 /*
451 * Protect the queue operations.
452 */
453 spin_lock(&q->lock);
454 __rpc_sleep_on_priority(q, task, task->tk_priority);
455 spin_unlock(&q->lock);
456 }
457 EXPORT_SYMBOL_GPL(rpc_sleep_on);
458
rpc_sleep_on_priority_timeout(struct rpc_wait_queue * q,struct rpc_task * task,unsigned long timeout,int priority)459 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
460 struct rpc_task *task, unsigned long timeout, int priority)
461 {
462 if (!rpc_sleep_check_activated(task))
463 return;
464
465 priority -= RPC_PRIORITY_LOW;
466 /*
467 * Protect the queue operations.
468 */
469 spin_lock(&q->lock);
470 __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
471 spin_unlock(&q->lock);
472 }
473 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
474
rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,int priority)475 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
476 int priority)
477 {
478 if (!rpc_sleep_check_activated(task))
479 return;
480
481 WARN_ON_ONCE(task->tk_timeout != 0);
482 priority -= RPC_PRIORITY_LOW;
483 /*
484 * Protect the queue operations.
485 */
486 spin_lock(&q->lock);
487 __rpc_sleep_on_priority(q, task, priority);
488 spin_unlock(&q->lock);
489 }
490 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
491
492 /**
493 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
494 * @wq: workqueue on which to run task
495 * @queue: wait queue
496 * @task: task to be woken up
497 *
498 * Caller must hold queue->lock, and have cleared the task queued flag.
499 */
__rpc_do_wake_up_task_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task)500 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
501 struct rpc_wait_queue *queue,
502 struct rpc_task *task)
503 {
504 /* Has the task been executed yet? If not, we cannot wake it up! */
505 if (!RPC_IS_ACTIVATED(task)) {
506 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
507 return;
508 }
509
510 trace_rpc_task_wakeup(task, queue);
511
512 __rpc_remove_wait_queue(queue, task);
513
514 rpc_make_runnable(wq, task);
515 }
516
517 /*
518 * Wake up a queued task while the queue lock is being held
519 */
520 static struct rpc_task *
rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task,bool (* action)(struct rpc_task *,void *),void * data)521 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
522 struct rpc_wait_queue *queue, struct rpc_task *task,
523 bool (*action)(struct rpc_task *, void *), void *data)
524 {
525 if (RPC_IS_QUEUED(task)) {
526 smp_rmb();
527 if (task->tk_waitqueue == queue) {
528 if (action == NULL || action(task, data)) {
529 __rpc_do_wake_up_task_on_wq(wq, queue, task);
530 return task;
531 }
532 }
533 }
534 return NULL;
535 }
536
537 /*
538 * Wake up a queued task while the queue lock is being held
539 */
rpc_wake_up_task_queue_locked(struct rpc_wait_queue * queue,struct rpc_task * task)540 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
541 struct rpc_task *task)
542 {
543 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
544 task, NULL, NULL);
545 }
546
547 /*
548 * Wake up a task on a specific queue
549 */
rpc_wake_up_queued_task(struct rpc_wait_queue * queue,struct rpc_task * task)550 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
551 {
552 if (!RPC_IS_QUEUED(task))
553 return;
554 spin_lock(&queue->lock);
555 rpc_wake_up_task_queue_locked(queue, task);
556 spin_unlock(&queue->lock);
557 }
558 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
559
rpc_task_action_set_status(struct rpc_task * task,void * status)560 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
561 {
562 task->tk_status = *(int *)status;
563 return true;
564 }
565
566 static void
rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue * queue,struct rpc_task * task,int status)567 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
568 struct rpc_task *task, int status)
569 {
570 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
571 task, rpc_task_action_set_status, &status);
572 }
573
574 /**
575 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
576 * @queue: pointer to rpc_wait_queue
577 * @task: pointer to rpc_task
578 * @status: integer error value
579 *
580 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
581 * set to the value of @status.
