1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * builtin-timechart.c - make an svg timechart of system activity
4 *
5 * (C) Copyright 2009 Intel Corporation
6 *
7 * Authors:
8 * Arjan van de Ven <arjan@linux.intel.com>
9 */
10
11 #include <errno.h>
12 #include <inttypes.h>
13
14 #include "builtin.h"
15 #include "util/color.h"
16 #include <linux/list.h>
17 #include "util/evlist.h" // for struct evsel_str_handler
18 #include "util/evsel.h"
19 #include <linux/kernel.h>
20 #include <linux/rbtree.h>
21 #include <linux/time64.h>
22 #include <linux/zalloc.h>
23 #include "util/symbol.h"
24 #include "util/thread.h"
25 #include "util/callchain.h"
26
27 #include "perf.h"
28 #include "util/header.h"
29 #include <subcmd/pager.h>
30 #include <subcmd/parse-options.h>
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
36 #include "util/data.h"
37 #include "util/debug.h"
38 #include <linux/err.h>
39
40 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
41 FILE *open_memstream(char **ptr, size_t *sizeloc);
42 #endif
43
44 #define SUPPORT_OLD_POWER_EVENTS 1
45 #define PWR_EVENT_EXIT -1
46
47 struct per_pid;
48 struct power_event;
49 struct wake_event;
50
51 struct timechart {
52 struct perf_tool tool;
53 struct per_pid *all_data;
54 struct power_event *power_events;
55 struct wake_event *wake_events;
56 int proc_num;
57 unsigned int numcpus;
58 u64 min_freq, /* Lowest CPU frequency seen */
59 max_freq, /* Highest CPU frequency seen */
60 turbo_frequency,
61 first_time, last_time;
62 bool power_only,
63 tasks_only,
64 with_backtrace,
65 topology;
66 bool force;
67 /* IO related settings */
68 bool io_only,
69 skip_eagain;
70 u64 io_events;
71 u64 min_time,
72 merge_dist;
73 };
74
75 struct per_pidcomm;
76 struct cpu_sample;
77 struct io_sample;
78
79 /*
80 * Datastructure layout:
81 * We keep an list of "pid"s, matching the kernels notion of a task struct.
82 * Each "pid" entry, has a list of "comm"s.
83 * this is because we want to track different programs different, while
84 * exec will reuse the original pid (by design).
85 * Each comm has a list of samples that will be used to draw
86 * final graph.
87 */
88
89 struct per_pid {
90 struct per_pid *next;
91
92 int pid;
93 int ppid;
94
95 u64 start_time;
96 u64 end_time;
97 u64 total_time;
98 u64 total_bytes;
99 int display;
100
101 struct per_pidcomm *all;
102 struct per_pidcomm *current;
103 };
104
105
106 struct per_pidcomm {
107 struct per_pidcomm *next;
108
109 u64 start_time;
110 u64 end_time;
111 u64 total_time;
112 u64 max_bytes;
113 u64 total_bytes;
114
115 int Y;
116 int display;
117
118 long state;
119 u64 state_since;
120
121 char *comm;
122
123 struct cpu_sample *samples;
124 struct io_sample *io_samples;
125 };
126
127 struct sample_wrapper {
128 struct sample_wrapper *next;
129
130 u64 timestamp;
131 unsigned char data[];
132 };
133
134 #define TYPE_NONE 0
135 #define TYPE_RUNNING 1
136 #define TYPE_WAITING 2
137 #define TYPE_BLOCKED 3
138
139 struct cpu_sample {
140 struct cpu_sample *next;
141
142 u64 start_time;
143 u64 end_time;
144 int type;
145 int cpu;
146 const char *backtrace;
147 };
148
149 enum {
150 IOTYPE_READ,
151 IOTYPE_WRITE,
152 IOTYPE_SYNC,
153 IOTYPE_TX,
154 IOTYPE_RX,
155 IOTYPE_POLL,
156 };
157
158 struct io_sample {
159 struct io_sample *next;
160
161 u64 start_time;
162 u64 end_time;
163 u64 bytes;
164 int type;
165 int fd;
166 int err;
167 int merges;
168 };
169
170 #define CSTATE 1
171 #define PSTATE 2
172
173 struct power_event {
174 struct power_event *next;
175 int type;
176 int state;
177 u64 start_time;
178 u64 end_time;
179 int cpu;
180 };
181
182 struct wake_event {
183 struct wake_event *next;
184 int waker;
185 int wakee;
186 u64 time;
187 const char *backtrace;
188 };
189
190 struct process_filter {
191 char *name;
192 int pid;
193 struct process_filter *next;
194 };
195
196 static struct process_filter *process_filter;
197
198
find_create_pid(struct timechart * tchart,int pid)199 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
200 {
201 struct per_pid *cursor = tchart->all_data;
202
203 while (cursor) {
204 if (cursor->pid == pid)
205 return cursor;
206 cursor = cursor->next;
207 }
208 cursor = zalloc(sizeof(*cursor));
209 assert(cursor != NULL);
210 cursor->pid = pid;
211 cursor->next = tchart->all_data;
212 tchart->all_data = cursor;
213 return cursor;
214 }
215
pid_set_comm(struct timechart * tchart,int pid,char * comm)216 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
217 {
218 struct per_pid *p;
219 struct per_pidcomm *c;
220 p = find_create_pid(tchart, pid);
221 c = p->all;
222 while (c) {
223 if (c->comm && strcmp(c->comm, comm) == 0) {
224 p->current = c;
225 return;
226 }
227 if (!c->comm) {
228 c->comm = strdup(comm);
229 p->current = c;
230 return;
231 }
232 c = c->next;
233 }
234 c = zalloc(sizeof(*c));
235 assert(c != NULL);
236 c->comm = strdup(comm);
237 p->current = c;
238 c->next = p->all;
239 p->all = c;
240 }
241
pid_fork(struct timechart * tchart,int pid,int ppid,u64 timestamp)242 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
243 {
244 struct per_pid *p, *pp;
245 p = find_create_pid(tchart, pid);
246 pp = find_create_pid(tchart, ppid);
247 p->ppid = ppid;
248 if (pp->current && pp->current->comm && !p->current)
249 pid_set_comm(tchart, pid, pp->current->comm);
250
251 p->start_time = timestamp;
252 if (p->current && !p->current->start_time) {
253 p->current->start_time = timestamp;
254 p->current->state_since = timestamp;
255 }
256 }
257
pid_exit(struct timechart * tchart,int pid,u64 timestamp)258 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
259 {
260 struct per_pid *p;
261 p = find_create_pid(tchart, pid);
262 p->end_time = timestamp;
263 if (p->current)
264 p->current->end_time = timestamp;
265 }
266
pid_put_sample(struct timechart * tchart,int pid,int type,unsigned int cpu,u64 start,u64 end,const char * backtrace)267 static void pid_put_sample(struct timechart *tchart, int pid, int type,
268 unsigned int cpu, u64 start, u64 end,
269 const char *backtrace)
270 {
271 struct per_pid *p;
272 struct per_pidcomm *c;
273 struct cpu_sample *sample;
274
275 p = find_create_pid(tchart, pid);
276 c = p->current;
277 if (!c) {
278 c = zalloc(sizeof(*c));
279 assert(c != NULL);
280 p->current = c;
281 c->next = p->all;
282 p->all = c;
283 }
284
285 sample = zalloc(sizeof(*sample));
286 assert(sample != NULL);
287 sample->start_time = start;
288 sample->end_time = end;
289 sample->type = type;
290 sample->next = c->samples;
291 sample->cpu = cpu;
292 sample->backtrace = backtrace;
293 c->samples = sample;
294
295 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
296 c->total_time += (end-start);
297 p->total_time += (end-start);
298 }
299
300 if (c->start_time == 0 || c->start_time > start)
301 c->start_time = start;
