1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-map-ops.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
29 #include <linux/firmware.h>
30 #include <linux/string.h>
31 #include <linux/debugfs.h>
32 #include <linux/rculist.h>
33 #include <linux/remoteproc.h>
34 #include <linux/iommu.h>
35 #include <linux/idr.h>
36 #include <linux/elf.h>
37 #include <linux/crc32.h>
38 #include <linux/of_reserved_mem.h>
39 #include <linux/virtio_ids.h>
40 #include <linux/virtio_ring.h>
41 #include <asm/byteorder.h>
42 #include <linux/platform_device.h>
43
44 #include "remoteproc_internal.h"
45
46 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
47
48 static DEFINE_MUTEX(rproc_list_mutex);
49 static LIST_HEAD(rproc_list);
50 static struct notifier_block rproc_panic_nb;
51
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
54
55 static int rproc_alloc_carveout(struct rproc *rproc,
56 struct rproc_mem_entry *mem);
57 static int rproc_release_carveout(struct rproc *rproc,
58 struct rproc_mem_entry *mem);
59
60 /* Unique indices for remoteproc devices */
61 static DEFINE_IDA(rproc_dev_index);
62
63 static const char * const rproc_crash_names[] = {
64 [RPROC_MMUFAULT] = "mmufault",
65 [RPROC_WATCHDOG] = "watchdog",
66 [RPROC_FATAL_ERROR] = "fatal error",
67 };
68
69 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)70 static const char *rproc_crash_to_string(enum rproc_crash_type type)
71 {
72 if (type < ARRAY_SIZE(rproc_crash_names))
73 return rproc_crash_names[type];
74 return "unknown";
75 }
76
77 /*
78 * This is the IOMMU fault handler we register with the IOMMU API
79 * (when relevant; not all remote processors access memory through
80 * an IOMMU).
81 *
82 * IOMMU core will invoke this handler whenever the remote processor
83 * will try to access an unmapped device address.
84 */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)85 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
86 unsigned long iova, int flags, void *token)
87 {
88 struct rproc *rproc = token;
89
90 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91
92 rproc_report_crash(rproc, RPROC_MMUFAULT);
93
94 /*
95 * Let the iommu core know we're not really handling this fault;
96 * we just used it as a recovery trigger.
97 */
98 return -ENOSYS;
99 }
100
rproc_enable_iommu(struct rproc * rproc)101 static int rproc_enable_iommu(struct rproc *rproc)
102 {
103 struct iommu_domain *domain;
104 struct device *dev = rproc->dev.parent;
105 int ret;
106
107 if (!rproc->has_iommu) {
108 dev_dbg(dev, "iommu not present\n");
109 return 0;
110 }
111
112 domain = iommu_domain_alloc(dev->bus);
113 if (!domain) {
114 dev_err(dev, "can't alloc iommu domain\n");
115 return -ENOMEM;
116 }
117
118 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119
120 ret = iommu_attach_device(domain, dev);
121 if (ret) {
122 dev_err(dev, "can't attach iommu device: %d\n", ret);
123 goto free_domain;
124 }
125
126 rproc->domain = domain;
127
128 return 0;
129
130 free_domain:
131 iommu_domain_free(domain);
132 return ret;
133 }
134
rproc_disable_iommu(struct rproc * rproc)135 static void rproc_disable_iommu(struct rproc *rproc)
136 {
137 struct iommu_domain *domain = rproc->domain;
138 struct device *dev = rproc->dev.parent;
139
140 if (!domain)
141 return;
142
143 iommu_detach_device(domain, dev);
144 iommu_domain_free(domain);
145 }
146
rproc_va_to_pa(void * cpu_addr)147 phys_addr_t rproc_va_to_pa(void *cpu_addr)
148 {
149 /*
150 * Return physical address according to virtual address location
151 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
152 * - in kernel: if region allocated in generic dma memory pool
153 */
154 if (is_vmalloc_addr(cpu_addr)) {
155 return page_to_phys(vmalloc_to_page(cpu_addr)) +
156 offset_in_page(cpu_addr);
157 }
158
159 WARN_ON(!virt_addr_valid(cpu_addr));
160 return virt_to_phys(cpu_addr);
161 }
162 EXPORT_SYMBOL(rproc_va_to_pa);
163
164 /**
165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166 * @rproc: handle of a remote processor
167 * @da: remoteproc device address to translate
168 * @len: length of the memory region @da is pointing to
169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
170 *
171 * Some remote processors will ask us to allocate them physically contiguous
172 * memory regions (which we call "carveouts"), and map them to specific
173 * device addresses (which are hardcoded in the firmware). They may also have
174 * dedicated memory regions internal to the processors, and use them either
175 * exclusively or alongside carveouts.
176 *
177 * They may then ask us to copy objects into specific device addresses (e.g.
178 * code/data sections) or expose us certain symbols in other device address
179 * (e.g. their trace buffer).
180 *
181 * This function is a helper function with which we can go over the allocated
182 * carveouts and translate specific device addresses to kernel virtual addresses
183 * so we can access the referenced memory. This function also allows to perform
184 * translations on the internal remoteproc memory regions through a platform
185 * implementation specific da_to_va ops, if present.
186 *
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
190 * correct.
191 *
192 * Return: a valid kernel address on success or NULL on failure
193 */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)194 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
195 {
196 struct rproc_mem_entry *carveout;
197 void *ptr = NULL;
198
199 if (rproc->ops->da_to_va) {
200 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
201 if (ptr)
202 goto out;
203 }
204
205 list_for_each_entry(carveout, &rproc->carveouts, node) {
206 int offset = da - carveout->da;
207
208 /* Verify that carveout is allocated */
209 if (!carveout->va)
210 continue;
211
212 /* try next carveout if da is too small */
213 if (offset < 0)
214 continue;
215
216 /* try next carveout if da is too large */
217 if (offset + len > carveout->len)
218 continue;
219
220 ptr = carveout->va + offset;
221
222 if (is_iomem)
223 *is_iomem = carveout->is_iomem;
224
225 break;
226 }
227
228 out:
229 return ptr;
230 }
231 EXPORT_SYMBOL(rproc_da_to_va);
232
233 /**
234 * rproc_find_carveout_by_name() - lookup the carveout region by a name
235 * @rproc: handle of a remote processor
236 * @name: carveout name to find (format string)
237 * @...: optional parameters matching @name string
238 *
239 * Platform driver has the capability to register some pre-allacoted carveout
240 * (physically contiguous memory regions) before rproc firmware loading and
241 * associated resource table analysis. These regions may be dedicated memory
242 * regions internal to the coprocessor or specified DDR region with specific
243 * attributes
244 *
245 * This function is a helper function with which we can go over the
246 * allocated carveouts and return associated region characteristics like
247 * coprocessor address, length or processor virtual address.
248 *
249 * Return: a valid pointer on carveout entry on success or NULL on failure.
250 */
251 __printf(2, 3)
252 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)253 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
254 {
255 va_list args;
256 char _name[32];
257 struct rproc_mem_entry *carveout, *mem = NULL;
258
259 if (!name)
260 return NULL;
261
262 va_start(args, name);
263 vsnprintf(_name, sizeof(_name), name, args);
264 va_end(args);
265
266 list_for_each_entry(carveout, &rproc->carveouts, node) {
267 /* Compare carveout and requested names */
268 if (!strcmp(carveout->name, _name)) {
269 mem = carveout;
270 break;
271 }
272 }
273
274 return mem;
275 }
276
277 /**
278 * rproc_check_carveout_da() - Check specified carveout da configuration
279 * @rproc: handle of a remote processor
280 * @mem: pointer on carveout to check
281 * @da: area device address
282 * @len: associated area size
283 *
284 * This function is a helper function to verify requested device area (couple
285 * da, len) is part of specified carveout.
286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
287 * checked.
288 *
289 * Return: 0 if carveout matches request else error
290 */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)291 static int rproc_check_carveout_da(struct rproc *rproc,
292 struct rproc_mem_entry *mem, u32 da, u32 len)
293 {
294 struct device *dev = &rproc->dev;
295 int delta;
296
297 /* Check requested resource length */
298 if (len > mem->len) {
299 dev_err(dev, "Registered carveout doesn't fit len request\n");
300 return -EINVAL;
301 }
302
303 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
304 /* Address doesn't match registered carveout configuration */
305 return -EINVAL;
306 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
307 delta = da - mem->da;
308
309 /* Check requested resource belongs to registered carveout */
310 if (delta < 0) {
311 dev_err(dev,
312 "Registered carveout doesn't fit da request\n");
313 return -EINVAL;
314 }
315
316 if (delta + len > mem->len) {
317 dev_err(dev,
318 "Registered carveout doesn't fit len request\n");
319 return -EINVAL;
320 }
321 }
322
323 return 0;
324 }
325
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)326 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
327 {
328 struct rproc *rproc = rvdev->rproc;
329 struct device *dev = &rproc->dev;
330 struct rproc_vring *rvring = &rvdev->vring[i];
331 struct fw_rsc_vdev *rsc;
332 int ret, notifyid;
333 struct rproc_mem_entry *mem;
334 size_t size;
335
336 /* actual size of vring (in bytes) */
337 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
338
339 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
340
341 /* Search for pre-registered carveout */
342 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
343 i);
344 if (mem) {
345 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
346 return -ENOMEM;
347 } else {
348 /* Register carveout in in list */
349 mem = rproc_mem_entry_init(dev, NULL, 0,
350 size, rsc->vring[i].da,
351 rproc_alloc_carveout,
352 rproc_release_carveout,
353 "vdev%dvring%d",
354 rvdev->index, i);
355 if (!mem) {
356 dev_err(dev, "Can't allocate memory entry structure\n");
357 return -ENOMEM;
358 }
359
360 rproc_add_carveout(rproc, mem);
361 }
362
363 /*
364 * Assign an rproc-wide unique index for this vring
365 * TODO: assign a notifyid for rvdev updates as well
366 * TODO: support predefined notifyids (via resource table)
367 */
368 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
369 if (ret < 0) {
370 dev_err(dev, "idr_alloc failed: %d\n", ret);
371 return ret;
372 }
373 notifyid = ret;
374
375 /* Potentially bump max_notifyid */
376 if (notifyid > rproc->max_notifyid)
377 rproc->max_notifyid = notifyid;
378
379 rvring->notifyid = notifyid;
380
381 /* Let the rproc know the notifyid of this vring.*/
382 rsc->vring[i].notifyid = notifyid;
383 return 0;
384 }
385
386 static int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)387 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
388 {
389 struct rproc *rproc = rvdev->rproc;
390 struct device *dev = &rproc->dev;
391 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
392 struct rproc_vring *rvring = &rvdev->vring[i];
393
394 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
395 i, vring->da, vring->num, vring->align);
396
397 /* verify queue size and vring alignment are sane */
398 if (!vring->num || !vring->align) {
399 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
400 vring->num, vring->align);
401 return -EINVAL;
402 }
403
404 rvring->len = vring->num;
405 rvring->align = vring->align;
406 rvring->rvdev = rvdev;
407
408 return 0;
409 }
410
rproc_free_vring(struct rproc_vring * rvring)411 void rproc_free_vring(struct rproc_vring *rvring)
412 {
413 struct rproc *rproc = rvring->rvdev->rproc;
414 int idx = rvring - rvring->rvdev->vring;
415 struct fw_rsc_vdev *rsc;
416
417 idr_remove(&rproc->notifyids, rvring->notifyid);
418
419 /*
420 * At this point rproc_stop() has been called and the installed resource
421 * table in the remote processor memory may no longer be accessible. As
422 * such and as per rproc_stop(), rproc->table_ptr points to the cached
423 * resource table (rproc->cached_table). The cached resource table is
424 * only available when a remote processor has been booted by the
425 * remoteproc core, otherwise it is NULL.
