1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/x86_64/processor.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "../kvm_util_internal.h"
11 #include "processor.h"
12
13 #ifndef NUM_INTERRUPTS
14 #define NUM_INTERRUPTS 256
15 #endif
16
17 #define DEFAULT_CODE_SELECTOR 0x8
18 #define DEFAULT_DATA_SELECTOR 0x10
19
20 vm_vaddr_t exception_handlers;
21
22 /* Virtual translation table structure declarations */
23 struct pageUpperEntry {
24 uint64_t present:1;
25 uint64_t writable:1;
26 uint64_t user:1;
27 uint64_t write_through:1;
28 uint64_t cache_disable:1;
29 uint64_t accessed:1;
30 uint64_t ignored_06:1;
31 uint64_t page_size:1;
32 uint64_t ignored_11_08:4;
33 uint64_t pfn:40;
34 uint64_t ignored_62_52:11;
35 uint64_t execute_disable:1;
36 };
37
38 struct pageTableEntry {
39 uint64_t present:1;
40 uint64_t writable:1;
41 uint64_t user:1;
42 uint64_t write_through:1;
43 uint64_t cache_disable:1;
44 uint64_t accessed:1;
45 uint64_t dirty:1;
46 uint64_t reserved_07:1;
47 uint64_t global:1;
48 uint64_t ignored_11_09:3;
49 uint64_t pfn:40;
50 uint64_t ignored_62_52:11;
51 uint64_t execute_disable:1;
52 };
53
regs_dump(FILE * stream,struct kvm_regs * regs,uint8_t indent)54 void regs_dump(FILE *stream, struct kvm_regs *regs,
55 uint8_t indent)
56 {
57 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
58 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
59 indent, "",
60 regs->rax, regs->rbx, regs->rcx, regs->rdx);
61 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
62 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
63 indent, "",
64 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
65 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
66 "r10: 0x%.16llx r11: 0x%.16llx\n",
67 indent, "",
68 regs->r8, regs->r9, regs->r10, regs->r11);
69 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
70 "r14: 0x%.16llx r15: 0x%.16llx\n",
71 indent, "",
72 regs->r12, regs->r13, regs->r14, regs->r15);
73 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
74 indent, "",
75 regs->rip, regs->rflags);
76 }
77
78 /*
79 * Segment Dump
80 *
81 * Input Args:
82 * stream - Output FILE stream
83 * segment - KVM segment
84 * indent - Left margin indent amount
85 *
86 * Output Args: None
87 *
88 * Return: None
89 *
90 * Dumps the state of the KVM segment given by @segment, to the FILE stream
91 * given by @stream.
92 */
segment_dump(FILE * stream,struct kvm_segment * segment,uint8_t indent)93 static void segment_dump(FILE *stream, struct kvm_segment *segment,
94 uint8_t indent)
95 {
96 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
97 "selector: 0x%.4x type: 0x%.2x\n",
98 indent, "", segment->base, segment->limit,
99 segment->selector, segment->type);
100 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
101 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
102 indent, "", segment->present, segment->dpl,
103 segment->db, segment->s, segment->l);
104 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
105 "unusable: 0x%.2x padding: 0x%.2x\n",
106 indent, "", segment->g, segment->avl,
107 segment->unusable, segment->padding);
108 }
109
110 /*
111 * dtable Dump
112 *
113 * Input Args:
114 * stream - Output FILE stream
115 * dtable - KVM dtable
116 * indent - Left margin indent amount
117 *
118 * Output Args: None
119 *
120 * Return: None
121 *
122 * Dumps the state of the KVM dtable given by @dtable, to the FILE stream
123 * given by @stream.
124 */
dtable_dump(FILE * stream,struct kvm_dtable * dtable,uint8_t indent)125 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
126 uint8_t indent)
127 {
128 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
129 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
130 indent, "", dtable->base, dtable->limit,
131 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
132 }
133
sregs_dump(FILE * stream,struct kvm_sregs * sregs,uint8_t indent)134 void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
135 uint8_t indent)
136 {
137 unsigned int i;
138
139 fprintf(stream, "%*scs:\n", indent, "");
140 segment_dump(stream, &sregs->cs, indent + 2);
141 fprintf(stream, "%*sds:\n", indent, "");
142 segment_dump(stream, &sregs->ds, indent + 2);
143 fprintf(stream, "%*ses:\n", indent, "");
144 segment_dump(stream, &sregs->es, indent + 2);
145 fprintf(stream, "%*sfs:\n", indent, "");
146 segment_dump(stream, &sregs->fs, indent + 2);
147 fprintf(stream, "%*sgs:\n", indent, "");
148 segment_dump(stream, &sregs->gs, indent + 2);
149 fprintf(stream, "%*sss:\n", indent, "");
150 segment_dump(stream, &sregs->ss, indent + 2);
151 fprintf(stream, "%*str:\n", indent, "");
152 segment_dump(stream, &sregs->tr, indent + 2);
153 fprintf(stream, "%*sldt:\n", indent, "");
154 segment_dump(stream, &sregs->ldt, indent + 2);
155
156 fprintf(stream, "%*sgdt:\n", indent, "");
157 dtable_dump(stream, &sregs->gdt, indent + 2);
158 fprintf(stream, "%*sidt:\n", indent, "");
159 dtable_dump(stream, &sregs->idt, indent + 2);
160
161 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
162 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
163 indent, "",
164 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
165 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
166 "apic_base: 0x%.16llx\n",
167 indent, "",
168 sregs->cr8, sregs->efer, sregs->apic_base);
169
170 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
171 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
172 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
173 sregs->interrupt_bitmap[i]);
174 }
175 }
176
virt_pgd_alloc(struct kvm_vm * vm)177 void virt_pgd_alloc(struct kvm_vm *vm)
178 {
179 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
180 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
181
182 /* If needed, create page map l4 table. */
183 if (!vm->pgd_created) {
184 vm->pgd = vm_alloc_page_table(vm);
185 vm->pgd_created = true;
186 }
187 }
188
virt_get_pte(struct kvm_vm * vm,uint64_t pt_pfn,uint64_t vaddr,int level)189 static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
190 int level)
191 {
192 uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
193 int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu;
194
195 return &page_table[index];
196 }
197
virt_create_upper_pte(struct kvm_vm * vm,uint64_t pt_pfn,uint64_t vaddr,uint64_t paddr,int level,enum x86_page_size page_size)198 static struct pageUpperEntry *virt_create_upper_pte(struct kvm_vm *vm,
199 uint64_t pt_pfn,
200 uint64_t vaddr,
201 uint64_t paddr,
202 int level,
203 enum x86_page_size page_size)
204 {
205 struct pageUpperEntry *pte = virt_get_pte(vm, pt_pfn, vaddr, level);
206
207 if (!pte->present) {
208 pte->writable = true;
209 pte->present = true;
210 pte->page_size = (level == page_size);
211 if (pte->page_size)
212 pte->pfn = paddr >> vm->page_shift;
213 else
214 pte->pfn = vm_alloc_page_table(vm) >> vm->page_shift;
215 } else {
216 /*
217 * Entry already present. Assert that the caller doesn't want
218 * a hugepage at this level, and that there isn't a hugepage at
219 * this level.
