1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
87
88 /*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98 /*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110 /*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124
125 struct pagesets {
126 local_lock_t lock;
127 };
128 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130 };
131
132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133 DEFINE_PER_CPU(int, numa_node);
134 EXPORT_PER_CPU_SYMBOL(numa_node);
135 #endif
136
137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
140 /*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148 #endif
149
150 /* work_structs for global per-cpu drains */
151 struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154 };
155 static DEFINE_MUTEX(pcpu_drain_mutex);
156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157
158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159 volatile unsigned long latent_entropy __latent_entropy;
160 EXPORT_SYMBOL(latent_entropy);
161 #endif
162
163 /*
164 * Array of node states.
165 */
166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169 #ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171 #ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
173 #endif
174 [N_MEMORY] = { { [0] = 1UL } },
175 [N_CPU] = { { [0] = 1UL } },
176 #endif /* NUMA */
177 };
178 EXPORT_SYMBOL(node_states);
179
180 atomic_long_t _totalram_pages __read_mostly;
181 EXPORT_SYMBOL(_totalram_pages);
182 unsigned long totalreserve_pages __read_mostly;
183 unsigned long totalcma_pages __read_mostly;
184
185 int percpu_pagelist_high_fraction;
186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188 EXPORT_SYMBOL(init_on_alloc);
189
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191 EXPORT_SYMBOL(init_on_free);
192
193 static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)195 static int __init early_init_on_alloc(char *buf)
196 {
197
198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
199 }
200 early_param("init_on_alloc", early_init_on_alloc);
201
202 static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)204 static int __init early_init_on_free(char *buf)
205 {
206 return kstrtobool(buf, &_init_on_free_enabled_early);
207 }
208 early_param("init_on_free", early_init_on_free);
209
210 /*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
get_pcppage_migratetype(struct page * page)218 static inline int get_pcppage_migratetype(struct page *page)
219 {
220 return page->index;
221 }
222
set_pcppage_migratetype(struct page * page,int migratetype)223 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224 {
225 page->index = migratetype;
226 }
227
228 #ifdef CONFIG_PM_SLEEP
229 /*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
237 */
238
239 static gfp_t saved_gfp_mask;
240
pm_restore_gfp_mask(void)241 void pm_restore_gfp_mask(void)
242 {
243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
248 }
249
pm_restrict_gfp_mask(void)250 void pm_restrict_gfp_mask(void)
251 {
252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256 }
257
pm_suspended_storage(void)258 bool pm_suspended_storage(void)
259 {
260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 return false;
262 return true;
263 }
264 #endif /* CONFIG_PM_SLEEP */
265
266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267 unsigned int pageblock_order __read_mostly;
268 #endif
269
270 static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
272
273 /*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
283 */
284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285 #ifdef CONFIG_ZONE_DMA
286 [ZONE_DMA] = 256,
287 #endif
288 #ifdef CONFIG_ZONE_DMA32
289 [ZONE_DMA32] = 256,
290 #endif
291 [ZONE_NORMAL] = 32,
292 #ifdef CONFIG_HIGHMEM
293 [ZONE_HIGHMEM] = 0,
294 #endif
295 [ZONE_MOVABLE] = 0,
296 };
297
298 static char * const zone_names[MAX_NR_ZONES] = {
299 #ifdef CONFIG_ZONE_DMA
300 "DMA",
301 #endif
302 #ifdef CONFIG_ZONE_DMA32
303 "DMA32",
304 #endif
305 "Normal",
306 #ifdef CONFIG_HIGHMEM
307 "HighMem",
308 #endif
309 "Movable",
310 #ifdef CONFIG_ZONE_DEVICE
311 "Device",
312 #endif
313 };
314
315 const char * const migratetype_names[MIGRATE_TYPES] = {
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320 #ifdef CONFIG_CMA
321 "CMA",
322 #endif
323 #ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325 #endif
326 };
327
328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
331 #ifdef CONFIG_HUGETLB_PAGE
332 [HUGETLB_PAGE_DTOR] = free_huge_page,
333 #endif
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336 #endif
337 };
338
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 int watermark_boost_factor __read_mostly = 15000;
342 int watermark_scale_factor = 10;
343
344 static unsigned long nr_kernel_pages __initdata;
345 static unsigned long nr_all_pages __initdata;
346 static unsigned long dma_reserve __initdata;
347
348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long required_kernelcore __initdata;
351 static unsigned long required_kernelcore_percent __initdata;
352 static unsigned long required_movablecore __initdata;
353 static unsigned long required_movablecore_percent __initdata;
354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355 static bool mirrored_kernelcore __meminitdata;
356
357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358 int movable_zone;
359 EXPORT_SYMBOL(movable_zone);
360
361 #if MAX_NUMNODES > 1
362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363 unsigned int nr_online_nodes __read_mostly = 1;
364 EXPORT_SYMBOL(nr_node_ids);
365 EXPORT_SYMBOL(nr_online_nodes);
366 #endif
367
368 int page_group_by_mobility_disabled __read_mostly;
369
370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371 /*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378 /*
379 * Calling kasan_poison_pages() only after deferred memory initialization
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392 {
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
397 }
398
399 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)400 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401 {
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 return true;
406
407 return false;
408 }
409
410 /*
411 * Returns true when the remaining initialisation should be deferred until
412 * later in the boot cycle when it can be parallelised.
413 */
414 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416 {
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
428 /* Always populate low zones for address-constrained allocations */
429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 return false;
431
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
438 nr_initialised++;
439 if ((nr_initialised > PAGES_PER_SECTION) &&
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
443 }
444 return false;
445 }
446 #else
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448 {
449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
452 }
453
early_page_uninitialised(unsigned long pfn)454 static inline bool early_page_uninitialised(unsigned long pfn)
455 {
456 return false;
457 }
458
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460 {
461 return false;
462 }
463 #endif
464
465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)466 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 unsigned long pfn)
468 {
469 #ifdef CONFIG_SPARSEMEM
470 return section_to_usemap(__pfn_to_section(pfn));
471 #else
472 return page_zone(page)->pageblock_flags;
473 #endif /* CONFIG_SPARSEMEM */
474 }
475
pfn_to_bitidx(const struct page * page,unsigned long pfn)476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477 {
478 #ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
480 #else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482 #endif /* CONFIG_SPARSEMEM */
483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484 }
485
486 static __always_inline
__get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)487 unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 unsigned long pfn,
489 unsigned long mask)
490 {
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
501 return (word >> bitidx) & mask;
502 }
503
504 /**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)512 unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
514 {
515 return __get_pfnblock_flags_mask(page, pfn, mask);
516 }
517
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)518 static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
520 {
521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522 }
523
524 /**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
529 * @mask: mask of bits that the caller is interested in
530 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
533 unsigned long mask)
534 {
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
549 mask <<= bitidx;
550 flags <<= bitidx;
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559 }
560
set_pageblock_migratetype(struct page * page,int migratetype)561 void set_pageblock_migratetype(struct page *page, int migratetype)
562 {
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
565 migratetype = MIGRATE_UNMOVABLE;
566
567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 page_to_pfn(page), MIGRATETYPE_MASK);
569 }
570
571 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573 {
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
577 unsigned long sp, start_pfn;
578
579 do {
580 seq = zone_span_seqbegin(zone);
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
583 if (!zone_spans_pfn(zone, pfn))
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
587 if (ret)
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
591
592 return ret;
593 }
594
page_is_consistent(struct zone * zone,struct page * page)595 static int page_is_consistent(struct zone *zone, struct page *page)
596 {
597 if (zone != page_zone(page))
598 return 0;
599
600 return 1;
601 }
602 /*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
bad_range(struct zone * zone,struct page * page)605 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 if (page_outside_zone_boundaries(zone, page))
608 return 1;
609 if (!page_is_consistent(zone, page))
610 return 1;
611
612 return 0;
613 }
614 #else
bad_range(struct zone * zone,struct page * page)615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
616 {
617 return 0;
618 }
619 #endif
620
bad_page(struct page * page,const char * reason)621 static void bad_page(struct page *page, const char *reason)
622 {
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
637 pr_alert(
638 "BUG: Bad page state: %lu messages suppressed\n",
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
648 current->comm, page_to_pfn(page));
649 dump_page(page, reason);
650
651 print_modules();
652 dump_stack();
653 out:
654 /* Leave bad fields for debug, except PageBuddy could make trouble */
655 page_mapcount_reset(page); /* remove PageBuddy */
656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657 }
658
order_to_pindex(int migratetype,int order)659 static inline unsigned int order_to_pindex(int migratetype, int order)
660 {
661 int base = order;
662
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 VM_BUG_ON(order != pageblock_order);
666 base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 }
668 #else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670 #endif
671
672 return (MIGRATE_PCPTYPES * base) + migratetype;
673 }
674
pindex_to_order(unsigned int pindex)675 static inline int pindex_to_order(unsigned int pindex)
676 {
677 int order = pindex / MIGRATE_PCPTYPES;
678
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 if (order > PAGE_ALLOC_COSTLY_ORDER)
681 order = pageblock_order;
682 #else
683 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
684 #endif
685
686 return order;
687 }
688
pcp_allowed_order(unsigned int order)689 static inline bool pcp_allowed_order(unsigned int order)
690 {
691 if (order <= PAGE_ALLOC_COSTLY_ORDER)
692 return true;
693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
694 if (order == pageblock_order)
695 return true;
696 #endif
697 return false;
698 }
699
free_the_page(struct page * page,unsigned int order)700 static inline void free_the_page(struct page *page, unsigned int order)
701 {
702 if (pcp_allowed_order(order)) /* Via pcp? */
703 free_unref_page(page, order);
704 else
705 __free_pages_ok(page, order, FPI_NONE);
706 }
707
708 /*
709 * Higher-order pages are called "compound pages". They are structured thusly:
710 *
711 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
712 *
713 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
714 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
715 *
716 * The first tail page's ->compound_dtor holds the offset in array of compound
717 * page destructors. See compound_page_dtors.
718 *
719 * The first tail page's ->compound_order holds the order of allocation.
720 * This usage means that zero-order pages may not be compound.
721 */
722
free_compound_page(struct page * page)723 void free_compound_page(struct page *page)
724 {
725 mem_cgroup_uncharge(page_folio(page));
726 free_the_page(page, compound_order(page));
727 }
728
prep_compound_page(struct page * page,unsigned int order)729 void prep_compound_page(struct page *page, unsigned int order)
730 {
731 int i;
732 int nr_pages = 1 << order;
733
734 __SetPageHead(page);
735 for (i = 1; i < nr_pages; i++) {
736 struct page *p = page + i;
737 p->mapping = TAIL_MAPPING;
738 set_compound_head(p, page);
739 }
740
741 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
742 set_compound_order(page, order);
743 atomic_set(compound_mapcount_ptr(page), -1);
744 if (hpage_pincount_available(page))
745 atomic_set(compound_pincount_ptr(page), 0);
746 }
747
748 #ifdef CONFIG_DEBUG_PAGEALLOC
749 unsigned int _debug_guardpage_minorder;
750
751 bool _debug_pagealloc_enabled_early __read_mostly
752 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
753 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
754 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
755 EXPORT_SYMBOL(_debug_pagealloc_enabled);
756
757 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
758
early_debug_pagealloc(char * buf)759 static int __init early_debug_pagealloc(char *buf)
760 {
761 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
762 }
763 early_param("debug_pagealloc", early_debug_pagealloc);
764
debug_guardpage_minorder_setup(char * buf)765 static int __init debug_guardpage_minorder_setup(char *buf)
766 {
767 unsigned long res;
768
769 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
770 pr_err("Bad debug_guardpage_minorder value\n");
771 return 0;
772 }
773 _debug_guardpage_minorder = res;
774 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
775 return 0;
776 }
777 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
778
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)779 static inline bool set_page_guard(struct zone *zone, struct page *page,
780 unsigned int order, int migratetype)
781 {
782 if (!debug_guardpage_enabled())
783 return false;
784
785 if (order >= debug_guardpage_minorder())
786 return false;
787
788 __SetPageGuard(page);
789 INIT_LIST_HEAD(&page->lru);
790 set_page_private(page, order);
791 /* Guard pages are not available for any usage */
792 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
793
794 return true;
795 }
796
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)797 static inline void clear_page_guard(struct zone *zone, struct page *page,
798 unsigned int order, int migratetype)
799 {
800 if (!debug_guardpage_enabled())
801 return;
802
803 __ClearPageGuard(page);
804
805 set_page_private(page, 0);
806 if (!is_migrate_isolate(migratetype))
807 __mod_zone_freepage_state(zone, (1 << order), migratetype);
808 }
809 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)810 static inline bool set_page_guard(struct zone *zone, struct page *page,
811 unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)812 static inline void clear_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype) {}
814 #endif
815
816 /*
817 * Enable static keys related to various memory debugging and hardening options.