426 *
427 * Based on the above, reset the virtio device section in the cached
428 * resource table only if there is one to work with.
429 */
430 if (rproc->table_ptr) {
431 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
432 rsc->vring[idx].da = 0;
433 rsc->vring[idx].notifyid = -1;
434 }
435 }
436
rproc_vdev_do_start(struct rproc_subdev * subdev)437 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
438 {
439 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
440
441 return rproc_add_virtio_dev(rvdev, rvdev->id);
442 }
443
rproc_vdev_do_stop(struct rproc_subdev * subdev,bool crashed)444 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
445 {
446 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
447 int ret;
448
449 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
450 if (ret)
451 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
452 }
453
454 /**
455 * rproc_rvdev_release() - release the existence of a rvdev
456 *
457 * @dev: the subdevice's dev
458 */
rproc_rvdev_release(struct device * dev)459 static void rproc_rvdev_release(struct device *dev)
460 {
461 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
462
463 of_reserved_mem_device_release(dev);
464
465 kfree(rvdev);
466 }
467
copy_dma_range_map(struct device * to,struct device * from)468 static int copy_dma_range_map(struct device *to, struct device *from)
469 {
470 const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
471 int num_ranges = 0;
472
473 if (!map)
474 return 0;
475
476 for (r = map; r->size; r++)
477 num_ranges++;
478
479 new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
480 GFP_KERNEL);
481 if (!new_map)
482 return -ENOMEM;
483 to->dma_range_map = new_map;
484 return 0;
485 }
486
487 /**
488 * rproc_handle_vdev() - handle a vdev fw resource
489 * @rproc: the remote processor
490 * @ptr: the vring resource descriptor
491 * @offset: offset of the resource entry
492 * @avail: size of available data (for sanity checking the image)
493 *
494 * This resource entry requests the host to statically register a virtio
495 * device (vdev), and setup everything needed to support it. It contains
496 * everything needed to make it possible: the virtio device id, virtio
497 * device features, vrings information, virtio config space, etc...
498 *
499 * Before registering the vdev, the vrings are allocated from non-cacheable
500 * physically contiguous memory. Currently we only support two vrings per
501 * remote processor (temporary limitation). We might also want to consider
502 * doing the vring allocation only later when ->find_vqs() is invoked, and
503 * then release them upon ->del_vqs().
504 *
505 * Note: @da is currently not really handled correctly: we dynamically
506 * allocate it using the DMA API, ignoring requested hard coded addresses,
507 * and we don't take care of any required IOMMU programming. This is all
508 * going to be taken care of when the generic iommu-based DMA API will be
509 * merged. Meanwhile, statically-addressed iommu-based firmware images should
510 * use RSC_DEVMEM resource entries to map their required @da to the physical
511 * address of their base CMA region (ouch, hacky!).
512 *
513 * Return: 0 on success, or an appropriate error code otherwise
514 */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)515 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
516 int offset, int avail)
517 {
518 struct fw_rsc_vdev *rsc = ptr;
519 struct device *dev = &rproc->dev;
520 struct rproc_vdev *rvdev;
521 int i, ret;
522 char name[16];
523
524 /* make sure resource isn't truncated */
525 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
526 avail) {
527 dev_err(dev, "vdev rsc is truncated\n");
528 return -EINVAL;
529 }
530
531 /* make sure reserved bytes are zeroes */
532 if (rsc->reserved[0] || rsc->reserved[1]) {
533 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
534 return -EINVAL;
535 }
536
537 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
538 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
539
540 /* we currently support only two vrings per rvdev */
541 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
542 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
543 return -EINVAL;
544 }
545
546 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
547 if (!rvdev)
548 return -ENOMEM;
549
550 kref_init(&rvdev->refcount);
551
552 rvdev->id = rsc->id;
553 rvdev->rproc = rproc;
554 rvdev->index = rproc->nb_vdev++;
555
556 /* Initialise vdev subdevice */
557 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
558 rvdev->dev.parent = &rproc->dev;
559 rvdev->dev.release = rproc_rvdev_release;
560 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
561 dev_set_drvdata(&rvdev->dev, rvdev);
562
563 ret = device_register(&rvdev->dev);
564 if (ret) {
565 put_device(&rvdev->dev);
566 return ret;
567 }
568
569 ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
570 if (ret)
571 goto free_rvdev;
572
573 /* Make device dma capable by inheriting from parent's capabilities */
574 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
575
576 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
577 dma_get_mask(rproc->dev.parent));
578 if (ret) {
579 dev_warn(dev,
580 "Failed to set DMA mask %llx. Trying to continue... %x\n",
581 dma_get_mask(rproc->dev.parent), ret);
582 }
583
584 /* parse the vrings */
585 for (i = 0; i < rsc->num_of_vrings; i++) {
586 ret = rproc_parse_vring(rvdev, rsc, i);
587 if (ret)
588 goto free_rvdev;
589 }
590
591 /* remember the resource offset*/
592 rvdev->rsc_offset = offset;
593
594 /* allocate the vring resources */
595 for (i = 0; i < rsc->num_of_vrings; i++) {
596 ret = rproc_alloc_vring(rvdev, i);
597 if (ret)
598 goto unwind_vring_allocations;
599 }
600
601 list_add_tail(&rvdev->node, &rproc->rvdevs);
602
603 rvdev->subdev.start = rproc_vdev_do_start;
604 rvdev->subdev.stop = rproc_vdev_do_stop;
605
606 rproc_add_subdev(rproc, &rvdev->subdev);
607
608 return 0;
609
610 unwind_vring_allocations:
611 for (i--; i >= 0; i--)
612 rproc_free_vring(&rvdev->vring[i]);
613 free_rvdev:
614 device_unregister(&rvdev->dev);
615 return ret;
616 }
617
rproc_vdev_release(struct kref * ref)618 void rproc_vdev_release(struct kref *ref)
619 {
620 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
621 struct rproc_vring *rvring;
622 struct rproc *rproc = rvdev->rproc;
623 int id;
624
625 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
626 rvring = &rvdev->vring[id];
627 rproc_free_vring(rvring);
628 }
629
630 rproc_remove_subdev(rproc, &rvdev->subdev);
631 list_del(&rvdev->node);
632 device_unregister(&rvdev->dev);
633 }
634
635 /**
636 * rproc_handle_trace() - handle a shared trace buffer resource
637 * @rproc: the remote processor
638 * @ptr: the trace resource descriptor
639 * @offset: offset of the resource entry
640 * @avail: size of available data (for sanity checking the image)
641 *
642 * In case the remote processor dumps trace logs into memory,
643 * export it via debugfs.
644 *
645 * Currently, the 'da' member of @rsc should contain the device address
646 * where the remote processor is dumping the traces. Later we could also
647 * support dynamically allocating this address using the generic
648 * DMA API (but currently there isn't a use case for that).
649 *
650 * Return: 0 on success, or an appropriate error code otherwise
651 */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)652 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
653 int offset, int avail)
654 {
655 struct fw_rsc_trace *rsc = ptr;
656 struct rproc_debug_trace *trace;
657 struct device *dev = &rproc->dev;
658 char name[15];
659
660 if (sizeof(*rsc) > avail) {
661 dev_err(dev, "trace rsc is truncated\n");
662 return -EINVAL;
663 }
664
665 /* make sure reserved bytes are zeroes */
666 if (rsc->reserved) {
667 dev_err(dev, "trace rsc has non zero reserved bytes\n");
668 return -EINVAL;
669 }
670
671 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
672 if (!trace)
673 return -ENOMEM;
674
675 /* set the trace buffer dma properties */
676 trace->trace_mem.len = rsc->len;
677 trace->trace_mem.da = rsc->da;
678
679 /* set pointer on rproc device */
680 trace->rproc = rproc;
681
682 /* make sure snprintf always null terminates, even if truncating */
683 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
684
685 /* create the debugfs entry */
686 trace->tfile = rproc_create_trace_file(name, rproc, trace);
687 if (!trace->tfile) {
688 kfree(trace);
689 return -EINVAL;
690 }
691
692 list_add_tail(&trace->node, &rproc->traces);
693
694 rproc->num_traces++;
695
696 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
697 name, rsc->da, rsc->len);
698
699 return 0;
700 }
701
702 /**
703 * rproc_handle_devmem() - handle devmem resource entry
704 * @rproc: remote processor handle
705 * @ptr: the devmem resource entry
706 * @offset: offset of the resource entry
707 * @avail: size of available data (for sanity checking the image)
708 *
709 * Remote processors commonly need to access certain on-chip peripherals.
710 *
711 * Some of these remote processors access memory via an iommu device,
712 * and might require us to configure their iommu before they can access
713 * the on-chip peripherals they need.
714 *
715 * This resource entry is a request to map such a peripheral device.
716 *
717 * These devmem entries will contain the physical address of the device in
718 * the 'pa' member. If a specific device address is expected, then 'da' will
719 * contain it (currently this is the only use case supported). 'len' will
720 * contain the size of the physical region we need to map.
721 *
722 * Currently we just "trust" those devmem entries to contain valid physical
723 * addresses, but this is going to change: we want the implementations to
724 * tell us ranges of physical addresses the firmware is allowed to request,
725 * and not allow firmwares to request access to physical addresses that
726 * are outside those ranges.