220 */
221 TEST_ASSERT(level != page_size,
222 "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
223 page_size, vaddr);
224 TEST_ASSERT(!pte->page_size,
225 "Cannot create page table at level: %u, vaddr: 0x%lx\n",
226 level, vaddr);
227 }
228 return pte;
229 }
230
__virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,enum x86_page_size page_size)231 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
232 enum x86_page_size page_size)
233 {
234 const uint64_t pg_size = 1ull << ((page_size * 9) + 12);
235 struct pageUpperEntry *pml4e, *pdpe, *pde;
236 struct pageTableEntry *pte;
237
238 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
239 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
240
241 TEST_ASSERT((vaddr % pg_size) == 0,
242 "Virtual address not aligned,\n"
243 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
244 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
245 "Invalid virtual address, vaddr: 0x%lx", vaddr);
246 TEST_ASSERT((paddr % pg_size) == 0,
247 "Physical address not aligned,\n"
248 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
249 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
250 "Physical address beyond maximum supported,\n"
251 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
252 paddr, vm->max_gfn, vm->page_size);
253
254 /*
255 * Allocate upper level page tables, if not already present. Return
256 * early if a hugepage was created.
257 */
258 pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
259 vaddr, paddr, 3, page_size);
260 if (pml4e->page_size)
261 return;
262
263 pdpe = virt_create_upper_pte(vm, pml4e->pfn, vaddr, paddr, 2, page_size);
264 if (pdpe->page_size)
265 return;
266
267 pde = virt_create_upper_pte(vm, pdpe->pfn, vaddr, paddr, 1, page_size);
268 if (pde->page_size)
269 return;
270
271 /* Fill in page table entry. */
272 pte = virt_get_pte(vm, pde->pfn, vaddr, 0);
273 TEST_ASSERT(!pte->present,
274 "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
275 pte->pfn = paddr >> vm->page_shift;
276 pte->writable = true;
277 pte->present = 1;
278 }
279
virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)280 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
281 {
282 __virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K);
283 }
284
_vm_get_page_table_entry(struct kvm_vm * vm,int vcpuid,uint64_t vaddr)285 static struct pageTableEntry *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid,
286 uint64_t vaddr)
287 {
288 uint16_t index[4];
289 struct pageUpperEntry *pml4e, *pdpe, *pde;
290 struct pageTableEntry *pte;
291 struct kvm_cpuid_entry2 *entry;
292 struct kvm_sregs sregs;
293 int max_phy_addr;
294 /* Set the bottom 52 bits. */
295 uint64_t rsvd_mask = 0x000fffffffffffff;
296
297 entry = kvm_get_supported_cpuid_index(0x80000008, 0);
298 max_phy_addr = entry->eax & 0x000000ff;
299 /* Clear the bottom bits of the reserved mask. */
300 rsvd_mask = (rsvd_mask >> max_phy_addr) << max_phy_addr;
301
302 /*
303 * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries
304 * with 4-Level Paging and 5-Level Paging".
305 * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1,
306 * the XD flag (bit 63) is reserved.