302 if (p->start_time == 0 || p->start_time > start)
303 p->start_time = start;
304 }
305
306 #define MAX_CPUS 4096
307
308 static u64 cpus_cstate_start_times[MAX_CPUS];
309 static int cpus_cstate_state[MAX_CPUS];
310 static u64 cpus_pstate_start_times[MAX_CPUS];
311 static u64 cpus_pstate_state[MAX_CPUS];
312
process_comm_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)313 static int process_comm_event(struct perf_tool *tool,
314 union perf_event *event,
315 struct perf_sample *sample __maybe_unused,
316 struct machine *machine __maybe_unused)
317 {
318 struct timechart *tchart = container_of(tool, struct timechart, tool);
319 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
320 return 0;
321 }
322
process_fork_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)323 static int process_fork_event(struct perf_tool *tool,
324 union perf_event *event,
325 struct perf_sample *sample __maybe_unused,
326 struct machine *machine __maybe_unused)
327 {
328 struct timechart *tchart = container_of(tool, struct timechart, tool);
329 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
330 return 0;
331 }
332
process_exit_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)333 static int process_exit_event(struct perf_tool *tool,
334 union perf_event *event,
335 struct perf_sample *sample __maybe_unused,
336 struct machine *machine __maybe_unused)
337 {
338 struct timechart *tchart = container_of(tool, struct timechart, tool);
339 pid_exit(tchart, event->fork.pid, event->fork.time);
340 return 0;
341 }
342
343 #ifdef SUPPORT_OLD_POWER_EVENTS
344 static int use_old_power_events;
345 #endif
346
c_state_start(int cpu,u64 timestamp,int state)347 static void c_state_start(int cpu, u64 timestamp, int state)
348 {
349 cpus_cstate_start_times[cpu] = timestamp;
350 cpus_cstate_state[cpu] = state;
351 }
352
c_state_end(struct timechart * tchart,int cpu,u64 timestamp)353 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
354 {
355 struct power_event *pwr = zalloc(sizeof(*pwr));
356
357 if (!pwr)
358 return;
359
360 pwr->state = cpus_cstate_state[cpu];
361 pwr->start_time = cpus_cstate_start_times[cpu];
362 pwr->end_time = timestamp;
363 pwr->cpu = cpu;
364 pwr->type = CSTATE;
365 pwr->next = tchart->power_events;
366
367 tchart->power_events = pwr;
368 }
369
p_state_change(struct timechart * tchart,int cpu,u64 timestamp,u64 new_freq)370 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
371 {
372 struct power_event *pwr;
373
374 if (new_freq > 8000000) /* detect invalid data */
375 return;
376
377 pwr = zalloc(sizeof(*pwr));
378 if (!pwr)
379 return;
380
381 pwr->state = cpus_pstate_state[cpu];
382 pwr->start_time = cpus_pstate_start_times[cpu];
383 pwr->end_time = timestamp;
384 pwr->cpu = cpu;
385 pwr->type = PSTATE;
386 pwr->next = tchart->power_events;
387
388 if (!pwr->start_time)
389 pwr->start_time = tchart->first_time;
390
391 tchart->power_events = pwr;
392
393 cpus_pstate_state[cpu] = new_freq;
394 cpus_pstate_start_times[cpu] = timestamp;
395
396 if ((u64)new_freq > tchart->max_freq)
397 tchart->max_freq = new_freq;
398
399 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
400 tchart->min_freq = new_freq;
401
402 if (new_freq == tchart->max_freq - 1000)
403 tchart->turbo_frequency = tchart->max_freq;
404 }
405
sched_wakeup(struct timechart * tchart,int cpu,u64 timestamp,int waker,int wakee,u8 flags,const char * backtrace)406 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
407 int waker, int wakee, u8 flags, const char *backtrace)
408 {
409 struct per_pid *p;
410 struct wake_event *we = zalloc(sizeof(*we));
411
412 if (!we)
413 return;
414
415 we->time = timestamp;
416 we->waker = waker;
417 we->backtrace = backtrace;
418
419 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
420 we->waker = -1;
421
422 we->wakee = wakee;
423 we->next = tchart->wake_events;
424 tchart->wake_events = we;
425 p = find_create_pid(tchart, we->wakee);
426
427 if (p && p->current && p->current->state == TYPE_NONE) {
428 p->current->state_since = timestamp;
429 p->current->state = TYPE_WAITING;
430 }
431 if (p && p->current && p->current->state == TYPE_BLOCKED) {
432 pid_put_sample(tchart, p->pid, p->current->state, cpu,
433 p->current->state_since, timestamp, NULL);
434 p->current->state_since = timestamp;
435 p->current->state = TYPE_WAITING;
436 }
437 }
438
sched_switch(struct timechart * tchart,int cpu,u64 timestamp,int prev_pid,int next_pid,u64 prev_state,const char * backtrace)439 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
440 int prev_pid, int next_pid, u64 prev_state,
441 const char *backtrace)
442 {
443 struct per_pid *p = NULL, *prev_p;
444
445 prev_p = find_create_pid(tchart, prev_pid);
446
447 p = find_create_pid(tchart, next_pid);
448
449 if (prev_p->current && prev_p->current->state != TYPE_NONE)
450 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
451 prev_p->current->state_since, timestamp,
452 backtrace);
453 if (p && p->current) {
454 if (p->current->state != TYPE_NONE)
455 pid_put_sample(tchart, next_pid, p->current->state, cpu,
456 p->current->state_since, timestamp,
457 backtrace);
458
459 p->current->state_since = timestamp;
460 p->current->state = TYPE_RUNNING;
461 }
462
463 if (prev_p->current) {
464 prev_p->current->state = TYPE_NONE;
465 prev_p->current->state_since = timestamp;
466 if (prev_state & 2)
467 prev_p->current->state = TYPE_BLOCKED;
468 if (prev_state == 0)
469 prev_p->current->state = TYPE_WAITING;
470 }
471 }
472
cat_backtrace(union perf_event * event,struct perf_sample * sample,struct machine * machine)473 static const char *cat_backtrace(union perf_event *event,
474 struct perf_sample *sample,
475 struct machine *machine)
476 {
477 struct addr_location al;
478 unsigned int i;
479 char *p = NULL;
480 size_t p_len;
481 u8 cpumode = PERF_RECORD_MISC_USER;
482 struct addr_location tal;
483 struct ip_callchain *chain = sample->callchain;
484 FILE *f = open_memstream(&p, &p_len);
485
486 if (!f) {
487 perror("open_memstream error");
488 return NULL;
489 }
490
491 if (!chain)
492 goto exit;
493
494 if (machine__resolve(machine, &al, sample) < 0) {
495 fprintf(stderr, "problem processing %d event, skipping it.\n",
496 event->header.type);
497 goto exit;
498 }
499
500 for (i = 0; i < chain->nr; i++) {
501 u64 ip;
502
503 if (callchain_param.order == ORDER_CALLEE)
504 ip = chain->ips[i];
505 else
506 ip = chain->ips[chain->nr - i - 1];
507
508 if (ip >= PERF_CONTEXT_MAX) {
509 switch (ip) {
510 case PERF_CONTEXT_HV:
511 cpumode = PERF_RECORD_MISC_HYPERVISOR;
512 break;
513 case PERF_CONTEXT_KERNEL:
514 cpumode = PERF_RECORD_MISC_KERNEL;
515 break;
516 case PERF_CONTEXT_USER:
517 cpumode = PERF_RECORD_MISC_USER;
518 break;
519 default:
520 pr_debug("invalid callchain context: "
521 "%"PRId64"\n", (s64) ip);
522
523 /*
524 * It seems the callchain is corrupted.