727 *
728 * Return: 0 on success, or an appropriate error code otherwise
729 */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)730 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
731 int offset, int avail)
732 {
733 struct fw_rsc_devmem *rsc = ptr;
734 struct rproc_mem_entry *mapping;
735 struct device *dev = &rproc->dev;
736 int ret;
737
738 /* no point in handling this resource without a valid iommu domain */
739 if (!rproc->domain)
740 return -EINVAL;
741
742 if (sizeof(*rsc) > avail) {
743 dev_err(dev, "devmem rsc is truncated\n");
744 return -EINVAL;
745 }
746
747 /* make sure reserved bytes are zeroes */
748 if (rsc->reserved) {
749 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
750 return -EINVAL;
751 }
752
753 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
754 if (!mapping)
755 return -ENOMEM;
756
757 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
758 if (ret) {
759 dev_err(dev, "failed to map devmem: %d\n", ret);
760 goto out;
761 }
762
763 /*
764 * We'll need this info later when we'll want to unmap everything
765 * (e.g. on shutdown).
766 *
767 * We can't trust the remote processor not to change the resource
768 * table, so we must maintain this info independently.
769 */
770 mapping->da = rsc->da;
771 mapping->len = rsc->len;
772 list_add_tail(&mapping->node, &rproc->mappings);
773
774 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
775 rsc->pa, rsc->da, rsc->len);
776
777 return 0;
778
779 out:
780 kfree(mapping);
781 return ret;
782 }
783
784 /**
785 * rproc_alloc_carveout() - allocated specified carveout
786 * @rproc: rproc handle
787 * @mem: the memory entry to allocate
788 *
789 * This function allocate specified memory entry @mem using
790 * dma_alloc_coherent() as default allocator
791 *
792 * Return: 0 on success, or an appropriate error code otherwise
793 */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)794 static int rproc_alloc_carveout(struct rproc *rproc,
795 struct rproc_mem_entry *mem)
796 {
797 struct rproc_mem_entry *mapping = NULL;
798 struct device *dev = &rproc->dev;
799 dma_addr_t dma;
800 void *va;
801 int ret;
802
803 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
804 if (!va) {
805 dev_err(dev->parent,
806 "failed to allocate dma memory: len 0x%zx\n",
807 mem->len);
808 return -ENOMEM;
809 }
810
811 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
812 va, &dma, mem->len);
813
814 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
815 /*
816 * Check requested da is equal to dma address
817 * and print a warn message in case of missalignment.
818 * Don't stop rproc_start sequence as coprocessor may
819 * build pa to da translation on its side.
820 */
821 if (mem->da != (u32)dma)
822 dev_warn(dev->parent,
823 "Allocated carveout doesn't fit device address request\n");
824 }
825
826 /*
827 * Ok, this is non-standard.
828 *
829 * Sometimes we can't rely on the generic iommu-based DMA API
830 * to dynamically allocate the device address and then set the IOMMU
831 * tables accordingly, because some remote processors might
832 * _require_ us to use hard coded device addresses that their
833 * firmware was compiled with.
834 *
835 * In this case, we must use the IOMMU API directly and map
836 * the memory to the device address as expected by the remote
837 * processor.
838 *
839 * Obviously such remote processor devices should not be configured
840 * to use the iommu-based DMA API: we expect 'dma' to contain the
841 * physical address in this case.
842 */
843 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
844 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
845 if (!mapping) {
846 ret = -ENOMEM;
847 goto dma_free;
848 }
849
850 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
851 mem->flags);
852 if (ret) {
853 dev_err(dev, "iommu_map failed: %d\n", ret);
854 goto free_mapping;
855 }
856
857 /*
858 * We'll need this info later when we'll want to unmap
859 * everything (e.g. on shutdown).
860 *
861 * We can't trust the remote processor not to change the
862 * resource table, so we must maintain this info independently.
863 */
864 mapping->da = mem->da;
865 mapping->len = mem->len;
866 list_add_tail(&mapping->node, &rproc->mappings);
867
868 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
869 mem->da, &dma);
870 }
871
872 if (mem->da == FW_RSC_ADDR_ANY) {
873 /* Update device address as undefined by requester */
874 if ((u64)dma & HIGH_BITS_MASK)
875 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
876
877 mem->da = (u32)dma;
878 }
879
880 mem->dma = dma;
881 mem->va = va;
882
883 return 0;
884
885 free_mapping:
886 kfree(mapping);
887 dma_free:
888 dma_free_coherent(dev->parent, mem->len, va, dma);
889 return ret;
890 }
891
892 /**
893 * rproc_release_carveout() - release acquired carveout
894 * @rproc: rproc handle
895 * @mem: the memory entry to release
896 *
897 * This function releases specified memory entry @mem allocated via
898 * rproc_alloc_carveout() function by @rproc.
899 *
900 * Return: 0 on success, or an appropriate error code otherwise
901 */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)902 static int rproc_release_carveout(struct rproc *rproc,
903 struct rproc_mem_entry *mem)
904 {
905 struct device *dev = &rproc->dev;
906
907 /* clean up carveout allocations */
908 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
909 return 0;
910 }
911
912 /**
913 * rproc_handle_carveout() - handle phys contig memory allocation requests
914 * @rproc: rproc handle
915 * @ptr: the resource entry
916 * @offset: offset of the resource entry
917 * @avail: size of available data (for image validation)
918 *
919 * This function will handle firmware requests for allocation of physically
920 * contiguous memory regions.
921 *
922 * These request entries should come first in the firmware's resource table,
923 * as other firmware entries might request placing other data objects inside
924 * these memory regions (e.g. data/code segments, trace resource entries, ...).
925 *
926 * Allocating memory this way helps utilizing the reserved physical memory
927 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
928 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
929 * pressure is important; it may have a substantial impact on performance.
930 *
931 * Return: 0 on success, or an appropriate error code otherwise
932 */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)933 static int rproc_handle_carveout(struct rproc *rproc,
934 void *ptr, int offset, int avail)
935 {
936 struct fw_rsc_carveout *rsc = ptr;
937 struct rproc_mem_entry *carveout;
938 struct device *dev = &rproc->dev;
939
940 if (sizeof(*rsc) > avail) {
941 dev_err(dev, "carveout rsc is truncated\n");
942 return -EINVAL;
943 }
944
945 /* make sure reserved bytes are zeroes */
946 if (rsc->reserved) {
947 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
948 return -EINVAL;
949 }
950
951 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
952 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
953
954 /*
955 * Check carveout rsc already part of a registered carveout,
956 * Search by name, then check the da and length
957 */
958 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
959
960 if (carveout) {
961 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
962 dev_err(dev,
963 "Carveout already associated to resource table\n");
964 return -ENOMEM;
965 }
966
967 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
968 return -ENOMEM;
969
970 /* Update memory carveout with resource table info */
971 carveout->rsc_offset = offset;
972 carveout->flags = rsc->flags;
973
974 return 0;
975 }
976
977 /* Register carveout in in list */
978 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
979 rproc_alloc_carveout,
980 rproc_release_carveout, rsc->name);
981 if (!carveout) {
982 dev_err(dev, "Can't allocate memory entry structure\n");
983 return -ENOMEM;
984 }
985
986 carveout->flags = rsc->flags;
987 carveout->rsc_offset = offset;
988 rproc_add_carveout(rproc, carveout);
989
990 return 0;
991 }
992
993 /**
994 * rproc_add_carveout() - register an allocated carveout region
995 * @rproc: rproc handle
996 * @mem: memory entry to register
997 *
998 * This function registers specified memory entry in @rproc carveouts list.
999 * Specified carveout should have been allocated before registering.
1000 */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)1001 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
1002 {
1003 list_add_tail(&mem->node, &rproc->carveouts);
1004 }
1005 EXPORT_SYMBOL(rproc_add_carveout);
1006
1007 /**
1008 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1009 * @dev: pointer on device struct
1010 * @va: virtual address
1011 * @dma: dma address
1012 * @len: memory carveout length
1013 * @da: device address
1014 * @alloc: memory carveout allocation function
1015 * @release: memory carveout release function
1016 * @name: carveout name
1017 *
1018 * This function allocates a rproc_mem_entry struct and fill it with parameters
1019 * provided by client.
1020 *
1021 * Return: a valid pointer on success, or NULL on failure
1022 */
1023 __printf(8, 9)
1024 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)1025 rproc_mem_entry_init(struct device *dev,
1026 void *va, dma_addr_t dma, size_t len, u32 da,
1027 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1028 int (*release)(struct rproc *, struct rproc_mem_entry *),
1029 const char *name, ...)
1030 {
1031 struct rproc_mem_entry *mem;
1032 va_list args;
1033
1034 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1035 if (!mem)
1036 return mem;
1037
1038 mem->va = va;
1039 mem->dma = dma;
1040 mem->da = da;
1041 mem->len = len;
1042 mem->alloc = alloc;
1043 mem->release = release;
1044 mem->rsc_offset = FW_RSC_ADDR_ANY;
1045 mem->of_resm_idx = -1;
1046
1047 va_start(args, name);
1048 vsnprintf(mem->name, sizeof(mem->name), name, args);
1049 va_end(args);
1050
1051 return mem;
1052 }
1053 EXPORT_SYMBOL(rproc_mem_entry_init);
1054
1055 /**
1056 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1057 * from a reserved memory phandle
1058 * @dev: pointer on device struct
1059 * @of_resm_idx: reserved memory phandle index in "memory-region"
1060 * @len: memory carveout length
1061 * @da: device address
1062 * @name: carveout name
1063 *
1064 * This function allocates a rproc_mem_entry struct and fill it with parameters
1065 * provided by client.
1066 *
1067 * Return: a valid pointer on success, or NULL on failure
1068 */
1069 __printf(5, 6)
1070 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)1071 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1072 u32 da, const char *name, ...)
1073 {
1074 struct rproc_mem_entry *mem;
1075 va_list args;
1076
1077 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1078 if (!mem)
1079 return mem;
1080
1081 mem->da = da;
1082 mem->len = len;
1083 mem->rsc_offset = FW_RSC_ADDR_ANY;
1084 mem->of_resm_idx = of_resm_idx;
1085
1086 va_start(args, name);
1087 vsnprintf(mem->name, sizeof(mem->name), name, args);
1088 va_end(args);
1089
1090 return mem;
1091 }
1092 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1093
1094 /**
1095 * rproc_of_parse_firmware() - parse and return the firmware-name
1096 * @dev: pointer on device struct representing a rproc
1097 * @index: index to use for the firmware-name retrieval
1098 * @fw_name: pointer to a character string, in which the firmware
1099 * name is returned on success and unmodified otherwise.
1100 *
1101 * This is an OF helper function that parses a device's DT node for
1102 * the "firmware-name" property and returns the firmware name pointer
1103 * in @fw_name on success.
1104 *
1105 * Return: 0 on success, or an appropriate failure.