307 */
308 vcpu_sregs_get(vm, vcpuid, &sregs);
309 if ((sregs.efer & EFER_NX) == 0) {
310 rsvd_mask |= (1ull << 63);
311 }
312
313 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
314 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
315 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
316 (vaddr >> vm->page_shift)),
317 "Invalid virtual address, vaddr: 0x%lx",
318 vaddr);
319 /*
320 * Based on the mode check above there are 48 bits in the vaddr, so
321 * shift 16 to sign extend the last bit (bit-47),
322 */
323 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
324 "Canonical check failed. The virtual address is invalid.");
325
326 index[0] = (vaddr >> 12) & 0x1ffu;
327 index[1] = (vaddr >> 21) & 0x1ffu;
328 index[2] = (vaddr >> 30) & 0x1ffu;
329 index[3] = (vaddr >> 39) & 0x1ffu;
330
331 pml4e = addr_gpa2hva(vm, vm->pgd);
332 TEST_ASSERT(pml4e[index[3]].present,
333 "Expected pml4e to be present for gva: 0x%08lx", vaddr);
334 TEST_ASSERT((*(uint64_t*)(&pml4e[index[3]]) &
335 (rsvd_mask | (1ull << 7))) == 0,
336 "Unexpected reserved bits set.");
337
338 pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
339 TEST_ASSERT(pdpe[index[2]].present,
340 "Expected pdpe to be present for gva: 0x%08lx", vaddr);
341 TEST_ASSERT(pdpe[index[2]].page_size == 0,
342 "Expected pdpe to map a pde not a 1-GByte page.");
343 TEST_ASSERT((*(uint64_t*)(&pdpe[index[2]]) & rsvd_mask) == 0,
344 "Unexpected reserved bits set.");
345
346 pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
347 TEST_ASSERT(pde[index[1]].present,
348 "Expected pde to be present for gva: 0x%08lx", vaddr);
349 TEST_ASSERT(pde[index[1]].page_size == 0,
350 "Expected pde to map a pte not a 2-MByte page.");
351 TEST_ASSERT((*(uint64_t*)(&pde[index[1]]) & rsvd_mask) == 0,
352 "Unexpected reserved bits set.");
353
354 pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
355 TEST_ASSERT(pte[index[0]].present,
356 "Expected pte to be present for gva: 0x%08lx", vaddr);
357
358 return &pte[index[0]];
359 }
360
vm_get_page_table_entry(struct kvm_vm * vm,int vcpuid,uint64_t vaddr)361 uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr)
362 {
363 struct pageTableEntry *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
364
365 return *(uint64_t *)pte;
366 }
367
vm_set_page_table_entry(struct kvm_vm * vm,int vcpuid,uint64_t vaddr,uint64_t pte)368 void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr,
369 uint64_t pte)
370 {
371 struct pageTableEntry *new_pte = _vm_get_page_table_entry(vm, vcpuid,
372 vaddr);
373
374 *(uint64_t *)new_pte = pte;
375 }
376
virt_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)377 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
378 {
379 struct pageUpperEntry *pml4e, *pml4e_start;
380 struct pageUpperEntry *pdpe, *pdpe_start;
381 struct pageUpperEntry *pde, *pde_start;
382 struct pageTableEntry *pte, *pte_start;
383
384 if (!vm->pgd_created)
385 return;
386
387 fprintf(stream, "%*s "
388 " no\n", indent, "");
389 fprintf(stream, "%*s index hvaddr gpaddr "
390 "addr w exec dirty\n",
391 indent, "");
392 pml4e_start = (struct pageUpperEntry *) addr_gpa2hva(vm, vm->pgd);
393 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
394 pml4e = &pml4e_start[n1];
395 if (!pml4e->present)
396 continue;
397 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
398 " %u\n",
399 indent, "",
400 pml4e - pml4e_start, pml4e,
401 addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->pfn,
402 pml4e->writable, pml4e->execute_disable);
403
404 pdpe_start = addr_gpa2hva(vm, pml4e->pfn * vm->page_size);
405 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
406 pdpe = &pdpe_start[n2];
407 if (!pdpe->present)
408 continue;
409 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx "
410 "%u %u\n",
411 indent, "",
412 pdpe - pdpe_start, pdpe,
413 addr_hva2gpa(vm, pdpe),
414 (uint64_t) pdpe->pfn, pdpe->writable,
415 pdpe->execute_disable);
416
417 pde_start = addr_gpa2hva(vm, pdpe->pfn * vm->page_size);
418 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
419 pde = &pde_start[n3];
420 if (!pde->present)
421 continue;
422 fprintf(stream, "%*spde 0x%-3zx %p "
423 "0x%-12lx 0x%-10lx %u %u\n",
424 indent, "", pde - pde_start, pde,
425 addr_hva2gpa(vm, pde),
426 (uint64_t) pde->pfn, pde->writable,
427 pde->execute_disable);
428
429 pte_start = addr_gpa2hva(vm, pde->pfn * vm->page_size);
430 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
431 pte = &pte_start[n4];
432 if (!pte->present)
433 continue;
434 fprintf(stream, "%*spte 0x%-3zx %p "
435 "0x%-12lx 0x%-10lx %u %u "
436 " %u 0x%-10lx\n",
437 indent, "",
438 pte - pte_start, pte,
439 addr_hva2gpa(vm, pte),
440 (uint64_t) pte->pfn,
441 pte->writable,
442 pte->execute_disable,
443 pte->dirty,
444 ((uint64_t) n1 << 27)
445 | ((uint64_t) n2 << 18)
446 | ((uint64_t) n3 << 9)
447 | ((uint64_t) n4));
448 }
449 }
450 }
451 }
452 }
453
454 /*
455 * Set Unusable Segment
456 *
457 * Input Args: None
458 *
459 * Output Args:
460 * segp - Pointer to segment register
461 *
462 * Return: None
463 *
464 * Sets the segment register pointed to by @segp to an unusable state.
465 */
kvm_seg_set_unusable(struct kvm_segment * segp)466 static void kvm_seg_set_unusable(struct kvm_segment *segp)
467 {
468 memset(segp, 0, sizeof(*segp));
469 segp->unusable = true;
470 }
471
kvm_seg_fill_gdt_64bit(struct kvm_vm * vm,struct kvm_segment * segp)472 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
473 {
474 void *gdt = addr_gva2hva(vm, vm->gdt);
475 struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
476
477 desc->limit0 = segp->limit & 0xFFFF;
478 desc->base0 = segp->base & 0xFFFF;
479 desc->base1 = segp->base >> 16;
480 desc->type = segp->type;
481 desc->s = segp->s;
482 desc->dpl = segp->dpl;
483 desc->p = segp->present;
484 desc->limit1 = segp->limit >> 16;
485 desc->avl = segp->avl;
486 desc->l = segp->l;
487 desc->db = segp->db;
488 desc->g = segp->g;
489 desc->base2 = segp->base >> 24;
490 if (!segp->s)
491 desc->base3 = segp->base >> 32;
492 }
493
494
495 /*
496 * Set Long Mode Flat Kernel Code Segment
497 *
498 * Input Args:
499 * vm - VM whose GDT is being filled, or NULL to only write segp
500 * selector - selector value
501 *
502 * Output Args:
503 * segp - Pointer to KVM segment
504 *
505 * Return: None
506 *
507 * Sets up the KVM segment pointed to by @segp, to be a code segment
508 * with the selector value given by @selector.
