1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
7
8 /*
9 * UBI wear-leveling sub-system.
10 *
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
20 *
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
32 *
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
36 *
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
51 *
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
78 *
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
86 */
87
88 #ifndef __UBOOT__
89 #include <log.h>
90 #include <dm/devres.h>
91 #include <linux/slab.h>
92 #include <linux/crc32.h>
93 #include <linux/freezer.h>
94 #include <linux/kthread.h>
95 #else
96 #include <ubi_uboot.h>
97 #endif
98
99 #include "ubi.h"
100 #include "wl.h"
101
102 /* Number of physical eraseblocks reserved for wear-leveling purposes */
103 #define WL_RESERVED_PEBS 1
104
105 /*
106 * Maximum difference between two erase counters. If this threshold is
107 * exceeded, the WL sub-system starts moving data from used physical
108 * eraseblocks with low erase counter to free physical eraseblocks with high
109 * erase counter.
110 */
111 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
112
113 /*
114 * When a physical eraseblock is moved, the WL sub-system has to pick the target
115 * physical eraseblock to move to. The simplest way would be just to pick the
116 * one with the highest erase counter. But in certain workloads this could lead
117 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
118 * situation when the picked physical eraseblock is constantly erased after the
119 * data is written to it. So, we have a constant which limits the highest erase
120 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
121 * does not pick eraseblocks with erase counter greater than the lowest erase
122 * counter plus %WL_FREE_MAX_DIFF.
123 */
124 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
125
126 /*
127 * Maximum number of consecutive background thread failures which is enough to
128 * switch to read-only mode.
129 */
130 #define WL_MAX_FAILURES 32
131
132 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
133 static int self_check_in_wl_tree(const struct ubi_device *ubi,
134 struct ubi_wl_entry *e, struct rb_root *root);
135 static int self_check_in_pq(const struct ubi_device *ubi,
136 struct ubi_wl_entry *e);
137
138 /**
139 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
140 * @e: the wear-leveling entry to add
141 * @root: the root of the tree
142 *
143 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
144 * the @ubi->used and @ubi->free RB-trees.
145 */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)146 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
147 {
148 struct rb_node **p, *parent = NULL;
149
150 p = &root->rb_node;
151 while (*p) {
152 struct ubi_wl_entry *e1;
153
154 parent = *p;
155 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
156
157 if (e->ec < e1->ec)
158 p = &(*p)->rb_left;
159 else if (e->ec > e1->ec)
160 p = &(*p)->rb_right;
161 else {
162 ubi_assert(e->pnum != e1->pnum);
163 if (e->pnum < e1->pnum)
164 p = &(*p)->rb_left;
165 else
166 p = &(*p)->rb_right;
167 }
168 }
169
170 rb_link_node(&e->u.rb, parent, p);
171 rb_insert_color(&e->u.rb, root);
172 }
173
174 /**
175 * wl_tree_destroy - destroy a wear-leveling entry.
176 * @ubi: UBI device description object
177 * @e: the wear-leveling entry to add
178 *
179 * This function destroys a wear leveling entry and removes
180 * the reference from the lookup table.
181 */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)182 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
183 {
184 ubi->lookuptbl[e->pnum] = NULL;
185 kmem_cache_free(ubi_wl_entry_slab, e);
186 }
187
188 /**
189 * do_work - do one pending work.
190 * @ubi: UBI device description object
191 *
192 * This function returns zero in case of success and a negative error code in
193 * case of failure.
194 */
do_work(struct ubi_device * ubi)195 static int do_work(struct ubi_device *ubi)
196 {
197 int err;
198 struct ubi_work *wrk;
199
200 cond_resched();
201
202 /*
203 * @ubi->work_sem is used to synchronize with the workers. Workers take
204 * it in read mode, so many of them may be doing works at a time. But
205 * the queue flush code has to be sure the whole queue of works is
206 * done, and it takes the mutex in write mode.
207 */
208 down_read(&ubi->work_sem);
209 spin_lock(&ubi->wl_lock);
210 if (list_empty(&ubi->works)) {
211 spin_unlock(&ubi->wl_lock);
212 up_read(&ubi->work_sem);
213 return 0;
214 }
215
216 wrk = list_entry(ubi->works.next, struct ubi_work, list);
217 list_del(&wrk->list);
218 ubi->works_count -= 1;
219 ubi_assert(ubi->works_count >= 0);
220 spin_unlock(&ubi->wl_lock);
221
222 /*
223 * Call the worker function. Do not touch the work structure
224 * after this call as it will have been freed or reused by that
225 * time by the worker function.
226 */
227 err = wrk->func(ubi, wrk, 0);
228 if (err)
229 ubi_err(ubi, "work failed with error code %d", err);
230 up_read(&ubi->work_sem);
231
232 return err;
233 }
234
235 /**
236 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
237 * @e: the wear-leveling entry to check
238 * @root: the root of the tree
239 *
240 * This function returns non-zero if @e is in the @root RB-tree and zero if it
241 * is not.
242 */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)243 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
244 {
245 struct rb_node *p;
246
247 p = root->rb_node;
248 while (p) {
249 struct ubi_wl_entry *e1;
250
251 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
252
253 if (e->pnum == e1->pnum) {
254 ubi_assert(e == e1);
255 return 1;
256 }
257
258 if (e->ec < e1->ec)
259 p = p->rb_left;
260 else if (e->ec > e1->ec)
261 p = p->rb_right;
262 else {
263 ubi_assert(e->pnum != e1->pnum);
264 if (e->pnum < e1->pnum)
265 p = p->rb_left;
266 else
267 p = p->rb_right;
268 }
269 }
270
271 return 0;
272 }
273
274 /**
275 * prot_queue_add - add physical eraseblock to the protection queue.
276 * @ubi: UBI device description object
277 * @e: the physical eraseblock to add
278 *
279 * This function adds @e to the tail of the protection queue @ubi->pq, where
280 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
281 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
282 * be locked.
283 */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)284 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
285 {
286 int pq_tail = ubi->pq_head - 1;
287
288 if (pq_tail < 0)
289 pq_tail = UBI_PROT_QUEUE_LEN - 1;
290 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
291 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
292 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
293 }
294
295 /**
296 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
297 * @ubi: UBI device description object
298 * @root: the RB-tree where to look for
299 * @diff: maximum possible difference from the smallest erase counter
300 *
301 * This function looks for a wear leveling entry with erase counter closest to
302 * min + @diff, where min is the smallest erase counter.