582 */
583 void
rpc_wake_up_queued_task_set_status(struct rpc_wait_queue * queue,struct rpc_task * task,int status)584 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
585 struct rpc_task *task, int status)
586 {
587 if (!RPC_IS_QUEUED(task))
588 return;
589 spin_lock(&queue->lock);
590 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
591 spin_unlock(&queue->lock);
592 }
593
594 /*
595 * Wake up the next task on a priority queue.
596 */
__rpc_find_next_queued_priority(struct rpc_wait_queue * queue)597 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
598 {
599 struct list_head *q;
600 struct rpc_task *task;
601
602 /*
603 * Service the privileged queue.
604 */
605 q = &queue->tasks[RPC_NR_PRIORITY - 1];
606 if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
607 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
608 goto out;
609 }
610
611 /*
612 * Service a batch of tasks from a single owner.
613 */
614 q = &queue->tasks[queue->priority];
615 if (!list_empty(q) && queue->nr) {
616 queue->nr--;
617 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
618 goto out;
619 }
620
621 /*
622 * Service the next queue.
623 */
624 do {
625 if (q == &queue->tasks[0])
626 q = &queue->tasks[queue->maxpriority];
627 else
628 q = q - 1;
629 if (!list_empty(q)) {
630 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
631 goto new_queue;
632 }
633 } while (q != &queue->tasks[queue->priority]);
634
635 rpc_reset_waitqueue_priority(queue);
636 return NULL;
637
638 new_queue:
639 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
640 out:
641 return task;
642 }
643
__rpc_find_next_queued(struct rpc_wait_queue * queue)644 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
645 {
646 if (RPC_IS_PRIORITY(queue))
647 return __rpc_find_next_queued_priority(queue);
648 if (!list_empty(&queue->tasks[0]))
649 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
650 return NULL;
651 }
652
653 /*
654 * Wake up the first task on the wait queue.
655 */
rpc_wake_up_first_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)656 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
657 struct rpc_wait_queue *queue,
658 bool (*func)(struct rpc_task *, void *), void *data)
659 {
660 struct rpc_task *task = NULL;
661
662 spin_lock(&queue->lock);
663 task = __rpc_find_next_queued(queue);
664 if (task != NULL)
665 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
666 task, func, data);
667 spin_unlock(&queue->lock);
668
669 return task;
670 }
671
672 /*
673 * Wake up the first task on the wait queue.
674 */
rpc_wake_up_first(struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)675 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
676 bool (*func)(struct rpc_task *, void *), void *data)
677 {
678 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
679 }
680 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
681
rpc_wake_up_next_func(struct rpc_task * task,void * data)682 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
683 {
684 return true;
685 }
686
687 /*
688 * Wake up the next task on the wait queue.
689 */
rpc_wake_up_next(struct rpc_wait_queue * queue)690 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
691 {
692 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
693 }
694 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
695
696 /**
697 * rpc_wake_up_locked - wake up all rpc_tasks
698 * @queue: rpc_wait_queue on which the tasks are sleeping
699 *
700 */
rpc_wake_up_locked(struct rpc_wait_queue * queue)701 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
702 {
703 struct rpc_task *task;
704
705 for (;;) {
706 task = __rpc_find_next_queued(queue);
707 if (task == NULL)
708 break;
709 rpc_wake_up_task_queue_locked(queue, task);
710 }
711 }
712
713 /**
714 * rpc_wake_up - wake up all rpc_tasks
715 * @queue: rpc_wait_queue on which the tasks are sleeping
716 *
717 * Grabs queue->lock
718 */
rpc_wake_up(struct rpc_wait_queue * queue)719 void rpc_wake_up(struct rpc_wait_queue *queue)
720 {
721 spin_lock(&queue->lock);
722 rpc_wake_up_locked(queue);
723 spin_unlock(&queue->lock);
724 }
725 EXPORT_SYMBOL_GPL(rpc_wake_up);
726
727 /**
728 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
729 * @queue: rpc_wait_queue on which the tasks are sleeping
730 * @status: status value to set
731 */
rpc_wake_up_status_locked(struct rpc_wait_queue * queue,int status)732 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
733 {
734 struct rpc_task *task;
735
736 for (;;) {
