1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 /*
79  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
80  * not change behaviour from the previous unplug mechanism, experimentation
81  * may prove this needs changing.
82  */
83 #define SCSI_QUEUE_DELAY	3
84 
85 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)86 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
87 {
88 	struct Scsi_Host *host = cmd->device->host;
89 	struct scsi_device *device = cmd->device;
90 	struct scsi_target *starget = scsi_target(device);
91 
92 	/*
93 	 * Set the appropriate busy bit for the device/host.
94 	 *
95 	 * If the host/device isn't busy, assume that something actually
96 	 * completed, and that we should be able to queue a command now.
97 	 *
98 	 * Note that the prior mid-layer assumption that any host could
99 	 * always queue at least one command is now broken.  The mid-layer
100 	 * will implement a user specifiable stall (see
101 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
102 	 * if a command is requeued with no other commands outstanding
103 	 * either for the device or for the host.
104 	 */
105 	switch (reason) {
106 	case SCSI_MLQUEUE_HOST_BUSY:
107 		atomic_set(&host->host_blocked, host->max_host_blocked);
108 		break;
109 	case SCSI_MLQUEUE_DEVICE_BUSY:
110 	case SCSI_MLQUEUE_EH_RETRY:
111 		atomic_set(&device->device_blocked,
112 			   device->max_device_blocked);
113 		break;
114 	case SCSI_MLQUEUE_TARGET_BUSY:
115 		atomic_set(&starget->target_blocked,
116 			   starget->max_target_blocked);
117 		break;
118 	}
119 }
120 
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)121 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
122 {
123 	struct request *rq = scsi_cmd_to_rq(cmd);
124 
125 	if (rq->rq_flags & RQF_DONTPREP) {
126 		rq->rq_flags &= ~RQF_DONTPREP;
127 		scsi_mq_uninit_cmd(cmd);
128 	} else {
129 		WARN_ON_ONCE(true);
130 	}
131 	blk_mq_requeue_request(rq, true);
132 }
133 
134 /**
135  * __scsi_queue_insert - private queue insertion
136  * @cmd: The SCSI command being requeued
137  * @reason:  The reason for the requeue
138  * @unbusy: Whether the queue should be unbusied
139  *
140  * This is a private queue insertion.  The public interface
141  * scsi_queue_insert() always assumes the queue should be unbusied
142  * because it's always called before the completion.  This function is
143  * for a requeue after completion, which should only occur in this
144  * file.
145  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)146 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
147 {
148 	struct scsi_device *device = cmd->device;
149 
150 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
151 		"Inserting command %p into mlqueue\n", cmd));
152 
153 	scsi_set_blocked(cmd, reason);
154 
155 	/*
156 	 * Decrement the counters, since these commands are no longer
157 	 * active on the host/device.
158 	 */
159 	if (unbusy)
160 		scsi_device_unbusy(device, cmd);
161 
162 	/*
163 	 * Requeue this command.  It will go before all other commands
164 	 * that are already in the queue. Schedule requeue work under
165 	 * lock such that the kblockd_schedule_work() call happens
166 	 * before blk_cleanup_queue() finishes.
167 	 */
168 	cmd->result = 0;
169 
170 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
171 }
172 
173 /**
174  * scsi_queue_insert - Reinsert a command in the queue.
175  * @cmd:    command that we are adding to queue.
176  * @reason: why we are inserting command to queue.
177  *
178  * We do this for one of two cases. Either the host is busy and it cannot accept
179  * any more commands for the time being, or the device returned QUEUE_FULL and
180  * can accept no more commands.
181  *
182  * Context: This could be called either from an interrupt context or a normal
183  * process context.
184  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)185 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
186 {
187 	__scsi_queue_insert(cmd, reason, true);
188 }
189 
190 
191 /**
192  * __scsi_execute - insert request and wait for the result
193  * @sdev:	scsi device
194  * @cmd:	scsi command
195  * @data_direction: data direction
196  * @buffer:	data buffer
197  * @bufflen:	len of buffer
198  * @sense:	optional sense buffer
199  * @sshdr:	optional decoded sense header
200  * @timeout:	request timeout in HZ
201  * @retries:	number of times to retry request
202  * @flags:	flags for ->cmd_flags
203  * @rq_flags:	flags for ->rq_flags
204  * @resid:	optional residual length
205  *
206  * Returns the scsi_cmnd result field if a command was executed, or a negative
207  * Linux error code if we didn't get that far.
208  */
__scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,struct scsi_sense_hdr * sshdr,int timeout,int retries,u64 flags,req_flags_t rq_flags,int * resid)209 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
210 		 int data_direction, void *buffer, unsigned bufflen,
211 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
212 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
213 		 int *resid)
214 {
215 	struct request *req;
216 	struct scsi_request *rq;
217 	int ret;
218 
219 	req = scsi_alloc_request(sdev->request_queue,
220 			data_direction == DMA_TO_DEVICE ?
221 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
222 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
223 	if (IS_ERR(req))
224 		return PTR_ERR(req);
225 
226 	rq = scsi_req(req);
227 
228 	if (bufflen) {
229 		ret = blk_rq_map_kern(sdev->request_queue, req,
230 				      buffer, bufflen, GFP_NOIO);
231 		if (ret)
232 			goto out;
233 	}
234 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
235 	memcpy(rq->cmd, cmd, rq->cmd_len);
236 	rq->retries = retries;
237 	req->timeout = timeout;
238 	req->cmd_flags |= flags;
239 	req->rq_flags |= rq_flags | RQF_QUIET;
240 
241 	/*
242 	 * head injection *required* here otherwise quiesce won't work
243 	 */
244 	blk_execute_rq(NULL, req, 1);
245 
246 	/*
247 	 * Some devices (USB mass-storage in particular) may transfer
248 	 * garbage data together with a residue indicating that the data
249 	 * is invalid.  Prevent the garbage from being misinterpreted
250 	 * and prevent security leaks by zeroing out the excess data.
251 	 */
252 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
253 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
254 
255 	if (resid)
256 		*resid = rq->resid_len;
257 	if (sense && rq->sense_len)
258 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
259 	if (sshdr)
260 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
261 	ret = rq->result;
262  out:
263 	blk_mq_free_request(req);
264 
265 	return ret;
266 }
267 EXPORT_SYMBOL(__scsi_execute);
268 
269 /*
270  * Wake up the error handler if necessary. Avoid as follows that the error
271  * handler is not woken up if host in-flight requests number ==
272  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
273  * with an RCU read lock in this function to ensure that this function in
274  * its entirety either finishes before scsi_eh_scmd_add() increases the
275  * host_failed counter or that it notices the shost state change made by
276  * scsi_eh_scmd_add().
277  */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)278 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
279 {
280 	unsigned long flags;
281 
282 	rcu_read_lock();
283 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
284 	if (unlikely(scsi_host_in_recovery(shost))) {
285 		spin_lock_irqsave(shost->host_lock, flags);
286 		if (shost->host_failed || shost->host_eh_scheduled)
287 			scsi_eh_wakeup(shost);
288 		spin_unlock_irqrestore(shost->host_lock, flags);
289 	}
290 	rcu_read_unlock();
291 }
292 
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)293 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
294 {
295 	struct Scsi_Host *shost = sdev->host;
296 	struct scsi_target *starget = scsi_target(sdev);
297 
298 	scsi_dec_host_busy(shost, cmd);
299 
300 	if (starget->can_queue > 0)
301 		atomic_dec(&starget->target_busy);
302 
303 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
304 	cmd->budget_token = -1;
305 }
306 
scsi_kick_queue(struct request_queue * q)307 static void scsi_kick_queue(struct request_queue *q)
308 {
309 	blk_mq_run_hw_queues(q, false);
310 }
311 
312 /*
313  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
314  * and call blk_run_queue for all the scsi_devices on the target -
315  * including current_sdev first.
316  *
317  * Called with *no* scsi locks held.
318  */
scsi_single_lun_run(struct scsi_device * current_sdev)319 static void scsi_single_lun_run(struct scsi_device *current_sdev)
320 {
321 	struct Scsi_Host *shost = current_sdev->host;
322 	struct scsi_device *sdev, *tmp;
323 	struct scsi_target *starget = scsi_target(current_sdev);
324 	unsigned long flags;
325 
326 	spin_lock_irqsave(shost->host_lock, flags);
327 	starget->starget_sdev_user = NULL;
328 	spin_unlock_irqrestore(shost->host_lock, flags);
329 
330 	/*
331 	 * Call blk_run_queue for all LUNs on the target, starting with
332 	 * current_sdev. We race with others (to set starget_sdev_user),
333 	 * but in most cases, we will be first. Ideally, each LU on the
334 	 * target would get some limited time or requests on the target.
335 	 */
336 	scsi_kick_queue(current_sdev->request_queue);
337 
338 	spin_lock_irqsave(shost->host_lock, flags);
339 	if (starget->starget_sdev_user)
340 		goto out;
341 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
342 			same_target_siblings) {
343 		if (sdev == current_sdev)
344 			continue;
345 		if (scsi_device_get(sdev))
346 			continue;
347 
348 		spin_unlock_irqrestore(shost->host_lock, flags);
349 		scsi_kick_queue(sdev->request_queue);
350 		spin_lock_irqsave(shost->host_lock, flags);
351 
352 		scsi_device_put(sdev);
353 	}
354  out:
355 	spin_unlock_irqrestore(shost->host_lock, flags);
356 }
357 
scsi_device_is_busy(struct scsi_device * sdev)358 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
359 {
360 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
361 		return true;
362 	if (atomic_read(&sdev->device_blocked) > 0)
363 		return true;
364 	return false;
365 }
366 
scsi_target_is_busy(struct scsi_target * starget)367 static inline bool scsi_target_is_busy(struct scsi_target *starget)
368 {
369 	if (starget->can_queue > 0) {
370 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
371 			return true;
372 		if (atomic_read(&starget->target_blocked) > 0)
373 			return true;
374 	}
375 	return false;
376 }
377 
scsi_host_is_busy(struct Scsi_Host * shost)378 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
379 {
380 	if (atomic_read(&shost->host_blocked) > 0)
381 		return true;
382 	if (shost->host_self_blocked)
383 		return true;
384 	return false;
385 }
386 
scsi_starved_list_run(struct Scsi_Host * shost)387 static void scsi_starved_list_run(struct Scsi_Host *shost)
388 {
389 	LIST_HEAD(starved_list);
390 	struct scsi_device *sdev;
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	list_splice_init(&shost->starved_list, &starved_list);
395 
396 	while (!list_empty(&starved_list)) {
397 		struct request_queue *slq;
398 
399 		/*
400 		 * As long as shost is accepting commands and we have
401 		 * starved queues, call blk_run_queue. scsi_request_fn
402 		 * drops the queue_lock and can add us back to the
403 		 * starved_list.
404 		 *
405 		 * host_lock protects the starved_list and starved_entry.
406 		 * scsi_request_fn must get the host_lock before checking
407 		 * or modifying starved_list or starved_entry.
408 		 */
409 		if (scsi_host_is_busy(shost))
410 			break;
411 
412 		sdev = list_entry(starved_list.next,
413 				  struct scsi_device, starved_entry);
414 		list_del_init(&sdev->starved_entry);
415 		if (scsi_target_is_busy(scsi_target(sdev))) {
416 			list_move_tail(&sdev->starved_entry,
417 				       &shost->starved_list);
418 			continue;
419 		}
420 
421 		/*
422 		 * Once we drop the host lock, a racing scsi_remove_device()
423 		 * call may remove the sdev from the starved list and destroy
424 		 * it and the queue.  Mitigate by taking a reference to the
425 		 * queue and never touching the sdev again after we drop the
426 		 * host lock.  Note: if __scsi_remove_device() invokes
427 		 * blk_cleanup_queue() before the queue is run from this
428 		 * function then blk_run_queue() will return immediately since
429 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
430 		 */
431 		slq = sdev->request_queue;
432 		if (!blk_get_queue(slq))
433 			continue;
434 		spin_unlock_irqrestore(shost->host_lock, flags);
435 
436 		scsi_kick_queue(slq);
437 		blk_put_queue(slq);
438 
439 		spin_lock_irqsave(shost->host_lock, flags);
440 	}
441 	/* put any unprocessed entries back */
442 	list_splice(&starved_list, &shost->starved_list);
443 	spin_unlock_irqrestore(shost->host_lock, flags);
444 }
445 
446 /**
447  * scsi_run_queue - Select a proper request queue to serve next.
448  * @q:  last request's queue
449  *
450  * The previous command was completely finished, start a new one if possible.