509 */
kvm_seg_set_kernel_code_64bit(struct kvm_vm * vm,uint16_t selector,struct kvm_segment * segp)510 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
511 struct kvm_segment *segp)
512 {
513 memset(segp, 0, sizeof(*segp));
514 segp->selector = selector;
515 segp->limit = 0xFFFFFFFFu;
516 segp->s = 0x1; /* kTypeCodeData */
517 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
518 * | kFlagCodeReadable
519 */
520 segp->g = true;
521 segp->l = true;
522 segp->present = 1;
523 if (vm)
524 kvm_seg_fill_gdt_64bit(vm, segp);
525 }
526
527 /*
528 * Set Long Mode Flat Kernel Data Segment
529 *
530 * Input Args:
531 * vm - VM whose GDT is being filled, or NULL to only write segp
532 * selector - selector value
533 *
534 * Output Args:
535 * segp - Pointer to KVM segment
536 *
537 * Return: None
538 *
539 * Sets up the KVM segment pointed to by @segp, to be a data segment
540 * with the selector value given by @selector.
541 */
kvm_seg_set_kernel_data_64bit(struct kvm_vm * vm,uint16_t selector,struct kvm_segment * segp)542 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
543 struct kvm_segment *segp)
544 {
545 memset(segp, 0, sizeof(*segp));
546 segp->selector = selector;
547 segp->limit = 0xFFFFFFFFu;
548 segp->s = 0x1; /* kTypeCodeData */
549 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
550 * | kFlagDataWritable
551 */
552 segp->g = true;
553 segp->present = true;
554 if (vm)
555 kvm_seg_fill_gdt_64bit(vm, segp);
556 }
557
addr_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)558 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
559 {
560 uint16_t index[4];
561 struct pageUpperEntry *pml4e, *pdpe, *pde;
562 struct pageTableEntry *pte;
563
564 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
565 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
566
567 index[0] = (gva >> 12) & 0x1ffu;
568 index[1] = (gva >> 21) & 0x1ffu;
569 index[2] = (gva >> 30) & 0x1ffu;
570 index[3] = (gva >> 39) & 0x1ffu;
571
572 if (!vm->pgd_created)
573 goto unmapped_gva;
574 pml4e = addr_gpa2hva(vm, vm->pgd);
575 if (!pml4e[index[3]].present)
576 goto unmapped_gva;
577
578 pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
579 if (!pdpe[index[2]].present)
580 goto unmapped_gva;
581
582 pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
583 if (!pde[index[1]].present)
584 goto unmapped_gva;
585
586 pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
587 if (!pte[index[0]].present)
588 goto unmapped_gva;
589
590 return (pte[index[0]].pfn * vm->page_size) + (gva & 0xfffu);
591
592 unmapped_gva:
593 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
594 exit(EXIT_FAILURE);
595 }
596
kvm_setup_gdt(struct kvm_vm * vm,struct kvm_dtable * dt)597 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
598 {
599 if (!vm->gdt)
600 vm->gdt = vm_vaddr_alloc_page(vm);
601
602 dt->base = vm->gdt;
603 dt->limit = getpagesize();
604 }
605
kvm_setup_tss_64bit(struct kvm_vm * vm,struct kvm_segment * segp,int selector)606 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
607 int selector)
608 {
609 if (!vm->tss)
610 vm->tss = vm_vaddr_alloc_page(vm);
611
612 memset(segp, 0, sizeof(*segp));
613 segp->base = vm->tss;
614 segp->limit = 0x67;
615 segp->selector = selector;
616 segp->type = 0xb;
617 segp->present = 1;
618 kvm_seg_fill_gdt_64bit(vm, segp);
619 }
620
vcpu_setup(struct kvm_vm * vm,int vcpuid)621 static void vcpu_setup(struct kvm_vm *vm, int vcpuid)
622 {
623 struct kvm_sregs sregs;
624
625 /* Set mode specific system register values. */
626 vcpu_sregs_get(vm, vcpuid, &sregs);
627
628 sregs.idt.limit = 0;
629
630 kvm_setup_gdt(vm, &sregs.gdt);
631
632 switch (vm->mode) {
633 case VM_MODE_PXXV48_4K:
634 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
635 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
636 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
637
638 kvm_seg_set_unusable(&sregs.ldt);
639 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
640 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
641 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
642 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
643 break;
644
645 default:
646 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
647 }
648
649 sregs.cr3 = vm->pgd;
650 vcpu_sregs_set(vm, vcpuid, &sregs);
651 }
652
vm_vcpu_add_default(struct kvm_vm * vm,uint32_t vcpuid,void * guest_code)653 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
654 {
655 struct kvm_mp_state mp_state;
656 struct kvm_regs regs;
657 vm_vaddr_t stack_vaddr;
658 stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
659 DEFAULT_GUEST_STACK_VADDR_MIN);
660
661 /* Create VCPU */
662 vm_vcpu_add(vm, vcpuid);
663 vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
664 vcpu_setup(vm, vcpuid);
665
666 /* Setup guest general purpose registers */
667 vcpu_regs_get(vm, vcpuid, ®s);
668 regs.rflags = regs.rflags | 0x2;
669 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
670 regs.rip = (unsigned long) guest_code;
671 vcpu_regs_set(vm, vcpuid, ®s);
672
673 /* Setup the MP state */
674 mp_state.mp_state = 0;
675 vcpu_set_mp_state(vm, vcpuid, &mp_state);
676 }
677
678 /*
679 * Allocate an instance of struct kvm_cpuid2
680 *
681 * Input Args: None
682 *
683 * Output Args: None
684 *
685 * Return: A pointer to the allocated struct. The caller is responsible
686 * for freeing this struct.
687 *
688 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
689 * array to be decided at allocation time, allocation is slightly
690 * complicated. This function uses a reasonable default length for
691 * the array and performs the appropriate allocation.