818 * Some override others, and depend on early params that are evaluated in the
819 * order of appearance. So we need to first gather the full picture of what was
820 * enabled, and then make decisions.
821 */
init_mem_debugging_and_hardening(void)822 void init_mem_debugging_and_hardening(void)
823 {
824 bool page_poisoning_requested = false;
825
826 #ifdef CONFIG_PAGE_POISONING
827 /*
828 * Page poisoning is debug page alloc for some arches. If
829 * either of those options are enabled, enable poisoning.
830 */
831 if (page_poisoning_enabled() ||
832 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
833 debug_pagealloc_enabled())) {
834 static_branch_enable(&_page_poisoning_enabled);
835 page_poisoning_requested = true;
836 }
837 #endif
838
839 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
840 page_poisoning_requested) {
841 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
842 "will take precedence over init_on_alloc and init_on_free\n");
843 _init_on_alloc_enabled_early = false;
844 _init_on_free_enabled_early = false;
845 }
846
847 if (_init_on_alloc_enabled_early)
848 static_branch_enable(&init_on_alloc);
849 else
850 static_branch_disable(&init_on_alloc);
851
852 if (_init_on_free_enabled_early)
853 static_branch_enable(&init_on_free);
854 else
855 static_branch_disable(&init_on_free);
856
857 #ifdef CONFIG_DEBUG_PAGEALLOC
858 if (!debug_pagealloc_enabled())
859 return;
860
861 static_branch_enable(&_debug_pagealloc_enabled);
862
863 if (!debug_guardpage_minorder())
864 return;
865
866 static_branch_enable(&_debug_guardpage_enabled);
867 #endif
868 }
869
set_buddy_order(struct page * page,unsigned int order)870 static inline void set_buddy_order(struct page *page, unsigned int order)
871 {
872 set_page_private(page, order);
873 __SetPageBuddy(page);
874 }
875
876 /*
877 * This function checks whether a page is free && is the buddy
878 * we can coalesce a page and its buddy if
879 * (a) the buddy is not in a hole (check before calling!) &&
880 * (b) the buddy is in the buddy system &&
881 * (c) a page and its buddy have the same order &&
882 * (d) a page and its buddy are in the same zone.
883 *
884 * For recording whether a page is in the buddy system, we set PageBuddy.
885 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
886 *
887 * For recording page's order, we use page_private(page).
888 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)889 static inline bool page_is_buddy(struct page *page, struct page *buddy,
890 unsigned int order)
891 {
892 if (!page_is_guard(buddy) && !PageBuddy(buddy))
893 return false;
894
895 if (buddy_order(buddy) != order)
896 return false;
897
898 /*
899 * zone check is done late to avoid uselessly calculating
900 * zone/node ids for pages that could never merge.
901 */
902 if (page_zone_id(page) != page_zone_id(buddy))
903 return false;
904
905 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
906
907 return true;
908 }
909
910 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)911 static inline struct capture_control *task_capc(struct zone *zone)
912 {
913 struct capture_control *capc = current->capture_control;
914
915 return unlikely(capc) &&
916 !(current->flags & PF_KTHREAD) &&
917 !capc->page &&
918 capc->cc->zone == zone ? capc : NULL;
919 }
920
921 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)922 compaction_capture(struct capture_control *capc, struct page *page,
923 int order, int migratetype)
924 {
925 if (!capc || order != capc->cc->order)
926 return false;
927
928 /* Do not accidentally pollute CMA or isolated regions*/
929 if (is_migrate_cma(migratetype) ||
930 is_migrate_isolate(migratetype))
931 return false;
932
933 /*
934 * Do not let lower order allocations pollute a movable pageblock.
935 * This might let an unmovable request use a reclaimable pageblock
936 * and vice-versa but no more than normal fallback logic which can
937 * have trouble finding a high-order free page.
938 */
939 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
940 return false;
941
942 capc->page = page;
943 return true;
944 }
945
946 #else
task_capc(struct zone * zone)947 static inline struct capture_control *task_capc(struct zone *zone)
948 {
949 return NULL;
950 }
951
952 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)953 compaction_capture(struct capture_control *capc, struct page *page,
954 int order, int migratetype)
955 {
956 return false;
957 }
958 #endif /* CONFIG_COMPACTION */
959
960 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)961 static inline void add_to_free_list(struct page *page, struct zone *zone,
962 unsigned int order, int migratetype)
963 {
964 struct free_area *area = &zone->free_area[order];
965
966 list_add(&page->lru, &area->free_list[migratetype]);
967 area->nr_free++;
968 }
969
970 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)971 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
972 unsigned int order, int migratetype)
973 {
974 struct free_area *area = &zone->free_area[order];
975
976 list_add_tail(&page->lru, &area->free_list[migratetype]);
977 area->nr_free++;
978 }
979
980 /*
981 * Used for pages which are on another list. Move the pages to the tail
982 * of the list - so the moved pages won't immediately be considered for
983 * allocation again (e.g., optimization for memory onlining).
984 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)985 static inline void move_to_free_list(struct page *page, struct zone *zone,
986 unsigned int order, int migratetype)
987 {
988 struct free_area *area = &zone->free_area[order];
989
990 list_move_tail(&page->lru, &area->free_list[migratetype]);
991 }
992
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)993 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
994 unsigned int order)
995 {
996 /* clear reported state and update reported page count */
997 if (page_reported(page))
998 __ClearPageReported(page);
999
1000 list_del(&page->lru);
1001 __ClearPageBuddy(page);
1002 set_page_private(page, 0);
1003 zone->free_area[order].nr_free--;
1004 }
1005
1006 /*
1007 * If this is not the largest possible page, check if the buddy
1008 * of the next-highest order is free. If it is, it's possible
1009 * that pages are being freed that will coalesce soon. In case,
1010 * that is happening, add the free page to the tail of the list
1011 * so it's less likely to be used soon and more likely to be merged
1012 * as a higher order page
1013 */
1014 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)1015 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1016 struct page *page, unsigned int order)
1017 {
1018 struct page *higher_page, *higher_buddy;
1019 unsigned long combined_pfn;
1020
1021 if (order >= MAX_ORDER - 2)
1022 return false;
1023
1024 combined_pfn = buddy_pfn & pfn;
1025 higher_page = page + (combined_pfn - pfn);
1026 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1027 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1028
1029 return page_is_buddy(higher_page, higher_buddy, order + 1);
1030 }
1031
1032 /*
1033 * Freeing function for a buddy system allocator.
1034 *
1035 * The concept of a buddy system is to maintain direct-mapped table
1036 * (containing bit values) for memory blocks of various "orders".
1037 * The bottom level table contains the map for the smallest allocatable
1038 * units of memory (here, pages), and each level above it describes
1039 * pairs of units from the levels below, hence, "buddies".
1040 * At a high level, all that happens here is marking the table entry
1041 * at the bottom level available, and propagating the changes upward
1042 * as necessary, plus some accounting needed to play nicely with other
1043 * parts of the VM system.
1044 * At each level, we keep a list of pages, which are heads of continuous
1045 * free pages of length of (1 << order) and marked with PageBuddy.
1046 * Page's order is recorded in page_private(page) field.
1047 * So when we are allocating or freeing one, we can derive the state of the
1048 * other. That is, if we allocate a small block, and both were
1049 * free, the remainder of the region must be split into blocks.
1050 * If a block is freed, and its buddy is also free, then this
1051 * triggers coalescing into a block of larger size.
1052 *
1053 * -- nyc
1054 */
1055
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)1056 static inline void __free_one_page(struct page *page,
1057 unsigned long pfn,
1058 struct zone *zone, unsigned int order,
1059 int migratetype, fpi_t fpi_flags)
1060 {
1061 struct capture_control *capc = task_capc(zone);
1062 unsigned long buddy_pfn;
1063 unsigned long combined_pfn;
1064 unsigned int max_order;
1065 struct page *buddy;
1066 bool to_tail;
1067
1068 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1069
1070 VM_BUG_ON(!zone_is_initialized(zone));
1071 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1072
1073 VM_BUG_ON(migratetype == -1);
1074 if (likely(!is_migrate_isolate(migratetype)))
1075 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1076
1077 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1078 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1079
1080 continue_merging:
1081 while (order < max_order) {
1082 if (compaction_capture(capc, page, order, migratetype)) {
1083 __mod_zone_freepage_state(zone, -(1 << order),
1084 migratetype);
1085 return;
1086 }
1087 buddy_pfn = __find_buddy_pfn(pfn, order);
1088 buddy = page + (buddy_pfn - pfn);
1089
1090 if (!page_is_buddy(page, buddy, order))
1091 goto done_merging;
1092 /*
1093 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1094 * merge with it and move up one order.
1095 */
1096 if (page_is_guard(buddy))
1097 clear_page_guard(zone, buddy, order, migratetype);
1098 else
1099 del_page_from_free_list(buddy, zone, order);
1100 combined_pfn = buddy_pfn & pfn;
1101 page = page + (combined_pfn - pfn);
1102 pfn = combined_pfn;
1103 order++;
1104 }
1105 if (order < MAX_ORDER - 1) {
1106 /* If we are here, it means order is >= pageblock_order.
1107 * We want to prevent merge between freepages on isolate
1108 * pageblock and normal pageblock. Without this, pageblock
1109 * isolation could cause incorrect freepage or CMA accounting.
1110 *
1111 * We don't want to hit this code for the more frequent
1112 * low-order merging.
1113 */
1114 if (unlikely(has_isolate_pageblock(zone))) {
1115 int buddy_mt;
1116
1117 buddy_pfn = __find_buddy_pfn(pfn, order);
1118 buddy = page + (buddy_pfn - pfn);
1119 buddy_mt = get_pageblock_migratetype(buddy);
1120
1121 if (migratetype != buddy_mt
1122 && (is_migrate_isolate(migratetype) ||
1123 is_migrate_isolate(buddy_mt)))
1124 goto done_merging;
1125 }
1126 max_order = order + 1;
1127 goto continue_merging;
1128 }
1129
1130 done_merging:
1131 set_buddy_order(page, order);
1132
1133 if (fpi_flags & FPI_TO_TAIL)
1134 to_tail = true;
1135 else if (is_shuffle_order(order))
1136 to_tail = shuffle_pick_tail();
1137 else
1138 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1139
1140 if (to_tail)
1141 add_to_free_list_tail(page, zone, order, migratetype);
1142 else
1143 add_to_free_list(page, zone, order, migratetype);
1144
1145 /* Notify page reporting subsystem of freed page */
1146 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1147 page_reporting_notify_free(order);
1148 }
1149
1150 /*
1151 * A bad page could be due to a number of fields. Instead of multiple branches,
1152 * try and check multiple fields with one check. The caller must do a detailed
1153 * check if necessary.