451  */
scsi_run_queue(struct request_queue * q)452 static void scsi_run_queue(struct request_queue *q)
453 {
454 	struct scsi_device *sdev = q->queuedata;
455 
456 	if (scsi_target(sdev)->single_lun)
457 		scsi_single_lun_run(sdev);
458 	if (!list_empty(&sdev->host->starved_list))
459 		scsi_starved_list_run(sdev->host);
460 
461 	blk_mq_run_hw_queues(q, false);
462 }
463 
scsi_requeue_run_queue(struct work_struct * work)464 void scsi_requeue_run_queue(struct work_struct *work)
465 {
466 	struct scsi_device *sdev;
467 	struct request_queue *q;
468 
469 	sdev = container_of(work, struct scsi_device, requeue_work);
470 	q = sdev->request_queue;
471 	scsi_run_queue(q);
472 }
473 
scsi_run_host_queues(struct Scsi_Host * shost)474 void scsi_run_host_queues(struct Scsi_Host *shost)
475 {
476 	struct scsi_device *sdev;
477 
478 	shost_for_each_device(sdev, shost)
479 		scsi_run_queue(sdev->request_queue);
480 }
481 
scsi_uninit_cmd(struct scsi_cmnd * cmd)482 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
483 {
484 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
485 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
486 
487 		if (drv->uninit_command)
488 			drv->uninit_command(cmd);
489 	}
490 }
491 
scsi_free_sgtables(struct scsi_cmnd * cmd)492 void scsi_free_sgtables(struct scsi_cmnd *cmd)
493 {
494 	if (cmd->sdb.table.nents)
495 		sg_free_table_chained(&cmd->sdb.table,
496 				SCSI_INLINE_SG_CNT);
497 	if (scsi_prot_sg_count(cmd))
498 		sg_free_table_chained(&cmd->prot_sdb->table,
499 				SCSI_INLINE_PROT_SG_CNT);
500 }
501 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
502 
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)503 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
504 {
505 	scsi_free_sgtables(cmd);
506 	scsi_uninit_cmd(cmd);
507 }
508 
scsi_run_queue_async(struct scsi_device * sdev)509 static void scsi_run_queue_async(struct scsi_device *sdev)
510 {
511 	if (scsi_target(sdev)->single_lun ||
512 	    !list_empty(&sdev->host->starved_list)) {
513 		kblockd_schedule_work(&sdev->requeue_work);
514 	} else {
515 		/*
516 		 * smp_mb() present in sbitmap_queue_clear() or implied in
517 		 * .end_io is for ordering writing .device_busy in
518 		 * scsi_device_unbusy() and reading sdev->restarts.
519 		 */
520 		int old = atomic_read(&sdev->restarts);
521 
522 		/*
523 		 * ->restarts has to be kept as non-zero if new budget
524 		 *  contention occurs.
525 		 *
526 		 *  No need to run queue when either another re-run
527 		 *  queue wins in updating ->restarts or a new budget
528 		 *  contention occurs.
529 		 */
530 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
531 			blk_mq_run_hw_queues(sdev->request_queue, true);
532 	}
533 }
534 
535 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)536 static bool scsi_end_request(struct request *req, blk_status_t error,
537 		unsigned int bytes)
538 {
539 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
540 	struct scsi_device *sdev = cmd->device;
541 	struct request_queue *q = sdev->request_queue;
542 
543 	if (blk_update_request(req, error, bytes))
544 		return true;
545 
546 	if (blk_queue_add_random(q))
547 		add_disk_randomness(req->rq_disk);
548 
549 	if (!blk_rq_is_passthrough(req)) {
550 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
551 		cmd->flags &= ~SCMD_INITIALIZED;
552 	}
553 
554 	/*
555 	 * Calling rcu_barrier() is not necessary here because the
556 	 * SCSI error handler guarantees that the function called by
557 	 * call_rcu() has been called before scsi_end_request() is
558 	 * called.
559 	 */
560 	destroy_rcu_head(&cmd->rcu);
561 
562 	/*
563 	 * In the MQ case the command gets freed by __blk_mq_end_request,
564 	 * so we have to do all cleanup that depends on it earlier.
565 	 *
566 	 * We also can't kick the queues from irq context, so we
567 	 * will have to defer it to a workqueue.
568 	 */
569 	scsi_mq_uninit_cmd(cmd);
570 
571 	/*
572 	 * queue is still alive, so grab the ref for preventing it
573 	 * from being cleaned up during running queue.
574 	 */
575 	percpu_ref_get(&q->q_usage_counter);
576 
577 	__blk_mq_end_request(req, error);
578 
579 	scsi_run_queue_async(sdev);
580 
581 	percpu_ref_put(&q->q_usage_counter);
582 	return false;
583 }
584 
585 /**
586  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
587  * @cmd:	SCSI command
588  * @result:	scsi error code
589  *
590  * Translate a SCSI result code into a blk_status_t value. May reset the host
591  * byte of @cmd->result.
592  */
scsi_result_to_blk_status(struct scsi_cmnd * cmd,int result)593 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
594 {
595 	switch (host_byte(result)) {
596 	case DID_OK:
597 		if (scsi_status_is_good(result))
598 			return BLK_STS_OK;
599 		return BLK_STS_IOERR;
600 	case DID_TRANSPORT_FAILFAST:
601 	case DID_TRANSPORT_MARGINAL:
602 		return BLK_STS_TRANSPORT;
603 	case DID_TARGET_FAILURE:
604 		set_host_byte(cmd, DID_OK);
605 		return BLK_STS_TARGET;
606 	case DID_NEXUS_FAILURE:
607 		set_host_byte(cmd, DID_OK);
608 		return BLK_STS_NEXUS;
609 	case DID_ALLOC_FAILURE:
610 		set_host_byte(cmd, DID_OK);
611 		return BLK_STS_NOSPC;
612 	case DID_MEDIUM_ERROR:
613 		set_host_byte(cmd, DID_OK);
614 		return BLK_STS_MEDIUM;
615 	default:
616 		return BLK_STS_IOERR;
617 	}
618 }
619 
620 /* Helper for scsi_io_completion() when "reprep" action required. */
scsi_io_completion_reprep(struct scsi_cmnd * cmd,struct request_queue * q)621 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
622 				      struct request_queue *q)
623 {
624 	/* A new command will be prepared and issued. */
625 	scsi_mq_requeue_cmd(cmd);
626 }
627 
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)628 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
629 {
630 	struct request *req = scsi_cmd_to_rq(cmd);
631 	unsigned long wait_for;
632 
633 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
634 		return false;
635 
636 	wait_for = (cmd->allowed + 1) * req->timeout;
637 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
638 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
639 			    wait_for/HZ);
640 		return true;
641 	}
642 	return false;
643 }
644 
645 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)646 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
647 {
648 	struct request_queue *q = cmd->device->request_queue;
649 	struct request *req = scsi_cmd_to_rq(cmd);
650 	int level = 0;
651 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
652 	      ACTION_DELAYED_RETRY} action;
653 	struct scsi_sense_hdr sshdr;
654 	bool sense_valid;
655 	bool sense_current = true;      /* false implies "deferred sense" */
656 	blk_status_t blk_stat;
657 
658 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
659 	if (sense_valid)
660 		sense_current = !scsi_sense_is_deferred(&sshdr);
661 
662 	blk_stat = scsi_result_to_blk_status(cmd, result);
663 
664 	if (host_byte(result) == DID_RESET) {
665 		/* Third party bus reset or reset for error recovery
666 		 * reasons.  Just retry the command and see what
667 		 * happens.
668 		 */
669 		action = ACTION_RETRY;
670 	} else if (sense_valid && sense_current) {
671 		switch (sshdr.sense_key) {
672 		case UNIT_ATTENTION:
673 			if (cmd->device->removable) {
674 				/* Detected disc change.  Set a bit
675 				 * and quietly refuse further access.
676 				 */
677 				cmd->device->changed = 1;
678 				action = ACTION_FAIL;
679 			} else {
680 				/* Must have been a power glitch, or a
681 				 * bus reset.  Could not have been a
682 				 * media change, so we just retry the
683 				 * command and see what happens.
684 				 */
685 				action = ACTION_RETRY;
686 			}
687 			break;
688 		case ILLEGAL_REQUEST:
689 			/* If we had an ILLEGAL REQUEST returned, then
690 			 * we may have performed an unsupported
691 			 * command.  The only thing this should be
692 			 * would be a ten byte read where only a six
693 			 * byte read was supported.  Also, on a system
694 			 * where READ CAPACITY failed, we may have
695 			 * read past the end of the disk.
696 			 */
697 			if ((cmd->device->use_10_for_rw &&
698 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
699 			    (cmd->cmnd[0] == READ_10 ||
700 			     cmd->cmnd[0] == WRITE_10)) {
701 				/* This will issue a new 6-byte command. */
702 				cmd->device->use_10_for_rw = 0;
703 				action = ACTION_REPREP;
704 			} else if (sshdr.asc == 0x10) /* DIX */ {
705 				action = ACTION_FAIL;
706 				blk_stat = BLK_STS_PROTECTION;
707 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
708 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
709 				action = ACTION_FAIL;
710 				blk_stat = BLK_STS_TARGET;
711 			} else
712 				action = ACTION_FAIL;
713 			break;
714 		case ABORTED_COMMAND:
715 			action = ACTION_FAIL;
716 			if (sshdr.asc == 0x10) /* DIF */
717 				blk_stat = BLK_STS_PROTECTION;
718 			break;
719 		case NOT_READY:
720 			/* If the device is in the process of becoming
721 			 * ready, or has a temporary blockage, retry.
722 			 */
723 			if (sshdr.asc == 0x04) {
724 				switch (sshdr.ascq) {
725 				case 0x01: /* becoming ready */
726 				case 0x04: /* format in progress */
727 				case 0x05: /* rebuild in progress */
728 				case 0x06: /* recalculation in progress */
729 				case 0x07: /* operation in progress */
730 				case 0x08: /* Long write in progress */
731 				case 0x09: /* self test in progress */
732 				case 0x11: /* notify (enable spinup) required */
733 				case 0x14: /* space allocation in progress */
734 				case 0x1a: /* start stop unit in progress */
735 				case 0x1b: /* sanitize in progress */
736 				case 0x1d: /* configuration in progress */
737 				case 0x24: /* depopulation in progress */
738 					action = ACTION_DELAYED_RETRY;
739 					break;
740 				case 0x0a: /* ALUA state transition */
741 					blk_stat = BLK_STS_AGAIN;
742 					fallthrough;
743 				default:
744 					action = ACTION_FAIL;
745 					break;
746 				}
747 			} else
748 				action = ACTION_FAIL;
749 			break;
750 		case VOLUME_OVERFLOW:
751 			/* See SSC3rXX or current. */
752 			action = ACTION_FAIL;
753 			break;
754 		case DATA_PROTECT:
755 			action = ACTION_FAIL;
756 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
757 			    (sshdr.asc == 0x55 &&
758 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
759 				/* Insufficient zone resources */
760 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
761 			}
762 			break;
763 		default:
764 			action = ACTION_FAIL;
765 			break;
766 		}
767 	} else
768 		action = ACTION_FAIL;
769 
770 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
771 		action = ACTION_FAIL;
772 
773 	switch (action) {
774 	case ACTION_FAIL:
775 		/* Give up and fail the remainder of the request */
776 		if (!(req->rq_flags & RQF_QUIET)) {
777 			static DEFINE_RATELIMIT_STATE(_rs,
778 					DEFAULT_RATELIMIT_INTERVAL,
779 					DEFAULT_RATELIMIT_BURST);
780 
781 			if (unlikely(scsi_logging_level))
782 				level =
783 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
784 						    SCSI_LOG_MLCOMPLETE_BITS);
785 
786 			/*
787 			 * if logging is enabled the failure will be printed
788 			 * in scsi_log_completion(), so avoid duplicate messages
789 			 */
790 			if (!level && __ratelimit(&_rs)) {
791 				scsi_print_result(cmd, NULL, FAILED);
792 				if (sense_valid)
793 					scsi_print_sense(cmd);
794 				scsi_print_command(cmd);
795 			}
796 		}
797 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
798 			return;
799 		fallthrough;
800 	case ACTION_REPREP:
801 		scsi_io_completion_reprep(cmd, q);
802 		break;
803 	case ACTION_RETRY:
804 		/* Retry the same command immediately */
805 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
806 		break;
807 	case ACTION_DELAYED_RETRY:
808 		/* Retry the same command after a delay */
809 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
810 		break;
811 	}
812 }
813 
814 /*
815  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
816  * new result that may suppress further error checking. Also modifies
817  * *blk_statp in some cases.
818  */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)819 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
820 					blk_status_t *blk_statp)
821 {
822 	bool sense_valid;
823 	bool sense_current = true;	/* false implies "deferred sense" */
824 	struct request *req = scsi_cmd_to_rq(cmd);
825 	struct scsi_sense_hdr sshdr;
826 
827 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
828 	if (sense_valid)
829 		sense_current = !scsi_sense_is_deferred(&sshdr);
830 
831 	if (blk_rq_is_passthrough(req)) {
832 		if (sense_valid) {
833 			/*
834 			 * SG_IO wants current and deferred errors
835 			 */
836 			scsi_req(req)->sense_len =
837 				min(8 + cmd->sense_buffer[7],
838 				    SCSI_SENSE_BUFFERSIZE);
839 		}
840 		if (sense_current)
841 			*blk_statp = scsi_result_to_blk_status(cmd, result);
842 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
843 		/*
844 		 * Flush commands do not transfers any data, and thus cannot use
845 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
846 		 * This sets *blk_statp explicitly for the problem case.