692 */
allocate_kvm_cpuid2(void)693 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
694 {
695 struct kvm_cpuid2 *cpuid;
696 int nent = 100;
697 size_t size;
698
699 size = sizeof(*cpuid);
700 size += nent * sizeof(struct kvm_cpuid_entry2);
701 cpuid = malloc(size);
702 if (!cpuid) {
703 perror("malloc");
704 abort();
705 }
706
707 cpuid->nent = nent;
708
709 return cpuid;
710 }
711
712 /*
713 * KVM Supported CPUID Get
714 *
715 * Input Args: None
716 *
717 * Output Args:
718 *
719 * Return: The supported KVM CPUID
720 *
721 * Get the guest CPUID supported by KVM.
722 */
kvm_get_supported_cpuid(void)723 struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
724 {
725 static struct kvm_cpuid2 *cpuid;
726 int ret;
727 int kvm_fd;
728
729 if (cpuid)
730 return cpuid;
731
732 cpuid = allocate_kvm_cpuid2();
733 kvm_fd = open_kvm_dev_path_or_exit();
734
735 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
736 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
737 ret, errno);
738
739 close(kvm_fd);
740 return cpuid;
741 }
742
743 /*
744 * KVM Get MSR
745 *
746 * Input Args:
747 * msr_index - Index of MSR
748 *
749 * Output Args: None
750 *
751 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
752 *
753 * Get value of MSR for VCPU.
754 */
kvm_get_feature_msr(uint64_t msr_index)755 uint64_t kvm_get_feature_msr(uint64_t msr_index)
756 {
757 struct {
758 struct kvm_msrs header;
759 struct kvm_msr_entry entry;
760 } buffer = {};
761 int r, kvm_fd;
762
763 buffer.header.nmsrs = 1;
764 buffer.entry.index = msr_index;
765 kvm_fd = open_kvm_dev_path_or_exit();
766
767 r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
768 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
769 " rc: %i errno: %i", r, errno);
770
771 close(kvm_fd);
772 return buffer.entry.data;
773 }
774
775 /*
776 * VM VCPU CPUID Set
777 *
778 * Input Args:
779 * vm - Virtual Machine
780 * vcpuid - VCPU id
781 *
782 * Output Args: None
783 *
784 * Return: KVM CPUID (KVM_GET_CPUID2)
785 *
786 * Set the VCPU's CPUID.
787 */
vcpu_get_cpuid(struct kvm_vm * vm,uint32_t vcpuid)788 struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
789 {
790 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
791 struct kvm_cpuid2 *cpuid;
792 int max_ent;
793 int rc = -1;
794
795 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
796
797 cpuid = allocate_kvm_cpuid2();
798 max_ent = cpuid->nent;
799
800 for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
801 rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
802 if (!rc)
803 break;
804
805 TEST_ASSERT(rc == -1 && errno == E2BIG,
806 "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
807 rc, errno);
808 }
809
810 TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
811 rc, errno);
812
813 return cpuid;
814 }
815
816
817
818 /*
819 * Locate a cpuid entry.
820 *
821 * Input Args:
822 * function: The function of the cpuid entry to find.
823 * index: The index of the cpuid entry.
824 *
825 * Output Args: None
826 *
827 * Return: A pointer to the cpuid entry. Never returns NULL.
828 */
829 struct kvm_cpuid_entry2 *
kvm_get_supported_cpuid_index(uint32_t function,uint32_t index)830 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
831 {
832 struct kvm_cpuid2 *cpuid;
833 struct kvm_cpuid_entry2 *entry = NULL;
834 int i;
835
836 cpuid = kvm_get_supported_cpuid();
837 for (i = 0; i < cpuid->nent; i++) {
838 if (cpuid->entries[i].function == function &&
839 cpuid->entries[i].index == index) {
840 entry = &cpuid->entries[i];
841 break;
842 }
843 }
844
845 TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
846 function, index);
847 return entry;
848 }
849
850 /*
851 * VM VCPU CPUID Set
852 *
853 * Input Args:
854 * vm - Virtual Machine
855 * vcpuid - VCPU id
856 * cpuid - The CPUID values to set.
857 *
858 * Output Args: None
859 *
860 * Return: void
861 *
862 * Set the VCPU's CPUID.
863 */
vcpu_set_cpuid(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_cpuid2 * cpuid)864 void vcpu_set_cpuid(struct kvm_vm *vm,
865 uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
866 {
867 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
868 int rc;
869
870 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
871
872 rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
873 TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
874 rc, errno);
875
876 }
877
878 /*
879 * VCPU Get MSR
880 *
881 * Input Args:
882 * vm - Virtual Machine
883 * vcpuid - VCPU ID
884 * msr_index - Index of MSR
885 *
886 * Output Args: None
887 *
888 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
889 *
890 * Get value of MSR for VCPU.
891 */
vcpu_get_msr(struct kvm_vm * vm,uint32_t vcpuid,uint64_t msr_index)892 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
893 {
894 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
895 struct {
896 struct kvm_msrs header;
897 struct kvm_msr_entry entry;
898 } buffer = {};
899 int r;
900
901 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
902 buffer.header.nmsrs = 1;
903 buffer.entry.index = msr_index;
904 r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
905 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
906 " rc: %i errno: %i", r, errno);
907
908 return buffer.entry.data;
909 }
910
911 /*
912 * _VCPU Set MSR
913 *
914 * Input Args:
915 * vm - Virtual Machine
916 * vcpuid - VCPU ID
917 * msr_index - Index of MSR
918 * msr_value - New value of MSR
919 *
920 * Output Args: None
921 *
922 * Return: The result of KVM_SET_MSRS.
923 *
924 * Sets the value of an MSR for the given VCPU.