1154 */
page_expected_state(struct page * page,unsigned long check_flags)1155 static inline bool page_expected_state(struct page *page,
1156 unsigned long check_flags)
1157 {
1158 if (unlikely(atomic_read(&page->_mapcount) != -1))
1159 return false;
1160
1161 if (unlikely((unsigned long)page->mapping |
1162 page_ref_count(page) |
1163 #ifdef CONFIG_MEMCG
1164 page->memcg_data |
1165 #endif
1166 (page->flags & check_flags)))
1167 return false;
1168
1169 return true;
1170 }
1171
page_bad_reason(struct page * page,unsigned long flags)1172 static const char *page_bad_reason(struct page *page, unsigned long flags)
1173 {
1174 const char *bad_reason = NULL;
1175
1176 if (unlikely(atomic_read(&page->_mapcount) != -1))
1177 bad_reason = "nonzero mapcount";
1178 if (unlikely(page->mapping != NULL))
1179 bad_reason = "non-NULL mapping";
1180 if (unlikely(page_ref_count(page) != 0))
1181 bad_reason = "nonzero _refcount";
1182 if (unlikely(page->flags & flags)) {
1183 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1184 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1185 else
1186 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1187 }
1188 #ifdef CONFIG_MEMCG
1189 if (unlikely(page->memcg_data))
1190 bad_reason = "page still charged to cgroup";
1191 #endif
1192 return bad_reason;
1193 }
1194
check_free_page_bad(struct page * page)1195 static void check_free_page_bad(struct page *page)
1196 {
1197 bad_page(page,
1198 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1199 }
1200
check_free_page(struct page * page)1201 static inline int check_free_page(struct page *page)
1202 {
1203 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1204 return 0;
1205
1206 /* Something has gone sideways, find it */
1207 check_free_page_bad(page);
1208 return 1;
1209 }
1210
free_tail_pages_check(struct page * head_page,struct page * page)1211 static int free_tail_pages_check(struct page *head_page, struct page *page)
1212 {
1213 int ret = 1;
1214
1215 /*
1216 * We rely page->lru.next never has bit 0 set, unless the page
1217 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1218 */
1219 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1220
1221 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1222 ret = 0;
1223 goto out;
1224 }
1225 switch (page - head_page) {
1226 case 1:
1227 /* the first tail page: ->mapping may be compound_mapcount() */
1228 if (unlikely(compound_mapcount(page))) {
1229 bad_page(page, "nonzero compound_mapcount");
1230 goto out;
1231 }
1232 break;
1233 case 2:
1234 /*
1235 * the second tail page: ->mapping is
1236 * deferred_list.next -- ignore value.
1237 */
1238 break;
1239 default:
1240 if (page->mapping != TAIL_MAPPING) {
1241 bad_page(page, "corrupted mapping in tail page");
1242 goto out;
1243 }
1244 break;
1245 }
1246 if (unlikely(!PageTail(page))) {
1247 bad_page(page, "PageTail not set");
1248 goto out;
1249 }
1250 if (unlikely(compound_head(page) != head_page)) {
1251 bad_page(page, "compound_head not consistent");
1252 goto out;
1253 }
1254 ret = 0;
1255 out:
1256 page->mapping = NULL;
1257 clear_compound_head(page);
1258 return ret;
1259 }
1260
kernel_init_free_pages(struct page * page,int numpages,bool zero_tags)1261 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1262 {
1263 int i;
1264
1265 if (zero_tags) {
1266 for (i = 0; i < numpages; i++)
1267 tag_clear_highpage(page + i);
1268 return;
1269 }
1270
1271 /* s390's use of memset() could override KASAN redzones. */
1272 kasan_disable_current();
1273 for (i = 0; i < numpages; i++) {
1274 u8 tag = page_kasan_tag(page + i);
1275 page_kasan_tag_reset(page + i);
1276 clear_highpage(page + i);
1277 page_kasan_tag_set(page + i, tag);
1278 }
1279 kasan_enable_current();
1280 }
1281
free_pages_prepare(struct page * page,unsigned int order,bool check_free,fpi_t fpi_flags)1282 static __always_inline bool free_pages_prepare(struct page *page,
1283 unsigned int order, bool check_free, fpi_t fpi_flags)
1284 {
1285 int bad = 0;
1286 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1287
1288 VM_BUG_ON_PAGE(PageTail(page), page);
1289
1290 trace_mm_page_free(page, order);
1291
1292 if (unlikely(PageHWPoison(page)) && !order) {
1293 /*
1294 * Do not let hwpoison pages hit pcplists/buddy
1295 * Untie memcg state and reset page's owner
1296 */
1297 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1298 __memcg_kmem_uncharge_page(page, order);
1299 reset_page_owner(page, order);
1300 return false;
1301 }
1302
1303 /*
1304 * Check tail pages before head page information is cleared to
1305 * avoid checking PageCompound for order-0 pages.
1306 */
1307 if (unlikely(order)) {
1308 bool compound = PageCompound(page);
1309 int i;
1310
1311 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1312
1313 if (compound) {
1314 ClearPageDoubleMap(page);
1315 ClearPageHasHWPoisoned(page);
1316 }
1317 for (i = 1; i < (1 << order); i++) {
1318 if (compound)
1319 bad += free_tail_pages_check(page, page + i);
1320 if (unlikely(check_free_page(page + i))) {
1321 bad++;
1322 continue;
1323 }
1324 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1325 }
1326 }
1327 if (PageMappingFlags(page))
1328 page->mapping = NULL;
1329 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1330 __memcg_kmem_uncharge_page(page, order);
1331 if (check_free)
1332 bad += check_free_page(page);
1333 if (bad)
1334 return false;
1335
1336 page_cpupid_reset_last(page);
1337 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 reset_page_owner(page, order);
1339
1340 if (!PageHighMem(page)) {
1341 debug_check_no_locks_freed(page_address(page),
1342 PAGE_SIZE << order);
1343 debug_check_no_obj_freed(page_address(page),
1344 PAGE_SIZE << order);
1345 }
1346
1347 kernel_poison_pages(page, 1 << order);
1348
1349 /*
1350 * As memory initialization might be integrated into KASAN,
1351 * kasan_free_pages and kernel_init_free_pages must be
1352 * kept together to avoid discrepancies in behavior.
1353 *
1354 * With hardware tag-based KASAN, memory tags must be set before the
1355 * page becomes unavailable via debug_pagealloc or arch_free_page.
1356 */
1357 if (kasan_has_integrated_init()) {
1358 if (!skip_kasan_poison)
1359 kasan_free_pages(page, order);
1360 } else {
1361 bool init = want_init_on_free();
1362
1363 if (init)
1364 kernel_init_free_pages(page, 1 << order, false);
1365 if (!skip_kasan_poison)
1366 kasan_poison_pages(page, order, init);
1367 }
1368
1369 /*
1370 * arch_free_page() can make the page's contents inaccessible. s390
1371 * does this. So nothing which can access the page's contents should
1372 * happen after this.
1373 */
1374 arch_free_page(page, order);
1375
1376 debug_pagealloc_unmap_pages(page, 1 << order);
1377
1378 return true;
1379 }
1380
1381 #ifdef CONFIG_DEBUG_VM
1382 /*
1383 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1384 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1385 * moved from pcp lists to free lists.
1386 */
free_pcp_prepare(struct page * page,unsigned int order)1387 static bool free_pcp_prepare(struct page *page, unsigned int order)
1388 {
1389 return free_pages_prepare(page, order, true, FPI_NONE);
1390 }
1391
bulkfree_pcp_prepare(struct page * page)1392 static bool bulkfree_pcp_prepare(struct page *page)
1393 {
1394 if (debug_pagealloc_enabled_static())
1395 return check_free_page(page);
1396 else
1397 return false;
1398 }
1399 #else
1400 /*
1401 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1402 * moving from pcp lists to free list in order to reduce overhead. With
1403 * debug_pagealloc enabled, they are checked also immediately when being freed
1404 * to the pcp lists.
1405 */
free_pcp_prepare(struct page * page,unsigned int order)1406 static bool free_pcp_prepare(struct page *page, unsigned int order)
1407 {
1408 if (debug_pagealloc_enabled_static())
1409 return free_pages_prepare(page, order, true, FPI_NONE);
1410 else
1411 return free_pages_prepare(page, order, false, FPI_NONE);
1412 }
1413
bulkfree_pcp_prepare(struct page * page)1414 static bool bulkfree_pcp_prepare(struct page *page)
1415 {
1416 return check_free_page(page);
1417 }
1418 #endif /* CONFIG_DEBUG_VM */
1419
prefetch_buddy(struct page * page)1420 static inline void prefetch_buddy(struct page *page)
1421 {
1422 unsigned long pfn = page_to_pfn(page);
1423 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1424 struct page *buddy = page + (buddy_pfn - pfn);
1425
1426 prefetch(buddy);
1427 }
1428
1429 /*
1430 * Frees a number of pages from the PCP lists
1431 * Assumes all pages on list are in same zone.
1432 * count is the number of pages to free.
1433 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1434 static void free_pcppages_bulk(struct zone *zone, int count,
1435 struct per_cpu_pages *pcp)
1436 {
1437 int pindex = 0;
1438 int batch_free = 0;
1439 int nr_freed = 0;
1440 unsigned int order;
1441 int prefetch_nr = READ_ONCE(pcp->batch);
1442 bool isolated_pageblocks;
1443 struct page *page, *tmp;
1444 LIST_HEAD(head);
1445
1446 /*
1447 * Ensure proper count is passed which otherwise would stuck in the
1448 * below while (list_empty(list)) loop.
1449 */
1450 count = min(pcp->count, count);
1451 while (count > 0) {
1452 struct list_head *list;
1453
1454 /*
1455 * Remove pages from lists in a round-robin fashion. A
1456 * batch_free count is maintained that is incremented when an
1457 * empty list is encountered. This is so more pages are freed
1458 * off fuller lists instead of spinning excessively around empty
1459 * lists
1460 */
1461 do {
1462 batch_free++;
1463 if (++pindex == NR_PCP_LISTS)
1464 pindex = 0;
1465 list = &pcp->lists[pindex];
1466 } while (list_empty(list));
1467
1468 /* This is the only non-empty list. Free them all. */
1469 if (batch_free == NR_PCP_LISTS)
1470 batch_free = count;
1471
1472 order = pindex_to_order(pindex);
1473 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1474 do {
1475 page = list_last_entry(list, struct page, lru);
1476 /* must delete to avoid corrupting pcp list */
1477 list_del(&page->lru);
1478 nr_freed += 1 << order;
1479 count -= 1 << order;
1480
1481 if (bulkfree_pcp_prepare(page))
1482 continue;
1483
1484 /* Encode order with the migratetype */
1485 page->index <<= NR_PCP_ORDER_WIDTH;
1486 page->index |= order;
1487
1488 list_add_tail(&page->lru, &head);
1489
1490 /*
1491 * We are going to put the page back to the global
1492 * pool, prefetch its buddy to speed up later access
1493 * under zone->lock. It is believed the overhead of
1494 * an additional test and calculating buddy_pfn here
1495 * can be offset by reduced memory latency later. To
1496 * avoid excessive prefetching due to large count, only
1497 * prefetch buddy for the first pcp->batch nr of pages.
1498 */
1499 if (prefetch_nr) {
1500 prefetch_buddy(page);
1501 prefetch_nr--;
1502 }
1503 } while (count > 0 && --batch_free && !list_empty(list));
1504 }
1505 pcp->count -= nr_freed;
1506
1507 /*
1508 * local_lock_irq held so equivalent to spin_lock_irqsave for
1509 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1510 */
1511 spin_lock(&zone->lock);
1512 isolated_pageblocks = has_isolate_pageblock(zone);
1513
1514 /*
1515 * Use safe version since after __free_one_page(),
1516 * page->lru.next will not point to original list.
1517 */
1518 list_for_each_entry_safe(page, tmp, &head, lru) {
1519 int mt = get_pcppage_migratetype(page);
1520
1521 /* mt has been encoded with the order (see above) */
1522 order = mt & NR_PCP_ORDER_MASK;
1523 mt >>= NR_PCP_ORDER_WIDTH;
1524
1525 /* MIGRATE_ISOLATE page should not go to pcplists */
1526 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1527 /* Pageblock could have been isolated meanwhile */
1528 if (unlikely(isolated_pageblocks))
1529 mt = get_pageblock_migratetype(page);
1530
1531 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1532 trace_mm_page_pcpu_drain(page, order, mt);
1533 }
1534 spin_unlock(&zone->lock);
1535 }
1536
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1537 static void free_one_page(struct zone *zone,
1538 struct page *page, unsigned long pfn,
1539 unsigned int order,
1540 int migratetype, fpi_t fpi_flags)
1541 {
1542 unsigned long flags;
1543
1544 spin_lock_irqsave(&zone->lock, flags);
1545 if (unlikely(has_isolate_pageblock(zone) ||
1546 is_migrate_isolate(migratetype))) {
1547 migratetype = get_pfnblock_migratetype(page, pfn);
1548 }
1549 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1550 spin_unlock_irqrestore(&zone->lock, flags);
1551 }
1552
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1553 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1554 unsigned long zone, int nid)
1555 {
1556 mm_zero_struct_page(page);
1557 set_page_links(page, zone, nid, pfn);
1558 init_page_count(page);
1559 page_mapcount_reset(page);
1560 page_cpupid_reset_last(page);
1561 page_kasan_tag_reset(page);
1562
1563 INIT_LIST_HEAD(&page->lru);
1564 #ifdef WANT_PAGE_VIRTUAL
1565 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1566 if (!is_highmem_idx(zone))
1567 set_page_address(page, __va(pfn << PAGE_SHIFT));
1568 #endif
1569 }
1570
1571 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1572 static void __meminit init_reserved_page(unsigned long pfn)
1573 {
1574 pg_data_t *pgdat;
1575 int nid, zid;
1576
1577 if (!early_page_uninitialised(pfn))
1578 return;
1579
1580 nid = early_pfn_to_nid(pfn);
1581 pgdat = NODE_DATA(nid);
1582
1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 struct zone *zone = &pgdat->node_zones[zid];
1585
1586 if (zone_spans_pfn(zone, pfn))
1587 break;
1588 }
1589 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1590 }
1591 #else
init_reserved_page(unsigned long pfn)1592 static inline void init_reserved_page(unsigned long pfn)
1593 {
1594 }
1595 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1596
1597 /*
1598 * Initialised pages do not have PageReserved set. This function is
1599 * called for each range allocated by the bootmem allocator and
1600 * marks the pages PageReserved. The remaining valid pages are later
1601 * sent to the buddy page allocator.