737 task = __rpc_find_next_queued(queue);
738 if (task == NULL)
739 break;
740 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
741 }
742 }
743
744 /**
745 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
746 * @queue: rpc_wait_queue on which the tasks are sleeping
747 * @status: status value to set
748 *
749 * Grabs queue->lock
750 */
rpc_wake_up_status(struct rpc_wait_queue * queue,int status)751 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
752 {
753 spin_lock(&queue->lock);
754 rpc_wake_up_status_locked(queue, status);
755 spin_unlock(&queue->lock);
756 }
757 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
758
__rpc_queue_timer_fn(struct work_struct * work)759 static void __rpc_queue_timer_fn(struct work_struct *work)
760 {
761 struct rpc_wait_queue *queue = container_of(work,
762 struct rpc_wait_queue,
763 timer_list.dwork.work);
764 struct rpc_task *task, *n;
765 unsigned long expires, now, timeo;
766
767 spin_lock(&queue->lock);
768 expires = now = jiffies;
769 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
770 timeo = task->tk_timeout;
771 if (time_after_eq(now, timeo)) {
772 trace_rpc_task_timeout(task, task->tk_action);
773 task->tk_status = -ETIMEDOUT;
774 rpc_wake_up_task_queue_locked(queue, task);
775 continue;
776 }
777 if (expires == now || time_after(expires, timeo))
778 expires = timeo;
779 }
780 if (!list_empty(&queue->timer_list.list))
781 rpc_set_queue_timer(queue, expires);
782 spin_unlock(&queue->lock);
783 }
784
__rpc_atrun(struct rpc_task * task)785 static void __rpc_atrun(struct rpc_task *task)
786 {
787 if (task->tk_status == -ETIMEDOUT)
788 task->tk_status = 0;
789 }
790
791 /*
792 * Run a task at a later time
793 */
rpc_delay(struct rpc_task * task,unsigned long delay)794 void rpc_delay(struct rpc_task *task, unsigned long delay)
795 {
796 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
797 }
798 EXPORT_SYMBOL_GPL(rpc_delay);
799
800 /*
801 * Helper to call task->tk_ops->rpc_call_prepare
802 */
rpc_prepare_task(struct rpc_task * task)803 void rpc_prepare_task(struct rpc_task *task)
804 {
805 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
806 }
807
808 static void
rpc_init_task_statistics(struct rpc_task * task)809 rpc_init_task_statistics(struct rpc_task *task)
810 {
811 /* Initialize retry counters */
812 task->tk_garb_retry = 2;
813 task->tk_cred_retry = 2;
814 task->tk_rebind_retry = 2;
815
816 /* starting timestamp */
817 task->tk_start = ktime_get();
818 }
819
820 static void
rpc_reset_task_statistics(struct rpc_task * task)821 rpc_reset_task_statistics(struct rpc_task *task)
822 {
823 task->tk_timeouts = 0;
824 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
825 rpc_init_task_statistics(task);
826 }
827
828 /*
829 * Helper that calls task->tk_ops->rpc_call_done if it exists
830 */
rpc_exit_task(struct rpc_task * task)831 void rpc_exit_task(struct rpc_task *task)
832 {
833 trace_rpc_task_end(task, task->tk_action);
834 task->tk_action = NULL;
835 if (task->tk_ops->rpc_count_stats)
836 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
837 else if (task->tk_client)
838 rpc_count_iostats(task, task->tk_client->cl_metrics);
839 if (task->tk_ops->rpc_call_done != NULL) {
840 trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
841 task->tk_ops->rpc_call_done(task, task->tk_calldata);
842 if (task->tk_action != NULL) {
843 /* Always release the RPC slot and buffer memory */
844 xprt_release(task);
845 rpc_reset_task_statistics(task);
846 }
847 }
848 }
849
rpc_signal_task(struct rpc_task * task)850 void rpc_signal_task(struct rpc_task *task)
851 {
852 struct rpc_wait_queue *queue;
853
854 if (!RPC_IS_ACTIVATED(task))
855 return;
856
857 trace_rpc_task_signalled(task, task->tk_action);
858 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
859 smp_mb__after_atomic();
860 queue = READ_ONCE(task->tk_waitqueue);
861 if (queue)
862 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
863 }
864
rpc_exit(struct rpc_task * task,int status)865 void rpc_exit(struct rpc_task *task, int status)
866 {
867 task->tk_status = status;
868 task->tk_action = rpc_exit_task;
869 rpc_wake_up_queued_task(task->tk_waitqueue, task);
870 }
871 EXPORT_SYMBOL_GPL(rpc_exit);
872
rpc_release_calldata(const struct rpc_call_ops * ops,void * calldata)873 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
874 {
875 if (ops->rpc_release != NULL)
876 ops->rpc_release(calldata);
877 }
878
879 /*
880 * This is the RPC `scheduler' (or rather, the finite state machine).