525 * Discard all.
526 */
527 zfree(&p);
528 goto exit_put;
529 }
530 continue;
531 }
532
533 tal.filtered = 0;
534 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
535 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
536 else
537 fprintf(f, "..... %016" PRIx64 "\n", ip);
538 }
539 exit_put:
540 addr_location__put(&al);
541 exit:
542 fclose(f);
543
544 return p;
545 }
546
547 typedef int (*tracepoint_handler)(struct timechart *tchart,
548 struct evsel *evsel,
549 struct perf_sample *sample,
550 const char *backtrace);
551
process_sample_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)552 static int process_sample_event(struct perf_tool *tool,
553 union perf_event *event,
554 struct perf_sample *sample,
555 struct evsel *evsel,
556 struct machine *machine)
557 {
558 struct timechart *tchart = container_of(tool, struct timechart, tool);
559
560 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
561 if (!tchart->first_time || tchart->first_time > sample->time)
562 tchart->first_time = sample->time;
563 if (tchart->last_time < sample->time)
564 tchart->last_time = sample->time;
565 }
566
567 if (evsel->handler != NULL) {
568 tracepoint_handler f = evsel->handler;
569 return f(tchart, evsel, sample,
570 cat_backtrace(event, sample, machine));
571 }
572
573 return 0;
574 }
575
576 static int
process_sample_cpu_idle(struct timechart * tchart __maybe_unused,struct evsel * evsel,struct perf_sample * sample,const char * backtrace __maybe_unused)577 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
578 struct evsel *evsel,
579 struct perf_sample *sample,
580 const char *backtrace __maybe_unused)
581 {
582 u32 state = evsel__intval(evsel, sample, "state");
583 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
584
585 if (state == (u32)PWR_EVENT_EXIT)
586 c_state_end(tchart, cpu_id, sample->time);
587 else
588 c_state_start(cpu_id, sample->time, state);
589 return 0;
590 }
591
592 static int
process_sample_cpu_frequency(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample,const char * backtrace __maybe_unused)593 process_sample_cpu_frequency(struct timechart *tchart,
594 struct evsel *evsel,
595 struct perf_sample *sample,
596 const char *backtrace __maybe_unused)
597 {
598 u32 state = evsel__intval(evsel, sample, "state");
599 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
600
601 p_state_change(tchart, cpu_id, sample->time, state);
602 return 0;
603 }
604
605 static int
process_sample_sched_wakeup(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample,const char * backtrace)606 process_sample_sched_wakeup(struct timechart *tchart,
607 struct evsel *evsel,
608 struct perf_sample *sample,
609 const char *backtrace)
610 {
611 u8 flags = evsel__intval(evsel, sample, "common_flags");
612 int waker = evsel__intval(evsel, sample, "common_pid");
613 int wakee = evsel__intval(evsel, sample, "pid");
614
615 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
616 return 0;
617 }
618
619 static int
process_sample_sched_switch(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample,const char * backtrace)620 process_sample_sched_switch(struct timechart *tchart,
621 struct evsel *evsel,
622 struct perf_sample *sample,
623 const char *backtrace)
624 {
625 int prev_pid = evsel__intval(evsel, sample, "prev_pid");
626 int next_pid = evsel__intval(evsel, sample, "next_pid");
627 u64 prev_state = evsel__intval(evsel, sample, "prev_state");
628
629 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
630 prev_state, backtrace);
631 return 0;
632 }
633
634 #ifdef SUPPORT_OLD_POWER_EVENTS
635 static int
process_sample_power_start(struct timechart * tchart __maybe_unused,struct evsel * evsel,struct perf_sample * sample,const char * backtrace __maybe_unused)636 process_sample_power_start(struct timechart *tchart __maybe_unused,
637 struct evsel *evsel,
638 struct perf_sample *sample,
639 const char *backtrace __maybe_unused)
640 {
641 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
642 u64 value = evsel__intval(evsel, sample, "value");
643
644 c_state_start(cpu_id, sample->time, value);
645 return 0;
646 }
647
648 static int
process_sample_power_end(struct timechart * tchart,struct evsel * evsel __maybe_unused,struct perf_sample * sample,const char * backtrace __maybe_unused)649 process_sample_power_end(struct timechart *tchart,
650 struct evsel *evsel __maybe_unused,
651 struct perf_sample *sample,
652 const char *backtrace __maybe_unused)
653 {
654 c_state_end(tchart, sample->cpu, sample->time);
655 return 0;
656 }
657
658 static int
process_sample_power_frequency(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample,const char * backtrace __maybe_unused)659 process_sample_power_frequency(struct timechart *tchart,
660 struct evsel *evsel,
661 struct perf_sample *sample,
662 const char *backtrace __maybe_unused)
663 {
664 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
665 u64 value = evsel__intval(evsel, sample, "value");
666
667 p_state_change(tchart, cpu_id, sample->time, value);
668 return 0;
669 }
670 #endif /* SUPPORT_OLD_POWER_EVENTS */
671
672 /*
673 * After the last sample we need to wrap up the current C/P state
674 * and close out each CPU for these.
675 */
end_sample_processing(struct timechart * tchart)676 static void end_sample_processing(struct timechart *tchart)
677 {
678 u64 cpu;
679 struct power_event *pwr;
680
681 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
682 /* C state */
683 #if 0
684 pwr = zalloc(sizeof(*pwr));
685 if (!pwr)
686 return;
687
688 pwr->state = cpus_cstate_state[cpu];
689 pwr->start_time = cpus_cstate_start_times[cpu];
690 pwr->end_time = tchart->last_time;
691 pwr->cpu = cpu;
692 pwr->type = CSTATE;
693 pwr->next = tchart->power_events;
694
695 tchart->power_events = pwr;
696 #endif
697 /* P state */
698
699 pwr = zalloc(sizeof(*pwr));
700 if (!pwr)
701 return;
702
703 pwr->state = cpus_pstate_state[cpu];
704 pwr->start_time = cpus_pstate_start_times[cpu];
705 pwr->end_time = tchart->last_time;
706 pwr->cpu = cpu;
707 pwr->type = PSTATE;
708 pwr->next = tchart->power_events;
709
710 if (!pwr->start_time)
711 pwr->start_time = tchart->first_time;
712 if (!pwr->state)
713 pwr->state = tchart->min_freq;
714 tchart->power_events = pwr;
715 }
716 }
717
pid_begin_io_sample(struct timechart * tchart,int pid,int type,u64 start,int fd)718 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
719 u64 start, int fd)
720 {
721 struct per_pid *p = find_create_pid(tchart, pid);
722 struct per_pidcomm *c = p->current;
723 struct io_sample *sample;
724 struct io_sample *prev;
725
726 if (!c) {
727 c = zalloc(sizeof(*c));
728 if (!c)
729 return -ENOMEM;
730 p->current = c;
731 c->next = p->all;
732 p->all = c;
733 }
734
735 prev = c->io_samples;
736
737 if (prev && prev->start_time && !prev->end_time) {
738 pr_warning("Skip invalid start event: "
739 "previous event already started!\n");
740
741 /* remove previous event that has been started,
742 * we are not sure we will ever get an end for it */
743 c->io_samples = prev->next;
744 free(prev);
745 return 0;