847 		 */
848 		*blk_statp = scsi_result_to_blk_status(cmd, result);
849 	}
850 	/*
851 	 * Recovered errors need reporting, but they're always treated as
852 	 * success, so fiddle the result code here.  For passthrough requests
853 	 * we already took a copy of the original into sreq->result which
854 	 * is what gets returned to the user
855 	 */
856 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
857 		bool do_print = true;
858 		/*
859 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
860 		 * skip print since caller wants ATA registers. Only occurs
861 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
862 		 */
863 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
864 			do_print = false;
865 		else if (req->rq_flags & RQF_QUIET)
866 			do_print = false;
867 		if (do_print)
868 			scsi_print_sense(cmd);
869 		result = 0;
870 		/* for passthrough, *blk_statp may be set */
871 		*blk_statp = BLK_STS_OK;
872 	}
873 	/*
874 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
875 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
876 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
877 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
878 	 * intermediate statuses (both obsolete in SAM-4) as good.
879 	 */
880 	if ((result & 0xff) && scsi_status_is_good(result)) {
881 		result = 0;
882 		*blk_statp = BLK_STS_OK;
883 	}
884 	return result;
885 }
886 
887 /**
888  * scsi_io_completion - Completion processing for SCSI commands.
889  * @cmd:	command that is finished.
890  * @good_bytes:	number of processed bytes.
891  *
892  * We will finish off the specified number of sectors. If we are done, the
893  * command block will be released and the queue function will be goosed. If we
894  * are not done then we have to figure out what to do next:
895  *
896  *   a) We can call scsi_io_completion_reprep().  The request will be
897  *	unprepared and put back on the queue.  Then a new command will
898  *	be created for it.  This should be used if we made forward
899  *	progress, or if we want to switch from READ(10) to READ(6) for
900  *	example.
901  *
902  *   b) We can call scsi_io_completion_action().  The request will be
903  *	put back on the queue and retried using the same command as
904  *	before, possibly after a delay.
905  *
906  *   c) We can call scsi_end_request() with blk_stat other than
907  *	BLK_STS_OK, to fail the remainder of the request.
908  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)909 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
910 {
911 	int result = cmd->result;
912 	struct request_queue *q = cmd->device->request_queue;
913 	struct request *req = scsi_cmd_to_rq(cmd);
914 	blk_status_t blk_stat = BLK_STS_OK;
915 
916 	if (unlikely(result))	/* a nz result may or may not be an error */
917 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
918 
919 	if (unlikely(blk_rq_is_passthrough(req))) {
920 		/*
921 		 * scsi_result_to_blk_status may have reset the host_byte
922 		 */
923 		scsi_req(req)->result = cmd->result;
924 	}
925 
926 	/*
927 	 * Next deal with any sectors which we were able to correctly
928 	 * handle.
929 	 */
930 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
931 		"%u sectors total, %d bytes done.\n",
932 		blk_rq_sectors(req), good_bytes));
933 
934 	/*
935 	 * Failed, zero length commands always need to drop down
936 	 * to retry code. Fast path should return in this block.
937 	 */
938 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
939 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
940 			return; /* no bytes remaining */
941 	}
942 
943 	/* Kill remainder if no retries. */
944 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
945 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
946 			WARN_ONCE(true,
947 			    "Bytes remaining after failed, no-retry command");
948 		return;
949 	}
950 
951 	/*
952 	 * If there had been no error, but we have leftover bytes in the
953 	 * request just queue the command up again.
954 	 */
955 	if (likely(result == 0))
956 		scsi_io_completion_reprep(cmd, q);
957 	else
958 		scsi_io_completion_action(cmd, result);
959 }
960 
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)961 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
962 		struct request *rq)
963 {
964 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
965 	       !op_is_write(req_op(rq)) &&
966 	       sdev->host->hostt->dma_need_drain(rq);
967 }
968 
969 /**
970  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
971  * @cmd: SCSI command data structure to initialize.
972  *
973  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
974  * for @cmd.
975  *
976  * Returns:
977  * * BLK_STS_OK       - on success
978  * * BLK_STS_RESOURCE - if the failure is retryable
979  * * BLK_STS_IOERR    - if the failure is fatal
980  */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)981 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
982 {
983 	struct scsi_device *sdev = cmd->device;
984 	struct request *rq = scsi_cmd_to_rq(cmd);
985 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
986 	struct scatterlist *last_sg = NULL;
987 	blk_status_t ret;
988 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
989 	int count;
990 
991 	if (WARN_ON_ONCE(!nr_segs))
992 		return BLK_STS_IOERR;
993 
994 	/*
995 	 * Make sure there is space for the drain.  The driver must adjust
996 	 * max_hw_segments to be prepared for this.
997 	 */
998 	if (need_drain)
999 		nr_segs++;
1000 
1001 	/*
1002 	 * If sg table allocation fails, requeue request later.
1003 	 */
1004 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1005 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1006 		return BLK_STS_RESOURCE;
1007 
1008 	/*
1009 	 * Next, walk the list, and fill in the addresses and sizes of
1010 	 * each segment.
1011 	 */
1012 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1013 
1014 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1015 		unsigned int pad_len =
1016 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1017 
1018 		last_sg->length += pad_len;
1019 		cmd->extra_len += pad_len;
1020 	}
1021 
1022 	if (need_drain) {
1023 		sg_unmark_end(last_sg);
1024 		last_sg = sg_next(last_sg);
1025 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1026 		sg_mark_end(last_sg);
1027 
1028 		cmd->extra_len += sdev->dma_drain_len;
1029 		count++;
1030 	}
1031 
1032 	BUG_ON(count > cmd->sdb.table.nents);
1033 	cmd->sdb.table.nents = count;
1034 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1035 
1036 	if (blk_integrity_rq(rq)) {
1037 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1038 		int ivecs;
1039 
1040 		if (WARN_ON_ONCE(!prot_sdb)) {
1041 			/*
1042 			 * This can happen if someone (e.g. multipath)
1043 			 * queues a command to a device on an adapter
1044 			 * that does not support DIX.
1045 			 */
1046 			ret = BLK_STS_IOERR;
1047 			goto out_free_sgtables;
1048 		}
1049 
1050 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1051 
1052 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1053 				prot_sdb->table.sgl,
1054 				SCSI_INLINE_PROT_SG_CNT)) {
1055 			ret = BLK_STS_RESOURCE;
1056 			goto out_free_sgtables;
1057 		}
1058 
1059 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1060 						prot_sdb->table.sgl);
1061 		BUG_ON(count > ivecs);
1062 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1063 
1064 		cmd->prot_sdb = prot_sdb;
1065 		cmd->prot_sdb->table.nents = count;
1066 	}
1067 
1068 	return BLK_STS_OK;
1069 out_free_sgtables:
1070 	scsi_free_sgtables(cmd);
1071 	return ret;
1072 }
1073 EXPORT_SYMBOL(scsi_alloc_sgtables);
1074 
1075 /**
1076  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1077  * @rq: Request associated with the SCSI command to be initialized.
1078  *
1079  * This function initializes the members of struct scsi_cmnd that must be
1080  * initialized before request processing starts and that won't be
1081  * reinitialized if a SCSI command is requeued.
1082  */
scsi_initialize_rq(struct request * rq)1083 static void scsi_initialize_rq(struct request *rq)
1084 {
1085 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1086 	struct scsi_request *req = &cmd->req;
1087 
1088 	memset(req->__cmd, 0, sizeof(req->__cmd));
1089 	req->cmd = req->__cmd;
1090 	req->cmd_len = BLK_MAX_CDB;
1091 	req->sense_len = 0;
1092 
1093 	init_rcu_head(&cmd->rcu);
1094 	cmd->jiffies_at_alloc = jiffies;
1095 	cmd->retries = 0;
1096 }
1097 
scsi_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)1098 struct request *scsi_alloc_request(struct request_queue *q,
1099 		unsigned int op, blk_mq_req_flags_t flags)
1100 {
1101 	struct request *rq;
1102 
1103 	rq = blk_mq_alloc_request(q, op, flags);
1104 	if (!IS_ERR(rq))
1105 		scsi_initialize_rq(rq);
1106 	return rq;
1107 }
1108 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1109 
1110 /*
1111  * Only called when the request isn't completed by SCSI, and not freed by
1112  * SCSI
1113  */
scsi_cleanup_rq(struct request * rq)1114 static void scsi_cleanup_rq(struct request *rq)
1115 {
1116 	if (rq->rq_flags & RQF_DONTPREP) {
1117 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1118 		rq->rq_flags &= ~RQF_DONTPREP;
1119 	}
1120 }
1121 
1122 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1123 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1124 {
1125 	void *buf = cmd->sense_buffer;
1126 	void *prot = cmd->prot_sdb;
1127 	struct request *rq = scsi_cmd_to_rq(cmd);
1128 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1129 	unsigned long jiffies_at_alloc;
1130 	int retries, to_clear;
1131 	bool in_flight;
1132 	int budget_token = cmd->budget_token;
1133 
1134 	if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) {
1135 		flags |= SCMD_INITIALIZED;
1136 		scsi_initialize_rq(rq);
1137 	}
1138 
1139 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1140 	retries = cmd->retries;
1141 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1142 	/*
1143 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1144 	 * the driver-private command data if the LLD does not supply a
1145 	 * function to initialize that data.
1146 	 */
1147 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1148 	if (!dev->host->hostt->init_cmd_priv)
1149 		to_clear += dev->host->hostt->cmd_size;
1150 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1151 
1152 	cmd->device = dev;
1153 	cmd->sense_buffer = buf;
1154 	cmd->prot_sdb = prot;
1155 	cmd->flags = flags;
1156 	INIT_LIST_HEAD(&cmd->eh_entry);
1157 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1158 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1159 	cmd->retries = retries;
1160 	if (in_flight)
1161 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1162 	cmd->budget_token = budget_token;
1163 
1164 }
1165 
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1166 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1167 		struct request *req)
1168 {
1169 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1170 
1171 	/*
1172 	 * Passthrough requests may transfer data, in which case they must
1173 	 * a bio attached to them.  Or they might contain a SCSI command
1174 	 * that does not transfer data, in which case they may optionally
1175 	 * submit a request without an attached bio.
1176 	 */
1177 	if (req->bio) {
1178 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1179 		if (unlikely(ret != BLK_STS_OK))
1180 			return ret;
1181 	} else {
1182 		BUG_ON(blk_rq_bytes(req));
1183 
1184 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1185 	}
1186 
1187 	cmd->cmd_len = scsi_req(req)->cmd_len;
1188 	cmd->cmnd = scsi_req(req)->cmd;
1189 	cmd->transfersize = blk_rq_bytes(req);
1190 	cmd->allowed = scsi_req(req)->retries;
1191 	return BLK_STS_OK;
1192 }
1193 
1194 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1195 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1196 {
1197 	switch (sdev->sdev_state) {
1198 	case SDEV_CREATED:
1199 		return BLK_STS_OK;
1200 	case SDEV_OFFLINE:
1201 	case SDEV_TRANSPORT_OFFLINE:
1202 		/*
1203 		 * If the device is offline we refuse to process any
1204 		 * commands.  The device must be brought online
1205 		 * before trying any recovery commands.
1206 		 */
1207 		if (!sdev->offline_already) {
1208 			sdev->offline_already = true;
1209 			sdev_printk(KERN_ERR, sdev,
1210 				    "rejecting I/O to offline device\n");
1211 		}
1212 		return BLK_STS_IOERR;
1213 	case SDEV_DEL:
1214 		/*
1215 		 * If the device is fully deleted, we refuse to
1216 		 * process any commands as well.
1217 		 */
1218 		sdev_printk(KERN_ERR, sdev,
1219 			    "rejecting I/O to dead device\n");
1220 		return BLK_STS_IOERR;
1221 	case SDEV_BLOCK:
1222 	case SDEV_CREATED_BLOCK:
1223 		return BLK_STS_RESOURCE;
1224 	case SDEV_QUIESCE:
1225 		/*
1226 		 * If the device is blocked we only accept power management
1227 		 * commands.
1228 		 */
1229 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1230 			return BLK_STS_RESOURCE;
1231 		return BLK_STS_OK;
1232 	default:
1233 		/*
1234 		 * For any other not fully online state we only allow
1235 		 * power management commands.
1236 		 */
1237 		if (req && !(req->rq_flags & RQF_PM))
1238 			return BLK_STS_IOERR;
1239 		return BLK_STS_OK;
1240 	}
1241 }
1242 
1243 /*
1244  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1245  * and return the token else return -1.