925 */
_vcpu_set_msr(struct kvm_vm * vm,uint32_t vcpuid,uint64_t msr_index,uint64_t msr_value)926 int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
927 uint64_t msr_value)
928 {
929 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
930 struct {
931 struct kvm_msrs header;
932 struct kvm_msr_entry entry;
933 } buffer = {};
934 int r;
935
936 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
937 memset(&buffer, 0, sizeof(buffer));
938 buffer.header.nmsrs = 1;
939 buffer.entry.index = msr_index;
940 buffer.entry.data = msr_value;
941 r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
942 return r;
943 }
944
945 /*
946 * VCPU Set MSR
947 *
948 * Input Args:
949 * vm - Virtual Machine
950 * vcpuid - VCPU ID
951 * msr_index - Index of MSR
952 * msr_value - New value of MSR
953 *
954 * Output Args: None
955 *
956 * Return: On success, nothing. On failure a TEST_ASSERT is produced.
957 *
958 * Set value of MSR for VCPU.
959 */
vcpu_set_msr(struct kvm_vm * vm,uint32_t vcpuid,uint64_t msr_index,uint64_t msr_value)960 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
961 uint64_t msr_value)
962 {
963 int r;
964
965 r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
966 TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
967 " rc: %i errno: %i", r, errno);
968 }
969
vcpu_args_set(struct kvm_vm * vm,uint32_t vcpuid,unsigned int num,...)970 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
971 {
972 va_list ap;
973 struct kvm_regs regs;
974
975 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
976 " num: %u\n",
977 num);
978
979 va_start(ap, num);
980 vcpu_regs_get(vm, vcpuid, ®s);
981
982 if (num >= 1)
983 regs.rdi = va_arg(ap, uint64_t);
984
985 if (num >= 2)
986 regs.rsi = va_arg(ap, uint64_t);
987
988 if (num >= 3)
989 regs.rdx = va_arg(ap, uint64_t);
990
991 if (num >= 4)
992 regs.rcx = va_arg(ap, uint64_t);
993
994 if (num >= 5)
995 regs.r8 = va_arg(ap, uint64_t);
996
997 if (num >= 6)
998 regs.r9 = va_arg(ap, uint64_t);
999
1000 vcpu_regs_set(vm, vcpuid, ®s);
1001 va_end(ap);
1002 }
1003
vcpu_dump(FILE * stream,struct kvm_vm * vm,uint32_t vcpuid,uint8_t indent)1004 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
1005 {
1006 struct kvm_regs regs;
1007 struct kvm_sregs sregs;
1008
1009 fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
1010
1011 fprintf(stream, "%*sregs:\n", indent + 2, "");
1012 vcpu_regs_get(vm, vcpuid, ®s);
1013 regs_dump(stream, ®s, indent + 4);
1014
1015 fprintf(stream, "%*ssregs:\n", indent + 2, "");
1016 vcpu_sregs_get(vm, vcpuid, &sregs);
1017 sregs_dump(stream, &sregs, indent + 4);
1018 }
1019
1020 struct kvm_x86_state {
1021 struct kvm_vcpu_events events;
1022 struct kvm_mp_state mp_state;
1023 struct kvm_regs regs;
1024 struct kvm_xsave xsave;
1025 struct kvm_xcrs xcrs;
1026 struct kvm_sregs sregs;
1027 struct kvm_debugregs debugregs;
1028 union {
1029 struct kvm_nested_state nested;
1030 char nested_[16384];
1031 };
1032 struct kvm_msrs msrs;
1033 };
1034
kvm_get_num_msrs_fd(int kvm_fd)1035 static int kvm_get_num_msrs_fd(int kvm_fd)
1036 {
1037 struct kvm_msr_list nmsrs;
1038 int r;
1039
1040 nmsrs.nmsrs = 0;
1041 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1042 TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
1043 r);
1044
1045 return nmsrs.nmsrs;
1046 }
1047
kvm_get_num_msrs(struct kvm_vm * vm)1048 static int kvm_get_num_msrs(struct kvm_vm *vm)
1049 {
1050 return kvm_get_num_msrs_fd(vm->kvm_fd);
1051 }
1052
kvm_get_msr_index_list(void)1053 struct kvm_msr_list *kvm_get_msr_index_list(void)
1054 {
1055 struct kvm_msr_list *list;
1056 int nmsrs, r, kvm_fd;
1057
1058 kvm_fd = open_kvm_dev_path_or_exit();
1059
1060 nmsrs = kvm_get_num_msrs_fd(kvm_fd);
1061 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1062 list->nmsrs = nmsrs;
1063 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1064 close(kvm_fd);
1065
1066 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1067 r);
1068
1069 return list;
1070 }
1071
vcpu_save_state(struct kvm_vm * vm,uint32_t vcpuid)1072 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
1073 {
1074 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1075 struct kvm_msr_list *list;
1076 struct kvm_x86_state *state;
1077 int nmsrs, r, i;
1078 static int nested_size = -1;
1079
1080 if (nested_size == -1) {
1081 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1082 TEST_ASSERT(nested_size <= sizeof(state->nested_),
1083 "Nested state size too big, %i > %zi",
1084 nested_size, sizeof(state->nested_));
1085 }
1086
1087 /*
1088 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1089 * guest state is consistent only after userspace re-enters the
1090 * kernel with KVM_RUN. Complete IO prior to migrating state
1091 * to a new VM.