303 */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff)304 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
305 struct rb_root *root, int diff)
306 {
307 struct rb_node *p;
308 struct ubi_wl_entry *e, *prev_e = NULL;
309 int max;
310
311 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
312 max = e->ec + diff;
313
314 p = root->rb_node;
315 while (p) {
316 struct ubi_wl_entry *e1;
317
318 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
319 if (e1->ec >= max)
320 p = p->rb_left;
321 else {
322 p = p->rb_right;
323 prev_e = e;
324 e = e1;
325 }
326 }
327
328 /* If no fastmap has been written and this WL entry can be used
329 * as anchor PEB, hold it back and return the second best WL entry
330 * such that fastmap can use the anchor PEB later. */
331 if (prev_e && !ubi->fm_disabled &&
332 !ubi->fm && e->pnum < UBI_FM_MAX_START)
333 return prev_e;
334
335 return e;
336 }
337
338 /**
339 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
340 * @ubi: UBI device description object
341 * @root: the RB-tree where to look for
342 *
343 * This function looks for a wear leveling entry with medium erase counter,
344 * but not greater or equivalent than the lowest erase counter plus
345 * %WL_FREE_MAX_DIFF/2.
346 */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)347 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
348 struct rb_root *root)
349 {
350 struct ubi_wl_entry *e, *first, *last;
351
352 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
353 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
354
355 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
356 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
357
358 /* If no fastmap has been written and this WL entry can be used
359 * as anchor PEB, hold it back and return the second best
360 * WL entry such that fastmap can use the anchor PEB later. */
361 e = may_reserve_for_fm(ubi, e, root);
362 } else
363 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
364
365 return e;
366 }
367
368 /**
369 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
370 * refill_wl_user_pool().
371 * @ubi: UBI device description object
372 *
373 * This function returns a a wear leveling entry in case of success and
374 * NULL in case of failure.
375 */
wl_get_wle(struct ubi_device * ubi)376 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
377 {
378 struct ubi_wl_entry *e;
379
380 e = find_mean_wl_entry(ubi, &ubi->free);
381 if (!e) {
382 ubi_err(ubi, "no free eraseblocks");
383 return NULL;
384 }
385
386 self_check_in_wl_tree(ubi, e, &ubi->free);
387
388 /*
389 * Move the physical eraseblock to the protection queue where it will
390 * be protected from being moved for some time.
391 */
392 rb_erase(&e->u.rb, &ubi->free);
393 ubi->free_count--;
394 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
395
396 return e;
397 }
398
399 /**
400 * prot_queue_del - remove a physical eraseblock from the protection queue.
401 * @ubi: UBI device description object
402 * @pnum: the physical eraseblock to remove
403 *
404 * This function deletes PEB @pnum from the protection queue and returns zero
405 * in case of success and %-ENODEV if the PEB was not found.
406 */
prot_queue_del(struct ubi_device * ubi,int pnum)407 static int prot_queue_del(struct ubi_device *ubi, int pnum)
408 {
409 struct ubi_wl_entry *e;
410
411 e = ubi->lookuptbl[pnum];
412 if (!e)
413 return -ENODEV;
414
415 if (self_check_in_pq(ubi, e))
416 return -ENODEV;
417
418 list_del(&e->u.list);
419 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
420 return 0;
421 }
422
423 /**
424 * sync_erase - synchronously erase a physical eraseblock.
425 * @ubi: UBI device description object
426 * @e: the the physical eraseblock to erase
427 * @torture: if the physical eraseblock has to be tortured
428 *
429 * This function returns zero in case of success and a negative error code in
430 * case of failure.
431 */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)432 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
433 int torture)
434 {
435 int err;
436 struct ubi_ec_hdr *ec_hdr;
437 unsigned long long ec = e->ec;
438
439 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
440
441 err = self_check_ec(ubi, e->pnum, e->ec);
442 if (err)
443 return -EINVAL;
444
445 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
446 if (!ec_hdr)
447 return -ENOMEM;
448
449 err = ubi_io_sync_erase(ubi, e->pnum, torture);
450 if (err < 0)
451 goto out_free;
452
453 ec += err;
454 if (ec > UBI_MAX_ERASECOUNTER) {
455 /*
456 * Erase counter overflow. Upgrade UBI and use 64-bit
457 * erase counters internally.
458 */
459 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
460 e->pnum, ec);
461 err = -EINVAL;
462 goto out_free;
463 }
464
465 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
466
467 ec_hdr->ec = cpu_to_be64(ec);
468
469 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
470 if (err)
471 goto out_free;
472
473 e->ec = ec;
474 spin_lock(&ubi->wl_lock);
475 if (e->ec > ubi->max_ec)
476 ubi->max_ec = e->ec;
477 spin_unlock(&ubi->wl_lock);
478
479 out_free:
480 kfree(ec_hdr);
481 return err;
482 }
483
484 /**
485 * serve_prot_queue - check if it is time to stop protecting PEBs.
486 * @ubi: UBI device description object
487 *
488 * This function is called after each erase operation and removes PEBs from the
489 * tail of the protection queue. These PEBs have been protected for long enough
490 * and should be moved to the used tree.
491 */
serve_prot_queue(struct ubi_device * ubi)492 static void serve_prot_queue(struct ubi_device *ubi)
493 {
494 struct ubi_wl_entry *e, *tmp;
495 int count;
496
497 /*
498 * There may be several protected physical eraseblock to remove,
499 * process them all.
500 */
501 repeat:
502 count = 0;
503 spin_lock(&ubi->wl_lock);
504 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
505 dbg_wl("PEB %d EC %d protection over, move to used tree",
506 e->pnum, e->ec);
507
508 list_del(&e->u.list);
509 wl_tree_add(e, &ubi->used);
510 if (count++ > 32) {
511 /*
512 * Let's be nice and avoid holding the spinlock for
513 * too long.
514 */
515 spin_unlock(&ubi->wl_lock);
516 cond_resched();
517 goto repeat;
518 }
519 }
520
521 ubi->pq_head += 1;
522 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
523 ubi->pq_head = 0;
524 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
525 spin_unlock(&ubi->wl_lock);
526 }
527
528 #ifdef __UBOOT__
ubi_do_worker(struct ubi_device * ubi)529 void ubi_do_worker(struct ubi_device *ubi)
530 {
531 int err;
532
533 if (list_empty(&ubi->works) || ubi->ro_mode ||
534 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi))
535 return;
536
537 spin_lock(&ubi->wl_lock);
538 while (!list_empty(&ubi->works)) {
539 /*
540 * call do_work, which executes exactly one work form the queue,
541 * including removeing it from the work queue.
542 */
543 spin_unlock(&ubi->wl_lock);
544 err = do_work(ubi);
545 spin_lock(&ubi->wl_lock);
546 if (err) {
547 ubi_err(ubi, "%s: work failed with error code %d",
548 ubi->bgt_name, err);
549 }
550 }
551 spin_unlock(&ubi->wl_lock);
552 }
553 #endif
554
555 /**
556 * __schedule_ubi_work - schedule a work.
557 * @ubi: UBI device description object
558 * @wrk: the work to schedule
559 *
560 * This function adds a work defined by @wrk to the tail of the pending works
561 * list. Can only be used if ubi->work_sem is already held in read mode!