1246  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1247 static inline int scsi_dev_queue_ready(struct request_queue *q,
1248 				  struct scsi_device *sdev)
1249 {
1250 	int token;
1251 
1252 	token = sbitmap_get(&sdev->budget_map);
1253 	if (atomic_read(&sdev->device_blocked)) {
1254 		if (token < 0)
1255 			goto out;
1256 
1257 		if (scsi_device_busy(sdev) > 1)
1258 			goto out_dec;
1259 
1260 		/*
1261 		 * unblock after device_blocked iterates to zero
1262 		 */
1263 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1264 			goto out_dec;
1265 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1266 				   "unblocking device at zero depth\n"));
1267 	}
1268 
1269 	return token;
1270 out_dec:
1271 	if (token >= 0)
1272 		sbitmap_put(&sdev->budget_map, token);
1273 out:
1274 	return -1;
1275 }
1276 
1277 /*
1278  * scsi_target_queue_ready: checks if there we can send commands to target
1279  * @sdev: scsi device on starget to check.
1280  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1281 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1282 					   struct scsi_device *sdev)
1283 {
1284 	struct scsi_target *starget = scsi_target(sdev);
1285 	unsigned int busy;
1286 
1287 	if (starget->single_lun) {
1288 		spin_lock_irq(shost->host_lock);
1289 		if (starget->starget_sdev_user &&
1290 		    starget->starget_sdev_user != sdev) {
1291 			spin_unlock_irq(shost->host_lock);
1292 			return 0;
1293 		}
1294 		starget->starget_sdev_user = sdev;
1295 		spin_unlock_irq(shost->host_lock);
1296 	}
1297 
1298 	if (starget->can_queue <= 0)
1299 		return 1;
1300 
1301 	busy = atomic_inc_return(&starget->target_busy) - 1;
1302 	if (atomic_read(&starget->target_blocked) > 0) {
1303 		if (busy)
1304 			goto starved;
1305 
1306 		/*
1307 		 * unblock after target_blocked iterates to zero
1308 		 */
1309 		if (atomic_dec_return(&starget->target_blocked) > 0)
1310 			goto out_dec;
1311 
1312 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1313 				 "unblocking target at zero depth\n"));
1314 	}
1315 
1316 	if (busy >= starget->can_queue)
1317 		goto starved;
1318 
1319 	return 1;
1320 
1321 starved:
1322 	spin_lock_irq(shost->host_lock);
1323 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1324 	spin_unlock_irq(shost->host_lock);
1325 out_dec:
1326 	if (starget->can_queue > 0)
1327 		atomic_dec(&starget->target_busy);
1328 	return 0;
1329 }
1330 
1331 /*
1332  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1333  * return 0. We must end up running the queue again whenever 0 is
1334  * returned, else IO can hang.
1335  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1336 static inline int scsi_host_queue_ready(struct request_queue *q,
1337 				   struct Scsi_Host *shost,
1338 				   struct scsi_device *sdev,
1339 				   struct scsi_cmnd *cmd)
1340 {
1341 	if (scsi_host_in_recovery(shost))
1342 		return 0;
1343 
1344 	if (atomic_read(&shost->host_blocked) > 0) {
1345 		if (scsi_host_busy(shost) > 0)
1346 			goto starved;
1347 
1348 		/*
1349 		 * unblock after host_blocked iterates to zero
1350 		 */
1351 		if (atomic_dec_return(&shost->host_blocked) > 0)
1352 			goto out_dec;
1353 
1354 		SCSI_LOG_MLQUEUE(3,
1355 			shost_printk(KERN_INFO, shost,
1356 				     "unblocking host at zero depth\n"));
1357 	}
1358 
1359 	if (shost->host_self_blocked)
1360 		goto starved;
1361 
1362 	/* We're OK to process the command, so we can't be starved */
1363 	if (!list_empty(&sdev->starved_entry)) {
1364 		spin_lock_irq(shost->host_lock);
1365 		if (!list_empty(&sdev->starved_entry))
1366 			list_del_init(&sdev->starved_entry);
1367 		spin_unlock_irq(shost->host_lock);
1368 	}
1369 
1370 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1371 
1372 	return 1;
1373 
1374 starved:
1375 	spin_lock_irq(shost->host_lock);
1376 	if (list_empty(&sdev->starved_entry))
1377 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1378 	spin_unlock_irq(shost->host_lock);
1379 out_dec:
1380 	scsi_dec_host_busy(shost, cmd);
1381 	return 0;
1382 }
1383 
1384 /*
1385  * Busy state exporting function for request stacking drivers.
1386  *
1387  * For efficiency, no lock is taken to check the busy state of
1388  * shost/starget/sdev, since the returned value is not guaranteed and
1389  * may be changed after request stacking drivers call the function,
1390  * regardless of taking lock or not.
1391  *
1392  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1393  * needs to return 'not busy'. Otherwise, request stacking drivers
1394  * may hold requests forever.
1395  */
scsi_mq_lld_busy(struct request_queue * q)1396 static bool scsi_mq_lld_busy(struct request_queue *q)
1397 {
1398 	struct scsi_device *sdev = q->queuedata;
1399 	struct Scsi_Host *shost;
1400 
1401 	if (blk_queue_dying(q))
1402 		return false;
1403 
1404 	shost = sdev->host;
1405 
1406 	/*
1407 	 * Ignore host/starget busy state.
1408 	 * Since block layer does not have a concept of fairness across
1409 	 * multiple queues, congestion of host/starget needs to be handled
1410 	 * in SCSI layer.
1411 	 */
1412 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1413 		return true;
1414 
1415 	return false;
1416 }
1417 
1418 /*
1419  * Block layer request completion callback. May be called from interrupt
1420  * context.
1421  */
scsi_complete(struct request * rq)1422 static void scsi_complete(struct request *rq)
1423 {
1424 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1425 	enum scsi_disposition disposition;
1426 
1427 	INIT_LIST_HEAD(&cmd->eh_entry);
1428 
1429 	atomic_inc(&cmd->device->iodone_cnt);
1430 	if (cmd->result)
1431 		atomic_inc(&cmd->device->ioerr_cnt);
1432 
1433 	disposition = scsi_decide_disposition(cmd);
1434 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1435 		disposition = SUCCESS;
1436 
1437 	scsi_log_completion(cmd, disposition);
1438 
1439 	switch (disposition) {
1440 	case SUCCESS:
1441 		scsi_finish_command(cmd);
1442 		break;
1443 	case NEEDS_RETRY:
1444 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1445 		break;
1446 	case ADD_TO_MLQUEUE:
1447 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1448 		break;
1449 	default:
1450 		scsi_eh_scmd_add(cmd);
1451 		break;
1452 	}
1453 }
1454 
1455 /**
1456  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1457  * @cmd: command block we are dispatching.
1458  *
1459  * Return: nonzero return request was rejected and device's queue needs to be
1460  * plugged.
1461  */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1462 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1463 {
1464 	struct Scsi_Host *host = cmd->device->host;
1465 	int rtn = 0;
1466 
1467 	atomic_inc(&cmd->device->iorequest_cnt);
1468 
1469 	/* check if the device is still usable */
1470 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1471 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1472 		 * returns an immediate error upwards, and signals
1473 		 * that the device is no longer present */
1474 		cmd->result = DID_NO_CONNECT << 16;
1475 		goto done;
1476 	}
1477 
1478 	/* Check to see if the scsi lld made this device blocked. */
1479 	if (unlikely(scsi_device_blocked(cmd->device))) {
1480 		/*
1481 		 * in blocked state, the command is just put back on
1482 		 * the device queue.  The suspend state has already
1483 		 * blocked the queue so future requests should not
1484 		 * occur until the device transitions out of the
1485 		 * suspend state.
1486 		 */
1487 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1488 			"queuecommand : device blocked\n"));
1489 		return SCSI_MLQUEUE_DEVICE_BUSY;
1490 	}
1491 
1492 	/* Store the LUN value in cmnd, if needed. */
1493 	if (cmd->device->lun_in_cdb)
1494 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1495 			       (cmd->device->lun << 5 & 0xe0);
1496 
1497 	scsi_log_send(cmd);
1498 
1499 	/*
1500 	 * Before we queue this command, check if the command
1501 	 * length exceeds what the host adapter can handle.
1502 	 */
1503 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1504 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1505 			       "queuecommand : command too long. "
1506 			       "cdb_size=%d host->max_cmd_len=%d\n",
1507 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1508 		cmd->result = (DID_ABORT << 16);
1509 		goto done;
1510 	}
1511 
1512 	if (unlikely(host->shost_state == SHOST_DEL)) {
1513 		cmd->result = (DID_NO_CONNECT << 16);
1514 		goto done;
1515 
1516 	}
1517 
1518 	trace_scsi_dispatch_cmd_start(cmd);
1519 	rtn = host->hostt->queuecommand(host, cmd);
1520 	if (rtn) {
1521 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1522 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1523 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1524 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1525 
1526 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1527 			"queuecommand : request rejected\n"));
1528 	}
1529 
1530 	return rtn;
1531  done:
1532 	scsi_done(cmd);
1533 	return 0;
1534 }
1535 
1536 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1537 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1538 {
1539 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1540 		sizeof(struct scatterlist);
1541 }
1542 
scsi_prepare_cmd(struct request * req)1543 static blk_status_t scsi_prepare_cmd(struct request *req)
1544 {
1545 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1546 	struct scsi_device *sdev = req->q->queuedata;
1547 	struct Scsi_Host *shost = sdev->host;
1548 	struct scatterlist *sg;
1549 
1550 	scsi_init_command(sdev, cmd);
1551 
1552 	cmd->prot_op = SCSI_PROT_NORMAL;
1553 	if (blk_rq_bytes(req))
1554 		cmd->sc_data_direction = rq_dma_dir(req);
1555 	else
1556 		cmd->sc_data_direction = DMA_NONE;
1557 
1558 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1559 	cmd->sdb.table.sgl = sg;
1560 
1561 	if (scsi_host_get_prot(shost)) {
1562 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1563 
1564 		cmd->prot_sdb->table.sgl =
1565 			(struct scatterlist *)(cmd->prot_sdb + 1);
1566 	}
1567 
1568 	/*
1569 	 * Special handling for passthrough commands, which don't go to the ULP
1570 	 * at all:
1571 	 */
1572 	if (blk_rq_is_passthrough(req))
1573 		return scsi_setup_scsi_cmnd(sdev, req);
1574 
1575 	if (sdev->handler && sdev->handler->prep_fn) {
1576 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1577 
1578 		if (ret != BLK_STS_OK)
1579 			return ret;
1580 	}
1581 
1582 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1583 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1584 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1585 }
1586 
scsi_done(struct scsi_cmnd * cmd)1587 void scsi_done(struct scsi_cmnd *cmd)
1588 {
1589 	switch (cmd->submitter) {
1590 	case SUBMITTED_BY_BLOCK_LAYER:
1591 		break;
1592 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1593 		return scsi_eh_done(cmd);
1594 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1595 		return;
1596 	}
1597 
1598 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1599 		return;
1600 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1601 		return;
1602 	trace_scsi_dispatch_cmd_done(cmd);
1603 	blk_mq_complete_request(scsi_cmd_to_rq(cmd));
1604 }
1605 EXPORT_SYMBOL(scsi_done);
1606 
scsi_mq_put_budget(struct request_queue * q,int budget_token)1607 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1608 {
1609 	struct scsi_device *sdev = q->queuedata;
1610 
1611 	sbitmap_put(&sdev->budget_map, budget_token);
1612 }
1613 
scsi_mq_get_budget(struct request_queue * q)1614 static int scsi_mq_get_budget(struct request_queue *q)
1615 {
1616 	struct scsi_device *sdev = q->queuedata;
1617 	int token = scsi_dev_queue_ready(q, sdev);
1618 
1619 	if (token >= 0)
1620 		return token;
1621 
1622 	atomic_inc(&sdev->restarts);
1623 
1624 	/*
1625 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1626 	 * .restarts must be incremented before .device_busy is read because the
1627 	 * code in scsi_run_queue_async() depends on the order of these operations.
1628 	 */
1629 	smp_mb__after_atomic();
1630 
1631 	/*
1632 	 * If all in-flight requests originated from this LUN are completed
1633 	 * before reading .device_busy, sdev->device_busy will be observed as
1634 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1635 	 * soon. Otherwise, completion of one of these requests will observe
1636 	 * the .restarts flag, and the request queue will be run for handling
1637 	 * this request, see scsi_end_request().
1638 	 */
1639 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1640 				!scsi_device_blocked(sdev)))
1641 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1642 	return -1;
1643 }
1644 
scsi_mq_set_rq_budget_token(struct request * req,int token)1645 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1646 {
1647 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1648 
1649 	cmd->budget_token = token;
1650 }
1651 
scsi_mq_get_rq_budget_token(struct request * req)1652 static int scsi_mq_get_rq_budget_token(struct request *req)
1653 {
1654 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1655 
1656 	return cmd->budget_token;
1657 }
1658 
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1659 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1660 			 const struct blk_mq_queue_data *bd)
1661 {
1662 	struct request *req = bd->rq;
1663 	struct request_queue *q = req->q;
1664 	struct scsi_device *sdev = q->queuedata;
1665 	struct Scsi_Host *shost = sdev->host;
1666 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1667 	blk_status_t ret;
1668 	int reason;
1669 
1670 	WARN_ON_ONCE(cmd->budget_token < 0);
1671 
1672 	/*
1673 	 * If the device is not in running state we will reject some or all
1674 	 * commands.