1106 */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)1107 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1108 {
1109 int ret;
1110
1111 ret = of_property_read_string_index(dev->of_node, "firmware-name",
1112 index, fw_name);
1113 return ret ? ret : 0;
1114 }
1115 EXPORT_SYMBOL(rproc_of_parse_firmware);
1116
1117 /*
1118 * A lookup table for resource handlers. The indices are defined in
1119 * enum fw_resource_type.
1120 */
1121 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1122 [RSC_CARVEOUT] = rproc_handle_carveout,
1123 [RSC_DEVMEM] = rproc_handle_devmem,
1124 [RSC_TRACE] = rproc_handle_trace,
1125 [RSC_VDEV] = rproc_handle_vdev,
1126 };
1127
1128 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1129 static int rproc_handle_resources(struct rproc *rproc,
1130 rproc_handle_resource_t handlers[RSC_LAST])
1131 {
1132 struct device *dev = &rproc->dev;
1133 rproc_handle_resource_t handler;
1134 int ret = 0, i;
1135
1136 if (!rproc->table_ptr)
1137 return 0;
1138
1139 for (i = 0; i < rproc->table_ptr->num; i++) {
1140 int offset = rproc->table_ptr->offset[i];
1141 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1142 int avail = rproc->table_sz - offset - sizeof(*hdr);
1143 void *rsc = (void *)hdr + sizeof(*hdr);
1144
1145 /* make sure table isn't truncated */
1146 if (avail < 0) {
1147 dev_err(dev, "rsc table is truncated\n");
1148 return -EINVAL;
1149 }
1150
1151 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1152
1153 if (hdr->type >= RSC_VENDOR_START &&
1154 hdr->type <= RSC_VENDOR_END) {
1155 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1156 offset + sizeof(*hdr), avail);
1157 if (ret == RSC_HANDLED)
1158 continue;
1159 else if (ret < 0)
1160 break;
1161
1162 dev_warn(dev, "unsupported vendor resource %d\n",
1163 hdr->type);
1164 continue;
1165 }
1166
1167 if (hdr->type >= RSC_LAST) {
1168 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1169 continue;
1170 }
1171
1172 handler = handlers[hdr->type];
1173 if (!handler)
1174 continue;
1175
1176 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1177 if (ret)
1178 break;
1179 }
1180
1181 return ret;
1182 }
1183
rproc_prepare_subdevices(struct rproc * rproc)1184 static int rproc_prepare_subdevices(struct rproc *rproc)
1185 {
1186 struct rproc_subdev *subdev;
1187 int ret;
1188
1189 list_for_each_entry(subdev, &rproc->subdevs, node) {
1190 if (subdev->prepare) {
1191 ret = subdev->prepare(subdev);
1192 if (ret)
1193 goto unroll_preparation;
1194 }
1195 }
1196
1197 return 0;
1198
1199 unroll_preparation:
1200 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1201 if (subdev->unprepare)
1202 subdev->unprepare(subdev);
1203 }
1204
1205 return ret;
1206 }
1207
rproc_start_subdevices(struct rproc * rproc)1208 static int rproc_start_subdevices(struct rproc *rproc)
1209 {
1210 struct rproc_subdev *subdev;
1211 int ret;
1212
1213 list_for_each_entry(subdev, &rproc->subdevs, node) {
1214 if (subdev->start) {
1215 ret = subdev->start(subdev);
1216 if (ret)
1217 goto unroll_registration;
1218 }
1219 }
1220
1221 return 0;
1222
1223 unroll_registration:
1224 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1225 if (subdev->stop)
1226 subdev->stop(subdev, true);
1227 }
1228
1229 return ret;
1230 }
1231
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1232 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1233 {
1234 struct rproc_subdev *subdev;
1235
1236 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1237 if (subdev->stop)
1238 subdev->stop(subdev, crashed);
1239 }
1240 }
1241
rproc_unprepare_subdevices(struct rproc * rproc)1242 static void rproc_unprepare_subdevices(struct rproc *rproc)
1243 {
1244 struct rproc_subdev *subdev;
1245
1246 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1247 if (subdev->unprepare)
1248 subdev->unprepare(subdev);
1249 }
1250 }
1251
1252 /**
1253 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1254 * in the list
1255 * @rproc: the remote processor handle
1256 *
1257 * This function parses registered carveout list, performs allocation
1258 * if alloc() ops registered and updates resource table information
1259 * if rsc_offset set.
1260 *
1261 * Return: 0 on success
1262 */
rproc_alloc_registered_carveouts(struct rproc * rproc)1263 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1264 {
1265 struct rproc_mem_entry *entry, *tmp;
1266 struct fw_rsc_carveout *rsc;
1267 struct device *dev = &rproc->dev;
1268 u64 pa;
1269 int ret;
1270
1271 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1272 if (entry->alloc) {
1273 ret = entry->alloc(rproc, entry);
1274 if (ret) {
1275 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1276 entry->name, ret);
1277 return -ENOMEM;
1278 }
1279 }
1280
1281 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1282 /* update resource table */
1283 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1284
1285 /*
1286 * Some remote processors might need to know the pa
1287 * even though they are behind an IOMMU. E.g., OMAP4's
1288 * remote M3 processor needs this so it can control
1289 * on-chip hardware accelerators that are not behind
1290 * the IOMMU, and therefor must know the pa.
1291 *
1292 * Generally we don't want to expose physical addresses
1293 * if we don't have to (remote processors are generally
1294 * _not_ trusted), so we might want to do this only for
1295 * remote processor that _must_ have this (e.g. OMAP4's
1296 * dual M3 subsystem).
1297 *
1298 * Non-IOMMU processors might also want to have this info.
1299 * In this case, the device address and the physical address
1300 * are the same.
1301 */
1302
1303 /* Use va if defined else dma to generate pa */
1304 if (entry->va)
1305 pa = (u64)rproc_va_to_pa(entry->va);
1306 else
1307 pa = (u64)entry->dma;
1308
1309 if (((u64)pa) & HIGH_BITS_MASK)
1310 dev_warn(dev,
1311 "Physical address cast in 32bit to fit resource table format\n");
1312
1313 rsc->pa = (u32)pa;
1314 rsc->da = entry->da;
1315 rsc->len = entry->len;
1316 }
1317 }
1318
1319 return 0;
1320 }
1321
1322
1323 /**
1324 * rproc_resource_cleanup() - clean up and free all acquired resources
1325 * @rproc: rproc handle
1326 *
1327 * This function will free all resources acquired for @rproc, and it
1328 * is called whenever @rproc either shuts down or fails to boot.
1329 */
rproc_resource_cleanup(struct rproc * rproc)1330 void rproc_resource_cleanup(struct rproc *rproc)
1331 {
1332 struct rproc_mem_entry *entry, *tmp;
1333 struct rproc_debug_trace *trace, *ttmp;
1334 struct rproc_vdev *rvdev, *rvtmp;
1335 struct device *dev = &rproc->dev;
1336
1337 /* clean up debugfs trace entries */
1338 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1339 rproc_remove_trace_file(trace->tfile);
1340 rproc->num_traces--;
1341 list_del(&trace->node);
1342 kfree(trace);
1343 }
1344
1345 /* clean up iommu mapping entries */
1346 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1347 size_t unmapped;
1348
1349 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1350 if (unmapped != entry->len) {
1351 /* nothing much to do besides complaining */
1352 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1353 unmapped);
1354 }
1355
1356 list_del(&entry->node);
1357 kfree(entry);
1358 }
1359
1360 /* clean up carveout allocations */
1361 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1362 if (entry->release)
1363 entry->release(rproc, entry);
1364 list_del(&entry->node);
1365 kfree(entry);
1366 }
1367
1368 /* clean up remote vdev entries */
1369 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1370 kref_put(&rvdev->refcount, rproc_vdev_release);
1371
1372 rproc_coredump_cleanup(rproc);
1373 }
1374 EXPORT_SYMBOL(rproc_resource_cleanup);
1375
rproc_start(struct rproc * rproc,const struct firmware * fw)1376 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1377 {
1378 struct resource_table *loaded_table;
1379 struct device *dev = &rproc->dev;
1380 int ret;
1381
1382 /* load the ELF segments to memory */
1383 ret = rproc_load_segments(rproc, fw);
1384 if (ret) {
1385 dev_err(dev, "Failed to load program segments: %d\n", ret);
1386 return ret;
1387 }
1388
1389 /*
1390 * The starting device has been given the rproc->cached_table as the
1391 * resource table. The address of the vring along with the other
1392 * allocated resources (carveouts etc) is stored in cached_table.
1393 * In order to pass this information to the remote device we must copy
1394 * this information to device memory. We also update the table_ptr so
1395 * that any subsequent changes will be applied to the loaded version.
1396 */
1397 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1398 if (loaded_table) {
1399 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1400 rproc->table_ptr = loaded_table;
1401 }
1402
1403 ret = rproc_prepare_subdevices(rproc);
1404 if (ret) {
1405 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1406 rproc->name, ret);
1407 goto reset_table_ptr;
1408 }
1409
1410 /* power up the remote processor */
1411 ret = rproc->ops->start(rproc);
1412 if (ret) {
1413 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1414 goto unprepare_subdevices;
1415 }
1416
1417 /* Start any subdevices for the remote processor */
1418 ret = rproc_start_subdevices(rproc);
1419 if (ret) {
1420 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1421 rproc->name, ret);
1422 goto stop_rproc;
1423 }
1424
1425 rproc->state = RPROC_RUNNING;
1426
1427 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1428
1429 return 0;
1430
1431 stop_rproc:
1432 rproc->ops->stop(rproc);
1433 unprepare_subdevices:
1434 rproc_unprepare_subdevices(rproc);
1435 reset_table_ptr:
1436 rproc->table_ptr = rproc->cached_table;
1437
1438 return ret;
1439 }
1440
__rproc_attach(struct rproc * rproc)1441 static int __rproc_attach(struct rproc *rproc)
1442 {
1443 struct device *dev = &rproc->dev;
1444 int ret;
1445
1446 ret = rproc_prepare_subdevices(rproc);
1447 if (ret) {
1448 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1449 rproc->name, ret);
1450 goto out;
1451 }
1452
1453 /* Attach to the remote processor */
1454 ret = rproc_attach_device(rproc);
1455 if (ret) {
1456 dev_err(dev, "can't attach to rproc %s: %d\n",
1457 rproc->name, ret);
1458 goto unprepare_subdevices;
1459 }
1460
1461 /* Start any subdevices for the remote processor */
1462 ret = rproc_start_subdevices(rproc);
1463 if (ret) {
1464 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1465 rproc->name, ret);
1466 goto stop_rproc;
1467 }
1468
1469 rproc->state = RPROC_ATTACHED;
1470
1471 dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1472
1473 return 0;
1474
1475 stop_rproc:
1476 rproc->ops->stop(rproc);
1477 unprepare_subdevices:
1478 rproc_unprepare_subdevices(rproc);
1479 out:
1480 return ret;
1481 }
1482
1483 /*
1484 * take a firmware and boot a remote processor with it.