1092 */
1093 vcpu_run_complete_io(vm, vcpuid);
1094
1095 nmsrs = kvm_get_num_msrs(vm);
1096 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1097 list->nmsrs = nmsrs;
1098 r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1099 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1100 r);
1101
1102 state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1103 r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1104 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1105 r);
1106
1107 r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1108 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1109 r);
1110
1111 r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1112 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1113 r);
1114
1115 r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
1116 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1117 r);
1118
1119 if (kvm_check_cap(KVM_CAP_XCRS)) {
1120 r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1121 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1122 r);
1123 }
1124
1125 r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1126 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1127 r);
1128
1129 if (nested_size) {
1130 state->nested.size = sizeof(state->nested_);
1131 r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1132 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1133 r);
1134 TEST_ASSERT(state->nested.size <= nested_size,
1135 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1136 state->nested.size, nested_size);
1137 } else
1138 state->nested.size = 0;
1139
1140 state->msrs.nmsrs = nmsrs;
1141 for (i = 0; i < nmsrs; i++)
1142 state->msrs.entries[i].index = list->indices[i];
1143 r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1144 TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
1145 r, r == nmsrs ? -1 : list->indices[r]);
1146
1147 r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1148 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1149 r);
1150
1151 free(list);
1152 return state;
1153 }
1154
vcpu_load_state(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_x86_state * state)1155 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1156 {
1157 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1158 int r;
1159
1160 r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
1161 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1162 r);
1163
1164 if (kvm_check_cap(KVM_CAP_XCRS)) {
1165 r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1166 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1167 r);
1168 }
1169
1170 r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1171 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1172 r);
1173
1174 r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1175 TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1176 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1177
1178 r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1179 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1180 r);
1181
1182 r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1183 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1184 r);
1185
1186 r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1187 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1188 r);
1189
1190 r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1191 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1192 r);
1193
1194 if (state->nested.size) {
1195 r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1196 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1197 r);
1198 }
1199 }
1200
is_intel_cpu(void)1201 bool is_intel_cpu(void)
1202 {
1203 int eax, ebx, ecx, edx;
1204 const uint32_t *chunk;
1205 const int leaf = 0;
1206
1207 __asm__ __volatile__(
1208 "cpuid"
1209 : /* output */ "=a"(eax), "=b"(ebx),
1210 "=c"(ecx), "=d"(edx)
1211 : /* input */ "0"(leaf), "2"(0));
1212
1213 chunk = (const uint32_t *)("GenuineIntel");
1214 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1215 }
1216
kvm_get_cpuid_max_basic(void)1217 uint32_t kvm_get_cpuid_max_basic(void)
1218 {
1219 return kvm_get_supported_cpuid_entry(0)->eax;
1220 }
1221
kvm_get_cpuid_max_extended(void)1222 uint32_t kvm_get_cpuid_max_extended(void)
1223 {
1224 return kvm_get_supported_cpuid_entry(0x80000000)->eax;
1225 }
1226
kvm_get_cpu_address_width(unsigned int * pa_bits,unsigned int * va_bits)1227 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1228 {
1229 struct kvm_cpuid_entry2 *entry;
1230 bool pae;
1231
1232 /* SDM 4.1.4 */
1233 if (kvm_get_cpuid_max_extended() < 0x80000008) {
1234 pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1235 *pa_bits = pae ? 36 : 32;
1236 *va_bits = 32;
1237 } else {
1238 entry = kvm_get_supported_cpuid_entry(0x80000008);
1239 *pa_bits = entry->eax & 0xff;
1240 *va_bits = (entry->eax >> 8) & 0xff;
1241 }
1242 }
1243
1244 struct idt_entry {
1245 uint16_t offset0;
1246 uint16_t selector;
1247 uint16_t ist : 3;
1248 uint16_t : 5;
1249 uint16_t type : 4;
1250 uint16_t : 1;
1251 uint16_t dpl : 2;
1252 uint16_t p : 1;
1253 uint16_t offset1;
1254 uint32_t offset2; uint32_t reserved;
1255 };
1256
set_idt_entry(struct kvm_vm * vm,int vector,unsigned long addr,int dpl,unsigned short selector)1257 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1258 int dpl, unsigned short selector)
1259 {
1260 struct idt_entry *base =
1261 (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1262 struct idt_entry *e = &base[vector];
1263
1264 memset(e, 0, sizeof(*e));
1265 e->offset0 = addr;
1266 e->selector = selector;
1267 e->ist = 0;
1268 e->type = 14;
1269 e->dpl = dpl;
1270 e->p = 1;
1271 e->offset1 = addr >> 16;
1272 e->offset2 = addr >> 32;
1273 }
1274
kvm_exit_unexpected_vector(uint32_t value)1275 void kvm_exit_unexpected_vector(uint32_t value)
1276 {
1277 ucall(UCALL_UNHANDLED, 1, value);
1278 }
1279
route_exception(struct ex_regs * regs)1280 void route_exception(struct ex_regs *regs)
1281 {
1282 typedef void(*handler)(struct ex_regs *);
1283 handler *handlers = (handler *)exception_handlers;
1284
1285 if (handlers && handlers[regs->vector]) {
1286 handlers[regs->vector](regs);
1287 return;
1288 }
1289
1290 kvm_exit_unexpected_vector(regs->vector);
1291 }
1292
vm_init_descriptor_tables(struct kvm_vm * vm)1293 void vm_init_descriptor_tables(struct kvm_vm *vm)
1294 {
1295 extern void *idt_handlers;
1296 int i;
1297
1298 vm->idt = vm_vaddr_alloc_page(vm);