1675 	 */
1676 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1677 		ret = scsi_device_state_check(sdev, req);
1678 		if (ret != BLK_STS_OK)
1679 			goto out_put_budget;
1680 	}
1681 
1682 	ret = BLK_STS_RESOURCE;
1683 	if (!scsi_target_queue_ready(shost, sdev))
1684 		goto out_put_budget;
1685 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1686 		goto out_dec_target_busy;
1687 
1688 	if (!(req->rq_flags & RQF_DONTPREP)) {
1689 		ret = scsi_prepare_cmd(req);
1690 		if (ret != BLK_STS_OK)
1691 			goto out_dec_host_busy;
1692 		req->rq_flags |= RQF_DONTPREP;
1693 	} else {
1694 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1695 	}
1696 
1697 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1698 	if (sdev->simple_tags)
1699 		cmd->flags |= SCMD_TAGGED;
1700 	if (bd->last)
1701 		cmd->flags |= SCMD_LAST;
1702 
1703 	scsi_set_resid(cmd, 0);
1704 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1705 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1706 
1707 	blk_mq_start_request(req);
1708 	reason = scsi_dispatch_cmd(cmd);
1709 	if (reason) {
1710 		scsi_set_blocked(cmd, reason);
1711 		ret = BLK_STS_RESOURCE;
1712 		goto out_dec_host_busy;
1713 	}
1714 
1715 	return BLK_STS_OK;
1716 
1717 out_dec_host_busy:
1718 	scsi_dec_host_busy(shost, cmd);
1719 out_dec_target_busy:
1720 	if (scsi_target(sdev)->can_queue > 0)
1721 		atomic_dec(&scsi_target(sdev)->target_busy);
1722 out_put_budget:
1723 	scsi_mq_put_budget(q, cmd->budget_token);
1724 	cmd->budget_token = -1;
1725 	switch (ret) {
1726 	case BLK_STS_OK:
1727 		break;
1728 	case BLK_STS_RESOURCE:
1729 	case BLK_STS_ZONE_RESOURCE:
1730 		if (scsi_device_blocked(sdev))
1731 			ret = BLK_STS_DEV_RESOURCE;
1732 		break;
1733 	case BLK_STS_AGAIN:
1734 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1735 		if (req->rq_flags & RQF_DONTPREP)
1736 			scsi_mq_uninit_cmd(cmd);
1737 		break;
1738 	default:
1739 		if (unlikely(!scsi_device_online(sdev)))
1740 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1741 		else
1742 			scsi_req(req)->result = DID_ERROR << 16;
1743 		/*
1744 		 * Make sure to release all allocated resources when
1745 		 * we hit an error, as we will never see this command
1746 		 * again.
1747 		 */
1748 		if (req->rq_flags & RQF_DONTPREP)
1749 			scsi_mq_uninit_cmd(cmd);
1750 		scsi_run_queue_async(sdev);
1751 		break;
1752 	}
1753 	return ret;
1754 }
1755 
scsi_timeout(struct request * req,bool reserved)1756 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1757 		bool reserved)
1758 {
1759 	if (reserved)
1760 		return BLK_EH_RESET_TIMER;
1761 	return scsi_times_out(req);
1762 }
1763 
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1764 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1765 				unsigned int hctx_idx, unsigned int numa_node)
1766 {
1767 	struct Scsi_Host *shost = set->driver_data;
1768 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1769 	struct scatterlist *sg;
1770 	int ret = 0;
1771 
1772 	cmd->sense_buffer =
1773 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1774 	if (!cmd->sense_buffer)
1775 		return -ENOMEM;
1776 	cmd->req.sense = cmd->sense_buffer;
1777 
1778 	if (scsi_host_get_prot(shost)) {
1779 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1780 			shost->hostt->cmd_size;
1781 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1782 	}
1783 
1784 	if (shost->hostt->init_cmd_priv) {
1785 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1786 		if (ret < 0)
1787 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1788 	}
1789 
1790 	return ret;
1791 }
1792 
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1793 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1794 				 unsigned int hctx_idx)
1795 {
1796 	struct Scsi_Host *shost = set->driver_data;
1797 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1798 
1799 	if (shost->hostt->exit_cmd_priv)
1800 		shost->hostt->exit_cmd_priv(shost, cmd);
1801 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1802 }
1803 
1804 
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1805 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1806 {
1807 	struct Scsi_Host *shost = hctx->driver_data;
1808 
1809 	if (shost->hostt->mq_poll)
1810 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1811 
1812 	return 0;
1813 }
1814 
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1815 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1816 			  unsigned int hctx_idx)
1817 {
1818 	struct Scsi_Host *shost = data;
1819 
1820 	hctx->driver_data = shost;
1821 	return 0;
1822 }
1823 
scsi_map_queues(struct blk_mq_tag_set * set)1824 static int scsi_map_queues(struct blk_mq_tag_set *set)
1825 {
1826 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1827 
1828 	if (shost->hostt->map_queues)
1829 		return shost->hostt->map_queues(shost);
1830 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1831 }
1832 
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1833 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1834 {
1835 	struct device *dev = shost->dma_dev;
1836 
1837 	/*
1838 	 * this limit is imposed by hardware restrictions
1839 	 */
1840 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1841 					SG_MAX_SEGMENTS));
1842 
1843 	if (scsi_host_prot_dma(shost)) {
1844 		shost->sg_prot_tablesize =
1845 			min_not_zero(shost->sg_prot_tablesize,
1846 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1847 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1848 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1849 	}
1850 
1851 	if (dev->dma_mask) {
1852 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1853 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1854 	}
1855 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1856 	blk_queue_segment_boundary(q, shost->dma_boundary);
1857 	dma_set_seg_boundary(dev, shost->dma_boundary);
1858 
1859 	blk_queue_max_segment_size(q, shost->max_segment_size);
1860 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1861 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1862 
1863 	/*
1864 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1865 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1866 	 * which is set by the platform.
1867 	 *
1868 	 * Devices that require a bigger alignment can increase it later.
1869 	 */
1870 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1871 }
1872 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1873 
1874 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1875 	.get_budget	= scsi_mq_get_budget,
1876 	.put_budget	= scsi_mq_put_budget,
1877 	.queue_rq	= scsi_queue_rq,
1878 	.complete	= scsi_complete,
1879 	.timeout	= scsi_timeout,
1880 #ifdef CONFIG_BLK_DEBUG_FS
1881 	.show_rq	= scsi_show_rq,
1882 #endif
1883 	.init_request	= scsi_mq_init_request,
1884 	.exit_request	= scsi_mq_exit_request,
1885 	.cleanup_rq	= scsi_cleanup_rq,
1886 	.busy		= scsi_mq_lld_busy,
1887 	.map_queues	= scsi_map_queues,
1888 	.init_hctx	= scsi_init_hctx,
1889 	.poll		= scsi_mq_poll,
1890 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1891 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1892 };
1893 
1894 
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1895 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1896 {
1897 	struct Scsi_Host *shost = hctx->driver_data;
1898 
1899 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1900 }
1901 
1902 static const struct blk_mq_ops scsi_mq_ops = {
1903 	.get_budget	= scsi_mq_get_budget,
1904 	.put_budget	= scsi_mq_put_budget,
1905 	.queue_rq	= scsi_queue_rq,
1906 	.commit_rqs	= scsi_commit_rqs,
1907 	.complete	= scsi_complete,
1908 	.timeout	= scsi_timeout,
1909 #ifdef CONFIG_BLK_DEBUG_FS
1910 	.show_rq	= scsi_show_rq,
1911 #endif
1912 	.init_request	= scsi_mq_init_request,
1913 	.exit_request	= scsi_mq_exit_request,
1914 	.cleanup_rq	= scsi_cleanup_rq,
1915 	.busy		= scsi_mq_lld_busy,
1916 	.map_queues	= scsi_map_queues,
1917 	.init_hctx	= scsi_init_hctx,
1918 	.poll		= scsi_mq_poll,
1919 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1920 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1921 };
1922 
scsi_mq_setup_tags(struct Scsi_Host * shost)1923 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1924 {
1925 	unsigned int cmd_size, sgl_size;
1926 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1927 
1928 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1929 				scsi_mq_inline_sgl_size(shost));
1930 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1931 	if (scsi_host_get_prot(shost))
1932 		cmd_size += sizeof(struct scsi_data_buffer) +
1933 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1934 
1935 	memset(tag_set, 0, sizeof(*tag_set));
1936 	if (shost->hostt->commit_rqs)
1937 		tag_set->ops = &scsi_mq_ops;
1938 	else
1939 		tag_set->ops = &scsi_mq_ops_no_commit;
1940 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1941 	tag_set->nr_maps = shost->nr_maps ? : 1;
1942 	tag_set->queue_depth = shost->can_queue;
1943 	tag_set->cmd_size = cmd_size;
1944 	tag_set->numa_node = NUMA_NO_NODE;
1945 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1946 	tag_set->flags |=
1947 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1948 	tag_set->driver_data = shost;
1949 	if (shost->host_tagset)
1950 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1951 
1952 	return blk_mq_alloc_tag_set(tag_set);
1953 }
1954 
scsi_mq_destroy_tags(struct Scsi_Host * shost)1955 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1956 {
1957 	blk_mq_free_tag_set(&shost->tag_set);
1958 }
1959 
1960 /**
1961  * scsi_device_from_queue - return sdev associated with a request_queue
1962  * @q: The request queue to return the sdev from
1963  *
1964  * Return the sdev associated with a request queue or NULL if the
1965  * request_queue does not reference a SCSI device.
1966  */
scsi_device_from_queue(struct request_queue * q)1967 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1968 {
1969 	struct scsi_device *sdev = NULL;
1970 
1971 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1972 	    q->mq_ops == &scsi_mq_ops)
1973 		sdev = q->queuedata;
1974 	if (!sdev || !get_device(&sdev->sdev_gendev))
1975 		sdev = NULL;
1976 
1977 	return sdev;
1978 }
1979 /*
1980  * pktcdvd should have been integrated into the SCSI layers, but for historical
1981  * reasons like the old IDE driver it isn't.  This export allows it to safely
1982  * probe if a given device is a SCSI one and only attach to that.
1983  */
1984 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
1985 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1986 #endif
1987 
1988 /**
1989  * scsi_block_requests - Utility function used by low-level drivers to prevent
1990  * further commands from being queued to the device.
1991  * @shost:  host in question
1992  *
1993  * There is no timer nor any other means by which the requests get unblocked
1994  * other than the low-level driver calling scsi_unblock_requests().
1995  */
scsi_block_requests(struct Scsi_Host * shost)1996 void scsi_block_requests(struct Scsi_Host *shost)
1997 {
1998 	shost->host_self_blocked = 1;
1999 }
2000 EXPORT_SYMBOL(scsi_block_requests);
2001 
2002 /**
2003  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2004  * further commands to be queued to the device.
2005  * @shost:  host in question
2006  *
2007  * There is no timer nor any other means by which the requests get unblocked
2008  * other than the low-level driver calling scsi_unblock_requests(). This is done
2009  * as an API function so that changes to the internals of the scsi mid-layer
2010  * won't require wholesale changes to drivers that use this feature.
2011  */
scsi_unblock_requests(struct Scsi_Host * shost)2012 void scsi_unblock_requests(struct Scsi_Host *shost)
2013 {
2014 	shost->host_self_blocked = 0;
2015 	scsi_run_host_queues(shost);
2016 }
2017 EXPORT_SYMBOL(scsi_unblock_requests);
2018 
scsi_exit_queue(void)2019 void scsi_exit_queue(void)
2020 {
2021 	kmem_cache_destroy(scsi_sense_cache);
2022 }
2023 
2024 /**
2025  *	scsi_mode_select - issue a mode select
2026  *	@sdev:	SCSI device to be queried
2027  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2028  *	@sp:	Save page bit (0 == don't save, 1 == save)
2029  *	@modepage: mode page being requested
2030  *	@buffer: request buffer (may not be smaller than eight bytes)
2031  *	@len:	length of request buffer.
2032  *	@timeout: command timeout
2033  *	@retries: number of retries before failing
2034  *	@data: returns a structure abstracting the mode header data
2035  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2036  *		must be SCSI_SENSE_BUFFERSIZE big.
2037  *
2038  *	Returns zero if successful; negative error number or scsi
2039  *	status on error
2040  *
2041  */
2042 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2043 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2044 		 unsigned char *buffer, int len, int timeout, int retries,
2045 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2046 {
2047 	unsigned char cmd[10];
2048 	unsigned char *real_buffer;
2049 	int ret;
2050 
2051 	memset(cmd, 0, sizeof(cmd));
2052 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2053 
2054 	/*
2055 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2056 	 * and the mode select header cannot fit within the maximumm 255 bytes
2057 	 * of the MODE SELECT(6) command.