1485 */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1486 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1487 {
1488 struct device *dev = &rproc->dev;
1489 const char *name = rproc->firmware;
1490 int ret;
1491
1492 ret = rproc_fw_sanity_check(rproc, fw);
1493 if (ret)
1494 return ret;
1495
1496 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1497
1498 /*
1499 * if enabling an IOMMU isn't relevant for this rproc, this is
1500 * just a nop
1501 */
1502 ret = rproc_enable_iommu(rproc);
1503 if (ret) {
1504 dev_err(dev, "can't enable iommu: %d\n", ret);
1505 return ret;
1506 }
1507
1508 /* Prepare rproc for firmware loading if needed */
1509 ret = rproc_prepare_device(rproc);
1510 if (ret) {
1511 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1512 goto disable_iommu;
1513 }
1514
1515 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1516
1517 /* Load resource table, core dump segment list etc from the firmware */
1518 ret = rproc_parse_fw(rproc, fw);
1519 if (ret)
1520 goto unprepare_rproc;
1521
1522 /* reset max_notifyid */
1523 rproc->max_notifyid = -1;
1524
1525 /* reset handled vdev */
1526 rproc->nb_vdev = 0;
1527
1528 /* handle fw resources which are required to boot rproc */
1529 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1530 if (ret) {
1531 dev_err(dev, "Failed to process resources: %d\n", ret);
1532 goto clean_up_resources;
1533 }
1534
1535 /* Allocate carveout resources associated to rproc */
1536 ret = rproc_alloc_registered_carveouts(rproc);
1537 if (ret) {
1538 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1539 ret);
1540 goto clean_up_resources;
1541 }
1542
1543 ret = rproc_start(rproc, fw);
1544 if (ret)
1545 goto clean_up_resources;
1546
1547 return 0;
1548
1549 clean_up_resources:
1550 rproc_resource_cleanup(rproc);
1551 kfree(rproc->cached_table);
1552 rproc->cached_table = NULL;
1553 rproc->table_ptr = NULL;
1554 unprepare_rproc:
1555 /* release HW resources if needed */
1556 rproc_unprepare_device(rproc);
1557 disable_iommu:
1558 rproc_disable_iommu(rproc);
1559 return ret;
1560 }
1561
rproc_set_rsc_table(struct rproc * rproc)1562 static int rproc_set_rsc_table(struct rproc *rproc)
1563 {
1564 struct resource_table *table_ptr;
1565 struct device *dev = &rproc->dev;
1566 size_t table_sz;
1567 int ret;
1568
1569 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1570 if (!table_ptr) {
1571 /* Not having a resource table is acceptable */
1572 return 0;
1573 }
1574
1575 if (IS_ERR(table_ptr)) {
1576 ret = PTR_ERR(table_ptr);
1577 dev_err(dev, "can't load resource table: %d\n", ret);
1578 return ret;
1579 }
1580
1581 /*
1582 * If it is possible to detach the remote processor, keep an untouched
1583 * copy of the resource table. That way we can start fresh again when
1584 * the remote processor is re-attached, that is:
1585 *
1586 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1587 *
1588 * Free'd in rproc_reset_rsc_table_on_detach() and
1589 * rproc_reset_rsc_table_on_stop().
1590 */
1591 if (rproc->ops->detach) {
1592 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1593 if (!rproc->clean_table)
1594 return -ENOMEM;
1595 } else {
1596 rproc->clean_table = NULL;
1597 }
1598
1599 rproc->cached_table = NULL;
1600 rproc->table_ptr = table_ptr;
1601 rproc->table_sz = table_sz;
1602
1603 return 0;
1604 }
1605
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1606 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1607 {
1608 struct resource_table *table_ptr;
1609
1610 /* A resource table was never retrieved, nothing to do here */
1611 if (!rproc->table_ptr)
1612 return 0;
1613
1614 /*
1615 * If we made it to this point a clean_table _must_ have been
1616 * allocated in rproc_set_rsc_table(). If one isn't present
1617 * something went really wrong and we must complain.
1618 */
1619 if (WARN_ON(!rproc->clean_table))
1620 return -EINVAL;
1621
1622 /* Remember where the external entity installed the resource table */
1623 table_ptr = rproc->table_ptr;
1624
1625 /*
1626 * If we made it here the remote processor was started by another
1627 * entity and a cache table doesn't exist. As such make a copy of
1628 * the resource table currently used by the remote processor and
1629 * use that for the rest of the shutdown process. The memory
1630 * allocated here is free'd in rproc_detach().
1631 */
1632 rproc->cached_table = kmemdup(rproc->table_ptr,
1633 rproc->table_sz, GFP_KERNEL);
1634 if (!rproc->cached_table)
1635 return -ENOMEM;
1636
1637 /*
1638 * Use a copy of the resource table for the remainder of the
1639 * shutdown process.
1640 */
1641 rproc->table_ptr = rproc->cached_table;
1642
1643 /*
1644 * Reset the memory area where the firmware loaded the resource table
1645 * to its original value. That way when we re-attach the remote
1646 * processor the resource table is clean and ready to be used again.
1647 */
1648 memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1649
1650 /*
1651 * The clean resource table is no longer needed. Allocated in
1652 * rproc_set_rsc_table().
1653 */
1654 kfree(rproc->clean_table);
1655
1656 return 0;
1657 }
1658
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1659 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1660 {
1661 /* A resource table was never retrieved, nothing to do here */
1662 if (!rproc->table_ptr)
1663 return 0;
1664
1665 /*
1666 * If a cache table exists the remote processor was started by
1667 * the remoteproc core. That cache table should be used for
1668 * the rest of the shutdown process.
1669 */
1670 if (rproc->cached_table)
1671 goto out;
1672
1673 /*
1674 * If we made it here the remote processor was started by another
1675 * entity and a cache table doesn't exist. As such make a copy of
1676 * the resource table currently used by the remote processor and
1677 * use that for the rest of the shutdown process. The memory
1678 * allocated here is free'd in rproc_shutdown().
1679 */
1680 rproc->cached_table = kmemdup(rproc->table_ptr,
1681 rproc->table_sz, GFP_KERNEL);
1682 if (!rproc->cached_table)
1683 return -ENOMEM;
1684
1685 /*
1686 * Since the remote processor is being switched off the clean table
1687 * won't be needed. Allocated in rproc_set_rsc_table().
1688 */
1689 kfree(rproc->clean_table);
1690
1691 out:
1692 /*
1693 * Use a copy of the resource table for the remainder of the
1694 * shutdown process.
1695 */
1696 rproc->table_ptr = rproc->cached_table;
1697 return 0;
1698 }
1699
1700 /*
1701 * Attach to remote processor - similar to rproc_fw_boot() but without
1702 * the steps that deal with the firmware image.
1703 */
rproc_attach(struct rproc * rproc)1704 static int rproc_attach(struct rproc *rproc)
1705 {
1706 struct device *dev = &rproc->dev;
1707 int ret;
1708
1709 /*
1710 * if enabling an IOMMU isn't relevant for this rproc, this is
1711 * just a nop
1712 */
1713 ret = rproc_enable_iommu(rproc);
1714 if (ret) {
1715 dev_err(dev, "can't enable iommu: %d\n", ret);
1716 return ret;
1717 }
1718
1719 /* Do anything that is needed to boot the remote processor */
1720 ret = rproc_prepare_device(rproc);
1721 if (ret) {
1722 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1723 goto disable_iommu;
1724 }
1725
1726 ret = rproc_set_rsc_table(rproc);
1727 if (ret) {
1728 dev_err(dev, "can't load resource table: %d\n", ret);
1729 goto unprepare_device;
1730 }
1731
1732 /* reset max_notifyid */
1733 rproc->max_notifyid = -1;
1734
1735 /* reset handled vdev */
1736 rproc->nb_vdev = 0;
1737
1738 /*
1739 * Handle firmware resources required to attach to a remote processor.
1740 * Because we are attaching rather than booting the remote processor,
1741 * we expect the platform driver to properly set rproc->table_ptr.
1742 */
1743 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1744 if (ret) {
1745 dev_err(dev, "Failed to process resources: %d\n", ret);
1746 goto unprepare_device;
1747 }
1748
1749 /* Allocate carveout resources associated to rproc */
1750 ret = rproc_alloc_registered_carveouts(rproc);
1751 if (ret) {
1752 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1753 ret);
1754 goto clean_up_resources;
1755 }
1756
1757 ret = __rproc_attach(rproc);
1758 if (ret)
1759 goto clean_up_resources;
1760
1761 return 0;
1762
1763 clean_up_resources:
1764 rproc_resource_cleanup(rproc);
1765 unprepare_device:
1766 /* release HW resources if needed */
1767 rproc_unprepare_device(rproc);
1768 disable_iommu:
1769 rproc_disable_iommu(rproc);
1770 return ret;
1771 }
1772
1773 /*
1774 * take a firmware and boot it up.
1775 *
1776 * Note: this function is called asynchronously upon registration of the
1777 * remote processor (so we must wait until it completes before we try
1778 * to unregister the device. one other option is just to use kref here,
1779 * that might be cleaner).
1780 */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1781 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1782 {
1783 struct rproc *rproc = context;
1784
1785 rproc_boot(rproc);
1786
1787 release_firmware(fw);
1788 }
1789
rproc_trigger_auto_boot(struct rproc * rproc)1790 static int rproc_trigger_auto_boot(struct rproc *rproc)
1791 {
1792 int ret;
1793
1794 /*
1795 * Since the remote processor is in a detached state, it has already
1796 * been booted by another entity. As such there is no point in waiting
1797 * for a firmware image to be loaded, we can simply initiate the process
1798 * of attaching to it immediately.
1799 */
1800 if (rproc->state == RPROC_DETACHED)
1801 return rproc_boot(rproc);
1802
1803 /*
1804 * We're initiating an asynchronous firmware loading, so we can
1805 * be built-in kernel code, without hanging the boot process.