562 */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)563 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
564 {
565 spin_lock(&ubi->wl_lock);
566 list_add_tail(&wrk->list, &ubi->works);
567 ubi_assert(ubi->works_count >= 0);
568 ubi->works_count += 1;
569 #ifndef __UBOOT__
570 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
571 wake_up_process(ubi->bgt_thread);
572 #endif
573 spin_unlock(&ubi->wl_lock);
574 }
575
576 /**
577 * schedule_ubi_work - schedule a work.
578 * @ubi: UBI device description object
579 * @wrk: the work to schedule
580 *
581 * This function adds a work defined by @wrk to the tail of the pending works
582 * list.
583 */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)584 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
585 {
586 down_read(&ubi->work_sem);
587 __schedule_ubi_work(ubi, wrk);
588 up_read(&ubi->work_sem);
589 }
590
591 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
592 int shutdown);
593
594 /**
595 * schedule_erase - schedule an erase work.
596 * @ubi: UBI device description object
597 * @e: the WL entry of the physical eraseblock to erase
598 * @vol_id: the volume ID that last used this PEB
599 * @lnum: the last used logical eraseblock number for the PEB
600 * @torture: if the physical eraseblock has to be tortured
601 *
602 * This function returns zero in case of success and a %-ENOMEM in case of
603 * failure.
604 */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)605 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
606 int vol_id, int lnum, int torture)
607 {
608 struct ubi_work *wl_wrk;
609
610 ubi_assert(e);
611
612 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
613 e->pnum, e->ec, torture);
614
615 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
616 if (!wl_wrk)
617 return -ENOMEM;
618
619 wl_wrk->func = &erase_worker;
620 wl_wrk->e = e;
621 wl_wrk->vol_id = vol_id;
622 wl_wrk->lnum = lnum;
623 wl_wrk->torture = torture;
624
625 schedule_ubi_work(ubi, wl_wrk);
626
627 #ifdef __UBOOT__
628 ubi_do_worker(ubi);
629 #endif
630 return 0;
631 }
632
633 /**
634 * do_sync_erase - run the erase worker synchronously.
635 * @ubi: UBI device description object
636 * @e: the WL entry of the physical eraseblock to erase
637 * @vol_id: the volume ID that last used this PEB
638 * @lnum: the last used logical eraseblock number for the PEB
639 * @torture: if the physical eraseblock has to be tortured
640 *
641 */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)642 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
643 int vol_id, int lnum, int torture)
644 {
645 struct ubi_work *wl_wrk;
646
647 dbg_wl("sync erase of PEB %i", e->pnum);
648
649 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
650 if (!wl_wrk)
651 return -ENOMEM;
652
653 wl_wrk->e = e;
654 wl_wrk->vol_id = vol_id;
655 wl_wrk->lnum = lnum;
656 wl_wrk->torture = torture;
657
658 return erase_worker(ubi, wl_wrk, 0);
659 }
660
661 /**
662 * wear_leveling_worker - wear-leveling worker function.
663 * @ubi: UBI device description object
664 * @wrk: the work object
665 * @shutdown: non-zero if the worker has to free memory and exit
666 * because the WL-subsystem is shutting down
667 *
668 * This function copies a more worn out physical eraseblock to a less worn out
669 * one. Returns zero in case of success and a negative error code in case of
670 * failure.
671 */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)672 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
673 int shutdown)
674 {
675 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
676 int vol_id = -1, lnum = -1;
677 #ifdef CONFIG_MTD_UBI_FASTMAP
678 int anchor = wrk->anchor;
679 #endif
680 struct ubi_wl_entry *e1, *e2;
681 struct ubi_vid_hdr *vid_hdr;
682
683 kfree(wrk);
684 if (shutdown)
685 return 0;
686
687 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
688 if (!vid_hdr)
689 return -ENOMEM;
690
691 mutex_lock(&ubi->move_mutex);
692 spin_lock(&ubi->wl_lock);
693 ubi_assert(!ubi->move_from && !ubi->move_to);
694 ubi_assert(!ubi->move_to_put);
695
696 if (!ubi->free.rb_node ||
697 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
698 /*
699 * No free physical eraseblocks? Well, they must be waiting in
700 * the queue to be erased. Cancel movement - it will be
701 * triggered again when a free physical eraseblock appears.
702 *
703 * No used physical eraseblocks? They must be temporarily
704 * protected from being moved. They will be moved to the
705 * @ubi->used tree later and the wear-leveling will be
706 * triggered again.
707 */
708 dbg_wl("cancel WL, a list is empty: free %d, used %d",
709 !ubi->free.rb_node, !ubi->used.rb_node);
710 goto out_cancel;
711 }
712
713 #ifdef CONFIG_MTD_UBI_FASTMAP
714 /* Check whether we need to produce an anchor PEB */
715 if (!anchor)
716 anchor = !anchor_pebs_avalible(&ubi->free);
717
718 if (anchor) {
719 e1 = find_anchor_wl_entry(&ubi->used);
720 if (!e1)
721 goto out_cancel;
722 e2 = get_peb_for_wl(ubi);
723 if (!e2)
724 goto out_cancel;
725
726 self_check_in_wl_tree(ubi, e1, &ubi->used);
727 rb_erase(&e1->u.rb, &ubi->used);
728 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
729 } else if (!ubi->scrub.rb_node) {
730 #else
731 if (!ubi->scrub.rb_node) {
732 #endif
733 /*
734 * Now pick the least worn-out used physical eraseblock and a
735 * highly worn-out free physical eraseblock. If the erase
736 * counters differ much enough, start wear-leveling.
737 */
738 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
739 e2 = get_peb_for_wl(ubi);
740 if (!e2)
741 goto out_cancel;
742
743 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
744 dbg_wl("no WL needed: min used EC %d, max free EC %d",
745 e1->ec, e2->ec);
746
747 /* Give the unused PEB back */
748 wl_tree_add(e2, &ubi->free);
749 ubi->free_count++;
750 goto out_cancel;
751 }
752 self_check_in_wl_tree(ubi, e1, &ubi->used);
753 rb_erase(&e1->u.rb, &ubi->used);
754 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
755 e1->pnum, e1->ec, e2->pnum, e2->ec);
756 } else {
757 /* Perform scrubbing */
758 scrubbing = 1;
759 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
760 e2 = get_peb_for_wl(ubi);
761 if (!e2)
762 goto out_cancel;
763
764 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
765 rb_erase(&e1->u.rb, &ubi->scrub);
766 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
767 }
768
769 ubi->move_from = e1;
770 ubi->move_to = e2;
771 spin_unlock(&ubi->wl_lock);
772
773 /*
774 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
775 * We so far do not know which logical eraseblock our physical
776 * eraseblock (@e1) belongs to. We have to read the volume identifier
777 * header first.
778 *
779 * Note, we are protected from this PEB being unmapped and erased. The
780 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
781 * which is being moved was unmapped.