746 }
747
748 sample = zalloc(sizeof(*sample));
749 if (!sample)
750 return -ENOMEM;
751 sample->start_time = start;
752 sample->type = type;
753 sample->fd = fd;
754 sample->next = c->io_samples;
755 c->io_samples = sample;
756
757 if (c->start_time == 0 || c->start_time > start)
758 c->start_time = start;
759
760 return 0;
761 }
762
pid_end_io_sample(struct timechart * tchart,int pid,int type,u64 end,long ret)763 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
764 u64 end, long ret)
765 {
766 struct per_pid *p = find_create_pid(tchart, pid);
767 struct per_pidcomm *c = p->current;
768 struct io_sample *sample, *prev;
769
770 if (!c) {
771 pr_warning("Invalid pidcomm!\n");
772 return -1;
773 }
774
775 sample = c->io_samples;
776
777 if (!sample) /* skip partially captured events */
778 return 0;
779
780 if (sample->end_time) {
781 pr_warning("Skip invalid end event: "
782 "previous event already ended!\n");
783 return 0;
784 }
785
786 if (sample->type != type) {
787 pr_warning("Skip invalid end event: invalid event type!\n");
788 return 0;
789 }
790
791 sample->end_time = end;
792 prev = sample->next;
793
794 /* we want to be able to see small and fast transfers, so make them
795 * at least min_time long, but don't overlap them */
796 if (sample->end_time - sample->start_time < tchart->min_time)
797 sample->end_time = sample->start_time + tchart->min_time;
798 if (prev && sample->start_time < prev->end_time) {
799 if (prev->err) /* try to make errors more visible */
800 sample->start_time = prev->end_time;
801 else
802 prev->end_time = sample->start_time;
803 }
804
805 if (ret < 0) {
806 sample->err = ret;
807 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
808 type == IOTYPE_TX || type == IOTYPE_RX) {
809
810 if ((u64)ret > c->max_bytes)
811 c->max_bytes = ret;
812
813 c->total_bytes += ret;
814 p->total_bytes += ret;
815 sample->bytes = ret;
816 }
817
818 /* merge two requests to make svg smaller and render-friendly */
819 if (prev &&
820 prev->type == sample->type &&
821 prev->err == sample->err &&
822 prev->fd == sample->fd &&
823 prev->end_time + tchart->merge_dist >= sample->start_time) {
824
825 sample->bytes += prev->bytes;
826 sample->merges += prev->merges + 1;
827
828 sample->start_time = prev->start_time;
829 sample->next = prev->next;
830 free(prev);
831
832 if (!sample->err && sample->bytes > c->max_bytes)
833 c->max_bytes = sample->bytes;
834 }
835
836 tchart->io_events++;
837
838 return 0;
839 }
840
841 static int
process_enter_read(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)842 process_enter_read(struct timechart *tchart,
843 struct evsel *evsel,
844 struct perf_sample *sample)
845 {
846 long fd = evsel__intval(evsel, sample, "fd");
847 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
848 sample->time, fd);
849 }
850
851 static int
process_exit_read(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)852 process_exit_read(struct timechart *tchart,
853 struct evsel *evsel,
854 struct perf_sample *sample)
855 {
856 long ret = evsel__intval(evsel, sample, "ret");
857 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
858 sample->time, ret);
859 }
860
861 static int
process_enter_write(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)862 process_enter_write(struct timechart *tchart,
863 struct evsel *evsel,
864 struct perf_sample *sample)
865 {
866 long fd = evsel__intval(evsel, sample, "fd");
867 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
868 sample->time, fd);
869 }
870
871 static int
process_exit_write(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)872 process_exit_write(struct timechart *tchart,
873 struct evsel *evsel,
874 struct perf_sample *sample)
875 {
876 long ret = evsel__intval(evsel, sample, "ret");
877 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
878 sample->time, ret);
879 }
880
881 static int
process_enter_sync(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)882 process_enter_sync(struct timechart *tchart,
883 struct evsel *evsel,
884 struct perf_sample *sample)
885 {
886 long fd = evsel__intval(evsel, sample, "fd");
887 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
888 sample->time, fd);
889 }
890
891 static int
process_exit_sync(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)892 process_exit_sync(struct timechart *tchart,
893 struct evsel *evsel,
894 struct perf_sample *sample)
895 {
896 long ret = evsel__intval(evsel, sample, "ret");
897 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
898 sample->time, ret);
899 }
900
901 static int
process_enter_tx(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)902 process_enter_tx(struct timechart *tchart,
903 struct evsel *evsel,
904 struct perf_sample *sample)
905 {
906 long fd = evsel__intval(evsel, sample, "fd");
907 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
908 sample->time, fd);
909 }
910
911 static int
process_exit_tx(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)912 process_exit_tx(struct timechart *tchart,
913 struct evsel *evsel,
914 struct perf_sample *sample)
915 {
916 long ret = evsel__intval(evsel, sample, "ret");
917 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
918 sample->time, ret);
919 }
920
921 static int
process_enter_rx(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)922 process_enter_rx(struct timechart *tchart,
923 struct evsel *evsel,
924 struct perf_sample *sample)
925 {
926 long fd = evsel__intval(evsel, sample, "fd");
927 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
928 sample->time, fd);
929 }
930
931 static int
process_exit_rx(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)932 process_exit_rx(struct timechart *tchart,
933 struct evsel *evsel,
934 struct perf_sample *sample)
935 {
936 long ret = evsel__intval(evsel, sample, "ret");
937 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
938 sample->time, ret);
939 }
940
941 static int
process_enter_poll(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)942 process_enter_poll(struct timechart *tchart,
943 struct evsel *evsel,
944 struct perf_sample *sample)
945 {
946 long fd = evsel__intval(evsel, sample, "fd");
947 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
948 sample->time, fd);
949 }
950
951 static int
process_exit_poll(struct timechart * tchart,struct evsel * evsel,struct perf_sample * sample)952 process_exit_poll(struct timechart *tchart,
953 struct evsel *evsel,
954 struct perf_sample *sample)
955 {
956 long ret = evsel__intval(evsel, sample, "ret");
957 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
958 sample->time, ret);
959 }
960
961 /*
962 * Sort the pid datastructure
963 */
sort_pids(struct timechart * tchart)964 static void sort_pids(struct timechart *tchart)
965 {
966 struct per_pid *new_list, *p, *cursor, *prev;
967 /* sort by ppid first, then by pid, lowest to highest */
968
969 new_list = NULL;
970
971 while (tchart->all_data) {
972 p = tchart->all_data;
973 tchart->all_data = p->next;
974 p->next = NULL;
975
976 if (new_list == NULL) {
977 new_list = p;
978 p->next = NULL;
979 continue;
