1 /*
2  * Copyright (c) 2017-2020, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <string.h>
10 
11 #include <arch.h>
12 #include <arch_helpers.h>
13 #include <context.h>
14 #include <common/debug.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #include <lib/xlat_tables/xlat_tables_v2.h>
17 #include <platform_def.h>
18 #include <plat/common/common_def.h>
19 #include <plat/common/platform.h>
20 #include <services/spm_mm_partition.h>
21 
22 #include "spm_mm_private.h"
23 #include "spm_mm_shim_private.h"
24 
25 /* Setup context of the Secure Partition */
spm_sp_setup(sp_context_t * sp_ctx)26 void spm_sp_setup(sp_context_t *sp_ctx)
27 {
28 	cpu_context_t *ctx = &(sp_ctx->cpu_ctx);
29 
30 	/* Pointer to the MP information from the platform port. */
31 	const spm_mm_boot_info_t *sp_boot_info =
32 			plat_get_secure_partition_boot_info(NULL);
33 
34 	/*
35 	 * Initialize CPU context
36 	 * ----------------------
37 	 */
38 
39 	entry_point_info_t ep_info = {0};
40 
41 	SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE);
42 
43 	/* Setup entrypoint and SPSR */
44 	ep_info.pc = sp_boot_info->sp_image_base;
45 	ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS);
46 
47 	/*
48 	 * X0: Virtual address of a buffer shared between EL3 and Secure EL0.
49 	 *     The buffer will be mapped in the Secure EL1 translation regime
50 	 *     with Normal IS WBWA attributes and RO data and Execute Never
51 	 *     instruction access permissions.
52 	 *
53 	 * X1: Size of the buffer in bytes
54 	 *
55 	 * X2: cookie value (Implementation Defined)
56 	 *
57 	 * X3: cookie value (Implementation Defined)
58 	 *
59 	 * X4 to X7 = 0
60 	 */
61 	ep_info.args.arg0 = sp_boot_info->sp_shared_buf_base;
62 	ep_info.args.arg1 = sp_boot_info->sp_shared_buf_size;
63 	ep_info.args.arg2 = PLAT_SPM_COOKIE_0;
64 	ep_info.args.arg3 = PLAT_SPM_COOKIE_1;
65 
66 	cm_setup_context(ctx, &ep_info);
67 
68 	/*
69 	 * SP_EL0: A non-zero value will indicate to the SP that the SPM has
70 	 * initialized the stack pointer for the current CPU through
71 	 * implementation defined means. The value will be 0 otherwise.
72 	 */
73 	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_SP_EL0,
74 			sp_boot_info->sp_stack_base + sp_boot_info->sp_pcpu_stack_size);
75 
76 	/*
77 	 * Setup translation tables
78 	 * ------------------------
79 	 */
80 
81 #if ENABLE_ASSERTIONS
82 
83 	/* Get max granularity supported by the platform. */
84 	unsigned int max_granule = xlat_arch_get_max_supported_granule_size();
85 
86 	VERBOSE("Max translation granule size supported: %u KiB\n",
87 		max_granule / 1024U);
88 
89 	unsigned int max_granule_mask = max_granule - 1U;
90 
91 	/* Base must be aligned to the max granularity */
92 	assert((sp_boot_info->sp_ns_comm_buf_base & max_granule_mask) == 0);
93 
94 	/* Size must be a multiple of the max granularity */
95 	assert((sp_boot_info->sp_ns_comm_buf_size & max_granule_mask) == 0);
96 
97 #endif /* ENABLE_ASSERTIONS */
98 
99 	/* This region contains the exception vectors used at S-EL1. */
100 	const mmap_region_t sel1_exception_vectors =
101 		MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
102 				SPM_SHIM_EXCEPTIONS_SIZE,
103 				MT_CODE | MT_SECURE | MT_PRIVILEGED);
104 	mmap_add_region_ctx(sp_ctx->xlat_ctx_handle,
105 			    &sel1_exception_vectors);
106 
107 	mmap_add_ctx(sp_ctx->xlat_ctx_handle,
108 		     plat_get_secure_partition_mmap(NULL));
109 
110 	init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle);
111 
112 	/*
113 	 * MMU-related registers
114 	 * ---------------------
115 	 */
116 	xlat_ctx_t *xlat_ctx = sp_ctx->xlat_ctx_handle;
117 
118 	uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
119 
120 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, 0, xlat_ctx->base_table,
121 		      xlat_ctx->pa_max_address, xlat_ctx->va_max_address,
122 		      EL1_EL0_REGIME);
123 
124 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_MAIR_EL1,
125 		      mmu_cfg_params[MMU_CFG_MAIR]);
126 
127 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_TCR_EL1,
128 		      mmu_cfg_params[MMU_CFG_TCR]);
129 
130 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_TTBR0_EL1,
131 		      mmu_cfg_params[MMU_CFG_TTBR0]);
132 
133 	/* Setup SCTLR_EL1 */
134 	u_register_t sctlr_el1 = read_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1);
135 
136 	sctlr_el1 |=
137 		/*SCTLR_EL1_RES1 |*/
138 		/* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */
139 		SCTLR_UCI_BIT							|
140 		/* RW regions at xlat regime EL1&0 are forced to be XN. */
141 		SCTLR_WXN_BIT							|
142 		/* Don't trap to EL1 execution of WFI or WFE at EL0. */
143 		SCTLR_NTWI_BIT | SCTLR_NTWE_BIT					|
144 		/* Don't trap to EL1 accesses to CTR_EL0 from EL0. */
145 		SCTLR_UCT_BIT							|
146 		/* Don't trap to EL1 execution of DZ ZVA at EL0. */
147 		SCTLR_DZE_BIT							|
148 		/* Enable SP Alignment check for EL0 */
149 		SCTLR_SA0_BIT							|
150 		/* Don't change PSTATE.PAN on taking an exception to EL1 */
151 		SCTLR_SPAN_BIT							|
152 		/* Allow cacheable data and instr. accesses to normal memory. */
153 		SCTLR_C_BIT | SCTLR_I_BIT					|
154 		/* Enable MMU. */
155 		SCTLR_M_BIT
156 	;
157 
158 	sctlr_el1 &= ~(
159 		/* Explicit data accesses at EL0 are little-endian. */
160 		SCTLR_E0E_BIT							|
161 		/*
162 		 * Alignment fault checking disabled when at EL1 and EL0 as
163 		 * the UEFI spec permits unaligned accesses.