782 */
783
784 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
785 if (err && err != UBI_IO_BITFLIPS) {
786 if (err == UBI_IO_FF) {
787 /*
788 * We are trying to move PEB without a VID header. UBI
789 * always write VID headers shortly after the PEB was
790 * given, so we have a situation when it has not yet
791 * had a chance to write it, because it was preempted.
792 * So add this PEB to the protection queue so far,
793 * because presumably more data will be written there
794 * (including the missing VID header), and then we'll
795 * move it.
796 */
797 dbg_wl("PEB %d has no VID header", e1->pnum);
798 protect = 1;
799 goto out_not_moved;
800 } else if (err == UBI_IO_FF_BITFLIPS) {
801 /*
802 * The same situation as %UBI_IO_FF, but bit-flips were
803 * detected. It is better to schedule this PEB for
804 * scrubbing.
805 */
806 dbg_wl("PEB %d has no VID header but has bit-flips",
807 e1->pnum);
808 scrubbing = 1;
809 goto out_not_moved;
810 }
811
812 ubi_err(ubi, "error %d while reading VID header from PEB %d",
813 err, e1->pnum);
814 goto out_error;
815 }
816
817 vol_id = be32_to_cpu(vid_hdr->vol_id);
818 lnum = be32_to_cpu(vid_hdr->lnum);
819
820 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
821 if (err) {
822 if (err == MOVE_CANCEL_RACE) {
823 /*
824 * The LEB has not been moved because the volume is
825 * being deleted or the PEB has been put meanwhile. We
826 * should prevent this PEB from being selected for
827 * wear-leveling movement again, so put it to the
828 * protection queue.
829 */
830 protect = 1;
831 goto out_not_moved;
832 }
833 if (err == MOVE_RETRY) {
834 scrubbing = 1;
835 goto out_not_moved;
836 }
837 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
838 err == MOVE_TARGET_RD_ERR) {
839 /*
840 * Target PEB had bit-flips or write error - torture it.
841 */
842 torture = 1;
843 goto out_not_moved;
844 }
845
846 if (err == MOVE_SOURCE_RD_ERR) {
847 /*
848 * An error happened while reading the source PEB. Do
849 * not switch to R/O mode in this case, and give the
850 * upper layers a possibility to recover from this,
851 * e.g. by unmapping corresponding LEB. Instead, just
852 * put this PEB to the @ubi->erroneous list to prevent
853 * UBI from trying to move it over and over again.
854 */
855 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
856 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
857 ubi->erroneous_peb_count);
858 goto out_error;
859 }
860 erroneous = 1;
861 goto out_not_moved;
862 }
863
864 if (err < 0)
865 goto out_error;
866
867 ubi_assert(0);
868 }
869
870 /* The PEB has been successfully moved */
871 if (scrubbing)
872 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
873 e1->pnum, vol_id, lnum, e2->pnum);
874 ubi_free_vid_hdr(ubi, vid_hdr);
875
876 spin_lock(&ubi->wl_lock);
877 if (!ubi->move_to_put) {
878 wl_tree_add(e2, &ubi->used);
879 e2 = NULL;
880 }
881 ubi->move_from = ubi->move_to = NULL;
882 ubi->move_to_put = ubi->wl_scheduled = 0;
883 spin_unlock(&ubi->wl_lock);
884
885 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
886 if (err) {
887 if (e2)
888 wl_entry_destroy(ubi, e2);
889 goto out_ro;
890 }
891
892 if (e2) {
893 /*
894 * Well, the target PEB was put meanwhile, schedule it for
895 * erasure.
896 */
897 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
898 e2->pnum, vol_id, lnum);
899 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
900 if (err)
901 goto out_ro;
902 }
903
904 dbg_wl("done");
905 mutex_unlock(&ubi->move_mutex);
906 return 0;
907
908 /*
909 * For some reasons the LEB was not moved, might be an error, might be
910 * something else. @e1 was not changed, so return it back. @e2 might
911 * have been changed, schedule it for erasure.
912 */
913 out_not_moved:
914 if (vol_id != -1)
915 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
916 e1->pnum, vol_id, lnum, e2->pnum, err);
917 else
918 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
919 e1->pnum, e2->pnum, err);
920 spin_lock(&ubi->wl_lock);
921 if (protect)
922 prot_queue_add(ubi, e1);
923 else if (erroneous) {
924 wl_tree_add(e1, &ubi->erroneous);
925 ubi->erroneous_peb_count += 1;
926 } else if (scrubbing)
927 wl_tree_add(e1, &ubi->scrub);
928 else
929 wl_tree_add(e1, &ubi->used);
930 ubi_assert(!ubi->move_to_put);
931 ubi->move_from = ubi->move_to = NULL;
932 ubi->wl_scheduled = 0;
933 spin_unlock(&ubi->wl_lock);
934
935 ubi_free_vid_hdr(ubi, vid_hdr);
936 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
937 if (err)
938 goto out_ro;
939
940 mutex_unlock(&ubi->move_mutex);
941 return 0;
942
943 out_error:
944 if (vol_id != -1)
945 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
946 err, e1->pnum, e2->pnum);
947 else
948 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
949 err, e1->pnum, vol_id, lnum, e2->pnum);
950 spin_lock(&ubi->wl_lock);
951 ubi->move_from = ubi->move_to = NULL;
952 ubi->move_to_put = ubi->wl_scheduled = 0;
953 spin_unlock(&ubi->wl_lock);
954
955 ubi_free_vid_hdr(ubi, vid_hdr);
956 wl_entry_destroy(ubi, e1);
957 wl_entry_destroy(ubi, e2);
958
959 out_ro:
960 ubi_ro_mode(ubi);
961 mutex_unlock(&ubi->move_mutex);
962 ubi_assert(err != 0);
963 return err < 0 ? err : -EIO;
964
965 out_cancel:
966 ubi->wl_scheduled = 0;
967 spin_unlock(&ubi->wl_lock);
968 mutex_unlock(&ubi->move_mutex);
969 ubi_free_vid_hdr(ubi, vid_hdr);
970 return 0;
971 }
972
973 /**
974 * ensure_wear_leveling - schedule wear-leveling if it is needed.
975 * @ubi: UBI device description object
976 * @nested: set to non-zero if this function is called from UBI worker
977 *
978 * This function checks if it is time to start wear-leveling and schedules it
979 * if yes. This function returns zero in case of success and a negative error
980 * code in case of failure.
981 */
982 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
983 {
984 int err = 0;
985 struct ubi_wl_entry *e1;
986 struct ubi_wl_entry *e2;
987 struct ubi_work *wrk;
988
989 spin_lock(&ubi->wl_lock);
990 if (ubi->wl_scheduled)
991 /* Wear-leveling is already in the work queue */
992 goto out_unlock;
993
994 /*
995 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
996 * the WL worker has to be scheduled anyway.