1299 vm->handlers = vm_vaddr_alloc_page(vm);
1300 /* Handlers have the same address in both address spaces.*/
1301 for (i = 0; i < NUM_INTERRUPTS; i++)
1302 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1303 DEFAULT_CODE_SELECTOR);
1304 }
1305
vcpu_init_descriptor_tables(struct kvm_vm * vm,uint32_t vcpuid)1306 void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
1307 {
1308 struct kvm_sregs sregs;
1309
1310 vcpu_sregs_get(vm, vcpuid, &sregs);
1311 sregs.idt.base = vm->idt;
1312 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1313 sregs.gdt.base = vm->gdt;
1314 sregs.gdt.limit = getpagesize() - 1;
1315 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1316 vcpu_sregs_set(vm, vcpuid, &sregs);
1317 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1318 }
1319
vm_install_exception_handler(struct kvm_vm * vm,int vector,void (* handler)(struct ex_regs *))1320 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1321 void (*handler)(struct ex_regs *))
1322 {
1323 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1324
1325 handlers[vector] = (vm_vaddr_t)handler;
1326 }
1327
assert_on_unhandled_exception(struct kvm_vm * vm,uint32_t vcpuid)1328 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
1329 {
1330 struct ucall uc;
1331
1332 if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) {
1333 uint64_t vector = uc.args[0];
1334
1335 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1336 vector);
1337 }
1338 }
1339
set_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 * ent)1340 bool set_cpuid(struct kvm_cpuid2 *cpuid,
1341 struct kvm_cpuid_entry2 *ent)
1342 {
1343 int i;
1344
1345 for (i = 0; i < cpuid->nent; i++) {
1346 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1347
1348 if (cur->function != ent->function || cur->index != ent->index)
1349 continue;
1350
1351 memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
1352 return true;
1353 }
1354
1355 return false;
1356 }
1357
kvm_hypercall(uint64_t nr,uint64_t a0,uint64_t a1,uint64_t a2,uint64_t a3)1358 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1359 uint64_t a3)
1360 {
1361 uint64_t r;
1362
1363 asm volatile("vmcall"
1364 : "=a"(r)
1365 : "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1366 return r;
1367 }
1368
kvm_get_supported_hv_cpuid(void)1369 struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1370 {
1371 static struct kvm_cpuid2 *cpuid;
1372 int ret;
1373 int kvm_fd;
1374
1375 if (cpuid)
1376 return cpuid;
1377
1378 cpuid = allocate_kvm_cpuid2();
1379 kvm_fd = open_kvm_dev_path_or_exit();
1380
1381 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1382 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
1383 ret, errno);
1384
1385 close(kvm_fd);
1386 return cpuid;
1387 }
1388
vcpu_set_hv_cpuid(struct kvm_vm * vm,uint32_t vcpuid)1389 void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1390 {
1391 static struct kvm_cpuid2 *cpuid_full;
1392 struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1393 int i, nent = 0;
1394
1395 if (!cpuid_full) {
1396 cpuid_sys = kvm_get_supported_cpuid();
1397 cpuid_hv = kvm_get_supported_hv_cpuid();
1398
1399 cpuid_full = malloc(sizeof(*cpuid_full) +
1400 (cpuid_sys->nent + cpuid_hv->nent) *
1401 sizeof(struct kvm_cpuid_entry2));
1402 if (!cpuid_full) {
1403 perror("malloc");
1404 abort();
1405 }
1406
1407 /* Need to skip KVM CPUID leaves 0x400000xx */
1408 for (i = 0; i < cpuid_sys->nent; i++) {
1409 if (cpuid_sys->entries[i].function >= 0x40000000 &&
1410 cpuid_sys->entries[i].function < 0x40000100)
1411 continue;
1412 cpuid_full->entries[nent] = cpuid_sys->entries[i];
1413 nent++;
1414 }
1415
1416 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1417 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1418 cpuid_full->nent = nent + cpuid_hv->nent;
1419 }
1420
1421 vcpu_set_cpuid(vm, vcpuid, cpuid_full);
1422 }
1423
vcpu_get_supported_hv_cpuid(struct kvm_vm * vm,uint32_t vcpuid)1424 struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1425 {
1426 static struct kvm_cpuid2 *cpuid;
1427
1428 cpuid = allocate_kvm_cpuid2();
1429
1430 vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1431
1432 return cpuid;
1433 }
1434
1435 #define X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx 0x68747541
1436 #define X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx 0x444d4163
1437 #define X86EMUL_CPUID_VENDOR_AuthenticAMD_edx 0x69746e65
1438
x86_family(unsigned int eax)1439 static inline unsigned x86_family(unsigned int eax)
1440 {
1441 unsigned int x86;
1442
1443 x86 = (eax >> 8) & 0xf;
1444
1445 if (x86 == 0xf)
1446 x86 += (eax >> 20) & 0xff;
1447
1448 return x86;
1449 }
1450
vm_compute_max_gfn(struct kvm_vm * vm)1451 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1452 {
1453 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1454 unsigned long ht_gfn, max_gfn, max_pfn;
1455 uint32_t eax, ebx, ecx, edx, max_ext_leaf;
1456
1457 max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1458
1459 /* Avoid reserved HyperTransport region on AMD processors. */
1460 eax = ecx = 0;
1461 cpuid(&eax, &ebx, &ecx, &edx);
1462 if (ebx != X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx ||
1463 ecx != X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx ||
1464 edx != X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
1465 return max_gfn;
1466
1467 /* On parts with <40 physical address bits, the area is fully hidden */
1468 if (vm->pa_bits < 40)
1469 return max_gfn;
1470
1471 /* Before family 17h, the HyperTransport area is just below 1T. */
1472 ht_gfn = (1 << 28) - num_ht_pages;
1473 eax = 1;
1474 cpuid(&eax, &ebx, &ecx, &edx);
1475 if (x86_family(eax) < 0x17)
1476 goto done;
1477
1478 /*
1479 * Otherwise it's at the top of the physical address space, possibly
1480 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use
1481 * the old conservative value if MAXPHYADDR is not enumerated.
1482 */
1483 eax = 0x80000000;
1484 cpuid(&eax, &ebx, &ecx, &edx);
1485 max_ext_leaf = eax;
1486 if (max_ext_leaf < 0x80000008)
1487 goto done;
1488
1489 eax = 0x80000008;
1490 cpuid(&eax, &ebx, &ecx, &edx);
1491 max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1;
1492 if (max_ext_leaf >= 0x8000001f) {
1493 eax = 0x8000001f;
1494 cpuid(&eax, &ebx, &ecx, &edx);
1495 max_pfn >>= (ebx >> 6) & 0x3f;
1496 }
1497
1498 ht_gfn = max_pfn - num_ht_pages;
1499 done:
1500 return min(max_gfn, ht_gfn - 1);
1501 }
1502