980 }
981 prev = NULL;
982 cursor = new_list;
983 while (cursor) {
984 if (cursor->ppid > p->ppid ||
985 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
986 /* must insert before */
987 if (prev) {
988 p->next = prev->next;
989 prev->next = p;
990 cursor = NULL;
991 continue;
992 } else {
993 p->next = new_list;
994 new_list = p;
995 cursor = NULL;
996 continue;
997 }
998 }
999
1000 prev = cursor;
1001 cursor = cursor->next;
1002 if (!cursor)
1003 prev->next = p;
1004 }
1005 }
1006 tchart->all_data = new_list;
1007 }
1008
1009
draw_c_p_states(struct timechart * tchart)1010 static void draw_c_p_states(struct timechart *tchart)
1011 {
1012 struct power_event *pwr;
1013 pwr = tchart->power_events;
1014
1015 /*
1016 * two pass drawing so that the P state bars are on top of the C state blocks
1017 */
1018 while (pwr) {
1019 if (pwr->type == CSTATE)
1020 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1021 pwr = pwr->next;
1022 }
1023
1024 pwr = tchart->power_events;
1025 while (pwr) {
1026 if (pwr->type == PSTATE) {
1027 if (!pwr->state)
1028 pwr->state = tchart->min_freq;
1029 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030 }
1031 pwr = pwr->next;
1032 }
1033 }
1034
draw_wakeups(struct timechart * tchart)1035 static void draw_wakeups(struct timechart *tchart)
1036 {
1037 struct wake_event *we;
1038 struct per_pid *p;
1039 struct per_pidcomm *c;
1040
1041 we = tchart->wake_events;
1042 while (we) {
1043 int from = 0, to = 0;
1044 char *task_from = NULL, *task_to = NULL;
1045
1046 /* locate the column of the waker and wakee */
1047 p = tchart->all_data;
1048 while (p) {
1049 if (p->pid == we->waker || p->pid == we->wakee) {
1050 c = p->all;
1051 while (c) {
1052 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1053 if (p->pid == we->waker && !from) {
1054 from = c->Y;
1055 task_from = strdup(c->comm);
1056 }
1057 if (p->pid == we->wakee && !to) {
1058 to = c->Y;
1059 task_to = strdup(c->comm);
1060 }
1061 }
1062 c = c->next;
1063 }
1064 c = p->all;
1065 while (c) {
1066 if (p->pid == we->waker && !from) {
1067 from = c->Y;
1068 task_from = strdup(c->comm);
1069 }
1070 if (p->pid == we->wakee && !to) {
1071 to = c->Y;
1072 task_to = strdup(c->comm);
1073 }
1074 c = c->next;
1075 }
1076 }
1077 p = p->next;
1078 }
1079
1080 if (!task_from) {
1081 task_from = malloc(40);
1082 sprintf(task_from, "[%i]", we->waker);
1083 }
1084 if (!task_to) {
1085 task_to = malloc(40);
1086 sprintf(task_to, "[%i]", we->wakee);
1087 }
1088
1089 if (we->waker == -1)
1090 svg_interrupt(we->time, to, we->backtrace);
1091 else if (from && to && abs(from - to) == 1)
1092 svg_wakeline(we->time, from, to, we->backtrace);
1093 else
1094 svg_partial_wakeline(we->time, from, task_from, to,
1095 task_to, we->backtrace);
1096 we = we->next;
1097
1098 free(task_from);
1099 free(task_to);
1100 }
1101 }
1102
draw_cpu_usage(struct timechart * tchart)1103 static void draw_cpu_usage(struct timechart *tchart)
1104 {
1105 struct per_pid *p;
1106 struct per_pidcomm *c;
1107 struct cpu_sample *sample;
1108 p = tchart->all_data;
1109 while (p) {
1110 c = p->all;
1111 while (c) {
1112 sample = c->samples;
1113 while (sample) {
1114 if (sample->type == TYPE_RUNNING) {
1115 svg_process(sample->cpu,
1116 sample->start_time,
1117 sample->end_time,
1118 p->pid,
1119 c->comm,
1120 sample->backtrace);
1121 }
1122
1123 sample = sample->next;
1124 }
1125 c = c->next;
1126 }
1127 p = p->next;
1128 }
1129 }
1130
draw_io_bars(struct timechart * tchart)1131 static void draw_io_bars(struct timechart *tchart)
1132 {
1133 const char *suf;
1134 double bytes;
1135 char comm[256];
1136 struct per_pid *p;
1137 struct per_pidcomm *c;
1138 struct io_sample *sample;
1139 int Y = 1;
1140
1141 p = tchart->all_data;
1142 while (p) {
1143 c = p->all;
1144 while (c) {
1145 if (!c->display) {
1146 c->Y = 0;
1147 c = c->next;
1148 continue;
1149 }
1150
1151 svg_box(Y, c->start_time, c->end_time, "process3");
1152 sample = c->io_samples;
1153 for (sample = c->io_samples; sample; sample = sample->next) {
1154 double h = (double)sample->bytes / c->max_bytes;
1155
1156 if (tchart->skip_eagain &&
1157 sample->err == -EAGAIN)
1158 continue;
1159
1160 if (sample->err)
1161 h = 1;
1162
1163 if (sample->type == IOTYPE_SYNC)
1164 svg_fbox(Y,
1165 sample->start_time,
1166 sample->end_time,
1167 1,
1168 sample->err ? "error" : "sync",
1169 sample->fd,
1170 sample->err,
1171 sample->merges);
1172 else if (sample->type == IOTYPE_POLL)
1173 svg_fbox(Y,
1174 sample->start_time,
1175 sample->end_time,
1176 1,
1177 sample->err ? "error" : "poll",
1178 sample->fd,
1179 sample->err,
1180 sample->merges);
1181 else if (sample->type == IOTYPE_READ)
1182 svg_ubox(Y,
1183 sample->start_time,
1184 sample->end_time,
1185 h,
1186 sample->err ? "error" : "disk",
1187 sample->fd,
1188 sample->err,
1189 sample->merges);
1190 else if (sample->type == IOTYPE_WRITE)
1191 svg_lbox(Y,
1192 sample->start_time,
1193 sample->end_time,
1194 h,
1195 sample->err ? "error" : "disk",
1196 sample->fd,
1197 sample->err,
1198 sample->merges);
1199 else if (sample->type == IOTYPE_RX)
1200 svg_ubox(Y,
1201 sample->start_time,
1202 sample->end_time,
1203 h,
1204 sample->err ? "error" : "net",
1205 sample->fd,
1206 sample->err,
1207 sample->merges);
1208 else if (sample->type == IOTYPE_TX)
1209 svg_lbox(Y,
1210 sample->start_time,
1211 sample->end_time,
1212 h,
1213 sample->err ? "error" : "net",
1214 sample->fd,
1215 sample->err,
1216 sample->merges);
1217 }
1218
1219 suf = "";
1220 bytes = c->total_bytes;
1221 if (bytes > 1024) {
1222 bytes = bytes / 1024;
1223 suf = "K";
1224 }
1225 if (bytes > 1024) {
1226 bytes = bytes / 1024;
1227 suf = "M";
1228 }
1229 if (bytes > 1024) {
1230 bytes = bytes / 1024;
1231 suf = "G";
1232 }
1233
1234
1235 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1236 svg_text(Y, c->start_time, comm);
1237
1238 c->Y = Y;
1239 Y++;
1240 c = c->next;
1241 }
1242 p = p->next;
1243 }
1244 }
1245
draw_process_bars(struct timechart * tchart)1246 static void draw_process_bars(struct timechart *tchart)
1247 {
1248 struct per_pid *p;
1249 struct per_pidcomm *c;
1250 struct cpu_sample *sample;
1251 int Y = 0;
1252
1253 Y = 2 * tchart->numcpus + 2;
1254
1255 p = tchart->all_data;
1256 while (p) {
1257 c = p->all;
1258 while (c) {
1259 if (!c->display) {
1260 c->Y = 0;
1261 c = c->next;
1262 continue;
1263 }
1264
1265 svg_box(Y, c->start_time, c->end_time, "process");
1266 sample = c->samples;
1267 while (sample) {
1268 if (sample->type == TYPE_RUNNING)
1269 svg_running(Y, sample->cpu,
1270 sample->start_time,
1271 sample->end_time,
1272 sample->backtrace);
1273 if (sample->type == TYPE_BLOCKED)
1274 svg_blocked(Y, sample->cpu,
1275 sample->start_time,
1276 sample->end_time,
1277 sample->backtrace);
1278 if (sample->type == TYPE_WAITING)
1279 svg_waiting(Y, sample->cpu,
1280 sample->start_time,
1281 sample->end_time,
1282 sample->backtrace);
1283 sample = sample->next;
1284 }
1285
1286 if (c->comm) {
1287 char comm[256];
1288 if (c->total_time > 5000000000) /* 5 seconds */