997 */
998 if (!ubi->scrub.rb_node) {
999 if (!ubi->used.rb_node || !ubi->free.rb_node)
1000 /* No physical eraseblocks - no deal */
1001 goto out_unlock;
1002
1003 /*
1004 * We schedule wear-leveling only if the difference between the
1005 * lowest erase counter of used physical eraseblocks and a high
1006 * erase counter of free physical eraseblocks is greater than
1007 * %UBI_WL_THRESHOLD.
1008 */
1009 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1010 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1011
1012 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1013 goto out_unlock;
1014 dbg_wl("schedule wear-leveling");
1015 } else
1016 dbg_wl("schedule scrubbing");
1017
1018 ubi->wl_scheduled = 1;
1019 spin_unlock(&ubi->wl_lock);
1020
1021 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1022 if (!wrk) {
1023 err = -ENOMEM;
1024 goto out_cancel;
1025 }
1026
1027 wrk->anchor = 0;
1028 wrk->func = &wear_leveling_worker;
1029 if (nested)
1030 __schedule_ubi_work(ubi, wrk);
1031 #ifndef __UBOOT__
1032 else
1033 schedule_ubi_work(ubi, wrk);
1034 #else
1035 else {
1036 schedule_ubi_work(ubi, wrk);
1037 ubi_do_worker(ubi);
1038 }
1039 #endif
1040 return err;
1041
1042 out_cancel:
1043 spin_lock(&ubi->wl_lock);
1044 ubi->wl_scheduled = 0;
1045 out_unlock:
1046 spin_unlock(&ubi->wl_lock);
1047 return err;
1048 }
1049
1050 /**
1051 * erase_worker - physical eraseblock erase worker function.
1052 * @ubi: UBI device description object
1053 * @wl_wrk: the work object
1054 * @shutdown: non-zero if the worker has to free memory and exit
1055 * because the WL sub-system is shutting down
1056 *
1057 * This function erases a physical eraseblock and perform torture testing if
1058 * needed. It also takes care about marking the physical eraseblock bad if
1059 * needed. Returns zero in case of success and a negative error code in case of
1060 * failure.
1061 */
1062 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1063 int shutdown)
1064 {
1065 struct ubi_wl_entry *e = wl_wrk->e;
1066 int pnum = e->pnum;
1067 int vol_id = wl_wrk->vol_id;
1068 int lnum = wl_wrk->lnum;
1069 int err, available_consumed = 0;
1070
1071 if (shutdown) {
1072 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1073 kfree(wl_wrk);
1074 wl_entry_destroy(ubi, e);
1075 return 0;
1076 }
1077
1078 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1079 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1080
1081 err = sync_erase(ubi, e, wl_wrk->torture);
1082 if (!err) {
1083 /* Fine, we've erased it successfully */
1084 kfree(wl_wrk);
1085
1086 spin_lock(&ubi->wl_lock);
1087 wl_tree_add(e, &ubi->free);
1088 ubi->free_count++;
1089 spin_unlock(&ubi->wl_lock);
1090
1091 /*
1092 * One more erase operation has happened, take care about
1093 * protected physical eraseblocks.
1094 */
1095 serve_prot_queue(ubi);
1096
1097 /* And take care about wear-leveling */
1098 err = ensure_wear_leveling(ubi, 1);
1099 return err;
1100 }
1101
1102 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1103 kfree(wl_wrk);
1104
1105 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1106 err == -EBUSY) {
1107 int err1;
1108
1109 /* Re-schedule the LEB for erasure */
1110 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1111 if (err1) {
1112 err = err1;
1113 goto out_ro;
1114 }
1115 return err;
1116 }
1117
1118 wl_entry_destroy(ubi, e);
1119 if (err != -EIO)
1120 /*
1121 * If this is not %-EIO, we have no idea what to do. Scheduling
1122 * this physical eraseblock for erasure again would cause
1123 * errors again and again. Well, lets switch to R/O mode.
1124 */
1125 goto out_ro;
1126
1127 /* It is %-EIO, the PEB went bad */
1128
1129 if (!ubi->bad_allowed) {
1130 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1131 goto out_ro;
1132 }
1133
1134 spin_lock(&ubi->volumes_lock);
1135 if (ubi->beb_rsvd_pebs == 0) {
1136 if (ubi->avail_pebs == 0) {
1137 spin_unlock(&ubi->volumes_lock);
1138 ubi_err(ubi, "no reserved/available physical eraseblocks");
1139 goto out_ro;
1140 }
1141 ubi->avail_pebs -= 1;
1142 available_consumed = 1;
1143 }
1144 spin_unlock(&ubi->volumes_lock);
1145
1146 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1147 err = ubi_io_mark_bad(ubi, pnum);
1148 if (err)
1149 goto out_ro;
1150
1151 spin_lock(&ubi->volumes_lock);
1152 if (ubi->beb_rsvd_pebs > 0) {
1153 if (available_consumed) {
1154 /*
1155 * The amount of reserved PEBs increased since we last
1156 * checked.
1157 */
1158 ubi->avail_pebs += 1;
1159 available_consumed = 0;
1160 }
1161 ubi->beb_rsvd_pebs -= 1;
1162 }
1163 ubi->bad_peb_count += 1;
1164 ubi->good_peb_count -= 1;
1165 ubi_calculate_reserved(ubi);
1166 if (available_consumed)
1167 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1168 else if (ubi->beb_rsvd_pebs)
1169 ubi_msg(ubi, "%d PEBs left in the reserve",
1170 ubi->beb_rsvd_pebs);
1171 else
1172 ubi_warn(ubi, "last PEB from the reserve was used");
1173 spin_unlock(&ubi->volumes_lock);
1174
1175 return err;
1176
1177 out_ro:
1178 if (available_consumed) {
1179 spin_lock(&ubi->volumes_lock);
1180 ubi->avail_pebs += 1;
1181 spin_unlock(&ubi->volumes_lock);
1182 }
1183 ubi_ro_mode(ubi);
1184 return err;
1185 }
1186
1187 /**
1188 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1189 * @ubi: UBI device description object
1190 * @vol_id: the volume ID that last used this PEB
1191 * @lnum: the last used logical eraseblock number for the PEB
1192 * @pnum: physical eraseblock to return
1193 * @torture: if this physical eraseblock has to be tortured
1194 *
1195 * This function is called to return physical eraseblock @pnum to the pool of
1196 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1197 * occurred to this @pnum and it has to be tested. This function returns zero
1198 * in case of success, and a negative error code in case of failure.
1199 */
1200 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1201 int pnum, int torture)
1202 {
1203 int err;
1204 struct ubi_wl_entry *e;
1205
1206 dbg_wl("PEB %d", pnum);
1207 ubi_assert(pnum >= 0);
1208 ubi_assert(pnum < ubi->peb_count);
1209
1210 down_read(&ubi->fm_protect);
1211
1212 retry:
1213 spin_lock(&ubi->wl_lock);
1214 e = ubi->lookuptbl[pnum];
1215 if (e == ubi->move_from) {
1216 /*
1217 * User is putting the physical eraseblock which was selected to
1218 * be moved. It will be scheduled for erasure in the
1219 * wear-leveling worker.