881 */
__rpc_execute(struct rpc_task * task)882 static void __rpc_execute(struct rpc_task *task)
883 {
884 struct rpc_wait_queue *queue;
885 int task_is_async = RPC_IS_ASYNC(task);
886 int status = 0;
887
888 WARN_ON_ONCE(RPC_IS_QUEUED(task));
889 if (RPC_IS_QUEUED(task))
890 return;
891
892 for (;;) {
893 void (*do_action)(struct rpc_task *);
894
895 /*
896 * Perform the next FSM step or a pending callback.
897 *
898 * tk_action may be NULL if the task has been killed.
899 * In particular, note that rpc_killall_tasks may
900 * do this at any time, so beware when dereferencing.
901 */
902 do_action = task->tk_action;
903 if (task->tk_callback) {
904 do_action = task->tk_callback;
905 task->tk_callback = NULL;
906 }
907 if (!do_action)
908 break;
909 trace_rpc_task_run_action(task, do_action);
910 do_action(task);
911
912 /*
913 * Lockless check for whether task is sleeping or not.
914 */
915 if (!RPC_IS_QUEUED(task)) {
916 cond_resched();
917 continue;
918 }
919
920 /*
921 * Signalled tasks should exit rather than sleep.
922 */
923 if (RPC_SIGNALLED(task)) {
924 task->tk_rpc_status = -ERESTARTSYS;
925 rpc_exit(task, -ERESTARTSYS);
926 }
927
928 /*
929 * The queue->lock protects against races with
930 * rpc_make_runnable().
931 *
932 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
933 * rpc_task, rpc_make_runnable() can assign it to a
934 * different workqueue. We therefore cannot assume that the
935 * rpc_task pointer may still be dereferenced.
936 */
937 queue = task->tk_waitqueue;
938 spin_lock(&queue->lock);
939 if (!RPC_IS_QUEUED(task)) {
940 spin_unlock(&queue->lock);
941 continue;
942 }
943 rpc_clear_running(task);
944 spin_unlock(&queue->lock);
945 if (task_is_async)
946 return;
947
948 /* sync task: sleep here */
949 trace_rpc_task_sync_sleep(task, task->tk_action);
950 status = out_of_line_wait_on_bit(&task->tk_runstate,
951 RPC_TASK_QUEUED, rpc_wait_bit_killable,
952 TASK_KILLABLE);
953 if (status < 0) {
954 /*
955 * When a sync task receives a signal, it exits with
956 * -ERESTARTSYS. In order to catch any callbacks that
957 * clean up after sleeping on some queue, we don't
958 * break the loop here, but go around once more.
959 */
960 trace_rpc_task_signalled(task, task->tk_action);
961 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
962 task->tk_rpc_status = -ERESTARTSYS;
963 rpc_exit(task, -ERESTARTSYS);
964 }
965 trace_rpc_task_sync_wake(task, task->tk_action);
966 }
967
968 /* Release all resources associated with the task */
969 rpc_release_task(task);
970 }
971
972 /*
973 * User-visible entry point to the scheduler.