1806 */
1807 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1808 rproc->firmware, &rproc->dev, GFP_KERNEL,
1809 rproc, rproc_auto_boot_callback);
1810 if (ret < 0)
1811 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1812
1813 return ret;
1814 }
1815
rproc_stop(struct rproc * rproc,bool crashed)1816 static int rproc_stop(struct rproc *rproc, bool crashed)
1817 {
1818 struct device *dev = &rproc->dev;
1819 int ret;
1820
1821 /* No need to continue if a stop() operation has not been provided */
1822 if (!rproc->ops->stop)
1823 return -EINVAL;
1824
1825 /* Stop any subdevices for the remote processor */
1826 rproc_stop_subdevices(rproc, crashed);
1827
1828 /* the installed resource table is no longer accessible */
1829 ret = rproc_reset_rsc_table_on_stop(rproc);
1830 if (ret) {
1831 dev_err(dev, "can't reset resource table: %d\n", ret);
1832 return ret;
1833 }
1834
1835
1836 /* power off the remote processor */
1837 ret = rproc->ops->stop(rproc);
1838 if (ret) {
1839 dev_err(dev, "can't stop rproc: %d\n", ret);
1840 return ret;
1841 }
1842
1843 rproc_unprepare_subdevices(rproc);
1844
1845 rproc->state = RPROC_OFFLINE;
1846
1847 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1848
1849 return 0;
1850 }
1851
1852 /*
1853 * __rproc_detach(): Does the opposite of __rproc_attach()
1854 */
__rproc_detach(struct rproc * rproc)1855 static int __rproc_detach(struct rproc *rproc)
1856 {
1857 struct device *dev = &rproc->dev;
1858 int ret;
1859
1860 /* No need to continue if a detach() operation has not been provided */
1861 if (!rproc->ops->detach)
1862 return -EINVAL;
1863
1864 /* Stop any subdevices for the remote processor */
1865 rproc_stop_subdevices(rproc, false);
1866
1867 /* the installed resource table is no longer accessible */
1868 ret = rproc_reset_rsc_table_on_detach(rproc);
1869 if (ret) {
1870 dev_err(dev, "can't reset resource table: %d\n", ret);
1871 return ret;
1872 }
1873
1874 /* Tell the remote processor the core isn't available anymore */
1875 ret = rproc->ops->detach(rproc);
1876 if (ret) {
1877 dev_err(dev, "can't detach from rproc: %d\n", ret);
1878 return ret;
1879 }
1880
1881 rproc_unprepare_subdevices(rproc);
1882
1883 rproc->state = RPROC_DETACHED;
1884
1885 dev_info(dev, "detached remote processor %s\n", rproc->name);
1886
1887 return 0;
1888 }
1889
1890 /**
1891 * rproc_trigger_recovery() - recover a remoteproc
1892 * @rproc: the remote processor
1893 *
1894 * The recovery is done by resetting all the virtio devices, that way all the
1895 * rpmsg drivers will be reseted along with the remote processor making the
1896 * remoteproc functional again.
1897 *
1898 * This function can sleep, so it cannot be called from atomic context.
1899 *
1900 * Return: 0 on success or a negative value upon failure
1901 */
rproc_trigger_recovery(struct rproc * rproc)1902 int rproc_trigger_recovery(struct rproc *rproc)
1903 {
1904 const struct firmware *firmware_p;
1905 struct device *dev = &rproc->dev;
1906 int ret;
1907
1908 ret = mutex_lock_interruptible(&rproc->lock);
1909 if (ret)
1910 return ret;
1911
1912 /* State could have changed before we got the mutex */
1913 if (rproc->state != RPROC_CRASHED)
1914 goto unlock_mutex;
1915
1916 dev_err(dev, "recovering %s\n", rproc->name);
1917
1918 ret = rproc_stop(rproc, true);
1919 if (ret)
1920 goto unlock_mutex;
1921
1922 /* generate coredump */
1923 rproc->ops->coredump(rproc);
1924
1925 /* load firmware */
1926 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1927 if (ret < 0) {
1928 dev_err(dev, "request_firmware failed: %d\n", ret);
1929 goto unlock_mutex;
1930 }
1931
1932 /* boot the remote processor up again */
1933 ret = rproc_start(rproc, firmware_p);
1934
1935 release_firmware(firmware_p);
1936
1937 unlock_mutex:
1938 mutex_unlock(&rproc->lock);
1939 return ret;
1940 }
1941
1942 /**
1943 * rproc_crash_handler_work() - handle a crash
1944 * @work: work treating the crash
1945 *
1946 * This function needs to handle everything related to a crash, like cpu
1947 * registers and stack dump, information to help to debug the fatal error, etc.
1948 */
rproc_crash_handler_work(struct work_struct * work)1949 static void rproc_crash_handler_work(struct work_struct *work)
1950 {
1951 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1952 struct device *dev = &rproc->dev;
1953
1954 dev_dbg(dev, "enter %s\n", __func__);
1955
1956 mutex_lock(&rproc->lock);
1957
1958 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1959 /* handle only the first crash detected */
1960 mutex_unlock(&rproc->lock);
1961 return;
1962 }
1963
1964 rproc->state = RPROC_CRASHED;
1965 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1966 rproc->name);
1967
1968 mutex_unlock(&rproc->lock);
1969
1970 if (!rproc->recovery_disabled)
1971 rproc_trigger_recovery(rproc);
1972
1973 pm_relax(rproc->dev.parent);
1974 }
1975
1976 /**
1977 * rproc_boot() - boot a remote processor
1978 * @rproc: handle of a remote processor
1979 *
1980 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1981 *
1982 * If the remote processor is already powered on, this function immediately
1983 * returns (successfully).
1984 *
1985 * Return: 0 on success, and an appropriate error value otherwise
1986 */
rproc_boot(struct rproc * rproc)1987 int rproc_boot(struct rproc *rproc)
1988 {
1989 const struct firmware *firmware_p;
1990 struct device *dev;
1991 int ret;
1992
1993 if (!rproc) {
1994 pr_err("invalid rproc handle\n");
1995 return -EINVAL;
1996 }
1997
1998 dev = &rproc->dev;
1999
2000 ret = mutex_lock_interruptible(&rproc->lock);
2001 if (ret) {
2002 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2003 return ret;
2004 }
2005
2006 if (rproc->state == RPROC_DELETED) {
2007 ret = -ENODEV;
2008 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
2009 goto unlock_mutex;
2010 }
2011
2012 /* skip the boot or attach process if rproc is already powered up */
2013 if (atomic_inc_return(&rproc->power) > 1) {
2014 ret = 0;
2015 goto unlock_mutex;
2016 }
2017
2018 if (rproc->state == RPROC_DETACHED) {
2019 dev_info(dev, "attaching to %s\n", rproc->name);
2020
2021 ret = rproc_attach(rproc);
2022 } else {
2023 dev_info(dev, "powering up %s\n", rproc->name);
2024
2025 /* load firmware */
2026 ret = request_firmware(&firmware_p, rproc->firmware, dev);
2027 if (ret < 0) {
2028 dev_err(dev, "request_firmware failed: %d\n", ret);
2029 goto downref_rproc;
2030 }
2031
2032 ret = rproc_fw_boot(rproc, firmware_p);
2033
2034 release_firmware(firmware_p);
2035 }
2036
2037 downref_rproc:
2038 if (ret)
2039 atomic_dec(&rproc->power);
2040 unlock_mutex:
2041 mutex_unlock(&rproc->lock);
2042 return ret;
2043 }
2044 EXPORT_SYMBOL(rproc_boot);
2045
2046 /**
2047 * rproc_shutdown() - power off the remote processor
2048 * @rproc: the remote processor
2049 *
2050 * Power off a remote processor (previously booted with rproc_boot()).
2051 *
2052 * In case @rproc is still being used by an additional user(s), then
2053 * this function will just decrement the power refcount and exit,
2054 * without really powering off the device.
2055 *
2056 * Every call to rproc_boot() must (eventually) be accompanied by a call
2057 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
2058 *
2059 * Notes:
2060 * - we're not decrementing the rproc's refcount, only the power refcount.
2061 * which means that the @rproc handle stays valid even after rproc_shutdown()
2062 * returns, and users can still use it with a subsequent rproc_boot(), if
2063 * needed.
2064 */
rproc_shutdown(struct rproc * rproc)2065 void rproc_shutdown(struct rproc *rproc)
2066 {
2067 struct device *dev = &rproc->dev;
2068 int ret;
2069
2070 ret = mutex_lock_interruptible(&rproc->lock);
2071 if (ret) {
2072 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2073 return;
2074 }
2075
2076 /* if the remote proc is still needed, bail out */
2077 if (!atomic_dec_and_test(&rproc->power))
2078 goto out;
2079
2080 ret = rproc_stop(rproc, false);
2081 if (ret) {
2082 atomic_inc(&rproc->power);
2083 goto out;
2084 }
2085
2086 /* clean up all acquired resources */
2087 rproc_resource_cleanup(rproc);
2088
2089 /* release HW resources if needed */
2090 rproc_unprepare_device(rproc);
2091
2092 rproc_disable_iommu(rproc);
2093
2094 /* Free the copy of the resource table */
2095 kfree(rproc->cached_table);
2096 rproc->cached_table = NULL;
2097 rproc->table_ptr = NULL;
2098 out:
2099 mutex_unlock(&rproc->lock);
2100 }
2101 EXPORT_SYMBOL(rproc_shutdown);
2102
2103 /**
2104 * rproc_detach() - Detach the remote processor from the
2105 * remoteproc core
2106 *
2107 * @rproc: the remote processor
2108 *
2109 * Detach a remote processor (previously attached to with rproc_attach()).
2110 *
2111 * In case @rproc is still being used by an additional user(s), then
2112 * this function will just decrement the power refcount and exit,
2113 * without disconnecting the device.
2114 *
2115 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2116 * processor know that services provided by the application processor are
2117 * no longer available. From there it should be possible to remove the
2118 * platform driver and even power cycle the application processor (if the HW
2119 * supports it) without needing to switch off the remote processor.
2120 *
2121 * Return: 0 on success, and an appropriate error value otherwise
2122 */
rproc_detach(struct rproc * rproc)2123 int rproc_detach(struct rproc *rproc)
2124 {
2125 struct device *dev = &rproc->dev;
2126 int ret;
2127
2128 ret = mutex_lock_interruptible(&rproc->lock);
2129 if (ret) {
2130 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2131 return ret;
2132 }
2133
2134 /* if the remote proc is still needed, bail out */
2135 if (!atomic_dec_and_test(&rproc->power)) {
2136 ret = 0;
2137 goto out;
2138 }
2139
2140 ret = __rproc_detach(rproc);
2141 if (ret) {
2142 atomic_inc(&rproc->power);
2143 goto out;
2144 }
2145
2146 /* clean up all acquired resources */
2147 rproc_resource_cleanup(rproc);
2148
2149 /* release HW resources if needed */
2150 rproc_unprepare_device(rproc);
2151
2152 rproc_disable_iommu(rproc);
2153
2154 /* Free the copy of the resource table */
2155 kfree(rproc->cached_table);
2156 rproc->cached_table = NULL;
2157 rproc->table_ptr = NULL;
2158 out:
2159 mutex_unlock(&rproc->lock);
2160 return ret;
2161 }
2162 EXPORT_SYMBOL(rproc_detach);
2163
2164 /**
2165 * rproc_get_by_phandle() - find a remote processor by phandle
2166 * @phandle: phandle to the rproc
2167 *
2168 * Finds an rproc handle using the remote processor's phandle, and then
2169 * return a handle to the rproc.