1220 */
1221 dbg_wl("PEB %d is being moved, wait", pnum);
1222 spin_unlock(&ubi->wl_lock);
1223
1224 /* Wait for the WL worker by taking the @ubi->move_mutex */
1225 mutex_lock(&ubi->move_mutex);
1226 mutex_unlock(&ubi->move_mutex);
1227 goto retry;
1228 } else if (e == ubi->move_to) {
1229 /*
1230 * User is putting the physical eraseblock which was selected
1231 * as the target the data is moved to. It may happen if the EBA
1232 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1233 * but the WL sub-system has not put the PEB to the "used" tree
1234 * yet, but it is about to do this. So we just set a flag which
1235 * will tell the WL worker that the PEB is not needed anymore
1236 * and should be scheduled for erasure.
1237 */
1238 dbg_wl("PEB %d is the target of data moving", pnum);
1239 ubi_assert(!ubi->move_to_put);
1240 ubi->move_to_put = 1;
1241 spin_unlock(&ubi->wl_lock);
1242 up_read(&ubi->fm_protect);
1243 return 0;
1244 } else {
1245 if (in_wl_tree(e, &ubi->used)) {
1246 self_check_in_wl_tree(ubi, e, &ubi->used);
1247 rb_erase(&e->u.rb, &ubi->used);
1248 } else if (in_wl_tree(e, &ubi->scrub)) {
1249 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1250 rb_erase(&e->u.rb, &ubi->scrub);
1251 } else if (in_wl_tree(e, &ubi->erroneous)) {
1252 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1253 rb_erase(&e->u.rb, &ubi->erroneous);
1254 ubi->erroneous_peb_count -= 1;
1255 ubi_assert(ubi->erroneous_peb_count >= 0);
1256 /* Erroneous PEBs should be tortured */
1257 torture = 1;
1258 } else {
1259 err = prot_queue_del(ubi, e->pnum);
1260 if (err) {
1261 ubi_err(ubi, "PEB %d not found", pnum);
1262 ubi_ro_mode(ubi);
1263 spin_unlock(&ubi->wl_lock);
1264 up_read(&ubi->fm_protect);
1265 return err;
1266 }
1267 }
1268 }
1269 spin_unlock(&ubi->wl_lock);
1270
1271 err = schedule_erase(ubi, e, vol_id, lnum, torture);
1272 if (err) {
1273 spin_lock(&ubi->wl_lock);
1274 wl_tree_add(e, &ubi->used);
1275 spin_unlock(&ubi->wl_lock);
1276 }
1277
1278 up_read(&ubi->fm_protect);
1279 return err;
1280 }
1281
1282 /**
1283 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1284 * @ubi: UBI device description object
1285 * @pnum: the physical eraseblock to schedule
1286 *
1287 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1288 * needs scrubbing. This function schedules a physical eraseblock for
1289 * scrubbing which is done in background. This function returns zero in case of
1290 * success and a negative error code in case of failure.
1291 */
1292 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1293 {
1294 struct ubi_wl_entry *e;
1295
1296 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1297
1298 retry:
1299 spin_lock(&ubi->wl_lock);
1300 e = ubi->lookuptbl[pnum];
1301 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1302 in_wl_tree(e, &ubi->erroneous)) {
1303 spin_unlock(&ubi->wl_lock);
1304 return 0;
1305 }
1306
1307 if (e == ubi->move_to) {
1308 /*
1309 * This physical eraseblock was used to move data to. The data
1310 * was moved but the PEB was not yet inserted to the proper
1311 * tree. We should just wait a little and let the WL worker
1312 * proceed.
1313 */
1314 spin_unlock(&ubi->wl_lock);
1315 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1316 yield();
1317 goto retry;
1318 }
1319
1320 if (in_wl_tree(e, &ubi->used)) {
1321 self_check_in_wl_tree(ubi, e, &ubi->used);
1322 rb_erase(&e->u.rb, &ubi->used);
1323 } else {
1324 int err;
1325
1326 err = prot_queue_del(ubi, e->pnum);
1327 if (err) {
1328 ubi_err(ubi, "PEB %d not found", pnum);
1329 ubi_ro_mode(ubi);
1330 spin_unlock(&ubi->wl_lock);
1331 return err;
1332 }
1333 }
1334
1335 wl_tree_add(e, &ubi->scrub);
1336 spin_unlock(&ubi->wl_lock);
1337
1338 /*
1339 * Technically scrubbing is the same as wear-leveling, so it is done
1340 * by the WL worker.
1341 */
1342 return ensure_wear_leveling(ubi, 0);
1343 }
1344
1345 /**
1346 * ubi_wl_flush - flush all pending works.
1347 * @ubi: UBI device description object
1348 * @vol_id: the volume id to flush for
1349 * @lnum: the logical eraseblock number to flush for
1350 *
1351 * This function executes all pending works for a particular volume id /
1352 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1353 * acts as a wildcard for all of the corresponding volume numbers or logical
1354 * eraseblock numbers. It returns zero in case of success and a negative error
1355 * code in case of failure.
1356 */
1357 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1358 {
1359 int err = 0;
1360 int found = 1;
1361
1362 /*
1363 * Erase while the pending works queue is not empty, but not more than
1364 * the number of currently pending works.
1365 */
1366 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1367 vol_id, lnum, ubi->works_count);
1368
1369 while (found) {
1370 struct ubi_work *wrk, *tmp;
1371 found = 0;
1372
1373 down_read(&ubi->work_sem);
1374 spin_lock(&ubi->wl_lock);
1375 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1376 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1377 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1378 list_del(&wrk->list);
1379 ubi->works_count -= 1;
1380 ubi_assert(ubi->works_count >= 0);
1381 spin_unlock(&ubi->wl_lock);
1382
1383 err = wrk->func(ubi, wrk, 0);
1384 if (err) {
1385 up_read(&ubi->work_sem);
1386 return err;
1387 }
1388
1389 spin_lock(&ubi->wl_lock);
1390 found = 1;
1391 break;
1392 }
1393 }
1394 spin_unlock(&ubi->wl_lock);
1395 up_read(&ubi->work_sem);
1396 }
1397
1398 /*
1399 * Make sure all the works which have been done in parallel are
1400 * finished.
1401 */
1402 down_write(&ubi->work_sem);
1403 up_write(&ubi->work_sem);
1404
1405 return err;
1406 }
1407
1408 /**
1409 * tree_destroy - destroy an RB-tree.