2058 	 */
2059 	if (sdev->use_10_for_ms ||
2060 	    len + 4 > 255 ||
2061 	    data->block_descriptor_length > 255) {
2062 		if (len > 65535 - 8)
2063 			return -EINVAL;
2064 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2065 		if (!real_buffer)
2066 			return -ENOMEM;
2067 		memcpy(real_buffer + 8, buffer, len);
2068 		len += 8;
2069 		real_buffer[0] = 0;
2070 		real_buffer[1] = 0;
2071 		real_buffer[2] = data->medium_type;
2072 		real_buffer[3] = data->device_specific;
2073 		real_buffer[4] = data->longlba ? 0x01 : 0;
2074 		real_buffer[5] = 0;
2075 		put_unaligned_be16(data->block_descriptor_length,
2076 				   &real_buffer[6]);
2077 
2078 		cmd[0] = MODE_SELECT_10;
2079 		put_unaligned_be16(len, &cmd[7]);
2080 	} else {
2081 		if (data->longlba)
2082 			return -EINVAL;
2083 
2084 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2085 		if (!real_buffer)
2086 			return -ENOMEM;
2087 		memcpy(real_buffer + 4, buffer, len);
2088 		len += 4;
2089 		real_buffer[0] = 0;
2090 		real_buffer[1] = data->medium_type;
2091 		real_buffer[2] = data->device_specific;
2092 		real_buffer[3] = data->block_descriptor_length;
2093 
2094 		cmd[0] = MODE_SELECT;
2095 		cmd[4] = len;
2096 	}
2097 
2098 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2099 			       sshdr, timeout, retries, NULL);
2100 	kfree(real_buffer);
2101 	return ret;
2102 }
2103 EXPORT_SYMBOL_GPL(scsi_mode_select);
2104 
2105 /**
2106  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2107  *	@sdev:	SCSI device to be queried
2108  *	@dbd:	set to prevent mode sense from returning block descriptors
2109  *	@modepage: mode page being requested
2110  *	@buffer: request buffer (may not be smaller than eight bytes)
2111  *	@len:	length of request buffer.
2112  *	@timeout: command timeout
2113  *	@retries: number of retries before failing
2114  *	@data: returns a structure abstracting the mode header data
2115  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2116  *		must be SCSI_SENSE_BUFFERSIZE big.
2117  *
2118  *	Returns zero if successful, or a negative error number on failure
2119  */
2120 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2121 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2122 		  unsigned char *buffer, int len, int timeout, int retries,
2123 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2124 {
2125 	unsigned char cmd[12];
2126 	int use_10_for_ms;
2127 	int header_length;
2128 	int result, retry_count = retries;
2129 	struct scsi_sense_hdr my_sshdr;
2130 
2131 	memset(data, 0, sizeof(*data));
2132 	memset(&cmd[0], 0, 12);
2133 
2134 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2135 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2136 	cmd[2] = modepage;
2137 
2138 	/* caller might not be interested in sense, but we need it */
2139 	if (!sshdr)
2140 		sshdr = &my_sshdr;
2141 
2142  retry:
2143 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2144 
2145 	if (use_10_for_ms) {
2146 		if (len < 8 || len > 65535)
2147 			return -EINVAL;
2148 
2149 		cmd[0] = MODE_SENSE_10;
2150 		put_unaligned_be16(len, &cmd[7]);
2151 		header_length = 8;
2152 	} else {
2153 		if (len < 4)
2154 			return -EINVAL;
2155 
2156 		cmd[0] = MODE_SENSE;
2157 		cmd[4] = len;
2158 		header_length = 4;
2159 	}
2160 
2161 	memset(buffer, 0, len);
2162 
2163 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2164 				  sshdr, timeout, retries, NULL);
2165 	if (result < 0)
2166 		return result;
2167 
2168 	/* This code looks awful: what it's doing is making sure an
2169 	 * ILLEGAL REQUEST sense return identifies the actual command
2170 	 * byte as the problem.  MODE_SENSE commands can return
2171 	 * ILLEGAL REQUEST if the code page isn't supported */
2172 
2173 	if (!scsi_status_is_good(result)) {
2174 		if (scsi_sense_valid(sshdr)) {
2175 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2176 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2177 				/*
2178 				 * Invalid command operation code: retry using
2179 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2180 				 * request, except if the request mode page is
2181 				 * too large for MODE SENSE single byte
2182 				 * allocation length field.
2183 				 */
2184 				if (use_10_for_ms) {
2185 					if (len > 255)
2186 						return -EIO;
2187 					sdev->use_10_for_ms = 0;
2188 					goto retry;
2189 				}
2190 			}
2191 			if (scsi_status_is_check_condition(result) &&
2192 			    sshdr->sense_key == UNIT_ATTENTION &&
2193 			    retry_count) {
2194 				retry_count--;
2195 				goto retry;
2196 			}
2197 		}
2198 		return -EIO;
2199 	}
2200 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2201 		     (modepage == 6 || modepage == 8))) {
2202 		/* Initio breakage? */
2203 		header_length = 0;
2204 		data->length = 13;
2205 		data->medium_type = 0;
2206 		data->device_specific = 0;
2207 		data->longlba = 0;
2208 		data->block_descriptor_length = 0;
2209 	} else if (use_10_for_ms) {
2210 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2211 		data->medium_type = buffer[2];
2212 		data->device_specific = buffer[3];
2213 		data->longlba = buffer[4] & 0x01;
2214 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2215 	} else {
2216 		data->length = buffer[0] + 1;
2217 		data->medium_type = buffer[1];
2218 		data->device_specific = buffer[2];
2219 		data->block_descriptor_length = buffer[3];
2220 	}
2221 	data->header_length = header_length;
2222 
2223 	return 0;
2224 }
2225 EXPORT_SYMBOL(scsi_mode_sense);
2226 
2227 /**
2228  *	scsi_test_unit_ready - test if unit is ready
2229  *	@sdev:	scsi device to change the state of.
2230  *	@timeout: command timeout
2231  *	@retries: number of retries before failing
2232  *	@sshdr: outpout pointer for decoded sense information.
2233  *
2234  *	Returns zero if unsuccessful or an error if TUR failed.  For
2235  *	removable media, UNIT_ATTENTION sets ->changed flag.
2236  **/
2237 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2238 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2239 		     struct scsi_sense_hdr *sshdr)
2240 {
2241 	char cmd[] = {
2242 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2243 	};
2244 	int result;
2245 
2246 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2247 	do {
2248 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2249 					  timeout, 1, NULL);
2250 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2251 		    sshdr->sense_key == UNIT_ATTENTION)
2252 			sdev->changed = 1;
2253 	} while (scsi_sense_valid(sshdr) &&
2254 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2255 
2256 	return result;
2257 }
2258 EXPORT_SYMBOL(scsi_test_unit_ready);
2259 
2260 /**
2261  *	scsi_device_set_state - Take the given device through the device state model.
2262  *	@sdev:	scsi device to change the state of.
2263  *	@state:	state to change to.
2264  *
2265  *	Returns zero if successful or an error if the requested
2266  *	transition is illegal.
2267  */
2268 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2269 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2270 {
2271 	enum scsi_device_state oldstate = sdev->sdev_state;
2272 
2273 	if (state == oldstate)
2274 		return 0;
2275 
2276 	switch (state) {
2277 	case SDEV_CREATED:
2278 		switch (oldstate) {
2279 		case SDEV_CREATED_BLOCK:
2280 			break;
2281 		default:
2282 			goto illegal;
2283 		}
2284 		break;
2285 
2286 	case SDEV_RUNNING:
2287 		switch (oldstate) {
2288 		case SDEV_CREATED:
2289 		case SDEV_OFFLINE:
2290 		case SDEV_TRANSPORT_OFFLINE:
2291 		case SDEV_QUIESCE:
2292 		case SDEV_BLOCK:
2293 			break;
2294 		default:
2295 			goto illegal;
2296 		}
2297 		break;
2298 
2299 	case SDEV_QUIESCE:
2300 		switch (oldstate) {
2301 		case SDEV_RUNNING:
2302 		case SDEV_OFFLINE:
2303 		case SDEV_TRANSPORT_OFFLINE:
2304 			break;
2305 		default:
2306 			goto illegal;
2307 		}
2308 		break;
2309 
2310 	case SDEV_OFFLINE:
2311 	case SDEV_TRANSPORT_OFFLINE:
2312 		switch (oldstate) {
2313 		case SDEV_CREATED:
2314 		case SDEV_RUNNING:
2315 		case SDEV_QUIESCE:
2316 		case SDEV_BLOCK:
2317 			break;
2318 		default:
2319 			goto illegal;
2320 		}
2321 		break;
2322 
2323 	case SDEV_BLOCK:
2324 		switch (oldstate) {
2325 		case SDEV_RUNNING:
2326 		case SDEV_CREATED_BLOCK:
2327 		case SDEV_QUIESCE:
2328 		case SDEV_OFFLINE:
2329 			break;
2330 		default:
2331 			goto illegal;
2332 		}
2333 		break;
2334 
2335 	case SDEV_CREATED_BLOCK:
2336 		switch (oldstate) {
2337 		case SDEV_CREATED:
2338 			break;
2339 		default:
2340 			goto illegal;
2341 		}
2342 		break;
2343 
2344 	case SDEV_CANCEL:
2345 		switch (oldstate) {
2346 		case SDEV_CREATED:
2347 		case SDEV_RUNNING:
2348 		case SDEV_QUIESCE:
2349 		case SDEV_OFFLINE:
2350 		case SDEV_TRANSPORT_OFFLINE:
2351 			break;
2352 		default:
2353 			goto illegal;
2354 		}
2355 		break;
2356 
2357 	case SDEV_DEL:
2358 		switch (oldstate) {
2359 		case SDEV_CREATED:
2360 		case SDEV_RUNNING:
2361 		case SDEV_OFFLINE:
2362 		case SDEV_TRANSPORT_OFFLINE:
2363 		case SDEV_CANCEL:
2364 		case SDEV_BLOCK:
2365 		case SDEV_CREATED_BLOCK:
2366 			break;
2367 		default:
2368 			goto illegal;
2369 		}
2370 		break;
2371 
2372 	}
2373 	sdev->offline_already = false;
2374 	sdev->sdev_state = state;
2375 	return 0;
2376 
2377  illegal:
2378 	SCSI_LOG_ERROR_RECOVERY(1,
2379 				sdev_printk(KERN_ERR, sdev,
2380 					    "Illegal state transition %s->%s",
2381 					    scsi_device_state_name(oldstate),
2382 					    scsi_device_state_name(state))
2383 				);
2384 	return -EINVAL;
2385 }
2386 EXPORT_SYMBOL(scsi_device_set_state);
2387 
2388 /**
2389  *	scsi_evt_emit - emit a single SCSI device uevent
2390  *	@sdev: associated SCSI device
2391  *	@evt: event to emit
2392  *
2393  *	Send a single uevent (scsi_event) to the associated scsi_device.
2394  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2395 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2396 {
2397 	int idx = 0;
2398 	char *envp[3];
2399 
2400 	switch (evt->evt_type) {
2401 	case SDEV_EVT_MEDIA_CHANGE:
2402 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2403 		break;
2404 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2405 		scsi_rescan_device(&sdev->sdev_gendev);
2406 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2407 		break;
2408 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2409 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2410 		break;
2411 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2412 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2413 		break;
2414 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2415 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2416 		break;
2417 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2418 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2419 		break;
2420 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2421 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2422 		break;
2423 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2424 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2425 		break;
2426 	default:
2427 		/* do nothing */
2428 		break;
2429 	}
2430 
2431 	envp[idx++] = NULL;
2432 
2433 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2434 }
2435 
2436 /**
2437  *	scsi_evt_thread - send a uevent for each scsi event
2438  *	@work: work struct for scsi_device
2439  *
2440  *	Dispatch queued events to their associated scsi_device kobjects
2441  *	as uevents.
2442  */
scsi_evt_thread(struct work_struct * work)2443 void scsi_evt_thread(struct work_struct *work)
2444 {
2445 	struct scsi_device *sdev;
2446 	enum scsi_device_event evt_type;
2447 	LIST_HEAD(event_list);
2448 
2449 	sdev = container_of(work, struct scsi_device, event_work);
2450 
2451 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2452 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2453 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2454 
2455 	while (1) {
2456 		struct scsi_event *evt;
2457 		struct list_head *this, *tmp;
2458 		unsigned long flags;
2459 
2460 		spin_lock_irqsave(&sdev->list_lock, flags);
2461 		list_splice_init(&sdev->event_list, &event_list);
2462 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2463 
2464 		if (list_empty(&event_list))
2465 			break;
2466 
2467 		list_for_each_safe(this, tmp, &event_list) {
2468 			evt = list_entry(this, struct scsi_event, node);
2469 			list_del(&evt->node);
2470 			scsi_evt_emit(sdev, evt);
2471 			kfree(evt);
2472 		}
2473 	}
2474 }
2475 
2476 /**
2477  * 	sdev_evt_send - send asserted event to uevent thread
2478  *	@sdev: scsi_device event occurred on
2479  *	@evt: event to send
2480  *
2481  *	Assert scsi device event asynchronously.