2170 *
2171 * This function increments the remote processor's refcount, so always
2172 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2173 *
2174 * Return: rproc handle on success, and NULL on failure
2175 */
2176 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2177 struct rproc *rproc_get_by_phandle(phandle phandle)
2178 {
2179 struct rproc *rproc = NULL, *r;
2180 struct device_node *np;
2181
2182 np = of_find_node_by_phandle(phandle);
2183 if (!np)
2184 return NULL;
2185
2186 rcu_read_lock();
2187 list_for_each_entry_rcu(r, &rproc_list, node) {
2188 if (r->dev.parent && r->dev.parent->of_node == np) {
2189 /* prevent underlying implementation from being removed */
2190 if (!try_module_get(r->dev.parent->driver->owner)) {
2191 dev_err(&r->dev, "can't get owner\n");
2192 break;
2193 }
2194
2195 rproc = r;
2196 get_device(&rproc->dev);
2197 break;
2198 }
2199 }
2200 rcu_read_unlock();
2201
2202 of_node_put(np);
2203
2204 return rproc;
2205 }
2206 #else
rproc_get_by_phandle(phandle phandle)2207 struct rproc *rproc_get_by_phandle(phandle phandle)
2208 {
2209 return NULL;
2210 }
2211 #endif
2212 EXPORT_SYMBOL(rproc_get_by_phandle);
2213
2214 /**
2215 * rproc_set_firmware() - assign a new firmware
2216 * @rproc: rproc handle to which the new firmware is being assigned
2217 * @fw_name: new firmware name to be assigned
2218 *
2219 * This function allows remoteproc drivers or clients to configure a custom
2220 * firmware name that is different from the default name used during remoteproc
2221 * registration. The function does not trigger a remote processor boot,
2222 * only sets the firmware name used for a subsequent boot. This function
2223 * should also be called only when the remote processor is offline.
2224 *
2225 * This allows either the userspace to configure a different name through
2226 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2227 * a specific firmware when it is controlling the boot and shutdown of the
2228 * remote processor.
2229 *
2230 * Return: 0 on success or a negative value upon failure
2231 */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2232 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2233 {
2234 struct device *dev;
2235 int ret, len;
2236 char *p;
2237
2238 if (!rproc || !fw_name)
2239 return -EINVAL;
2240
2241 dev = rproc->dev.parent;
2242
2243 ret = mutex_lock_interruptible(&rproc->lock);
2244 if (ret) {
2245 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2246 return -EINVAL;
2247 }
2248
2249 if (rproc->state != RPROC_OFFLINE) {
2250 dev_err(dev, "can't change firmware while running\n");
2251 ret = -EBUSY;
2252 goto out;
2253 }
2254
2255 len = strcspn(fw_name, "\n");
2256 if (!len) {
2257 dev_err(dev, "can't provide empty string for firmware name\n");
2258 ret = -EINVAL;
2259 goto out;
2260 }
2261
2262 p = kstrndup(fw_name, len, GFP_KERNEL);
2263 if (!p) {
2264 ret = -ENOMEM;
2265 goto out;
2266 }
2267
2268 kfree_const(rproc->firmware);
2269 rproc->firmware = p;
2270
2271 out:
2272 mutex_unlock(&rproc->lock);
2273 return ret;
2274 }
2275 EXPORT_SYMBOL(rproc_set_firmware);
2276
rproc_validate(struct rproc * rproc)2277 static int rproc_validate(struct rproc *rproc)
2278 {
2279 switch (rproc->state) {
2280 case RPROC_OFFLINE:
2281 /*
2282 * An offline processor without a start()
2283 * function makes no sense.
2284 */
2285 if (!rproc->ops->start)
2286 return -EINVAL;
2287 break;
2288 case RPROC_DETACHED:
2289 /*
2290 * A remote processor in a detached state without an
2291 * attach() function makes not sense.
2292 */
2293 if (!rproc->ops->attach)
2294 return -EINVAL;
2295 /*
2296 * When attaching to a remote processor the device memory
2297 * is already available and as such there is no need to have a
2298 * cached table.
2299 */
2300 if (rproc->cached_table)
2301 return -EINVAL;
2302 break;
2303 default:
2304 /*
2305 * When adding a remote processor, the state of the device
2306 * can be offline or detached, nothing else.
2307 */
2308 return -EINVAL;
2309 }
2310
2311 return 0;
2312 }
2313
2314 /**
2315 * rproc_add() - register a remote processor
2316 * @rproc: the remote processor handle to register
2317 *
2318 * Registers @rproc with the remoteproc framework, after it has been
2319 * allocated with rproc_alloc().
2320 *
2321 * This is called by the platform-specific rproc implementation, whenever
2322 * a new remote processor device is probed.
2323 *
2324 * Note: this function initiates an asynchronous firmware loading
2325 * context, which will look for virtio devices supported by the rproc's
2326 * firmware.
2327 *
2328 * If found, those virtio devices will be created and added, so as a result
2329 * of registering this remote processor, additional virtio drivers might be
2330 * probed.
2331 *
2332 * Return: 0 on success and an appropriate error code otherwise
2333 */
rproc_add(struct rproc * rproc)2334 int rproc_add(struct rproc *rproc)
2335 {
2336 struct device *dev = &rproc->dev;
2337 int ret;
2338
2339 ret = rproc_validate(rproc);
2340 if (ret < 0)
2341 return ret;
2342
2343 /* add char device for this remoteproc */
2344 ret = rproc_char_device_add(rproc);
2345 if (ret < 0)
2346 return ret;
2347
2348 ret = device_add(dev);
2349 if (ret < 0) {
2350 put_device(dev);
2351 goto rproc_remove_cdev;
2352 }
2353
2354 dev_info(dev, "%s is available\n", rproc->name);
2355
2356 /* create debugfs entries */
2357 rproc_create_debug_dir(rproc);
2358
2359 /* if rproc is marked always-on, request it to boot */
2360 if (rproc->auto_boot) {
2361 ret = rproc_trigger_auto_boot(rproc);
2362 if (ret < 0)
2363 goto rproc_remove_dev;
2364 }
2365
2366 /* expose to rproc_get_by_phandle users */
2367 mutex_lock(&rproc_list_mutex);
2368 list_add_rcu(&rproc->node, &rproc_list);
2369 mutex_unlock(&rproc_list_mutex);
2370
2371 return 0;
2372
2373 rproc_remove_dev:
2374 rproc_delete_debug_dir(rproc);
2375 device_del(dev);
2376 rproc_remove_cdev:
2377 rproc_char_device_remove(rproc);
2378 return ret;
2379 }
2380 EXPORT_SYMBOL(rproc_add);
2381
devm_rproc_remove(void * rproc)2382 static void devm_rproc_remove(void *rproc)
2383 {
2384 rproc_del(rproc);
2385 }
2386
2387 /**
2388 * devm_rproc_add() - resource managed rproc_add()
2389 * @dev: the underlying device
2390 * @rproc: the remote processor handle to register
2391 *
2392 * This function performs like rproc_add() but the registered rproc device will
2393 * automatically be removed on driver detach.
2394 *
2395 * Return: 0 on success, negative errno on failure
2396 */
devm_rproc_add(struct device * dev,struct rproc * rproc)2397 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2398 {
2399 int err;
2400
2401 err = rproc_add(rproc);
2402 if (err)
2403 return err;
2404
2405 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2406 }
2407 EXPORT_SYMBOL(devm_rproc_add);
2408
2409 /**
2410 * rproc_type_release() - release a remote processor instance
2411 * @dev: the rproc's device
2412 *
2413 * This function should _never_ be called directly.
2414 *
2415 * It will be called by the driver core when no one holds a valid pointer
2416 * to @dev anymore.
2417 */
rproc_type_release(struct device * dev)2418 static void rproc_type_release(struct device *dev)
2419 {
2420 struct rproc *rproc = container_of(dev, struct rproc, dev);
2421
2422 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2423
2424 idr_destroy(&rproc->notifyids);
2425
2426 if (rproc->index >= 0)
2427 ida_simple_remove(&rproc_dev_index, rproc->index);
2428
2429 kfree_const(rproc->firmware);
2430 kfree_const(rproc->name);
2431 kfree(rproc->ops);
2432 kfree(rproc);
2433 }
2434
2435 static const struct device_type rproc_type = {
2436 .name = "remoteproc",
2437 .release = rproc_type_release,
2438 };
2439
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2440 static int rproc_alloc_firmware(struct rproc *rproc,
2441 const char *name, const char *firmware)
2442 {
2443 const char *p;
2444
2445 /*
2446 * Allocate a firmware name if the caller gave us one to work
2447 * with. Otherwise construct a new one using a default pattern.
2448 */
2449 if (firmware)
2450 p = kstrdup_const(firmware, GFP_KERNEL);
2451 else
2452 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2453
2454 if (!p)
2455 return -ENOMEM;
2456
2457 rproc->firmware = p;
2458
2459 return 0;
2460 }
2461
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2462 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2463 {
2464 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2465 if (!rproc->ops)
2466 return -ENOMEM;
2467
2468 /* Default to rproc_coredump if no coredump function is specified */
2469 if (!rproc->ops->coredump)
2470 rproc->ops->coredump = rproc_coredump;
2471
2472 if (rproc->ops->load)
2473 return 0;
2474
2475 /* Default to ELF loader if no load function is specified */
2476 rproc->ops->load = rproc_elf_load_segments;
2477 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2478 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2479 rproc->ops->sanity_check = rproc_elf_sanity_check;
2480 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2481
2482 return 0;
2483 }
2484
2485 /**
2486 * rproc_alloc() - allocate a remote processor handle
2487 * @dev: the underlying device
2488 * @name: name of this remote processor
2489 * @ops: platform-specific handlers (mainly start/stop)
2490 * @firmware: name of firmware file to load, can be NULL
2491 * @len: length of private data needed by the rproc driver (in bytes)
2492 *
2493 * Allocates a new remote processor handle, but does not register
2494 * it yet. if @firmware is NULL, a default name is used.
2495 *
2496 * This function should be used by rproc implementations during initialization
2497 * of the remote processor.