974 *
975 * This may be called recursively if e.g. an async NFS task updates
976 * the attributes and finds that dirty pages must be flushed.
977 * NOTE: Upon exit of this function the task is guaranteed to be
978 * released. In particular note that tk_release() will have
979 * been called, so your task memory may have been freed.
980 */
rpc_execute(struct rpc_task * task)981 void rpc_execute(struct rpc_task *task)
982 {
983 bool is_async = RPC_IS_ASYNC(task);
984
985 rpc_set_active(task);
986 rpc_make_runnable(rpciod_workqueue, task);
987 if (!is_async) {
988 unsigned int pflags = memalloc_nofs_save();
989 __rpc_execute(task);
990 memalloc_nofs_restore(pflags);
991 }
992 }
993
rpc_async_schedule(struct work_struct * work)994 static void rpc_async_schedule(struct work_struct *work)
995 {
996 unsigned int pflags = memalloc_nofs_save();
997
998 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
999 memalloc_nofs_restore(pflags);
1000 }
1001
1002 /**
1003 * rpc_malloc - allocate RPC buffer resources
1004 * @task: RPC task
1005 *
1006 * A single memory region is allocated, which is split between the
1007 * RPC call and RPC reply that this task is being used for. When
1008 * this RPC is retired, the memory is released by calling rpc_free.
1009 *
1010 * To prevent rpciod from hanging, this allocator never sleeps,
1011 * returning -ENOMEM and suppressing warning if the request cannot
1012 * be serviced immediately. The caller can arrange to sleep in a
1013 * way that is safe for rpciod.
1014 *
1015 * Most requests are 'small' (under 2KiB) and can be serviced from a
1016 * mempool, ensuring that NFS reads and writes can always proceed,
1017 * and that there is good locality of reference for these buffers.
1018 */
rpc_malloc(struct rpc_task * task)1019 int rpc_malloc(struct rpc_task *task)
1020 {
1021 struct rpc_rqst *rqst = task->tk_rqstp;
1022 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1023 struct rpc_buffer *buf;
1024 gfp_t gfp = GFP_NOFS;
1025
1026 if (RPC_IS_SWAPPER(task))
1027 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1028
1029 size += sizeof(struct rpc_buffer);
1030 if (size <= RPC_BUFFER_MAXSIZE)
1031 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1032 else
1033 buf = kmalloc(size, gfp);
1034
1035 if (!buf)
1036 return -ENOMEM;
1037
1038 buf->len = size;
1039 rqst->rq_buffer = buf->data;
1040 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1041 return 0;
1042 }
1043 EXPORT_SYMBOL_GPL(rpc_malloc);
1044
1045 /**
1046 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1047 * @task: RPC task
1048 *
1049 */
rpc_free(struct rpc_task * task)1050 void rpc_free(struct rpc_task *task)
1051 {
1052 void *buffer = task->tk_rqstp->rq_buffer;
1053 size_t size;
1054 struct rpc_buffer *buf;
1055
1056 buf = container_of(buffer, struct rpc_buffer, data);
1057 size = buf->len;
1058
1059 if (size <= RPC_BUFFER_MAXSIZE)
1060 mempool_free(buf, rpc_buffer_mempool);
1061 else
1062 kfree(buf);
1063 }
1064 EXPORT_SYMBOL_GPL(rpc_free);
1065
1066 /*
1067 * Creation and deletion of RPC task structures
1068 */
rpc_init_task(struct rpc_task * task,const struct rpc_task_setup * task_setup_data)1069 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1070 {
1071 memset(task, 0, sizeof(*task));
1072 atomic_set(&task->tk_count, 1);
1073 task->tk_flags = task_setup_data->flags;
1074 task->tk_ops = task_setup_data->callback_ops;
1075 task->tk_calldata = task_setup_data->callback_data;
1076 INIT_LIST_HEAD(&task->tk_task);
1077
1078 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1079 task->tk_owner = current->tgid;
1080
1081 /* Initialize workqueue for async tasks */
1082 task->tk_workqueue = task_setup_data->workqueue;
1083
1084 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1085 xprt_get(task_setup_data->rpc_xprt));
1086
1087 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1088
1089 if (task->tk_ops->rpc_call_prepare != NULL)
1090 task->tk_action = rpc_prepare_task;
1091
1092 rpc_init_task_statistics(task);
1093 }
1094
1095 static struct rpc_task *
rpc_alloc_task(void)1096 rpc_alloc_task(void)
1097 {
1098 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1099 }
1100
1101 /*
1102 * Create a new task for the specified client.