1602 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1603 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1604 {
1605 unsigned long start_pfn = PFN_DOWN(start);
1606 unsigned long end_pfn = PFN_UP(end);
1607
1608 for (; start_pfn < end_pfn; start_pfn++) {
1609 if (pfn_valid(start_pfn)) {
1610 struct page *page = pfn_to_page(start_pfn);
1611
1612 init_reserved_page(start_pfn);
1613
1614 /* Avoid false-positive PageTail() */
1615 INIT_LIST_HEAD(&page->lru);
1616
1617 /*
1618 * no need for atomic set_bit because the struct
1619 * page is not visible yet so nobody should
1620 * access it yet.
1621 */
1622 __SetPageReserved(page);
1623 }
1624 }
1625 }
1626
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1627 static void __free_pages_ok(struct page *page, unsigned int order,
1628 fpi_t fpi_flags)
1629 {
1630 unsigned long flags;
1631 int migratetype;
1632 unsigned long pfn = page_to_pfn(page);
1633 struct zone *zone = page_zone(page);
1634
1635 if (!free_pages_prepare(page, order, true, fpi_flags))
1636 return;
1637
1638 migratetype = get_pfnblock_migratetype(page, pfn);
1639
1640 spin_lock_irqsave(&zone->lock, flags);
1641 if (unlikely(has_isolate_pageblock(zone) ||
1642 is_migrate_isolate(migratetype))) {
1643 migratetype = get_pfnblock_migratetype(page, pfn);
1644 }
1645 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1646 spin_unlock_irqrestore(&zone->lock, flags);
1647
1648 __count_vm_events(PGFREE, 1 << order);
1649 }
1650
__free_pages_core(struct page * page,unsigned int order)1651 void __free_pages_core(struct page *page, unsigned int order)
1652 {
1653 unsigned int nr_pages = 1 << order;
1654 struct page *p = page;
1655 unsigned int loop;
1656
1657 /*
1658 * When initializing the memmap, __init_single_page() sets the refcount
1659 * of all pages to 1 ("allocated"/"not free"). We have to set the
1660 * refcount of all involved pages to 0.
1661 */
1662 prefetchw(p);
1663 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1664 prefetchw(p + 1);
1665 __ClearPageReserved(p);
1666 set_page_count(p, 0);
1667 }
1668 __ClearPageReserved(p);
1669 set_page_count(p, 0);
1670
1671 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1672
1673 /*
1674 * Bypass PCP and place fresh pages right to the tail, primarily
1675 * relevant for memory onlining.
1676 */
1677 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1678 }
1679
1680 #ifdef CONFIG_NUMA
1681
1682 /*
1683 * During memory init memblocks map pfns to nids. The search is expensive and
1684 * this caches recent lookups. The implementation of __early_pfn_to_nid
1685 * treats start/end as pfns.
1686 */
1687 struct mminit_pfnnid_cache {
1688 unsigned long last_start;
1689 unsigned long last_end;
1690 int last_nid;
1691 };
1692
1693 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1694
1695 /*
1696 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1697 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1698 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1699 struct mminit_pfnnid_cache *state)
1700 {
1701 unsigned long start_pfn, end_pfn;
1702 int nid;
1703
1704 if (state->last_start <= pfn && pfn < state->last_end)
1705 return state->last_nid;
1706
1707 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1708 if (nid != NUMA_NO_NODE) {
1709 state->last_start = start_pfn;
1710 state->last_end = end_pfn;
1711 state->last_nid = nid;
1712 }
1713
1714 return nid;
1715 }
1716
early_pfn_to_nid(unsigned long pfn)1717 int __meminit early_pfn_to_nid(unsigned long pfn)
1718 {
1719 static DEFINE_SPINLOCK(early_pfn_lock);
1720 int nid;
1721
1722 spin_lock(&early_pfn_lock);
1723 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1724 if (nid < 0)
1725 nid = first_online_node;
1726 spin_unlock(&early_pfn_lock);
1727
1728 return nid;
1729 }
1730 #endif /* CONFIG_NUMA */
1731
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1732 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1733 unsigned int order)
1734 {
1735 if (early_page_uninitialised(pfn))
1736 return;
1737 __free_pages_core(page, order);
1738 }
1739
1740 /*
1741 * Check that the whole (or subset of) a pageblock given by the interval of
1742 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1743 * with the migration of free compaction scanner.
1744 *
1745 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1746 *
1747 * It's possible on some configurations to have a setup like node0 node1 node0
1748 * i.e. it's possible that all pages within a zones range of pages do not
1749 * belong to a single zone. We assume that a border between node0 and node1
1750 * can occur within a single pageblock, but not a node0 node1 node0
1751 * interleaving within a single pageblock. It is therefore sufficient to check
1752 * the first and last page of a pageblock and avoid checking each individual
1753 * page in a pageblock.
1754 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1755 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1756 unsigned long end_pfn, struct zone *zone)
1757 {
1758 struct page *start_page;
1759 struct page *end_page;
1760
1761 /* end_pfn is one past the range we are checking */
1762 end_pfn--;
1763
1764 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1765 return NULL;
1766
1767 start_page = pfn_to_online_page(start_pfn);
1768 if (!start_page)
1769 return NULL;
1770
1771 if (page_zone(start_page) != zone)
1772 return NULL;
1773
1774 end_page = pfn_to_page(end_pfn);
1775
1776 /* This gives a shorter code than deriving page_zone(end_page) */
1777 if (page_zone_id(start_page) != page_zone_id(end_page))
1778 return NULL;
1779
1780 return start_page;
1781 }
1782
set_zone_contiguous(struct zone * zone)1783 void set_zone_contiguous(struct zone *zone)
1784 {
1785 unsigned long block_start_pfn = zone->zone_start_pfn;
1786 unsigned long block_end_pfn;
1787
1788 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1789 for (; block_start_pfn < zone_end_pfn(zone);
1790 block_start_pfn = block_end_pfn,
1791 block_end_pfn += pageblock_nr_pages) {
1792
1793 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1794
1795 if (!__pageblock_pfn_to_page(block_start_pfn,
1796 block_end_pfn, zone))
1797 return;
1798 cond_resched();
1799 }
1800
1801 /* We confirm that there is no hole */
1802 zone->contiguous = true;
1803 }
1804
clear_zone_contiguous(struct zone * zone)1805 void clear_zone_contiguous(struct zone *zone)
1806 {
1807 zone->contiguous = false;
1808 }
1809
1810 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1811 static void __init deferred_free_range(unsigned long pfn,
1812 unsigned long nr_pages)
1813 {
1814 struct page *page;
1815 unsigned long i;
1816
1817 if (!nr_pages)
1818 return;
1819
1820 page = pfn_to_page(pfn);
1821
1822 /* Free a large naturally-aligned chunk if possible */
1823 if (nr_pages == pageblock_nr_pages &&
1824 (pfn & (pageblock_nr_pages - 1)) == 0) {
1825 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1826 __free_pages_core(page, pageblock_order);
1827 return;
1828 }
1829
1830 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1831 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1832 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1833 __free_pages_core(page, 0);
1834 }
1835 }
1836
1837 /* Completion tracking for deferred_init_memmap() threads */
1838 static atomic_t pgdat_init_n_undone __initdata;
1839 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1840
pgdat_init_report_one_done(void)1841 static inline void __init pgdat_init_report_one_done(void)
1842 {
1843 if (atomic_dec_and_test(&pgdat_init_n_undone))
1844 complete(&pgdat_init_all_done_comp);
1845 }
1846
1847 /*
1848 * Returns true if page needs to be initialized or freed to buddy allocator.
1849 *
1850 * First we check if pfn is valid on architectures where it is possible to have
1851 * holes within pageblock_nr_pages. On systems where it is not possible, this
1852 * function is optimized out.
1853 *
1854 * Then, we check if a current large page is valid by only checking the validity
1855 * of the head pfn.
1856 */
deferred_pfn_valid(unsigned long pfn)1857 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1858 {
1859 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1860 return false;
1861 return true;
1862 }
1863
1864 /*
1865 * Free pages to buddy allocator. Try to free aligned pages in
1866 * pageblock_nr_pages sizes.
1867 */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1868 static void __init deferred_free_pages(unsigned long pfn,
1869 unsigned long end_pfn)
1870 {
1871 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1872 unsigned long nr_free = 0;
1873
1874 for (; pfn < end_pfn; pfn++) {
1875 if (!deferred_pfn_valid(pfn)) {
1876 deferred_free_range(pfn - nr_free, nr_free);
1877 nr_free = 0;
1878 } else if (!(pfn & nr_pgmask)) {
1879 deferred_free_range(pfn - nr_free, nr_free);
1880 nr_free = 1;
1881 } else {
1882 nr_free++;
1883 }
1884 }
1885 /* Free the last block of pages to allocator */
1886 deferred_free_range(pfn - nr_free, nr_free);
1887 }
1888
1889 /*
1890 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1891 * by performing it only once every pageblock_nr_pages.
1892 * Return number of pages initialized.
1893 */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)1894 static unsigned long __init deferred_init_pages(struct zone *zone,
1895 unsigned long pfn,
1896 unsigned long end_pfn)
1897 {
1898 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1899 int nid = zone_to_nid(zone);
1900 unsigned long nr_pages = 0;
1901 int zid = zone_idx(zone);
1902 struct page *page = NULL;
1903
1904 for (; pfn < end_pfn; pfn++) {
1905 if (!deferred_pfn_valid(pfn)) {
1906 page = NULL;
1907 continue;
1908 } else if (!page || !(pfn & nr_pgmask)) {
1909 page = pfn_to_page(pfn);
1910 } else {
1911 page++;
1912 }
1913 __init_single_page(page, pfn, zid, nid);
1914 nr_pages++;
1915 }
1916 return (nr_pages);
1917 }
1918
1919 /*
1920 * This function is meant to pre-load the iterator for the zone init.
1921 * Specifically it walks through the ranges until we are caught up to the
1922 * first_init_pfn value and exits there. If we never encounter the value we
1923 * return false indicating there are no valid ranges left.
1924 */
1925 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)1926 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1927 unsigned long *spfn, unsigned long *epfn,
1928 unsigned long first_init_pfn)
1929 {
1930 u64 j;
1931
1932 /*
1933 * Start out by walking through the ranges in this zone that have
1934 * already been initialized. We don't need to do anything with them
1935 * so we just need to flush them out of the system.
1936 */
1937 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1938 if (*epfn <= first_init_pfn)
1939 continue;
1940 if (*spfn < first_init_pfn)
1941 *spfn = first_init_pfn;
1942 *i = j;
1943 return true;
1944 }
1945
1946 return false;
1947 }
1948
1949 /*
1950 * Initialize and free pages. We do it in two loops: first we initialize
1951 * struct page, then free to buddy allocator, because while we are
1952 * freeing pages we can access pages that are ahead (computing buddy
1953 * page in __free_one_page()).
1954 *
1955 * In order to try and keep some memory in the cache we have the loop
1956 * broken along max page order boundaries. This way we will not cause
1957 * any issues with the buddy page computation.