2482  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2483 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2484 {
2485 	unsigned long flags;
2486 
2487 #if 0
2488 	/* FIXME: currently this check eliminates all media change events
2489 	 * for polled devices.  Need to update to discriminate between AN
2490 	 * and polled events */
2491 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2492 		kfree(evt);
2493 		return;
2494 	}
2495 #endif
2496 
2497 	spin_lock_irqsave(&sdev->list_lock, flags);
2498 	list_add_tail(&evt->node, &sdev->event_list);
2499 	schedule_work(&sdev->event_work);
2500 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2501 }
2502 EXPORT_SYMBOL_GPL(sdev_evt_send);
2503 
2504 /**
2505  * 	sdev_evt_alloc - allocate a new scsi event
2506  *	@evt_type: type of event to allocate
2507  *	@gfpflags: GFP flags for allocation
2508  *
2509  *	Allocates and returns a new scsi_event.
2510  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2511 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2512 				  gfp_t gfpflags)
2513 {
2514 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2515 	if (!evt)
2516 		return NULL;
2517 
2518 	evt->evt_type = evt_type;
2519 	INIT_LIST_HEAD(&evt->node);
2520 
2521 	/* evt_type-specific initialization, if any */
2522 	switch (evt_type) {
2523 	case SDEV_EVT_MEDIA_CHANGE:
2524 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2525 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2526 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2527 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2528 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2529 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2530 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2531 	default:
2532 		/* do nothing */
2533 		break;
2534 	}
2535 
2536 	return evt;
2537 }
2538 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2539 
2540 /**
2541  * 	sdev_evt_send_simple - send asserted event to uevent thread
2542  *	@sdev: scsi_device event occurred on
2543  *	@evt_type: type of event to send
2544  *	@gfpflags: GFP flags for allocation
2545  *
2546  *	Assert scsi device event asynchronously, given an event type.
2547  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2548 void sdev_evt_send_simple(struct scsi_device *sdev,
2549 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2550 {
2551 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2552 	if (!evt) {
2553 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2554 			    evt_type);
2555 		return;
2556 	}
2557 
2558 	sdev_evt_send(sdev, evt);
2559 }
2560 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2561 
2562 /**
2563  *	scsi_device_quiesce - Block all commands except power management.
2564  *	@sdev:	scsi device to quiesce.
2565  *
2566  *	This works by trying to transition to the SDEV_QUIESCE state
2567  *	(which must be a legal transition).  When the device is in this
2568  *	state, only power management requests will be accepted, all others will
2569  *	be deferred.
2570  *
2571  *	Must be called with user context, may sleep.
2572  *
2573  *	Returns zero if unsuccessful or an error if not.
2574  */
2575 int
scsi_device_quiesce(struct scsi_device * sdev)2576 scsi_device_quiesce(struct scsi_device *sdev)
2577 {
2578 	struct request_queue *q = sdev->request_queue;
2579 	int err;
2580 
2581 	/*
2582 	 * It is allowed to call scsi_device_quiesce() multiple times from
2583 	 * the same context but concurrent scsi_device_quiesce() calls are
2584 	 * not allowed.
2585 	 */
2586 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2587 
2588 	if (sdev->quiesced_by == current)
2589 		return 0;
2590 
2591 	blk_set_pm_only(q);
2592 
2593 	blk_mq_freeze_queue(q);
2594 	/*
2595 	 * Ensure that the effect of blk_set_pm_only() will be visible
2596 	 * for percpu_ref_tryget() callers that occur after the queue
2597 	 * unfreeze even if the queue was already frozen before this function
2598 	 * was called. See also https://lwn.net/Articles/573497/.
2599 	 */
2600 	synchronize_rcu();
2601 	blk_mq_unfreeze_queue(q);
2602 
2603 	mutex_lock(&sdev->state_mutex);
2604 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2605 	if (err == 0)
2606 		sdev->quiesced_by = current;
2607 	else
2608 		blk_clear_pm_only(q);
2609 	mutex_unlock(&sdev->state_mutex);
2610 
2611 	return err;
2612 }
2613 EXPORT_SYMBOL(scsi_device_quiesce);
2614 
2615 /**
2616  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2617  *	@sdev:	scsi device to resume.
2618  *
2619  *	Moves the device from quiesced back to running and restarts the
2620  *	queues.
2621  *
2622  *	Must be called with user context, may sleep.
2623  */
scsi_device_resume(struct scsi_device * sdev)2624 void scsi_device_resume(struct scsi_device *sdev)
2625 {
2626 	/* check if the device state was mutated prior to resume, and if
2627 	 * so assume the state is being managed elsewhere (for example
2628 	 * device deleted during suspend)
2629 	 */
2630 	mutex_lock(&sdev->state_mutex);
2631 	if (sdev->sdev_state == SDEV_QUIESCE)
2632 		scsi_device_set_state(sdev, SDEV_RUNNING);
2633 	if (sdev->quiesced_by) {
2634 		sdev->quiesced_by = NULL;
2635 		blk_clear_pm_only(sdev->request_queue);
2636 	}
2637 	mutex_unlock(&sdev->state_mutex);
2638 }
2639 EXPORT_SYMBOL(scsi_device_resume);
2640 
2641 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2642 device_quiesce_fn(struct scsi_device *sdev, void *data)
2643 {
2644 	scsi_device_quiesce(sdev);
2645 }
2646 
2647 void
scsi_target_quiesce(struct scsi_target * starget)2648 scsi_target_quiesce(struct scsi_target *starget)
2649 {
2650 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2651 }
2652 EXPORT_SYMBOL(scsi_target_quiesce);
2653 
2654 static void
device_resume_fn(struct scsi_device * sdev,void * data)2655 device_resume_fn(struct scsi_device *sdev, void *data)
2656 {
2657 	scsi_device_resume(sdev);
2658 }
2659 
2660 void
scsi_target_resume(struct scsi_target * starget)2661 scsi_target_resume(struct scsi_target *starget)
2662 {
2663 	starget_for_each_device(starget, NULL, device_resume_fn);
2664 }
2665 EXPORT_SYMBOL(scsi_target_resume);
2666 
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2667 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2668 {
2669 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2670 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2671 
2672 	return 0;
2673 }
2674 
scsi_start_queue(struct scsi_device * sdev)2675 void scsi_start_queue(struct scsi_device *sdev)
2676 {
2677 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2678 		blk_mq_unquiesce_queue(sdev->request_queue);
2679 }
2680 
scsi_stop_queue(struct scsi_device * sdev,bool nowait)2681 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2682 {
2683 	/*
2684 	 * The atomic variable of ->queue_stopped covers that
2685 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2686 	 *
2687 	 * However, we still need to wait until quiesce is done
2688 	 * in case that queue has been stopped.
2689 	 */
2690 	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2691 		if (nowait)
2692 			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2693 		else
2694 			blk_mq_quiesce_queue(sdev->request_queue);
2695 	} else {
2696 		if (!nowait)
2697 			blk_mq_wait_quiesce_done(sdev->request_queue);
2698 	}
2699 }
2700 
2701 /**
2702  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2703  * @sdev: device to block
2704  *
2705  * Pause SCSI command processing on the specified device. Does not sleep.
2706  *
2707  * Returns zero if successful or a negative error code upon failure.
2708  *
2709  * Notes:
2710  * This routine transitions the device to the SDEV_BLOCK state (which must be
2711  * a legal transition). When the device is in this state, command processing
2712  * is paused until the device leaves the SDEV_BLOCK state. See also
2713  * scsi_internal_device_unblock_nowait().
2714  */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2715 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2716 {
2717 	int ret = __scsi_internal_device_block_nowait(sdev);
2718 
2719 	/*
2720 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2721 	 * block layer from calling the midlayer with this device's
2722 	 * request queue.
2723 	 */
2724 	if (!ret)
2725 		scsi_stop_queue(sdev, true);
2726 	return ret;
2727 }
2728 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2729 
2730 /**
2731  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2732  * @sdev: device to block
2733  *
2734  * Pause SCSI command processing on the specified device and wait until all
2735  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2736  *
2737  * Returns zero if successful or a negative error code upon failure.
2738  *
2739  * Note:
2740  * This routine transitions the device to the SDEV_BLOCK state (which must be
2741  * a legal transition). When the device is in this state, command processing
2742  * is paused until the device leaves the SDEV_BLOCK state. See also
2743  * scsi_internal_device_unblock().
2744  */
scsi_internal_device_block(struct scsi_device * sdev)2745 static int scsi_internal_device_block(struct scsi_device *sdev)
2746 {
2747 	int err;
2748 
2749 	mutex_lock(&sdev->state_mutex);
2750 	err = __scsi_internal_device_block_nowait(sdev);
2751 	if (err == 0)
2752 		scsi_stop_queue(sdev, false);
2753 	mutex_unlock(&sdev->state_mutex);
2754 
2755 	return err;
2756 }
2757 
2758 /**
2759  * scsi_internal_device_unblock_nowait - resume a device after a block request
2760  * @sdev:	device to resume
2761  * @new_state:	state to set the device to after unblocking
2762  *
2763  * Restart the device queue for a previously suspended SCSI device. Does not
2764  * sleep.
2765  *
2766  * Returns zero if successful or a negative error code upon failure.
2767  *
2768  * Notes:
2769  * This routine transitions the device to the SDEV_RUNNING state or to one of
2770  * the offline states (which must be a legal transition) allowing the midlayer
2771  * to goose the queue for this device.
2772  */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2773 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2774 					enum scsi_device_state new_state)
2775 {
2776 	switch (new_state) {
2777 	case SDEV_RUNNING:
2778 	case SDEV_TRANSPORT_OFFLINE:
2779 		break;
2780 	default:
2781 		return -EINVAL;
2782 	}
2783 
2784 	/*
2785 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2786 	 * offlined states and goose the device queue if successful.
2787 	 */
2788 	switch (sdev->sdev_state) {
2789 	case SDEV_BLOCK:
2790 	case SDEV_TRANSPORT_OFFLINE:
2791 		sdev->sdev_state = new_state;
2792 		break;
2793 	case SDEV_CREATED_BLOCK:
2794 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2795 		    new_state == SDEV_OFFLINE)
2796 			sdev->sdev_state = new_state;
2797 		else
2798 			sdev->sdev_state = SDEV_CREATED;
2799 		break;
2800 	case SDEV_CANCEL:
2801 	case SDEV_OFFLINE:
2802 		break;
2803 	default:
2804 		return -EINVAL;
2805 	}
2806 	scsi_start_queue(sdev);
2807 
2808 	return 0;
2809 }
2810 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2811 
2812 /**
2813  * scsi_internal_device_unblock - resume a device after a block request
2814  * @sdev:	device to resume
2815  * @new_state:	state to set the device to after unblocking
2816  *
2817  * Restart the device queue for a previously suspended SCSI device. May sleep.
2818  *
2819  * Returns zero if successful or a negative error code upon failure.
2820  *
2821  * Notes:
2822  * This routine transitions the device to the SDEV_RUNNING state or to one of
2823  * the offline states (which must be a legal transition) allowing the midlayer
2824  * to goose the queue for this device.
2825  */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2826 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2827 					enum scsi_device_state new_state)
2828 {
2829 	int ret;
2830 
2831 	mutex_lock(&sdev->state_mutex);
2832 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2833 	mutex_unlock(&sdev->state_mutex);
2834 
2835 	return ret;
2836 }
2837 
2838 static void
device_block(struct scsi_device * sdev,void * data)2839 device_block(struct scsi_device *sdev, void *data)
2840 {
2841 	int ret;
2842 
2843 	ret = scsi_internal_device_block(sdev);
2844 
2845 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2846 		  dev_name(&sdev->sdev_gendev), ret);
2847 }
2848 
2849 static int
target_block(struct device * dev,void * data)2850 target_block(struct device *dev, void *data)
2851 {
2852 	if (scsi_is_target_device(dev))
2853 		starget_for_each_device(to_scsi_target(dev), NULL,
2854 					device_block);
2855 	return 0;
2856 }
2857 
2858 void
scsi_target_block(struct device * dev)2859 scsi_target_block(struct device *dev)
2860 {
2861 	if (scsi_is_target_device(dev))
2862 		starget_for_each_device(to_scsi_target(dev), NULL,
2863 					device_block);
2864 	else
2865 		device_for_each_child(dev, NULL, target_block);
2866 }
2867 EXPORT_SYMBOL_GPL(scsi_target_block);
2868 
2869 static void
device_unblock(struct scsi_device * sdev,void * data)2870 device_unblock(struct scsi_device *sdev, void *data)
2871 {
2872 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2873 }
2874 
2875 static int
target_unblock(struct device * dev,void * data)2876 target_unblock(struct device *dev, void *data)
2877 {
2878 	if (scsi_is_target_device(dev))
2879 		starget_for_each_device(to_scsi_target(dev), data,
2880 					device_unblock);
2881 	return 0;
2882 }
2883 
2884 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2885 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2886 {
2887 	if (scsi_is_target_device(dev))
2888 		starget_for_each_device(to_scsi_target(dev), &new_state,
2889 					device_unblock);
2890 	else
2891 		device_for_each_child(dev, &new_state, target_unblock);
2892 }
2893 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2894 
2895 int
scsi_host_block(struct Scsi_Host * shost)2896 scsi_host_block(struct Scsi_Host *shost)
2897 {
2898 	struct scsi_device *sdev;
2899 	int ret = 0;
2900 
2901 	/*
2902 	 * Call scsi_internal_device_block_nowait so we can avoid
2903 	 * calling synchronize_rcu() for each LUN.