1103 */
rpc_new_task(const struct rpc_task_setup * setup_data)1104 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1105 {
1106 struct rpc_task *task = setup_data->task;
1107 unsigned short flags = 0;
1108
1109 if (task == NULL) {
1110 task = rpc_alloc_task();
1111 flags = RPC_TASK_DYNAMIC;
1112 }
1113
1114 rpc_init_task(task, setup_data);
1115 task->tk_flags |= flags;
1116 return task;
1117 }
1118
1119 /*
1120 * rpc_free_task - release rpc task and perform cleanups
1121 *
1122 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1123 * in order to work around a workqueue dependency issue.
1124 *
1125 * Tejun Heo states:
1126 * "Workqueue currently considers two work items to be the same if they're
1127 * on the same address and won't execute them concurrently - ie. it
1128 * makes a work item which is queued again while being executed wait
1129 * for the previous execution to complete.
1130 *
1131 * If a work function frees the work item, and then waits for an event
1132 * which should be performed by another work item and *that* work item
1133 * recycles the freed work item, it can create a false dependency loop.
1134 * There really is no reliable way to detect this short of verifying
1135 * every memory free."
1136 *
1137 */
rpc_free_task(struct rpc_task * task)1138 static void rpc_free_task(struct rpc_task *task)
1139 {
1140 unsigned short tk_flags = task->tk_flags;
1141
1142 put_rpccred(task->tk_op_cred);
1143 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1144
1145 if (tk_flags & RPC_TASK_DYNAMIC)
1146 mempool_free(task, rpc_task_mempool);
1147 }
1148
rpc_async_release(struct work_struct * work)1149 static void rpc_async_release(struct work_struct *work)
1150 {
1151 unsigned int pflags = memalloc_nofs_save();
1152
1153 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1154 memalloc_nofs_restore(pflags);
1155 }
1156
rpc_release_resources_task(struct rpc_task * task)1157 static void rpc_release_resources_task(struct rpc_task *task)
1158 {
1159 xprt_release(task);
1160 if (task->tk_msg.rpc_cred) {
1161 if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1162 put_cred(task->tk_msg.rpc_cred);
1163 task->tk_msg.rpc_cred = NULL;
1164 }
1165 rpc_task_release_client(task);
1166 }
1167
rpc_final_put_task(struct rpc_task * task,struct workqueue_struct * q)1168 static void rpc_final_put_task(struct rpc_task *task,
1169 struct workqueue_struct *q)
1170 {
1171 if (q != NULL) {
1172 INIT_WORK(&task->u.tk_work, rpc_async_release);
1173 queue_work(q, &task->u.tk_work);
1174 } else
1175 rpc_free_task(task);
1176 }
1177
rpc_do_put_task(struct rpc_task * task,struct workqueue_struct * q)1178 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1179 {
1180 if (atomic_dec_and_test(&task->tk_count)) {
1181 rpc_release_resources_task(task);
1182 rpc_final_put_task(task, q);
1183 }
1184 }
1185
rpc_put_task(struct rpc_task * task)1186 void rpc_put_task(struct rpc_task *task)
1187 {
1188 rpc_do_put_task(task, NULL);
1189 }
1190 EXPORT_SYMBOL_GPL(rpc_put_task);
1191
rpc_put_task_async(struct rpc_task * task)1192 void rpc_put_task_async(struct rpc_task *task)
1193 {
1194 rpc_do_put_task(task, task->tk_workqueue);
1195 }
1196 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1197
rpc_release_task(struct rpc_task * task)1198 static void rpc_release_task(struct rpc_task *task)
1199 {
1200 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1201
1202 rpc_release_resources_task(task);
1203
1204 /*
1205 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1206 * so it should be safe to use task->tk_count as a test for whether
1207 * or not any other processes still hold references to our rpc_task.