1958 */
1959 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)1960 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1961 unsigned long *end_pfn)
1962 {
1963 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1964 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1965 unsigned long nr_pages = 0;
1966 u64 j = *i;
1967
1968 /* First we loop through and initialize the page values */
1969 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1970 unsigned long t;
1971
1972 if (mo_pfn <= *start_pfn)
1973 break;
1974
1975 t = min(mo_pfn, *end_pfn);
1976 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1977
1978 if (mo_pfn < *end_pfn) {
1979 *start_pfn = mo_pfn;
1980 break;
1981 }
1982 }
1983
1984 /* Reset values and now loop through freeing pages as needed */
1985 swap(j, *i);
1986
1987 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1988 unsigned long t;
1989
1990 if (mo_pfn <= spfn)
1991 break;
1992
1993 t = min(mo_pfn, epfn);
1994 deferred_free_pages(spfn, t);
1995
1996 if (mo_pfn <= epfn)
1997 break;
1998 }
1999
2000 return nr_pages;
2001 }
2002
2003 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2004 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2005 void *arg)
2006 {
2007 unsigned long spfn, epfn;
2008 struct zone *zone = arg;
2009 u64 i;
2010
2011 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2012
2013 /*
2014 * Initialize and free pages in MAX_ORDER sized increments so that we
2015 * can avoid introducing any issues with the buddy allocator.
2016 */
2017 while (spfn < end_pfn) {
2018 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2019 cond_resched();
2020 }
2021 }
2022
2023 /* An arch may override for more concurrency. */
2024 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2025 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2026 {
2027 return 1;
2028 }
2029
2030 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2031 static int __init deferred_init_memmap(void *data)
2032 {
2033 pg_data_t *pgdat = data;
2034 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2035 unsigned long spfn = 0, epfn = 0;
2036 unsigned long first_init_pfn, flags;
2037 unsigned long start = jiffies;
2038 struct zone *zone;
2039 int zid, max_threads;
2040 u64 i;
2041
2042 /* Bind memory initialisation thread to a local node if possible */
2043 if (!cpumask_empty(cpumask))
2044 set_cpus_allowed_ptr(current, cpumask);
2045
2046 pgdat_resize_lock(pgdat, &flags);
2047 first_init_pfn = pgdat->first_deferred_pfn;
2048 if (first_init_pfn == ULONG_MAX) {
2049 pgdat_resize_unlock(pgdat, &flags);
2050 pgdat_init_report_one_done();
2051 return 0;
2052 }
2053
2054 /* Sanity check boundaries */
2055 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2056 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2057 pgdat->first_deferred_pfn = ULONG_MAX;
2058
2059 /*
2060 * Once we unlock here, the zone cannot be grown anymore, thus if an
2061 * interrupt thread must allocate this early in boot, zone must be
2062 * pre-grown prior to start of deferred page initialization.
2063 */
2064 pgdat_resize_unlock(pgdat, &flags);
2065
2066 /* Only the highest zone is deferred so find it */
2067 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2068 zone = pgdat->node_zones + zid;
2069 if (first_init_pfn < zone_end_pfn(zone))
2070 break;
2071 }
2072
2073 /* If the zone is empty somebody else may have cleared out the zone */
2074 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2075 first_init_pfn))
2076 goto zone_empty;
2077
2078 max_threads = deferred_page_init_max_threads(cpumask);
2079
2080 while (spfn < epfn) {
2081 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2082 struct padata_mt_job job = {
2083 .thread_fn = deferred_init_memmap_chunk,
2084 .fn_arg = zone,
2085 .start = spfn,
2086 .size = epfn_align - spfn,
2087 .align = PAGES_PER_SECTION,
2088 .min_chunk = PAGES_PER_SECTION,
2089 .max_threads = max_threads,
2090 };
2091
2092 padata_do_multithreaded(&job);
2093 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2094 epfn_align);
2095 }
2096 zone_empty:
2097 /* Sanity check that the next zone really is unpopulated */
2098 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2099
2100 pr_info("node %d deferred pages initialised in %ums\n",
2101 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2102
2103 pgdat_init_report_one_done();
2104 return 0;
2105 }
2106
2107 /*
2108 * If this zone has deferred pages, try to grow it by initializing enough
2109 * deferred pages to satisfy the allocation specified by order, rounded up to
2110 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2111 * of SECTION_SIZE bytes by initializing struct pages in increments of
2112 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2113 *
2114 * Return true when zone was grown, otherwise return false. We return true even
2115 * when we grow less than requested, to let the caller decide if there are
2116 * enough pages to satisfy the allocation.
2117 *
2118 * Note: We use noinline because this function is needed only during boot, and
2119 * it is called from a __ref function _deferred_grow_zone. This way we are
2120 * making sure that it is not inlined into permanent text section.
2121 */
2122 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)2123 deferred_grow_zone(struct zone *zone, unsigned int order)
2124 {
2125 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2126 pg_data_t *pgdat = zone->zone_pgdat;
2127 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2128 unsigned long spfn, epfn, flags;
2129 unsigned long nr_pages = 0;
2130 u64 i;
2131
2132 /* Only the last zone may have deferred pages */
2133 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2134 return false;
2135
2136 pgdat_resize_lock(pgdat, &flags);
2137
2138 /*
2139 * If someone grew this zone while we were waiting for spinlock, return
2140 * true, as there might be enough pages already.
2141 */
2142 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2143 pgdat_resize_unlock(pgdat, &flags);
2144 return true;
2145 }
2146
2147 /* If the zone is empty somebody else may have cleared out the zone */
2148 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2149 first_deferred_pfn)) {
2150 pgdat->first_deferred_pfn = ULONG_MAX;
2151 pgdat_resize_unlock(pgdat, &flags);
2152 /* Retry only once. */
2153 return first_deferred_pfn != ULONG_MAX;
2154 }
2155
2156 /*
2157 * Initialize and free pages in MAX_ORDER sized increments so
2158 * that we can avoid introducing any issues with the buddy
2159 * allocator.
2160 */
2161 while (spfn < epfn) {
2162 /* update our first deferred PFN for this section */
2163 first_deferred_pfn = spfn;
2164
2165 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2166 touch_nmi_watchdog();
2167
2168 /* We should only stop along section boundaries */
2169 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2170 continue;
2171
2172 /* If our quota has been met we can stop here */
2173 if (nr_pages >= nr_pages_needed)
2174 break;
2175 }
2176
2177 pgdat->first_deferred_pfn = spfn;
2178 pgdat_resize_unlock(pgdat, &flags);
2179
2180 return nr_pages > 0;
2181 }
2182
2183 /*
2184 * deferred_grow_zone() is __init, but it is called from
2185 * get_page_from_freelist() during early boot until deferred_pages permanently
2186 * disables this call. This is why we have refdata wrapper to avoid warning,
2187 * and to ensure that the function body gets unloaded.
2188 */
2189 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)2190 _deferred_grow_zone(struct zone *zone, unsigned int order)
2191 {
2192 return deferred_grow_zone(zone, order);
2193 }
2194
2195 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2196
page_alloc_init_late(void)2197 void __init page_alloc_init_late(void)
2198 {
2199 struct zone *zone;
2200 int nid;
2201
2202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2203
2204 /* There will be num_node_state(N_MEMORY) threads */
2205 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2206 for_each_node_state(nid, N_MEMORY) {
2207 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2208 }
2209
2210 /* Block until all are initialised */
2211 wait_for_completion(&pgdat_init_all_done_comp);
2212
2213 /*
2214 * We initialized the rest of the deferred pages. Permanently disable
2215 * on-demand struct page initialization.
2216 */
2217 static_branch_disable(&deferred_pages);
2218
2219 /* Reinit limits that are based on free pages after the kernel is up */
2220 files_maxfiles_init();
2221 #endif
2222
2223 buffer_init();
2224
2225 /* Discard memblock private memory */
2226 memblock_discard();
2227
2228 for_each_node_state(nid, N_MEMORY)
2229 shuffle_free_memory(NODE_DATA(nid));
2230
2231 for_each_populated_zone(zone)
2232 set_zone_contiguous(zone);
2233 }
2234
2235 #ifdef CONFIG_CMA
2236 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)2237 void __init init_cma_reserved_pageblock(struct page *page)
2238 {
2239 unsigned i = pageblock_nr_pages;
2240 struct page *p = page;
2241
2242 do {
2243 __ClearPageReserved(p);
2244 set_page_count(p, 0);
2245 } while (++p, --i);
2246
2247 set_pageblock_migratetype(page, MIGRATE_CMA);
2248
2249 if (pageblock_order >= MAX_ORDER) {
2250 i = pageblock_nr_pages;
2251 p = page;
2252 do {
2253 set_page_refcounted(p);
2254 __free_pages(p, MAX_ORDER - 1);
2255 p += MAX_ORDER_NR_PAGES;
2256 } while (i -= MAX_ORDER_NR_PAGES);
2257 } else {
2258 set_page_refcounted(page);
2259 __free_pages(page, pageblock_order);
2260 }
2261
2262 adjust_managed_page_count(page, pageblock_nr_pages);
2263 page_zone(page)->cma_pages += pageblock_nr_pages;
2264 }
2265 #endif
2266
2267 /*
2268 * The order of subdivision here is critical for the IO subsystem.
2269 * Please do not alter this order without good reasons and regression
2270 * testing. Specifically, as large blocks of memory are subdivided,
2271 * the order in which smaller blocks are delivered depends on the order
2272 * they're subdivided in this function. This is the primary factor
2273 * influencing the order in which pages are delivered to the IO
2274 * subsystem according to empirical testing, and this is also justified
2275 * by considering the behavior of a buddy system containing a single
2276 * large block of memory acted on by a series of small allocations.
2277 * This behavior is a critical factor in sglist merging's success.
2278 *
2279 * -- nyc
2280 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)2281 static inline void expand(struct zone *zone, struct page *page,
2282 int low, int high, int migratetype)
2283 {
2284 unsigned long size = 1 << high;
2285
2286 while (high > low) {
2287 high--;
2288 size >>= 1;
2289 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2290
2291 /*
2292 * Mark as guard pages (or page), that will allow to
2293 * merge back to allocator when buddy will be freed.
2294 * Corresponding page table entries will not be touched,
2295 * pages will stay not present in virtual address space
2296 */
2297 if (set_page_guard(zone, &page[size], high, migratetype))
2298 continue;
2299
2300 add_to_free_list(&page[size], zone, high, migratetype);
2301 set_buddy_order(&page[size], high);
2302 }
2303 }
2304
check_new_page_bad(struct page * page)2305 static void check_new_page_bad(struct page *page)
2306 {
2307 if (unlikely(page->flags & __PG_HWPOISON)) {
2308 /* Don't complain about hwpoisoned pages */
2309 page_mapcount_reset(page); /* remove PageBuddy */
2310 return;
2311 }
2312
2313 bad_page(page,
2314 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2315 }
2316
2317 /*
2318 * This page is about to be returned from the page allocator
2319 */
check_new_page(struct page * page)2320 static inline int check_new_page(struct page *page)
2321 {
2322 if (likely(page_expected_state(page,
2323 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2324 return 0;
2325
2326 check_new_page_bad(page);
2327 return 1;
2328 }
2329
2330 #ifdef CONFIG_DEBUG_VM
2331 /*
2332 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2333 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2334 * also checked when pcp lists are refilled from the free lists.
2335 */
check_pcp_refill(struct page * page)2336 static inline bool check_pcp_refill(struct page *page)
2337 {
2338 if (debug_pagealloc_enabled_static())
2339 return check_new_page(page);
2340 else
2341 return false;
2342 }
2343
check_new_pcp(struct page * page)2344 static inline bool check_new_pcp(struct page *page)
2345 {
2346 return check_new_page(page);
2347 }
2348 #else
2349 /*
2350 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2351 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2352 * enabled, they are also checked when being allocated from the pcp lists.
2353 */
check_pcp_refill(struct page * page)2354 static inline bool check_pcp_refill(struct page *page)
2355 {
2356 return check_new_page(page);
2357 }
check_new_pcp(struct page * page)2358 static inline bool check_new_pcp(struct page *page)
2359 {
2360 if (debug_pagealloc_enabled_static())
2361 return check_new_page(page);
2362 else
2363 return false;
2364 }
2365 #endif /* CONFIG_DEBUG_VM */
2366
check_new_pages(struct page * page,unsigned int order)2367 static bool check_new_pages(struct page *page, unsigned int order)
2368 {
2369 int i;
2370 for (i = 0; i < (1 << order); i++) {
2371 struct page *p = page + i;
2372
2373 if (unlikely(check_new_page(p)))
2374 return true;
2375 }
2376
2377 return false;
2378 }
2379
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2380 inline void post_alloc_hook(struct page *page, unsigned int order,
2381 gfp_t gfp_flags)
2382 {
2383 set_page_private(page, 0);
2384 set_page_refcounted(page);
2385
2386 arch_alloc_page(page, order);
2387 debug_pagealloc_map_pages(page, 1 << order);
2388
2389 /*
2390 * Page unpoisoning must happen before memory initialization.