1410 * @ubi: UBI device description object
1411 * @root: the root of the tree to destroy
1412 */
1413 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1414 {
1415 struct rb_node *rb;
1416 struct ubi_wl_entry *e;
1417
1418 rb = root->rb_node;
1419 while (rb) {
1420 if (rb->rb_left)
1421 rb = rb->rb_left;
1422 else if (rb->rb_right)
1423 rb = rb->rb_right;
1424 else {
1425 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1426
1427 rb = rb_parent(rb);
1428 if (rb) {
1429 if (rb->rb_left == &e->u.rb)
1430 rb->rb_left = NULL;
1431 else
1432 rb->rb_right = NULL;
1433 }
1434
1435 wl_entry_destroy(ubi, e);
1436 }
1437 }
1438 }
1439
1440 /**
1441 * ubi_thread - UBI background thread.
1442 * @u: the UBI device description object pointer
1443 */
1444 int ubi_thread(void *u)
1445 {
1446 int failures = 0;
1447 struct ubi_device *ubi = u;
1448
1449 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1450 ubi->bgt_name, task_pid_nr(current));
1451
1452 set_freezable();
1453 for (;;) {
1454 int err;
1455
1456 if (kthread_should_stop())
1457 break;
1458
1459 if (try_to_freeze())
1460 continue;
1461
1462 spin_lock(&ubi->wl_lock);
1463 if (list_empty(&ubi->works) || ubi->ro_mode ||
1464 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1465 set_current_state(TASK_INTERRUPTIBLE);
1466 spin_unlock(&ubi->wl_lock);
1467 schedule();
1468 continue;
1469 }
1470 spin_unlock(&ubi->wl_lock);
1471
1472 err = do_work(ubi);
1473 if (err) {
1474 ubi_err(ubi, "%s: work failed with error code %d",
1475 ubi->bgt_name, err);
1476 if (failures++ > WL_MAX_FAILURES) {
1477 /*
1478 * Too many failures, disable the thread and
1479 * switch to read-only mode.
1480 */
1481 ubi_msg(ubi, "%s: %d consecutive failures",
1482 ubi->bgt_name, WL_MAX_FAILURES);
1483 ubi_ro_mode(ubi);
1484 ubi->thread_enabled = 0;
1485 continue;
1486 }
1487 } else
1488 failures = 0;
1489
1490 cond_resched();
1491 }
1492
1493 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1494 return 0;
1495 }
1496
1497 /**
1498 * shutdown_work - shutdown all pending works.
1499 * @ubi: UBI device description object
1500 */
1501 static void shutdown_work(struct ubi_device *ubi)
1502 {
1503 #ifdef CONFIG_MTD_UBI_FASTMAP
1504 #ifndef __UBOOT__
1505 flush_work(&ubi->fm_work);
1506 #else
1507 /* in U-Boot, we have all work done */
1508 #endif
1509 #endif
1510 while (!list_empty(&ubi->works)) {
1511 struct ubi_work *wrk;
1512
1513 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1514 list_del(&wrk->list);
1515 wrk->func(ubi, wrk, 1);
1516 ubi->works_count -= 1;
1517 ubi_assert(ubi->works_count >= 0);
1518 }
1519 }
1520
1521 /**
1522 * ubi_wl_init - initialize the WL sub-system using attaching information.
1523 * @ubi: UBI device description object
1524 * @ai: attaching information
1525 *
1526 * This function returns zero in case of success, and a negative error code in
1527 * case of failure.
1528 */
1529 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1530 {
1531 int err, i, reserved_pebs, found_pebs = 0;
1532 struct rb_node *rb1, *rb2;
1533 struct ubi_ainf_volume *av;
1534 struct ubi_ainf_peb *aeb, *tmp;
1535 struct ubi_wl_entry *e;
1536
1537 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1538 spin_lock_init(&ubi->wl_lock);
1539 mutex_init(&ubi->move_mutex);
1540 init_rwsem(&ubi->work_sem);
1541 ubi->max_ec = ai->max_ec;
1542 INIT_LIST_HEAD(&ubi->works);
1543
1544 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1545
1546 err = -ENOMEM;
1547 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1548 if (!ubi->lookuptbl)
1549 return err;
1550
1551 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1552 INIT_LIST_HEAD(&ubi->pq[i]);
1553 ubi->pq_head = 0;
1554
1555 ubi->free_count = 0;
1556 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1557 cond_resched();
1558
1559 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1560 if (!e)
1561 goto out_free;
1562
1563 e->pnum = aeb->pnum;
1564 e->ec = aeb->ec;
1565 ubi->lookuptbl[e->pnum] = e;
1566 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1567 wl_entry_destroy(ubi, e);
1568 goto out_free;
1569 }
1570
1571 found_pebs++;
1572 }
1573
1574 list_for_each_entry(aeb, &ai->free, u.list) {
1575 cond_resched();
1576
1577 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1578 if (!e)
1579 goto out_free;
1580
1581 e->pnum = aeb->pnum;
1582 e->ec = aeb->ec;
1583 ubi_assert(e->ec >= 0);
1584
1585 wl_tree_add(e, &ubi->free);
1586 ubi->free_count++;
1587
1588 ubi->lookuptbl[e->pnum] = e;
1589
1590 found_pebs++;
1591 }
1592
1593 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1594 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1595 cond_resched();
1596
1597 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1598 if (!e)
1599 goto out_free;
1600
1601 e->pnum = aeb->pnum;
1602 e->ec = aeb->ec;
1603 ubi->lookuptbl[e->pnum] = e;
1604
1605 if (!aeb->scrub) {
1606 dbg_wl("add PEB %d EC %d to the used tree",
1607 e->pnum, e->ec);
1608 wl_tree_add(e, &ubi->used);
1609 } else {
1610 dbg_wl("add PEB %d EC %d to the scrub tree",
1611 e->pnum, e->ec);
1612 wl_tree_add(e, &ubi->scrub);
1613 }
1614
1615 found_pebs++;
1616 }
1617 }
1618
1619 dbg_wl("found %i PEBs", found_pebs);
1620
1621 if (ubi->fm) {
1622 ubi_assert(ubi->good_peb_count ==
1623 found_pebs + ubi->fm->used_blocks);
1624
1625 for (i = 0; i < ubi->fm->used_blocks; i++) {
1626 e = ubi->fm->e[i];
1627 ubi->lookuptbl[e->pnum] = e;
1628 }
1629 }
1630 else
1631 ubi_assert(ubi->good_peb_count == found_pebs);
1632
1633 reserved_pebs = WL_RESERVED_PEBS;
1634 ubi_fastmap_init(ubi, &reserved_pebs);
1635
1636 if (ubi->avail_pebs < reserved_pebs) {
1637 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1638 ubi->avail_pebs, reserved_pebs);
1639 if (ubi->corr_peb_count)
1640 ubi_err(ubi, "%d PEBs are corrupted and not used",
1641 ubi->corr_peb_count);
1642 goto out_free;
1643 }
1644 ubi->avail_pebs -= reserved_pebs;
1645 ubi->rsvd_pebs += reserved_pebs;
1646
1647 /* Schedule wear-leveling if needed */
1648 err = ensure_wear_leveling(ubi, 0);
1649 if (err)
1650 goto out_free;
1651
1652 return 0;
1653
1654 out_free:
1655 shutdown_work(ubi);
1656 tree_destroy(ubi, &ubi->used);
1657 tree_destroy(ubi, &ubi->free);
1658 tree_destroy(ubi, &ubi->scrub);
1659 kfree(ubi->lookuptbl);
1660 return err;
1661 }
1662
1663 /**
1664 * protection_queue_destroy - destroy the protection queue.