1289 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1290 else
1291 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1292
1293 svg_text(Y, c->start_time, comm);
1294 }
1295 c->Y = Y;
1296 Y++;
1297 c = c->next;
1298 }
1299 p = p->next;
1300 }
1301 }
1302
add_process_filter(const char * string)1303 static void add_process_filter(const char *string)
1304 {
1305 int pid = strtoull(string, NULL, 10);
1306 struct process_filter *filt = malloc(sizeof(*filt));
1307
1308 if (!filt)
1309 return;
1310
1311 filt->name = strdup(string);
1312 filt->pid = pid;
1313 filt->next = process_filter;
1314
1315 process_filter = filt;
1316 }
1317
passes_filter(struct per_pid * p,struct per_pidcomm * c)1318 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1319 {
1320 struct process_filter *filt;
1321 if (!process_filter)
1322 return 1;
1323
1324 filt = process_filter;
1325 while (filt) {
1326 if (filt->pid && p->pid == filt->pid)
1327 return 1;
1328 if (strcmp(filt->name, c->comm) == 0)
1329 return 1;
1330 filt = filt->next;
1331 }
1332 return 0;
1333 }
1334
determine_display_tasks_filtered(struct timechart * tchart)1335 static int determine_display_tasks_filtered(struct timechart *tchart)
1336 {
1337 struct per_pid *p;
1338 struct per_pidcomm *c;
1339 int count = 0;
1340
1341 p = tchart->all_data;
1342 while (p) {
1343 p->display = 0;
1344 if (p->start_time == 1)
1345 p->start_time = tchart->first_time;
1346
1347 /* no exit marker, task kept running to the end */
1348 if (p->end_time == 0)
1349 p->end_time = tchart->last_time;
1350
1351 c = p->all;
1352
1353 while (c) {
1354 c->display = 0;
1355
1356 if (c->start_time == 1)
1357 c->start_time = tchart->first_time;
1358
1359 if (passes_filter(p, c)) {
1360 c->display = 1;
1361 p->display = 1;
1362 count++;
1363 }
1364
1365 if (c->end_time == 0)
1366 c->end_time = tchart->last_time;
1367
1368 c = c->next;
1369 }
1370 p = p->next;
1371 }
1372 return count;
1373 }
1374
determine_display_tasks(struct timechart * tchart,u64 threshold)1375 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1376 {
1377 struct per_pid *p;
1378 struct per_pidcomm *c;
1379 int count = 0;
1380
1381 p = tchart->all_data;
1382 while (p) {
1383 p->display = 0;
1384 if (p->start_time == 1)
1385 p->start_time = tchart->first_time;
1386
1387 /* no exit marker, task kept running to the end */
1388 if (p->end_time == 0)
1389 p->end_time = tchart->last_time;
1390 if (p->total_time >= threshold)
1391 p->display = 1;
1392
1393 c = p->all;
1394
1395 while (c) {
1396 c->display = 0;
1397
1398 if (c->start_time == 1)
1399 c->start_time = tchart->first_time;
1400
1401 if (c->total_time >= threshold) {
1402 c->display = 1;
1403 count++;
1404 }
1405
1406 if (c->end_time == 0)
1407 c->end_time = tchart->last_time;
1408
1409 c = c->next;
1410 }
1411 p = p->next;
1412 }
1413 return count;
1414 }
1415
determine_display_io_tasks(struct timechart * timechart,u64 threshold)1416 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1417 {
1418 struct per_pid *p;
1419 struct per_pidcomm *c;
1420 int count = 0;
1421
1422 p = timechart->all_data;
1423 while (p) {
1424 /* no exit marker, task kept running to the end */
1425 if (p->end_time == 0)
1426 p->end_time = timechart->last_time;
1427
1428 c = p->all;
1429
1430 while (c) {
1431 c->display = 0;
1432
1433 if (c->total_bytes >= threshold) {
1434 c->display = 1;
1435 count++;
1436 }
1437
1438 if (c->end_time == 0)
1439 c->end_time = timechart->last_time;
1440
1441 c = c->next;
1442 }
1443 p = p->next;
1444 }
1445 return count;
1446 }
1447
1448 #define BYTES_THRESH (1 * 1024 * 1024)
1449 #define TIME_THRESH 10000000
1450
write_svg_file(struct timechart * tchart,const char * filename)1451 static void write_svg_file(struct timechart *tchart, const char *filename)
1452 {
1453 u64 i;
1454 int count;
1455 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1456
1457 if (tchart->power_only)
1458 tchart->proc_num = 0;
1459
1460 /* We'd like to show at least proc_num tasks;
1461 * be less picky if we have fewer */
1462 do {
1463 if (process_filter)
1464 count = determine_display_tasks_filtered(tchart);
1465 else if (tchart->io_events)
1466 count = determine_display_io_tasks(tchart, thresh);
1467 else
1468 count = determine_display_tasks(tchart, thresh);
1469 thresh /= 10;
1470 } while (!process_filter && thresh && count < tchart->proc_num);
1471
1472 if (!tchart->proc_num)
1473 count = 0;
1474
1475 if (tchart->io_events) {
1476 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1477
1478 svg_time_grid(0.5);
1479 svg_io_legenda();
1480
1481 draw_io_bars(tchart);
1482 } else {
1483 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1484
1485 svg_time_grid(0);
1486
1487 svg_legenda();
1488
1489 for (i = 0; i < tchart->numcpus; i++)
1490 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1491
1492 draw_cpu_usage(tchart);
1493 if (tchart->proc_num)
1494 draw_process_bars(tchart);
1495 if (!tchart->tasks_only)
1496 draw_c_p_states(tchart);
1497 if (tchart->proc_num)
1498 draw_wakeups(tchart);
1499 }
1500
1501 svg_close();
1502 }
1503
process_header(struct perf_file_section * section __maybe_unused,struct perf_header * ph,int feat,int fd __maybe_unused,void * data)1504 static int process_header(struct perf_file_section *section __maybe_unused,
1505 struct perf_header *ph,
1506 int feat,
1507 int fd __maybe_unused,
1508 void *data)
1509 {
1510 struct timechart *tchart = data;
1511
1512 switch (feat) {
1513 case HEADER_NRCPUS:
1514 tchart->numcpus = ph->env.nr_cpus_avail;
1515 break;
1516
1517 case HEADER_CPU_TOPOLOGY:
1518 if (!tchart->topology)
1519 break;
1520
1521 if (svg_build_topology_map(&ph->env))
1522 fprintf(stderr, "problem building topology\n");
1523 break;
1524
1525 default:
1526 break;
1527 }
1528
1529 return 0;
1530 }
1531
__cmd_timechart(struct timechart * tchart,const char * output_name)1532 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1533 {
1534 const struct evsel_str_handler power_tracepoints[] = {
1535 { "power:cpu_idle", process_sample_cpu_idle },
1536 { "power:cpu_frequency", process_sample_cpu_frequency },
1537 { "sched:sched_wakeup", process_sample_sched_wakeup },
1538 { "sched:sched_switch", process_sample_sched_switch },
1539 #ifdef SUPPORT_OLD_POWER_EVENTS
1540 { "power:power_start", process_sample_power_start },
1541 { "power:power_end", process_sample_power_end },
1542 { "power:power_frequency", process_sample_power_frequency },
1543 #endif
1544
1545 { "syscalls:sys_enter_read", process_enter_read },
1546 { "syscalls:sys_enter_pread64", process_enter_read },
1547 { "syscalls:sys_enter_readv", process_enter_read },
1548 { "syscalls:sys_enter_preadv", process_enter_read },
1549 { "syscalls:sys_enter_write", process_enter_write },
1550 { "syscalls:sys_enter_pwrite64", process_enter_write },
1551 { "syscalls:sys_enter_writev", process_enter_write },
1552 { "syscalls:sys_enter_pwritev", process_enter_write },
1553 { "syscalls:sys_enter_sync", process_enter_sync },
1554 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1555 { "syscalls:sys_enter_fsync", process_enter_sync },