2391 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2392 * allocations and the page unpoisoning code will complain.
2393 */
2394 kernel_unpoison_pages(page, 1 << order);
2395
2396 /*
2397 * As memory initialization might be integrated into KASAN,
2398 * kasan_alloc_pages and kernel_init_free_pages must be
2399 * kept together to avoid discrepancies in behavior.
2400 */
2401 if (kasan_has_integrated_init()) {
2402 kasan_alloc_pages(page, order, gfp_flags);
2403 } else {
2404 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2405
2406 kasan_unpoison_pages(page, order, init);
2407 if (init)
2408 kernel_init_free_pages(page, 1 << order,
2409 gfp_flags & __GFP_ZEROTAGS);
2410 }
2411
2412 set_page_owner(page, order, gfp_flags);
2413 }
2414
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2415 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2416 unsigned int alloc_flags)
2417 {
2418 post_alloc_hook(page, order, gfp_flags);
2419
2420 if (order && (gfp_flags & __GFP_COMP))
2421 prep_compound_page(page, order);
2422
2423 /*
2424 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2425 * allocate the page. The expectation is that the caller is taking
2426 * steps that will free more memory. The caller should avoid the page
2427 * being used for !PFMEMALLOC purposes.
2428 */
2429 if (alloc_flags & ALLOC_NO_WATERMARKS)
2430 set_page_pfmemalloc(page);
2431 else
2432 clear_page_pfmemalloc(page);
2433 }
2434
2435 /*
2436 * Go through the free lists for the given migratetype and remove
2437 * the smallest available page from the freelists
2438 */
2439 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2440 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2441 int migratetype)
2442 {
2443 unsigned int current_order;
2444 struct free_area *area;
2445 struct page *page;
2446
2447 /* Find a page of the appropriate size in the preferred list */
2448 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2449 area = &(zone->free_area[current_order]);
2450 page = get_page_from_free_area(area, migratetype);
2451 if (!page)
2452 continue;
2453 del_page_from_free_list(page, zone, current_order);
2454 expand(zone, page, order, current_order, migratetype);
2455 set_pcppage_migratetype(page, migratetype);
2456 return page;
2457 }
2458
2459 return NULL;
2460 }
2461
2462
2463 /*
2464 * This array describes the order lists are fallen back to when
2465 * the free lists for the desirable migrate type are depleted
2466 */
2467 static int fallbacks[MIGRATE_TYPES][3] = {
2468 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2469 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2470 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2471 #ifdef CONFIG_CMA
2472 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2473 #endif
2474 #ifdef CONFIG_MEMORY_ISOLATION
2475 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2476 #endif
2477 };
2478
2479 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2480 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2481 unsigned int order)
2482 {
2483 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2484 }
2485 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2486 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2487 unsigned int order) { return NULL; }
2488 #endif
2489
2490 /*
2491 * Move the free pages in a range to the freelist tail of the requested type.
2492 * Note that start_page and end_pages are not aligned on a pageblock
2493 * boundary. If alignment is required, use move_freepages_block()
2494 */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)2495 static int move_freepages(struct zone *zone,
2496 unsigned long start_pfn, unsigned long end_pfn,
2497 int migratetype, int *num_movable)
2498 {
2499 struct page *page;
2500 unsigned long pfn;
2501 unsigned int order;
2502 int pages_moved = 0;
2503
2504 for (pfn = start_pfn; pfn <= end_pfn;) {
2505 page = pfn_to_page(pfn);
2506 if (!PageBuddy(page)) {
2507 /*
2508 * We assume that pages that could be isolated for
2509 * migration are movable. But we don't actually try
2510 * isolating, as that would be expensive.
2511 */
2512 if (num_movable &&
2513 (PageLRU(page) || __PageMovable(page)))
2514 (*num_movable)++;
2515 pfn++;
2516 continue;
2517 }
2518
2519 /* Make sure we are not inadvertently changing nodes */
2520 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2521 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2522
2523 order = buddy_order(page);
2524 move_to_free_list(page, zone, order, migratetype);
2525 pfn += 1 << order;
2526 pages_moved += 1 << order;
2527 }
2528
2529 return pages_moved;
2530 }
2531
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2532 int move_freepages_block(struct zone *zone, struct page *page,
2533 int migratetype, int *num_movable)
2534 {
2535 unsigned long start_pfn, end_pfn, pfn;
2536
2537 if (num_movable)
2538 *num_movable = 0;
2539
2540 pfn = page_to_pfn(page);
2541 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2542 end_pfn = start_pfn + pageblock_nr_pages - 1;
2543
2544 /* Do not cross zone boundaries */
2545 if (!zone_spans_pfn(zone, start_pfn))
2546 start_pfn = pfn;
2547 if (!zone_spans_pfn(zone, end_pfn))
2548 return 0;
2549
2550 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2551 num_movable);
2552 }
2553
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2554 static void change_pageblock_range(struct page *pageblock_page,
2555 int start_order, int migratetype)
2556 {
2557 int nr_pageblocks = 1 << (start_order - pageblock_order);
2558
2559 while (nr_pageblocks--) {
2560 set_pageblock_migratetype(pageblock_page, migratetype);
2561 pageblock_page += pageblock_nr_pages;
2562 }
2563 }
2564
2565 /*
2566 * When we are falling back to another migratetype during allocation, try to
2567 * steal extra free pages from the same pageblocks to satisfy further
2568 * allocations, instead of polluting multiple pageblocks.
2569 *
2570 * If we are stealing a relatively large buddy page, it is likely there will
2571 * be more free pages in the pageblock, so try to steal them all. For
2572 * reclaimable and unmovable allocations, we steal regardless of page size,
2573 * as fragmentation caused by those allocations polluting movable pageblocks
2574 * is worse than movable allocations stealing from unmovable and reclaimable
2575 * pageblocks.
2576 */
can_steal_fallback(unsigned int order,int start_mt)2577 static bool can_steal_fallback(unsigned int order, int start_mt)
2578 {
2579 /*
2580 * Leaving this order check is intended, although there is
2581 * relaxed order check in next check. The reason is that
2582 * we can actually steal whole pageblock if this condition met,
2583 * but, below check doesn't guarantee it and that is just heuristic
2584 * so could be changed anytime.
2585 */
2586 if (order >= pageblock_order)
2587 return true;
2588
2589 if (order >= pageblock_order / 2 ||
2590 start_mt == MIGRATE_RECLAIMABLE ||
2591 start_mt == MIGRATE_UNMOVABLE ||
2592 page_group_by_mobility_disabled)
2593 return true;
2594
2595 return false;
2596 }
2597
boost_watermark(struct zone * zone)2598 static inline bool boost_watermark(struct zone *zone)
2599 {
2600 unsigned long max_boost;
2601
2602 if (!watermark_boost_factor)
2603 return false;
2604 /*
2605 * Don't bother in zones that are unlikely to produce results.
2606 * On small machines, including kdump capture kernels running
2607 * in a small area, boosting the watermark can cause an out of
2608 * memory situation immediately.
2609 */
2610 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2611 return false;
2612
2613 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2614 watermark_boost_factor, 10000);
2615
2616 /*
2617 * high watermark may be uninitialised if fragmentation occurs
2618 * very early in boot so do not boost. We do not fall
2619 * through and boost by pageblock_nr_pages as failing
2620 * allocations that early means that reclaim is not going
2621 * to help and it may even be impossible to reclaim the
2622 * boosted watermark resulting in a hang.
2623 */
2624 if (!max_boost)
2625 return false;
2626
2627 max_boost = max(pageblock_nr_pages, max_boost);
2628
2629 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2630 max_boost);
2631
2632 return true;
2633 }
2634
2635 /*
2636 * This function implements actual steal behaviour. If order is large enough,
2637 * we can steal whole pageblock. If not, we first move freepages in this
2638 * pageblock to our migratetype and determine how many already-allocated pages
2639 * are there in the pageblock with a compatible migratetype. If at least half
2640 * of pages are free or compatible, we can change migratetype of the pageblock
2641 * itself, so pages freed in the future will be put on the correct free list.
2642 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2643 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2644 unsigned int alloc_flags, int start_type, bool whole_block)
2645 {
2646 unsigned int current_order = buddy_order(page);
2647 int free_pages, movable_pages, alike_pages;
2648 int old_block_type;
2649
2650 old_block_type = get_pageblock_migratetype(page);
2651
2652 /*
2653 * This can happen due to races and we want to prevent broken
2654 * highatomic accounting.
2655 */
2656 if (is_migrate_highatomic(old_block_type))
2657 goto single_page;
2658
2659 /* Take ownership for orders >= pageblock_order */
2660 if (current_order >= pageblock_order) {
2661 change_pageblock_range(page, current_order, start_type);
2662 goto single_page;
2663 }
2664
2665 /*
2666 * Boost watermarks to increase reclaim pressure to reduce the
2667 * likelihood of future fallbacks. Wake kswapd now as the node
2668 * may be balanced overall and kswapd will not wake naturally.
2669 */
2670 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2671 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2672
2673 /* We are not allowed to try stealing from the whole block */
2674 if (!whole_block)
2675 goto single_page;
2676
2677 free_pages = move_freepages_block(zone, page, start_type,
2678 &movable_pages);
2679 /*
2680 * Determine how many pages are compatible with our allocation.
2681 * For movable allocation, it's the number of movable pages which
2682 * we just obtained. For other types it's a bit more tricky.
2683 */
2684 if (start_type == MIGRATE_MOVABLE) {
2685 alike_pages = movable_pages;
2686 } else {
2687 /*
2688 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2689 * to MOVABLE pageblock, consider all non-movable pages as
2690 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2691 * vice versa, be conservative since we can't distinguish the
2692 * exact migratetype of non-movable pages.
2693 */
2694 if (old_block_type == MIGRATE_MOVABLE)
2695 alike_pages = pageblock_nr_pages
2696 - (free_pages + movable_pages);
2697 else
2698 alike_pages = 0;
2699 }
2700
2701 /* moving whole block can fail due to zone boundary conditions */
2702 if (!free_pages)
2703 goto single_page;
2704
2705 /*
2706 * If a sufficient number of pages in the block are either free or of
2707 * comparable migratability as our allocation, claim the whole block.
2708 */
2709 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2710 page_group_by_mobility_disabled)
2711 set_pageblock_migratetype(page, start_type);
2712
2713 return;
2714
2715 single_page:
2716 move_to_free_list(page, zone, current_order, start_type);
2717 }
2718
2719 /*
2720 * Check whether there is a suitable fallback freepage with requested order.
2721 * If only_stealable is true, this function returns fallback_mt only if
2722 * we can steal other freepages all together. This would help to reduce
2723 * fragmentation due to mixed migratetype pages in one pageblock.
2724 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2725 int find_suitable_fallback(struct free_area *area, unsigned int order,
2726 int migratetype, bool only_stealable, bool *can_steal)
2727 {
2728 int i;
2729 int fallback_mt;
2730
2731 if (area->nr_free == 0)
2732 return -1;
2733
2734 *can_steal = false;
2735 for (i = 0;; i++) {
2736 fallback_mt = fallbacks[migratetype][i];
2737 if (fallback_mt == MIGRATE_TYPES)
2738 break;
2739
2740 if (free_area_empty(area, fallback_mt))
2741 continue;
2742
2743 if (can_steal_fallback(order, migratetype))
2744 *can_steal = true;
2745
2746 if (!only_stealable)
2747 return fallback_mt;
2748
2749 if (*can_steal)
2750 return fallback_mt;
2751 }
2752
2753 return -1;
2754 }
2755
2756 /*
2757 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2758 * there are no empty page blocks that contain a page with a suitable order
2759 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2760 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2761 unsigned int alloc_order)
2762 {
2763 int mt;
2764 unsigned long max_managed, flags;
2765
2766 /*
2767 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2768 * Check is race-prone but harmless.