1665 * @ubi: UBI device description object
1666 */
1667 static void protection_queue_destroy(struct ubi_device *ubi)
1668 {
1669 int i;
1670 struct ubi_wl_entry *e, *tmp;
1671
1672 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1673 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1674 list_del(&e->u.list);
1675 wl_entry_destroy(ubi, e);
1676 }
1677 }
1678 }
1679
1680 /**
1681 * ubi_wl_close - close the wear-leveling sub-system.
1682 * @ubi: UBI device description object
1683 */
1684 void ubi_wl_close(struct ubi_device *ubi)
1685 {
1686 dbg_wl("close the WL sub-system");
1687 ubi_fastmap_close(ubi);
1688 shutdown_work(ubi);
1689 protection_queue_destroy(ubi);
1690 tree_destroy(ubi, &ubi->used);
1691 tree_destroy(ubi, &ubi->erroneous);
1692 tree_destroy(ubi, &ubi->free);
1693 tree_destroy(ubi, &ubi->scrub);
1694 kfree(ubi->lookuptbl);
1695 }
1696
1697 /**
1698 * self_check_ec - make sure that the erase counter of a PEB is correct.
1699 * @ubi: UBI device description object
1700 * @pnum: the physical eraseblock number to check
1701 * @ec: the erase counter to check
1702 *
1703 * This function returns zero if the erase counter of physical eraseblock @pnum
1704 * is equivalent to @ec, and a negative error code if not or if an error
1705 * occurred.
1706 */
1707 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1708 {
1709 int err;
1710 long long read_ec;
1711 struct ubi_ec_hdr *ec_hdr;
1712
1713 if (!ubi_dbg_chk_gen(ubi))
1714 return 0;
1715
1716 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1717 if (!ec_hdr)
1718 return -ENOMEM;
1719
1720 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1721 if (err && err != UBI_IO_BITFLIPS) {
1722 /* The header does not have to exist */
1723 err = 0;
1724 goto out_free;
1725 }
1726
1727 read_ec = be64_to_cpu(ec_hdr->ec);
1728 if (ec != read_ec && read_ec - ec > 1) {
1729 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1730 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1731 dump_stack();
1732 err = 1;
1733 } else
1734 err = 0;
1735
1736 out_free:
1737 kfree(ec_hdr);
1738 return err;
1739 }
1740
1741 /**
1742 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1743 * @ubi: UBI device description object
1744 * @e: the wear-leveling entry to check
1745 * @root: the root of the tree
1746 *
1747 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1748 * is not.
1749 */
1750 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1751 struct ubi_wl_entry *e, struct rb_root *root)
1752 {
1753 if (!ubi_dbg_chk_gen(ubi))
1754 return 0;
1755
1756 if (in_wl_tree(e, root))
1757 return 0;
1758
1759 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1760 e->pnum, e->ec, root);
1761 dump_stack();
1762 return -EINVAL;
1763 }
1764
1765 /**
1766 * self_check_in_pq - check if wear-leveling entry is in the protection
1767 * queue.
1768 * @ubi: UBI device description object
1769 * @e: the wear-leveling entry to check
1770 *
1771 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1772 */
1773 static int self_check_in_pq(const struct ubi_device *ubi,
1774 struct ubi_wl_entry *e)
1775 {
1776 struct ubi_wl_entry *p;
1777 int i;
1778
1779 if (!ubi_dbg_chk_gen(ubi))
1780 return 0;
1781
1782 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1783 list_for_each_entry(p, &ubi->pq[i], u.list)
1784 if (p == e)
1785 return 0;
1786
1787 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1788 e->pnum, e->ec);
1789 dump_stack();
1790 return -EINVAL;
1791 }
1792 #ifndef CONFIG_MTD_UBI_FASTMAP
1793 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1794 {
1795 struct ubi_wl_entry *e;
1796
1797 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1798 self_check_in_wl_tree(ubi, e, &ubi->free);
1799 ubi->free_count--;
1800 ubi_assert(ubi->free_count >= 0);
1801 rb_erase(&e->u.rb, &ubi->free);
1802
1803 return e;
1804 }
1805
1806 /**
1807 * produce_free_peb - produce a free physical eraseblock.
1808 * @ubi: UBI device description object
1809 *
1810 * This function tries to make a free PEB by means of synchronous execution of
1811 * pending works. This may be needed if, for example the background thread is
1812 * disabled. Returns zero in case of success and a negative error code in case
1813 * of failure.
1814 */
1815 static int produce_free_peb(struct ubi_device *ubi)
1816 {
1817 int err;
1818
1819 while (!ubi->free.rb_node && ubi->works_count) {
1820 spin_unlock(&ubi->wl_lock);
1821
1822 dbg_wl("do one work synchronously");
1823 err = do_work(ubi);
1824
1825 spin_lock(&ubi->wl_lock);
1826 if (err)
1827 return err;
1828 }
1829
1830 return 0;
1831 }
1832
1833 /**
1834 * ubi_wl_get_peb - get a physical eraseblock.
1835 * @ubi: UBI device description object
1836 *
1837 * This function returns a physical eraseblock in case of success and a
1838 * negative error code in case of failure.
1839 * Returns with ubi->fm_eba_sem held in read mode!
1840 */
1841 int ubi_wl_get_peb(struct ubi_device *ubi)
1842 {
1843 int err;
1844 struct ubi_wl_entry *e;
1845
1846 retry:
1847 down_read(&ubi->fm_eba_sem);
1848 spin_lock(&ubi->wl_lock);
1849 if (!ubi->free.rb_node) {
1850 if (ubi->works_count == 0) {
1851 ubi_err(ubi, "no free eraseblocks");
1852 ubi_assert(list_empty(&ubi->works));
1853 spin_unlock(&ubi->wl_lock);
1854 return -ENOSPC;
1855 }
1856
1857 err = produce_free_peb(ubi);
1858 if (err < 0) {
1859 spin_unlock(&ubi->wl_lock);
1860 return err;
1861 }
1862 spin_unlock(&ubi->wl_lock);
1863 up_read(&ubi->fm_eba_sem);
1864 goto retry;
1865
1866 }
1867 e = wl_get_wle(ubi);
1868 prot_queue_add(ubi, e);
1869 spin_unlock(&ubi->wl_lock);
1870
1871 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1872 ubi->peb_size - ubi->vid_hdr_aloffset);
1873 if (err) {
1874 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1875 return err;
1876 }
1877
1878 return e->pnum;
1879 }
1880 #else
1881 #include "fastmap-wl.c"
1882 #endif
1883