1556 { "syscalls:sys_enter_msync", process_enter_sync },
1557 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1558 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1559 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1560 { "syscalls:sys_enter_sendto", process_enter_tx },
1561 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1562 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1563 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1564 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1565 { "syscalls:sys_enter_poll", process_enter_poll },
1566 { "syscalls:sys_enter_ppoll", process_enter_poll },
1567 { "syscalls:sys_enter_pselect6", process_enter_poll },
1568 { "syscalls:sys_enter_select", process_enter_poll },
1569
1570 { "syscalls:sys_exit_read", process_exit_read },
1571 { "syscalls:sys_exit_pread64", process_exit_read },
1572 { "syscalls:sys_exit_readv", process_exit_read },
1573 { "syscalls:sys_exit_preadv", process_exit_read },
1574 { "syscalls:sys_exit_write", process_exit_write },
1575 { "syscalls:sys_exit_pwrite64", process_exit_write },
1576 { "syscalls:sys_exit_writev", process_exit_write },
1577 { "syscalls:sys_exit_pwritev", process_exit_write },
1578 { "syscalls:sys_exit_sync", process_exit_sync },
1579 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1580 { "syscalls:sys_exit_fsync", process_exit_sync },
1581 { "syscalls:sys_exit_msync", process_exit_sync },
1582 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1583 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1584 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1585 { "syscalls:sys_exit_sendto", process_exit_tx },
1586 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1587 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1588 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1589 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1590 { "syscalls:sys_exit_poll", process_exit_poll },
1591 { "syscalls:sys_exit_ppoll", process_exit_poll },
1592 { "syscalls:sys_exit_pselect6", process_exit_poll },
1593 { "syscalls:sys_exit_select", process_exit_poll },
1594 };
1595 struct perf_data data = {
1596 .path = input_name,
1597 .mode = PERF_DATA_MODE_READ,
1598 .force = tchart->force,
1599 };
1600
1601 struct perf_session *session = perf_session__new(&data, &tchart->tool);
1602 int ret = -EINVAL;
1603
1604 if (IS_ERR(session))
1605 return PTR_ERR(session);
1606
1607 symbol__init(&session->header.env);
1608
1609 (void)perf_header__process_sections(&session->header,
1610 perf_data__fd(session->data),
1611 tchart,
1612 process_header);
1613
1614 if (!perf_session__has_traces(session, "timechart record"))
1615 goto out_delete;
1616
1617 if (perf_session__set_tracepoints_handlers(session,
1618 power_tracepoints)) {
1619 pr_err("Initializing session tracepoint handlers failed\n");
1620 goto out_delete;
1621 }
1622
1623 ret = perf_session__process_events(session);
1624 if (ret)
1625 goto out_delete;
1626
1627 end_sample_processing(tchart);
1628
1629 sort_pids(tchart);
1630
1631 write_svg_file(tchart, output_name);
1632
1633 pr_info("Written %2.1f seconds of trace to %s.\n",
1634 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1635 out_delete:
1636 perf_session__delete(session);
1637 return ret;
1638 }
1639
timechart__io_record(int argc,const char ** argv)1640 static int timechart__io_record(int argc, const char **argv)
1641 {
1642 unsigned int rec_argc, i;
1643 const char **rec_argv;
1644 const char **p;
1645 char *filter = NULL;
1646
1647 const char * const common_args[] = {
1648 "record", "-a", "-R", "-c", "1",
1649 };
1650 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1651
1652 const char * const disk_events[] = {
1653 "syscalls:sys_enter_read",
1654 "syscalls:sys_enter_pread64",
1655 "syscalls:sys_enter_readv",
1656 "syscalls:sys_enter_preadv",
1657 "syscalls:sys_enter_write",
1658 "syscalls:sys_enter_pwrite64",
1659 "syscalls:sys_enter_writev",
1660 "syscalls:sys_enter_pwritev",
1661 "syscalls:sys_enter_sync",
1662 "syscalls:sys_enter_sync_file_range",
1663 "syscalls:sys_enter_fsync",
1664 "syscalls:sys_enter_msync",
1665
1666 "syscalls:sys_exit_read",
1667 "syscalls:sys_exit_pread64",
1668 "syscalls:sys_exit_readv",
1669 "syscalls:sys_exit_preadv",
1670 "syscalls:sys_exit_write",
1671 "syscalls:sys_exit_pwrite64",
1672 "syscalls:sys_exit_writev",
1673 "syscalls:sys_exit_pwritev",
1674 "syscalls:sys_exit_sync",
1675 "syscalls:sys_exit_sync_file_range",
1676 "syscalls:sys_exit_fsync",
1677 "syscalls:sys_exit_msync",
1678 };
1679 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1680
1681 const char * const net_events[] = {
1682 "syscalls:sys_enter_recvfrom",
1683 "syscalls:sys_enter_recvmmsg",
1684 "syscalls:sys_enter_recvmsg",
1685 "syscalls:sys_enter_sendto",
1686 "syscalls:sys_enter_sendmsg",
1687 "syscalls:sys_enter_sendmmsg",
1688
1689 "syscalls:sys_exit_recvfrom",
1690 "syscalls:sys_exit_recvmmsg",
1691 "syscalls:sys_exit_recvmsg",
1692 "syscalls:sys_exit_sendto",
1693 "syscalls:sys_exit_sendmsg",
1694 "syscalls:sys_exit_sendmmsg",
1695 };
1696 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1697
1698 const char * const poll_events[] = {
1699 "syscalls:sys_enter_epoll_pwait",
1700 "syscalls:sys_enter_epoll_wait",
1701 "syscalls:sys_enter_poll",
1702 "syscalls:sys_enter_ppoll",
1703 "syscalls:sys_enter_pselect6",
1704 "syscalls:sys_enter_select",
1705
1706 "syscalls:sys_exit_epoll_pwait",
1707 "syscalls:sys_exit_epoll_wait",
1708 "syscalls:sys_exit_poll",
1709 "syscalls:sys_exit_ppoll",
1710 "syscalls:sys_exit_pselect6",
1711 "syscalls:sys_exit_select",
1712 };
1713 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1714
1715 rec_argc = common_args_nr +
1716 disk_events_nr * 4 +
1717 net_events_nr * 4 +
1718 poll_events_nr * 4 +
1719 argc;
1720 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1721
1722 if (rec_argv == NULL)
1723 return -ENOMEM;
1724
1725 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1726 free(rec_argv);
1727 return -ENOMEM;
1728 }
1729
1730 p = rec_argv;
1731 for (i = 0; i < common_args_nr; i++)
1732 *p++ = strdup(common_args[i]);
1733
1734 for (i = 0; i < disk_events_nr; i++) {
1735 if (!is_valid_tracepoint(disk_events[i])) {
1736 rec_argc -= 4;
1737 continue;
1738 }
1739
1740 *p++ = "-e";
1741 *p++ = strdup(disk_events[i]);
1742 *p++ = "--filter";
1743 *p++ = filter;
1744 }
1745 for (i = 0; i < net_events_nr; i++) {
1746 if (!is_valid_tracepoint(net_events[i])) {
1747 rec_argc -= 4;
1748 continue;
1749 }
1750
1751 *p++ = "-e";
1752 *p++ = strdup(net_events[i]);
1753 *p++ = "--filter";
1754 *p++ = filter;
1755 }
1756 for (i = 0; i < poll_events_nr; i++) {
1757 if (!is_valid_tracepoint(poll_events[i])) {
1758 rec_argc -= 4;
1759 continue;
1760 }
1761
1762 *p++ = "-e";
1763 *p++ = strdup(poll_events[i]);
1764 *p++ = "--filter";
1765 *p++ = filter;
1766 }
1767
1768 for (i = 0; i < (unsigned int)argc; i++)
1769 *p++ = argv[i];
1770
1771 return cmd_record(rec_argc, rec_argv);
1772 }
1773
1774
timechart__record(struct timechart * tchart,int argc,const char ** argv)1775 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1776 {