2769 */
2770 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2771 if (zone->nr_reserved_highatomic >= max_managed)
2772 return;
2773
2774 spin_lock_irqsave(&zone->lock, flags);
2775
2776 /* Recheck the nr_reserved_highatomic limit under the lock */
2777 if (zone->nr_reserved_highatomic >= max_managed)
2778 goto out_unlock;
2779
2780 /* Yoink! */
2781 mt = get_pageblock_migratetype(page);
2782 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2783 && !is_migrate_cma(mt)) {
2784 zone->nr_reserved_highatomic += pageblock_nr_pages;
2785 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2786 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2787 }
2788
2789 out_unlock:
2790 spin_unlock_irqrestore(&zone->lock, flags);
2791 }
2792
2793 /*
2794 * Used when an allocation is about to fail under memory pressure. This
2795 * potentially hurts the reliability of high-order allocations when under
2796 * intense memory pressure but failed atomic allocations should be easier
2797 * to recover from than an OOM.
2798 *
2799 * If @force is true, try to unreserve a pageblock even though highatomic
2800 * pageblock is exhausted.
2801 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2802 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2803 bool force)
2804 {
2805 struct zonelist *zonelist = ac->zonelist;
2806 unsigned long flags;
2807 struct zoneref *z;
2808 struct zone *zone;
2809 struct page *page;
2810 int order;
2811 bool ret;
2812
2813 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2814 ac->nodemask) {
2815 /*
2816 * Preserve at least one pageblock unless memory pressure
2817 * is really high.
2818 */
2819 if (!force && zone->nr_reserved_highatomic <=
2820 pageblock_nr_pages)
2821 continue;
2822
2823 spin_lock_irqsave(&zone->lock, flags);
2824 for (order = 0; order < MAX_ORDER; order++) {
2825 struct free_area *area = &(zone->free_area[order]);
2826
2827 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2828 if (!page)
2829 continue;
2830
2831 /*
2832 * In page freeing path, migratetype change is racy so
2833 * we can counter several free pages in a pageblock
2834 * in this loop although we changed the pageblock type
2835 * from highatomic to ac->migratetype. So we should
2836 * adjust the count once.
2837 */
2838 if (is_migrate_highatomic_page(page)) {
2839 /*
2840 * It should never happen but changes to
2841 * locking could inadvertently allow a per-cpu
2842 * drain to add pages to MIGRATE_HIGHATOMIC
2843 * while unreserving so be safe and watch for
2844 * underflows.
2845 */
2846 zone->nr_reserved_highatomic -= min(
2847 pageblock_nr_pages,
2848 zone->nr_reserved_highatomic);
2849 }
2850
2851 /*
2852 * Convert to ac->migratetype and avoid the normal
2853 * pageblock stealing heuristics. Minimally, the caller
2854 * is doing the work and needs the pages. More
2855 * importantly, if the block was always converted to
2856 * MIGRATE_UNMOVABLE or another type then the number
2857 * of pageblocks that cannot be completely freed
2858 * may increase.
2859 */
2860 set_pageblock_migratetype(page, ac->migratetype);
2861 ret = move_freepages_block(zone, page, ac->migratetype,
2862 NULL);
2863 if (ret) {
2864 spin_unlock_irqrestore(&zone->lock, flags);
2865 return ret;
2866 }
2867 }
2868 spin_unlock_irqrestore(&zone->lock, flags);
2869 }
2870
2871 return false;
2872 }
2873
2874 /*
2875 * Try finding a free buddy page on the fallback list and put it on the free
2876 * list of requested migratetype, possibly along with other pages from the same
2877 * block, depending on fragmentation avoidance heuristics. Returns true if
2878 * fallback was found so that __rmqueue_smallest() can grab it.
2879 *
2880 * The use of signed ints for order and current_order is a deliberate
2881 * deviation from the rest of this file, to make the for loop
2882 * condition simpler.
2883 */
2884 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2885 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2886 unsigned int alloc_flags)
2887 {
2888 struct free_area *area;
2889 int current_order;
2890 int min_order = order;
2891 struct page *page;
2892 int fallback_mt;
2893 bool can_steal;
2894
2895 /*
2896 * Do not steal pages from freelists belonging to other pageblocks
2897 * i.e. orders < pageblock_order. If there are no local zones free,
2898 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2899 */
2900 if (alloc_flags & ALLOC_NOFRAGMENT)
2901 min_order = pageblock_order;
2902
2903 /*
2904 * Find the largest available free page in the other list. This roughly
2905 * approximates finding the pageblock with the most free pages, which
2906 * would be too costly to do exactly.
2907 */
2908 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2909 --current_order) {
2910 area = &(zone->free_area[current_order]);
2911 fallback_mt = find_suitable_fallback(area, current_order,
2912 start_migratetype, false, &can_steal);
2913 if (fallback_mt == -1)
2914 continue;
2915
2916 /*
2917 * We cannot steal all free pages from the pageblock and the
2918 * requested migratetype is movable. In that case it's better to
2919 * steal and split the smallest available page instead of the
2920 * largest available page, because even if the next movable
2921 * allocation falls back into a different pageblock than this
2922 * one, it won't cause permanent fragmentation.
2923 */
2924 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2925 && current_order > order)
2926 goto find_smallest;
2927
2928 goto do_steal;
2929 }
2930
2931 return false;
2932
2933 find_smallest:
2934 for (current_order = order; current_order < MAX_ORDER;
2935 current_order++) {
2936 area = &(zone->free_area[current_order]);
2937 fallback_mt = find_suitable_fallback(area, current_order,
2938 start_migratetype, false, &can_steal);
2939 if (fallback_mt != -1)
2940 break;
2941 }
2942
2943 /*
2944 * This should not happen - we already found a suitable fallback
2945 * when looking for the largest page.
2946 */
2947 VM_BUG_ON(current_order == MAX_ORDER);
2948
2949 do_steal:
2950 page = get_page_from_free_area(area, fallback_mt);
2951
2952 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2953 can_steal);
2954
2955 trace_mm_page_alloc_extfrag(page, order, current_order,
2956 start_migratetype, fallback_mt);
2957
2958 return true;
2959
2960 }
2961
2962 /*
2963 * Do the hard work of removing an element from the buddy allocator.
2964 * Call me with the zone->lock already held.
2965 */
2966 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2967 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2968 unsigned int alloc_flags)
2969 {
2970 struct page *page;
2971
2972 if (IS_ENABLED(CONFIG_CMA)) {
2973 /*
2974 * Balance movable allocations between regular and CMA areas by
2975 * allocating from CMA when over half of the zone's free memory
2976 * is in the CMA area.
2977 */
2978 if (alloc_flags & ALLOC_CMA &&
2979 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2980 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2981 page = __rmqueue_cma_fallback(zone, order);
2982 if (page)
2983 goto out;
2984 }
2985 }
2986 retry:
2987 page = __rmqueue_smallest(zone, order, migratetype);
2988 if (unlikely(!page)) {
2989 if (alloc_flags & ALLOC_CMA)
2990 page = __rmqueue_cma_fallback(zone, order);
2991
2992 if (!page && __rmqueue_fallback(zone, order, migratetype,
2993 alloc_flags))
2994 goto retry;
2995 }
2996 out:
2997 if (page)
2998 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2999 return page;
3000 }
3001
3002 /*
3003 * Obtain a specified number of elements from the buddy allocator, all under
3004 * a single hold of the lock, for efficiency. Add them to the supplied list.
3005 * Returns the number of new pages which were placed at *list.
3006 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)3007 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3008 unsigned long count, struct list_head *list,
3009 int migratetype, unsigned int alloc_flags)
3010 {
3011 int i, allocated = 0;
3012
3013 /*
3014 * local_lock_irq held so equivalent to spin_lock_irqsave for
3015 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3016 */
3017 spin_lock(&zone->lock);
3018 for (i = 0; i < count; ++i) {
3019 struct page *page = __rmqueue(zone, order, migratetype,
3020 alloc_flags);
3021 if (unlikely(page == NULL))
3022 break;
3023
3024 if (unlikely(check_pcp_refill(page)))
3025 continue;
3026
3027 /*
3028 * Split buddy pages returned by expand() are received here in
3029 * physical page order. The page is added to the tail of
3030 * caller's list. From the callers perspective, the linked list
3031 * is ordered by page number under some conditions. This is
3032 * useful for IO devices that can forward direction from the
3033 * head, thus also in the physical page order. This is useful
3034 * for IO devices that can merge IO requests if the physical
3035 * pages are ordered properly.
3036 */
3037 list_add_tail(&page->lru, list);
3038 allocated++;
3039 if (is_migrate_cma(get_pcppage_migratetype(page)))
3040 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3041 -(1 << order));
3042 }
3043
3044 /*
3045 * i pages were removed from the buddy list even if some leak due
3046 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3047 * on i. Do not confuse with 'allocated' which is the number of
3048 * pages added to the pcp list.
3049 */
3050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3051 spin_unlock(&zone->lock);
3052 return allocated;
3053 }
3054
3055 #ifdef CONFIG_NUMA
3056 /*
3057 * Called from the vmstat counter updater to drain pagesets of this
3058 * currently executing processor on remote nodes after they have
3059 * expired.
3060 *
3061 * Note that this function must be called with the thread pinned to
3062 * a single processor.
3063 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)3064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3065 {
3066 unsigned long flags;
3067 int to_drain, batch;
3068
3069 local_lock_irqsave(&pagesets.lock, flags);
3070 batch = READ_ONCE(pcp->batch);
3071 to_drain = min(pcp->count, batch);
3072 if (to_drain > 0)
3073 free_pcppages_bulk(zone, to_drain, pcp);
3074 local_unlock_irqrestore(&pagesets.lock, flags);
3075 }
3076 #endif
3077
3078 /*
3079 * Drain pcplists of the indicated processor and zone.
3080 *
3081 * The processor must either be the current processor and the
3082 * thread pinned to the current processor or a processor that
3083 * is not online.
3084 */
drain_pages_zone(unsigned int cpu,struct zone * zone)3085 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3086 {
3087 unsigned long flags;
3088 struct per_cpu_pages *pcp;
3089
3090 local_lock_irqsave(&pagesets.lock, flags);
3091
3092 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3093 if (pcp->count)
3094 free_pcppages_bulk(zone, pcp->count, pcp);
3095
3096 local_unlock_irqrestore(&pagesets.lock, flags);
3097 }
3098
3099 /*
3100 * Drain pcplists of all zones on the indicated processor.
3101 *
3102 * The processor must either be the current processor and the
3103 * thread pinned to the current processor or a processor that
3104 * is not online.
3105 */
drain_pages(unsigned int cpu)3106 static void drain_pages(unsigned int cpu)
3107 {
3108 struct zone *zone;
3109
3110 for_each_populated_zone(zone) {
3111 drain_pages_zone(cpu, zone);
3112 }
3113 }
3114
3115 /*
3116 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3117 *
3118 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3119 * the single zone's pages.
3120 */
drain_local_pages(struct zone * zone)3121 void drain_local_pages(struct zone *zone)
3122 {
3123 int cpu = smp_processor_id();
3124
3125 if (zone)
3126 drain_pages_zone(cpu, zone);
3127 else
3128 drain_pages(cpu);
3129 }
3130
drain_local_pages_wq(struct work_struct * work)3131 static void drain_local_pages_wq(struct work_struct *work)
3132 {
3133 struct pcpu_drain *drain;
3134
3135 drain = container_of(work, struct pcpu_drain, work);
3136
3137 /*
3138 * drain_all_pages doesn't use proper cpu hotplug protection so
3139 * we can race with cpu offline when the WQ can move this from
3140 * a cpu pinned worker to an unbound one. We can operate on a different
3141 * cpu which is alright but we also have to make sure to not move to
3142 * a different one.
3143 */
3144 migrate_disable();
3145 drain_local_pages(drain->zone);
3146 migrate_enable();
3147 }
3148
3149 /*
3150 * The implementation of drain_all_pages(), exposing an extra parameter to
3151 * drain on all cpus.
3152 *
3153 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3154 * not empty. The check for non-emptiness can however race with a free to
3155 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3156 * that need the guarantee that every CPU has drained can disable the
3157 * optimizing racy check.
3158 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)3159 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3160 {
3161 int cpu;
3162
3163 /*
3164 * Allocate in the BSS so we won't require allocation in
3165 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3166 */
3167 static cpumask_t cpus_with_pcps;
3168
3169 /*
3170 * Make sure nobody triggers this path before mm_percpu_wq is fully
3171 * initialized.
3172 */
3173 if (WARN_ON_ONCE(!mm_percpu_wq))
3174 return;
3175
3176 /*
3177 * Do not drain if one is already in progress unless it's specific to
3178 * a zone. Such callers are primarily CMA and memory hotplug and need
3179 * the drain to be complete when the call returns.