164 		 */
165 		SCTLR_A_BIT							|
166 		/* Accesses to DAIF from EL0 are trapped to EL1. */
167 		SCTLR_UMA_BIT
168 	);
169 
170 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1);
171 
172 	/*
173 	 * Setup other system registers
174 	 * ----------------------------
175 	 */
176 
177 	/* Shim Exception Vector Base Address */
178 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_VBAR_EL1,
179 			SPM_SHIM_EXCEPTIONS_PTR);
180 
181 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_CNTKCTL_EL1,
182 		      EL0PTEN_BIT | EL0VTEN_BIT | EL0PCTEN_BIT | EL0VCTEN_BIT);
183 
184 	/*
185 	 * FPEN: Allow the Secure Partition to access FP/SIMD registers.
186 	 * Note that SPM will not do any saving/restoring of these registers on
187 	 * behalf of the SP. This falls under the SP's responsibility.
188 	 * TTA: Enable access to trace registers.
189 	 * ZEN (v8.2): Trap SVE instructions and access to SVE registers.
190 	 */
191 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_CPACR_EL1,
192 			CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_NONE));
193 
194 	/*
195 	 * Prepare information in buffer shared between EL3 and S-EL0
196 	 * ----------------------------------------------------------
197 	 */
198 
199 	void *shared_buf_ptr = (void *) sp_boot_info->sp_shared_buf_base;
200 
201 	/* Copy the boot information into the shared buffer with the SP. */
202 	assert((uintptr_t)shared_buf_ptr + sizeof(spm_mm_boot_info_t)
203 	       <= (sp_boot_info->sp_shared_buf_base + sp_boot_info->sp_shared_buf_size));
204 
205 	assert(sp_boot_info->sp_shared_buf_base <=
206 				(UINTPTR_MAX - sp_boot_info->sp_shared_buf_size + 1));
207 
208 	assert(sp_boot_info != NULL);
209 
210 	memcpy((void *) shared_buf_ptr, (const void *) sp_boot_info,
211 	       sizeof(spm_mm_boot_info_t));
212 
213 	/* Pointer to the MP information from the platform port. */
214 	spm_mm_mp_info_t *sp_mp_info =
215 		((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info;
216 
217 	assert(sp_mp_info != NULL);
218 
219 	/*
220 	 * Point the shared buffer MP information pointer to where the info will
221 	 * be populated, just after the boot info.
222 	 */
223 	((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info =
224 		(spm_mm_mp_info_t *) ((uintptr_t)shared_buf_ptr
225 				+ sizeof(spm_mm_boot_info_t));
226 
227 	/*
228 	 * Update the shared buffer pointer to where the MP information for the
229 	 * payload will be populated
230 	 */
231 	shared_buf_ptr = ((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info;
232 
233 	/*
234 	 * Copy the cpu information into the shared buffer area after the boot
235 	 * information.
236 	 */
237 	assert(sp_boot_info->num_cpus <= PLATFORM_CORE_COUNT);
238 
239 	assert((uintptr_t)shared_buf_ptr
240 	       <= (sp_boot_info->sp_shared_buf_base + sp_boot_info->sp_shared_buf_size -
241 		       (sp_boot_info->num_cpus * sizeof(*sp_mp_info))));
242 
243 	memcpy(shared_buf_ptr, (const void *) sp_mp_info,
244 		sp_boot_info->num_cpus * sizeof(*sp_mp_info));
245 
246 	/*
247 	 * Calculate the linear indices of cores in boot information for the
248 	 * secure partition and flag the primary CPU
249 	 */
250 	sp_mp_info = (spm_mm_mp_info_t *) shared_buf_ptr;
251 
252 	for (unsigned int index = 0; index < sp_boot_info->num_cpus; index++) {
253 		u_register_t mpidr = sp_mp_info[index].mpidr;
254 
255 		sp_mp_info[index].linear_id = plat_core_pos_by_mpidr(mpidr);
256 		if (plat_my_core_pos() == sp_mp_info[index].linear_id)
257 			sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU;
258 	}
259 }
260