2904 	 */
2905 	shost_for_each_device(sdev, shost) {
2906 		mutex_lock(&sdev->state_mutex);
2907 		ret = scsi_internal_device_block_nowait(sdev);
2908 		mutex_unlock(&sdev->state_mutex);
2909 		if (ret) {
2910 			scsi_device_put(sdev);
2911 			break;
2912 		}
2913 	}
2914 
2915 	/*
2916 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2917 	 * calling synchronize_rcu() once is enough.
2918 	 */
2919 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2920 
2921 	if (!ret)
2922 		synchronize_rcu();
2923 
2924 	return ret;
2925 }
2926 EXPORT_SYMBOL_GPL(scsi_host_block);
2927 
2928 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2929 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2930 {
2931 	struct scsi_device *sdev;
2932 	int ret = 0;
2933 
2934 	shost_for_each_device(sdev, shost) {
2935 		ret = scsi_internal_device_unblock(sdev, new_state);
2936 		if (ret) {
2937 			scsi_device_put(sdev);
2938 			break;
2939 		}
2940 	}
2941 	return ret;
2942 }
2943 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2944 
2945 /**
2946  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2947  * @sgl:	scatter-gather list
2948  * @sg_count:	number of segments in sg
2949  * @offset:	offset in bytes into sg, on return offset into the mapped area
2950  * @len:	bytes to map, on return number of bytes mapped
2951  *
2952  * Returns virtual address of the start of the mapped page
2953  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2954 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2955 			  size_t *offset, size_t *len)
2956 {
2957 	int i;
2958 	size_t sg_len = 0, len_complete = 0;
2959 	struct scatterlist *sg;
2960 	struct page *page;
2961 
2962 	WARN_ON(!irqs_disabled());
2963 
2964 	for_each_sg(sgl, sg, sg_count, i) {
2965 		len_complete = sg_len; /* Complete sg-entries */
2966 		sg_len += sg->length;
2967 		if (sg_len > *offset)
2968 			break;
2969 	}
2970 
2971 	if (unlikely(i == sg_count)) {
2972 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2973 			"elements %d\n",
2974 		       __func__, sg_len, *offset, sg_count);
2975 		WARN_ON(1);
2976 		return NULL;
2977 	}
2978 
2979 	/* Offset starting from the beginning of first page in this sg-entry */
2980 	*offset = *offset - len_complete + sg->offset;
2981 
2982 	/* Assumption: contiguous pages can be accessed as "page + i" */
2983 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2984 	*offset &= ~PAGE_MASK;
2985 
2986 	/* Bytes in this sg-entry from *offset to the end of the page */
2987 	sg_len = PAGE_SIZE - *offset;
2988 	if (*len > sg_len)
2989 		*len = sg_len;
2990 
2991 	return kmap_atomic(page);
2992 }
2993 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2994 
2995 /**
2996  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2997  * @virt:	virtual address to be unmapped
2998  */
scsi_kunmap_atomic_sg(void * virt)2999 void scsi_kunmap_atomic_sg(void *virt)
3000 {
3001 	kunmap_atomic(virt);
3002 }
3003 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3004 
sdev_disable_disk_events(struct scsi_device * sdev)3005 void sdev_disable_disk_events(struct scsi_device *sdev)
3006 {
3007 	atomic_inc(&sdev->disk_events_disable_depth);
3008 }
3009 EXPORT_SYMBOL(sdev_disable_disk_events);
3010 
sdev_enable_disk_events(struct scsi_device * sdev)3011 void sdev_enable_disk_events(struct scsi_device *sdev)
3012 {
3013 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3014 		return;
3015 	atomic_dec(&sdev->disk_events_disable_depth);
3016 }
3017 EXPORT_SYMBOL(sdev_enable_disk_events);
3018 
designator_prio(const unsigned char * d)3019 static unsigned char designator_prio(const unsigned char *d)
3020 {
3021 	if (d[1] & 0x30)
3022 		/* not associated with LUN */
3023 		return 0;
3024 
3025 	if (d[3] == 0)
3026 		/* invalid length */
3027 		return 0;
3028 
3029 	/*
3030 	 * Order of preference for lun descriptor:
3031 	 * - SCSI name string
3032 	 * - NAA IEEE Registered Extended
3033 	 * - EUI-64 based 16-byte
3034 	 * - EUI-64 based 12-byte
3035 	 * - NAA IEEE Registered
3036 	 * - NAA IEEE Extended
3037 	 * - EUI-64 based 8-byte
3038 	 * - SCSI name string (truncated)
3039 	 * - T10 Vendor ID
3040 	 * as longer descriptors reduce the likelyhood
3041 	 * of identification clashes.
3042 	 */
3043 
3044 	switch (d[1] & 0xf) {
3045 	case 8:
3046 		/* SCSI name string, variable-length UTF-8 */
3047 		return 9;
3048 	case 3:
3049 		switch (d[4] >> 4) {
3050 		case 6:
3051 			/* NAA registered extended */
3052 			return 8;
3053 		case 5:
3054 			/* NAA registered */
3055 			return 5;
3056 		case 4:
3057 			/* NAA extended */
3058 			return 4;
3059 		case 3:
3060 			/* NAA locally assigned */
3061 			return 1;
3062 		default:
3063 			break;
3064 		}
3065 		break;
3066 	case 2:
3067 		switch (d[3]) {
3068 		case 16:
3069 			/* EUI64-based, 16 byte */
3070 			return 7;
3071 		case 12:
3072 			/* EUI64-based, 12 byte */
3073 			return 6;
3074 		case 8:
3075 			/* EUI64-based, 8 byte */
3076 			return 3;
3077 		default:
3078 			break;
3079 		}
3080 		break;
3081 	case 1:
3082 		/* T10 vendor ID */
3083 		return 1;
3084 	default:
3085 		break;
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 /**
3092  * scsi_vpd_lun_id - return a unique device identification
3093  * @sdev: SCSI device
3094  * @id:   buffer for the identification
3095  * @id_len:  length of the buffer
3096  *
3097  * Copies a unique device identification into @id based
3098  * on the information in the VPD page 0x83 of the device.
3099  * The string will be formatted as a SCSI name string.
3100  *
3101  * Returns the length of the identification or error on failure.
3102  * If the identifier is longer than the supplied buffer the actual
3103  * identifier length is returned and the buffer is not zero-padded.
3104  */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3105 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3106 {
3107 	u8 cur_id_prio = 0;
3108 	u8 cur_id_size = 0;
3109 	const unsigned char *d, *cur_id_str;
3110 	const struct scsi_vpd *vpd_pg83;
3111 	int id_size = -EINVAL;
3112 
3113 	rcu_read_lock();
3114 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3115 	if (!vpd_pg83) {
3116 		rcu_read_unlock();
3117 		return -ENXIO;
3118 	}
3119 
3120 	/* The id string must be at least 20 bytes + terminating NULL byte */
3121 	if (id_len < 21) {
3122 		rcu_read_unlock();
3123 		return -EINVAL;
3124 	}
3125 
3126 	memset(id, 0, id_len);
3127 	for (d = vpd_pg83->data + 4;
3128 	     d < vpd_pg83->data + vpd_pg83->len;
3129 	     d += d[3] + 4) {
3130 		u8 prio = designator_prio(d);
3131 
3132 		if (prio == 0 || cur_id_prio > prio)
3133 			continue;
3134 
3135 		switch (d[1] & 0xf) {
3136 		case 0x1:
3137 			/* T10 Vendor ID */
3138 			if (cur_id_size > d[3])
3139 				break;
3140 			cur_id_prio = prio;
3141 			cur_id_size = d[3];
3142 			if (cur_id_size + 4 > id_len)
3143 				cur_id_size = id_len - 4;
3144 			cur_id_str = d + 4;
3145 			id_size = snprintf(id, id_len, "t10.%*pE",
3146 					   cur_id_size, cur_id_str);
3147 			break;
3148 		case 0x2:
3149 			/* EUI-64 */
3150 			cur_id_prio = prio;
3151 			cur_id_size = d[3];
3152 			cur_id_str = d + 4;
3153 			switch (cur_id_size) {
3154 			case 8:
3155 				id_size = snprintf(id, id_len,
3156 						   "eui.%8phN",
3157 						   cur_id_str);
3158 				break;
3159 			case 12:
3160 				id_size = snprintf(id, id_len,
3161 						   "eui.%12phN",
3162 						   cur_id_str);
3163 				break;
3164 			case 16:
3165 				id_size = snprintf(id, id_len,
3166 						   "eui.%16phN",
3167 						   cur_id_str);
3168 				break;
3169 			default:
3170 				break;
3171 			}
3172 			break;
3173 		case 0x3:
3174 			/* NAA */
3175 			cur_id_prio = prio;
3176 			cur_id_size = d[3];
3177 			cur_id_str = d + 4;
3178 			switch (cur_id_size) {
3179 			case 8:
3180 				id_size = snprintf(id, id_len,
3181 						   "naa.%8phN",
3182 						   cur_id_str);
3183 				break;
3184 			case 16:
3185 				id_size = snprintf(id, id_len,
3186 						   "naa.%16phN",
3187 						   cur_id_str);
3188 				break;
3189 			default:
3190 				break;
3191 			}
3192 			break;
3193 		case 0x8:
3194 			/* SCSI name string */
3195 			if (cur_id_size > d[3])
3196 				break;
3197 			/* Prefer others for truncated descriptor */
3198 			if (d[3] > id_len) {
3199 				prio = 2;
3200 				if (cur_id_prio > prio)
3201 					break;
3202 			}
3203 			cur_id_prio = prio;
3204 			cur_id_size = id_size = d[3];
3205 			cur_id_str = d + 4;
3206 			if (cur_id_size >= id_len)
3207 				cur_id_size = id_len - 1;
3208 			memcpy(id, cur_id_str, cur_id_size);
3209 			break;
3210 		default:
3211 			break;
3212 		}
3213 	}
3214 	rcu_read_unlock();
3215 
3216 	return id_size;
3217 }
3218 EXPORT_SYMBOL(scsi_vpd_lun_id);
3219 
3220 /*
3221  * scsi_vpd_tpg_id - return a target port group identifier
3222  * @sdev: SCSI device
3223  *
3224  * Returns the Target Port Group identifier from the information
3225  * froom VPD page 0x83 of the device.
3226  *
3227  * Returns the identifier or error on failure.
3228  */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3229 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3230 {
3231 	const unsigned char *d;
3232 	const struct scsi_vpd *vpd_pg83;
3233 	int group_id = -EAGAIN, rel_port = -1;
3234 
3235 	rcu_read_lock();
3236 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3237 	if (!vpd_pg83) {
3238 		rcu_read_unlock();
3239 		return -ENXIO;
3240 	}
3241 
3242 	d = vpd_pg83->data + 4;
3243 	while (d < vpd_pg83->data + vpd_pg83->len) {
3244 		switch (d[1] & 0xf) {
3245 		case 0x4:
3246 			/* Relative target port */
3247 			rel_port = get_unaligned_be16(&d[6]);
3248 			break;
3249 		case 0x5:
3250 			/* Target port group */
3251 			group_id = get_unaligned_be16(&d[6]);
3252 			break;
3253 		default:
3254 			break;
3255 		}
3256 		d += d[3] + 4;
3257 	}
3258 	rcu_read_unlock();
3259 
3260 	if (group_id >= 0 && rel_id && rel_port != -1)
3261 		*rel_id = rel_port;
3262 
3263 	return group_id;
3264 }
3265 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3266 
3267 /**
3268  * scsi_build_sense - build sense data for a command
3269  * @scmd:	scsi command for which the sense should be formatted
3270  * @desc:	Sense format (non-zero == descriptor format,
3271  *              0 == fixed format)
3272  * @key:	Sense key
3273  * @asc:	Additional sense code
3274  * @ascq:	Additional sense code qualifier
3275  *
3276  **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3277 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3278 {
3279 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3280 	scmd->result = SAM_STAT_CHECK_CONDITION;
3281 }
3282 EXPORT_SYMBOL_GPL(scsi_build_sense);
3283