1208 */
1209 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1210 /* Wake up anyone who may be waiting for task completion */
1211 if (!rpc_complete_task(task))
1212 return;
1213 } else {
1214 if (!atomic_dec_and_test(&task->tk_count))
1215 return;
1216 }
1217 rpc_final_put_task(task, task->tk_workqueue);
1218 }
1219
rpciod_up(void)1220 int rpciod_up(void)
1221 {
1222 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1223 }
1224
rpciod_down(void)1225 void rpciod_down(void)
1226 {
1227 module_put(THIS_MODULE);
1228 }
1229
1230 /*
1231 * Start up the rpciod workqueue.
1232 */
rpciod_start(void)1233 static int rpciod_start(void)
1234 {
1235 struct workqueue_struct *wq;
1236
1237 /*
1238 * Create the rpciod thread and wait for it to start.
1239 */
1240 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1241 if (!wq)
1242 goto out_failed;
1243 rpciod_workqueue = wq;
1244 wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
1245 if (!wq)
1246 goto free_rpciod;
1247 xprtiod_workqueue = wq;
1248 return 1;
1249 free_rpciod:
1250 wq = rpciod_workqueue;
1251 rpciod_workqueue = NULL;
1252 destroy_workqueue(wq);
1253 out_failed:
1254 return 0;
1255 }
1256
rpciod_stop(void)1257 static void rpciod_stop(void)
1258 {
1259 struct workqueue_struct *wq = NULL;
1260
1261 if (rpciod_workqueue == NULL)
1262 return;
1263
1264 wq = rpciod_workqueue;
1265 rpciod_workqueue = NULL;
1266 destroy_workqueue(wq);
1267 wq = xprtiod_workqueue;
1268 xprtiod_workqueue = NULL;
1269 destroy_workqueue(wq);
1270 }
1271
1272 void
rpc_destroy_mempool(void)1273 rpc_destroy_mempool(void)
1274 {
1275 rpciod_stop();
1276 mempool_destroy(rpc_buffer_mempool);
1277 mempool_destroy(rpc_task_mempool);
1278 kmem_cache_destroy(rpc_task_slabp);
1279 kmem_cache_destroy(rpc_buffer_slabp);
1280 rpc_destroy_wait_queue(&delay_queue);
1281 }
1282
1283 int
rpc_init_mempool(void)1284 rpc_init_mempool(void)
1285 {
1286 /*
1287 * The following is not strictly a mempool initialisation,
1288 * but there is no harm in doing it here
1289 */
1290 rpc_init_wait_queue(&delay_queue, "delayq");
1291 if (!rpciod_start())
1292 goto err_nomem;
1293
1294 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1295 sizeof(struct rpc_task),
1296 0, SLAB_HWCACHE_ALIGN,
1297 NULL);
1298 if (!rpc_task_slabp)
1299 goto err_nomem;
1300 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1301 RPC_BUFFER_MAXSIZE,
1302 0, SLAB_HWCACHE_ALIGN,
1303 NULL);
1304 if (!rpc_buffer_slabp)
1305 goto err_nomem;
1306 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1307 rpc_task_slabp);
1308 if (!rpc_task_mempool)
1309 goto err_nomem;
1310 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1311 rpc_buffer_slabp);
1312 if (!rpc_buffer_mempool)
1313 goto err_nomem;
1314 return 0;
1315 err_nomem:
1316 rpc_destroy_mempool();
1317 return -ENOMEM;
1318 }
1319