2498 *
2499 * After creating an rproc handle using this function, and when ready,
2500 * implementations should then call rproc_add() to complete
2501 * the registration of the remote processor.
2502 *
2503 * Note: _never_ directly deallocate @rproc, even if it was not registered
2504 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2505 *
2506 * Return: new rproc pointer on success, and NULL on failure
2507 */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2508 struct rproc *rproc_alloc(struct device *dev, const char *name,
2509 const struct rproc_ops *ops,
2510 const char *firmware, int len)
2511 {
2512 struct rproc *rproc;
2513
2514 if (!dev || !name || !ops)
2515 return NULL;
2516
2517 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2518 if (!rproc)
2519 return NULL;
2520
2521 rproc->priv = &rproc[1];
2522 rproc->auto_boot = true;
2523 rproc->elf_class = ELFCLASSNONE;
2524 rproc->elf_machine = EM_NONE;
2525
2526 device_initialize(&rproc->dev);
2527 rproc->dev.parent = dev;
2528 rproc->dev.type = &rproc_type;
2529 rproc->dev.class = &rproc_class;
2530 rproc->dev.driver_data = rproc;
2531 idr_init(&rproc->notifyids);
2532
2533 rproc->name = kstrdup_const(name, GFP_KERNEL);
2534 if (!rproc->name)
2535 goto put_device;
2536
2537 if (rproc_alloc_firmware(rproc, name, firmware))
2538 goto put_device;
2539
2540 if (rproc_alloc_ops(rproc, ops))
2541 goto put_device;
2542
2543 /* Assign a unique device index and name */
2544 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2545 if (rproc->index < 0) {
2546 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2547 goto put_device;
2548 }
2549
2550 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2551
2552 atomic_set(&rproc->power, 0);
2553
2554 mutex_init(&rproc->lock);
2555
2556 INIT_LIST_HEAD(&rproc->carveouts);
2557 INIT_LIST_HEAD(&rproc->mappings);
2558 INIT_LIST_HEAD(&rproc->traces);
2559 INIT_LIST_HEAD(&rproc->rvdevs);
2560 INIT_LIST_HEAD(&rproc->subdevs);
2561 INIT_LIST_HEAD(&rproc->dump_segments);
2562
2563 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2564
2565 rproc->state = RPROC_OFFLINE;
2566
2567 return rproc;
2568
2569 put_device:
2570 put_device(&rproc->dev);
2571 return NULL;
2572 }
2573 EXPORT_SYMBOL(rproc_alloc);
2574
2575 /**
2576 * rproc_free() - unroll rproc_alloc()
2577 * @rproc: the remote processor handle
2578 *
2579 * This function decrements the rproc dev refcount.
2580 *
2581 * If no one holds any reference to rproc anymore, then its refcount would
2582 * now drop to zero, and it would be freed.
2583 */
rproc_free(struct rproc * rproc)2584 void rproc_free(struct rproc *rproc)
2585 {
2586 put_device(&rproc->dev);
2587 }
2588 EXPORT_SYMBOL(rproc_free);
2589
2590 /**
2591 * rproc_put() - release rproc reference
2592 * @rproc: the remote processor handle
2593 *
2594 * This function decrements the rproc dev refcount.
2595 *
2596 * If no one holds any reference to rproc anymore, then its refcount would
2597 * now drop to zero, and it would be freed.
2598 */
rproc_put(struct rproc * rproc)2599 void rproc_put(struct rproc *rproc)
2600 {
2601 module_put(rproc->dev.parent->driver->owner);
2602 put_device(&rproc->dev);
2603 }
2604 EXPORT_SYMBOL(rproc_put);
2605
2606 /**
2607 * rproc_del() - unregister a remote processor
2608 * @rproc: rproc handle to unregister
2609 *
2610 * This function should be called when the platform specific rproc
2611 * implementation decides to remove the rproc device. it should
2612 * _only_ be called if a previous invocation of rproc_add()
2613 * has completed successfully.
2614 *
2615 * After rproc_del() returns, @rproc isn't freed yet, because
2616 * of the outstanding reference created by rproc_alloc. To decrement that
2617 * one last refcount, one still needs to call rproc_free().
2618 *
2619 * Return: 0 on success and -EINVAL if @rproc isn't valid
2620 */
rproc_del(struct rproc * rproc)2621 int rproc_del(struct rproc *rproc)
2622 {
2623 if (!rproc)
2624 return -EINVAL;
2625
2626 /* TODO: make sure this works with rproc->power > 1 */
2627 rproc_shutdown(rproc);
2628
2629 mutex_lock(&rproc->lock);
2630 rproc->state = RPROC_DELETED;
2631 mutex_unlock(&rproc->lock);
2632
2633 rproc_delete_debug_dir(rproc);
2634
2635 /* the rproc is downref'ed as soon as it's removed from the klist */
2636 mutex_lock(&rproc_list_mutex);
2637 list_del_rcu(&rproc->node);
2638 mutex_unlock(&rproc_list_mutex);
2639
2640 /* Ensure that no readers of rproc_list are still active */
2641 synchronize_rcu();
2642
2643 device_del(&rproc->dev);
2644 rproc_char_device_remove(rproc);
2645
2646 return 0;
2647 }
2648 EXPORT_SYMBOL(rproc_del);
2649
devm_rproc_free(struct device * dev,void * res)2650 static void devm_rproc_free(struct device *dev, void *res)
2651 {
2652 rproc_free(*(struct rproc **)res);
2653 }
2654
2655 /**
2656 * devm_rproc_alloc() - resource managed rproc_alloc()
2657 * @dev: the underlying device
2658 * @name: name of this remote processor
2659 * @ops: platform-specific handlers (mainly start/stop)
2660 * @firmware: name of firmware file to load, can be NULL
2661 * @len: length of private data needed by the rproc driver (in bytes)
2662 *
2663 * This function performs like rproc_alloc() but the acquired rproc device will
2664 * automatically be released on driver detach.
2665 *
2666 * Return: new rproc instance, or NULL on failure
2667 */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2668 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2669 const struct rproc_ops *ops,
2670 const char *firmware, int len)
2671 {
2672 struct rproc **ptr, *rproc;
2673
2674 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2675 if (!ptr)
2676 return NULL;
2677
2678 rproc = rproc_alloc(dev, name, ops, firmware, len);
2679 if (rproc) {
2680 *ptr = rproc;
2681 devres_add(dev, ptr);
2682 } else {
2683 devres_free(ptr);
2684 }
2685
2686 return rproc;
2687 }
2688 EXPORT_SYMBOL(devm_rproc_alloc);
2689
2690 /**
2691 * rproc_add_subdev() - add a subdevice to a remoteproc
2692 * @rproc: rproc handle to add the subdevice to
2693 * @subdev: subdev handle to register
2694 *
2695 * Caller is responsible for populating optional subdevice function pointers.
2696 */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2697 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2698 {
2699 list_add_tail(&subdev->node, &rproc->subdevs);
2700 }
2701 EXPORT_SYMBOL(rproc_add_subdev);
2702
2703 /**
2704 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2705 * @rproc: rproc handle to remove the subdevice from
2706 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2707 */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2708 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2709 {
2710 list_del(&subdev->node);
2711 }
2712 EXPORT_SYMBOL(rproc_remove_subdev);
2713
2714 /**
2715 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2716 * @dev: child device to find ancestor of
2717 *
2718 * Return: the ancestor rproc instance, or NULL if not found
2719 */
rproc_get_by_child(struct device * dev)2720 struct rproc *rproc_get_by_child(struct device *dev)
2721 {
2722 for (dev = dev->parent; dev; dev = dev->parent) {
2723 if (dev->type == &rproc_type)
2724 return dev->driver_data;
2725 }
2726
2727 return NULL;
2728 }
2729 EXPORT_SYMBOL(rproc_get_by_child);
2730
2731 /**
2732 * rproc_report_crash() - rproc crash reporter function
2733 * @rproc: remote processor
2734 * @type: crash type
2735 *
2736 * This function must be called every time a crash is detected by the low-level
2737 * drivers implementing a specific remoteproc. This should not be called from a
2738 * non-remoteproc driver.
2739 *
2740 * This function can be called from atomic/interrupt context.
2741 */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2742 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2743 {
2744 if (!rproc) {
2745 pr_err("NULL rproc pointer\n");
2746 return;
2747 }
2748
2749 /* Prevent suspend while the remoteproc is being recovered */
2750 pm_stay_awake(rproc->dev.parent);
2751
2752 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2753 rproc->name, rproc_crash_to_string(type));
2754
2755 /* Have a worker handle the error; ensure system is not suspended */
2756 queue_work(system_freezable_wq, &rproc->crash_handler);
2757 }
2758 EXPORT_SYMBOL(rproc_report_crash);
2759
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2760 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2761 void *ptr)
2762 {
2763 unsigned int longest = 0;
2764 struct rproc *rproc;
2765 unsigned int d;
2766
2767 rcu_read_lock();
2768 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2769 if (!rproc->ops->panic)
2770 continue;
2771
2772 if (rproc->state != RPROC_RUNNING &&
2773 rproc->state != RPROC_ATTACHED)
2774 continue;
2775
2776 d = rproc->ops->panic(rproc);
2777 longest = max(longest, d);
2778 }
2779 rcu_read_unlock();
2780
2781 /*
2782 * Delay for the longest requested duration before returning. This can
2783 * be used by the remoteproc drivers to give the remote processor time
2784 * to perform any requested operations (such as flush caches), when
2785 * it's not possible to signal the Linux side due to the panic.
2786 */
2787 mdelay(longest);
2788
2789 return NOTIFY_DONE;
2790 }
2791
rproc_init_panic(void)2792 static void __init rproc_init_panic(void)
2793 {
2794 rproc_panic_nb.notifier_call = rproc_panic_handler;
2795 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2796 }
2797
rproc_exit_panic(void)2798 static void __exit rproc_exit_panic(void)
2799 {
2800 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2801 }
2802
remoteproc_init(void)2803 static int __init remoteproc_init(void)
2804 {
2805 rproc_init_sysfs();
2806 rproc_init_debugfs();
2807 rproc_init_cdev();
2808 rproc_init_panic();
2809
2810 return 0;
2811 }
2812 subsys_initcall(remoteproc_init);
2813
remoteproc_exit(void)2814 static void __exit remoteproc_exit(void)
2815 {
2816 ida_destroy(&rproc_dev_index);
2817
2818 rproc_exit_panic();
2819 rproc_exit_debugfs();
2820 rproc_exit_sysfs();
2821 }
2822 module_exit(remoteproc_exit);
2823
2824 MODULE_LICENSE("GPL v2");
2825 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2826