1777 unsigned int rec_argc, i, j;
1778 const char **rec_argv;
1779 const char **p;
1780 unsigned int record_elems;
1781
1782 const char * const common_args[] = {
1783 "record", "-a", "-R", "-c", "1",
1784 };
1785 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1786
1787 const char * const backtrace_args[] = {
1788 "-g",
1789 };
1790 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1791
1792 const char * const power_args[] = {
1793 "-e", "power:cpu_frequency",
1794 "-e", "power:cpu_idle",
1795 };
1796 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1797
1798 const char * const old_power_args[] = {
1799 #ifdef SUPPORT_OLD_POWER_EVENTS
1800 "-e", "power:power_start",
1801 "-e", "power:power_end",
1802 "-e", "power:power_frequency",
1803 #endif
1804 };
1805 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1806
1807 const char * const tasks_args[] = {
1808 "-e", "sched:sched_wakeup",
1809 "-e", "sched:sched_switch",
1810 };
1811 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1812
1813 #ifdef SUPPORT_OLD_POWER_EVENTS
1814 if (!is_valid_tracepoint("power:cpu_idle") &&
1815 is_valid_tracepoint("power:power_start")) {
1816 use_old_power_events = 1;
1817 power_args_nr = 0;
1818 } else {
1819 old_power_args_nr = 0;
1820 }
1821 #endif
1822
1823 if (tchart->power_only)
1824 tasks_args_nr = 0;
1825
1826 if (tchart->tasks_only) {
1827 power_args_nr = 0;
1828 old_power_args_nr = 0;
1829 }
1830
1831 if (!tchart->with_backtrace)
1832 backtrace_args_no = 0;
1833
1834 record_elems = common_args_nr + tasks_args_nr +
1835 power_args_nr + old_power_args_nr + backtrace_args_no;
1836
1837 rec_argc = record_elems + argc;
1838 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1839
1840 if (rec_argv == NULL)
1841 return -ENOMEM;
1842
1843 p = rec_argv;
1844 for (i = 0; i < common_args_nr; i++)
1845 *p++ = strdup(common_args[i]);
1846
1847 for (i = 0; i < backtrace_args_no; i++)
1848 *p++ = strdup(backtrace_args[i]);
1849
1850 for (i = 0; i < tasks_args_nr; i++)
1851 *p++ = strdup(tasks_args[i]);
1852
1853 for (i = 0; i < power_args_nr; i++)
1854 *p++ = strdup(power_args[i]);
1855
1856 for (i = 0; i < old_power_args_nr; i++)
1857 *p++ = strdup(old_power_args[i]);
1858
1859 for (j = 0; j < (unsigned int)argc; j++)
1860 *p++ = argv[j];
1861
1862 return cmd_record(rec_argc, rec_argv);
1863 }
1864
1865 static int
parse_process(const struct option * opt __maybe_unused,const char * arg,int __maybe_unused unset)1866 parse_process(const struct option *opt __maybe_unused, const char *arg,
1867 int __maybe_unused unset)
1868 {
1869 if (arg)
1870 add_process_filter(arg);
1871 return 0;
1872 }
1873
1874 static int
parse_highlight(const struct option * opt __maybe_unused,const char * arg,int __maybe_unused unset)1875 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1876 int __maybe_unused unset)
1877 {
1878 unsigned long duration = strtoul(arg, NULL, 0);
1879
1880 if (svg_highlight || svg_highlight_name)
1881 return -1;
1882
1883 if (duration)
1884 svg_highlight = duration;
1885 else
1886 svg_highlight_name = strdup(arg);
1887
1888 return 0;
1889 }
1890
1891 static int
parse_time(const struct option * opt,const char * arg,int __maybe_unused unset)1892 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1893 {
1894 char unit = 'n';
1895 u64 *value = opt->value;
1896
1897 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1898 switch (unit) {
1899 case 'm':
1900 *value *= NSEC_PER_MSEC;
1901 break;
1902 case 'u':
1903 *value *= NSEC_PER_USEC;
1904 break;
1905 case 'n':
1906 break;
1907 default:
1908 return -1;
1909 }
1910 }
1911
1912 return 0;
1913 }
1914
cmd_timechart(int argc,const char ** argv)1915 int cmd_timechart(int argc, const char **argv)
1916 {
1917 struct timechart tchart = {
1918 .tool = {
1919 .comm = process_comm_event,
1920 .fork = process_fork_event,
1921 .exit = process_exit_event,
1922 .sample = process_sample_event,
1923 .ordered_events = true,
1924 },
1925 .proc_num = 15,
1926 .min_time = NSEC_PER_MSEC,
1927 .merge_dist = 1000,
1928 };
1929 const char *output_name = "output.svg";
1930 const struct option timechart_common_options[] = {
1931 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1932 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1933 OPT_END()
1934 };
1935 const struct option timechart_options[] = {
1936 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1937 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1938 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1939 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1940 "highlight tasks. Pass duration in ns or process name.",
1941 parse_highlight),
1942 OPT_CALLBACK('p', "process", NULL, "process",
1943 "process selector. Pass a pid or process name.",
1944 parse_process),
1945 OPT_CALLBACK(0, "symfs", NULL, "directory",
1946 "Look for files with symbols relative to this directory",
1947 symbol__config_symfs),
1948 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1949 "min. number of tasks to print"),
1950 OPT_BOOLEAN('t', "topology", &tchart.topology,
1951 "sort CPUs according to topology"),
1952 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1953 "skip EAGAIN errors"),
1954 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1955 "all IO faster than min-time will visually appear longer",
1956 parse_time),
1957 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1958 "merge events that are merge-dist us apart",
1959 parse_time),
1960 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1961 OPT_PARENT(timechart_common_options),
1962 };
1963 const char * const timechart_subcommands[] = { "record", NULL };
1964 const char *timechart_usage[] = {
1965 "perf timechart [<options>] {record}",
1966 NULL
1967 };
1968 const struct option timechart_record_options[] = {
1969 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1970 "record only IO data"),
1971 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1972 OPT_PARENT(timechart_common_options),
1973 };
1974 const char * const timechart_record_usage[] = {
1975 "perf timechart record [<options>]",
1976 NULL
1977 };
1978 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1979 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1980
1981 if (tchart.power_only && tchart.tasks_only) {
1982 pr_err("-P and -T options cannot be used at the same time.\n");
1983 return -1;
1984 }
1985
1986 if (argc && !strncmp(argv[0], "rec", 3)) {
1987 argc = parse_options(argc, argv, timechart_record_options,
1988 timechart_record_usage,
1989 PARSE_OPT_STOP_AT_NON_OPTION);
1990
1991 if (tchart.power_only && tchart.tasks_only) {
1992 pr_err("-P and -T options cannot be used at the same time.\n");
1993 return -1;
1994 }
1995
1996 if (tchart.io_only)
1997 return timechart__io_record(argc, argv);
1998 else
1999 return timechart__record(&tchart, argc, argv);
2000 } else if (argc)
2001 usage_with_options(timechart_usage, timechart_options);
2002
2003 setup_pager();
2004
2005 return __cmd_timechart(&tchart, output_name);
2006 }
2007