3180 */
3181 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3182 if (!zone)
3183 return;
3184 mutex_lock(&pcpu_drain_mutex);
3185 }
3186
3187 /*
3188 * We don't care about racing with CPU hotplug event
3189 * as offline notification will cause the notified
3190 * cpu to drain that CPU pcps and on_each_cpu_mask
3191 * disables preemption as part of its processing
3192 */
3193 for_each_online_cpu(cpu) {
3194 struct per_cpu_pages *pcp;
3195 struct zone *z;
3196 bool has_pcps = false;
3197
3198 if (force_all_cpus) {
3199 /*
3200 * The pcp.count check is racy, some callers need a
3201 * guarantee that no cpu is missed.
3202 */
3203 has_pcps = true;
3204 } else if (zone) {
3205 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3206 if (pcp->count)
3207 has_pcps = true;
3208 } else {
3209 for_each_populated_zone(z) {
3210 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3211 if (pcp->count) {
3212 has_pcps = true;
3213 break;
3214 }
3215 }
3216 }
3217
3218 if (has_pcps)
3219 cpumask_set_cpu(cpu, &cpus_with_pcps);
3220 else
3221 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3222 }
3223
3224 for_each_cpu(cpu, &cpus_with_pcps) {
3225 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3226
3227 drain->zone = zone;
3228 INIT_WORK(&drain->work, drain_local_pages_wq);
3229 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3230 }
3231 for_each_cpu(cpu, &cpus_with_pcps)
3232 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3233
3234 mutex_unlock(&pcpu_drain_mutex);
3235 }
3236
3237 /*
3238 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3239 *
3240 * When zone parameter is non-NULL, spill just the single zone's pages.
3241 *
3242 * Note that this can be extremely slow as the draining happens in a workqueue.
3243 */
drain_all_pages(struct zone * zone)3244 void drain_all_pages(struct zone *zone)
3245 {
3246 __drain_all_pages(zone, false);
3247 }
3248
3249 #ifdef CONFIG_HIBERNATION
3250
3251 /*
3252 * Touch the watchdog for every WD_PAGE_COUNT pages.
3253 */
3254 #define WD_PAGE_COUNT (128*1024)
3255
mark_free_pages(struct zone * zone)3256 void mark_free_pages(struct zone *zone)
3257 {
3258 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3259 unsigned long flags;
3260 unsigned int order, t;
3261 struct page *page;
3262
3263 if (zone_is_empty(zone))
3264 return;
3265
3266 spin_lock_irqsave(&zone->lock, flags);
3267
3268 max_zone_pfn = zone_end_pfn(zone);
3269 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3270 if (pfn_valid(pfn)) {
3271 page = pfn_to_page(pfn);
3272
3273 if (!--page_count) {
3274 touch_nmi_watchdog();
3275 page_count = WD_PAGE_COUNT;
3276 }
3277
3278 if (page_zone(page) != zone)
3279 continue;
3280
3281 if (!swsusp_page_is_forbidden(page))
3282 swsusp_unset_page_free(page);
3283 }
3284
3285 for_each_migratetype_order(order, t) {
3286 list_for_each_entry(page,
3287 &zone->free_area[order].free_list[t], lru) {
3288 unsigned long i;
3289
3290 pfn = page_to_pfn(page);
3291 for (i = 0; i < (1UL << order); i++) {
3292 if (!--page_count) {
3293 touch_nmi_watchdog();
3294 page_count = WD_PAGE_COUNT;
3295 }
3296 swsusp_set_page_free(pfn_to_page(pfn + i));
3297 }
3298 }
3299 }
3300 spin_unlock_irqrestore(&zone->lock, flags);
3301 }
3302 #endif /* CONFIG_PM */
3303
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)3304 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3305 unsigned int order)
3306 {
3307 int migratetype;
3308
3309 if (!free_pcp_prepare(page, order))
3310 return false;
3311
3312 migratetype = get_pfnblock_migratetype(page, pfn);
3313 set_pcppage_migratetype(page, migratetype);
3314 return true;
3315 }
3316
nr_pcp_free(struct per_cpu_pages * pcp,int high,int batch)3317 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3318 {
3319 int min_nr_free, max_nr_free;
3320
3321 /* Check for PCP disabled or boot pageset */
3322 if (unlikely(high < batch))
3323 return 1;
3324
3325 /* Leave at least pcp->batch pages on the list */
3326 min_nr_free = batch;
3327 max_nr_free = high - batch;
3328
3329 /*
3330 * Double the number of pages freed each time there is subsequent
3331 * freeing of pages without any allocation.
3332 */
3333 batch <<= pcp->free_factor;
3334 if (batch < max_nr_free)
3335 pcp->free_factor++;
3336 batch = clamp(batch, min_nr_free, max_nr_free);
3337
3338 return batch;
3339 }
3340
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone)3341 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3342 {
3343 int high = READ_ONCE(pcp->high);
3344
3345 if (unlikely(!high))
3346 return 0;
3347
3348 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3349 return high;
3350
3351 /*
3352 * If reclaim is active, limit the number of pages that can be
3353 * stored on pcp lists
3354 */
3355 return min(READ_ONCE(pcp->batch) << 2, high);
3356 }
3357
free_unref_page_commit(struct page * page,unsigned long pfn,int migratetype,unsigned int order)3358 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3359 int migratetype, unsigned int order)
3360 {
3361 struct zone *zone = page_zone(page);
3362 struct per_cpu_pages *pcp;
3363 int high;
3364 int pindex;
3365
3366 __count_vm_event(PGFREE);
3367 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3368 pindex = order_to_pindex(migratetype, order);
3369 list_add(&page->lru, &pcp->lists[pindex]);
3370 pcp->count += 1 << order;
3371 high = nr_pcp_high(pcp, zone);
3372 if (pcp->count >= high) {
3373 int batch = READ_ONCE(pcp->batch);
3374
3375 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3376 }
3377 }
3378
3379 /*
3380 * Free a pcp page
3381 */
free_unref_page(struct page * page,unsigned int order)3382 void free_unref_page(struct page *page, unsigned int order)
3383 {
3384 unsigned long flags;
3385 unsigned long pfn = page_to_pfn(page);
3386 int migratetype;
3387
3388 if (!free_unref_page_prepare(page, pfn, order))
3389 return;
3390
3391 /*
3392 * We only track unmovable, reclaimable and movable on pcp lists.
3393 * Place ISOLATE pages on the isolated list because they are being
3394 * offlined but treat HIGHATOMIC as movable pages so we can get those
3395 * areas back if necessary. Otherwise, we may have to free
3396 * excessively into the page allocator
3397 */
3398 migratetype = get_pcppage_migratetype(page);
3399 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3400 if (unlikely(is_migrate_isolate(migratetype))) {
3401 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3402 return;
3403 }
3404 migratetype = MIGRATE_MOVABLE;
3405 }
3406
3407 local_lock_irqsave(&pagesets.lock, flags);
3408 free_unref_page_commit(page, pfn, migratetype, order);
3409 local_unlock_irqrestore(&pagesets.lock, flags);
3410 }
3411
3412 /*
3413 * Free a list of 0-order pages
3414 */
free_unref_page_list(struct list_head * list)3415 void free_unref_page_list(struct list_head *list)
3416 {
3417 struct page *page, *next;
3418 unsigned long flags, pfn;
3419 int batch_count = 0;
3420 int migratetype;
3421
3422 /* Prepare pages for freeing */
3423 list_for_each_entry_safe(page, next, list, lru) {
3424 pfn = page_to_pfn(page);
3425 if (!free_unref_page_prepare(page, pfn, 0)) {
3426 list_del(&page->lru);
3427 continue;
3428 }
3429
3430 /*
3431 * Free isolated pages directly to the allocator, see
3432 * comment in free_unref_page.
3433 */
3434 migratetype = get_pcppage_migratetype(page);
3435 if (unlikely(is_migrate_isolate(migratetype))) {
3436 list_del(&page->lru);
3437 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3438 continue;
3439 }
3440
3441 set_page_private(page, pfn);
3442 }
3443
3444 local_lock_irqsave(&pagesets.lock, flags);
3445 list_for_each_entry_safe(page, next, list, lru) {
3446 pfn = page_private(page);
3447 set_page_private(page, 0);
3448
3449 /*
3450 * Non-isolated types over MIGRATE_PCPTYPES get added
3451 * to the MIGRATE_MOVABLE pcp list.
3452 */
3453 migratetype = get_pcppage_migratetype(page);
3454 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3455 migratetype = MIGRATE_MOVABLE;
3456
3457 trace_mm_page_free_batched(page);
3458 free_unref_page_commit(page, pfn, migratetype, 0);
3459
3460 /*
3461 * Guard against excessive IRQ disabled times when we get
3462 * a large list of pages to free.
3463 */
3464 if (++batch_count == SWAP_CLUSTER_MAX) {
3465 local_unlock_irqrestore(&pagesets.lock, flags);
3466 batch_count = 0;
3467 local_lock_irqsave(&pagesets.lock, flags);
3468 }
3469 }
3470 local_unlock_irqrestore(&pagesets.lock, flags);
3471 }
3472
3473 /*
3474 * split_page takes a non-compound higher-order page, and splits it into
3475 * n (1<<order) sub-pages: page[0..n]
3476 * Each sub-page must be freed individually.
3477 *
3478 * Note: this is probably too low level an operation for use in drivers.
3479 * Please consult with lkml before using this in your driver.
3480 */
split_page(struct page * page,unsigned int order)3481 void split_page(struct page *page, unsigned int order)
3482 {
3483 int i;
3484
3485 VM_BUG_ON_PAGE(PageCompound(page), page);
3486 VM_BUG_ON_PAGE(!page_count(page), page);
3487
3488 for (i = 1; i < (1 << order); i++)
3489 set_page_refcounted(page + i);
3490 split_page_owner(page, 1 << order);
3491 split_page_memcg(page, 1 << order);
3492 }
3493 EXPORT_SYMBOL_GPL(split_page);
3494
__isolate_free_page(struct page * page,unsigned int order)3495 int __isolate_free_page(struct page *page, unsigned int order)
3496 {
3497 unsigned long watermark;
3498 struct zone *zone;
3499 int mt;
3500
3501 BUG_ON(!PageBuddy(page));
3502
3503 zone = page_zone(page);
3504 mt = get_pageblock_migratetype(page);
3505
3506 if (!is_migrate_isolate(mt)) {
3507 /*
3508 * Obey watermarks as if the page was being allocated. We can
3509 * emulate a high-order watermark check with a raised order-0
3510 * watermark, because we already know our high-order page
3511 * exists.
3512 */
3513 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3514 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3515 return 0;
3516
3517 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3518 }
3519
3520 /* Remove page from free list */
3521
3522 del_page_from_free_list(page, zone, order);
3523
3524 /*
3525 * Set the pageblock if the isolated page is at least half of a
3526 * pageblock
3527 */
3528 if (order >= pageblock_order - 1) {
3529 struct page *endpage = page + (1 << order) - 1;
3530 for (; page < endpage; page += pageblock_nr_pages) {
3531 int mt = get_pageblock_migratetype(page);
3532 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3533 && !is_migrate_highatomic(mt))
3534 set_pageblock_migratetype(page,
3535 MIGRATE_MOVABLE);
3536 }
3537 }
3538
3539
3540 return 1UL << order;
3541 }
3542
3543 /**
3544 * __putback_isolated_page - Return a now-isolated page back where we got it
3545 * @page: Page that was isolated
3546 * @order: Order of the isolated page
3547 * @mt: The page's pageblock's migratetype
3548 *
3549 * This function is meant to return a page pulled from the free lists via
3550 * __isolate_free_page back to the free lists they were pulled from.
3551 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3552 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3553 {
3554 struct zone *zone = page_zone(page);
3555
3556 /* zone lock should be held when this function is called */
3557 lockdep_assert_held(&zone->lock);
3558
3559 /* Return isolated page to tail of freelist. */
3560 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3561 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3562 }
3563
3564 /*
3565 * Update NUMA hit/miss statistics
3566 *
3567 * Must be called with interrupts disabled.
3568 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)3569 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3570 long nr_account)
3571 {
3572 #ifdef CONFIG_NUMA
3573 enum numa_stat_item local_stat = NUMA_LOCAL;
3574
3575 /* skip numa counters update if numa stats is disabled */
3576 if (!static_branch_likely(&vm_numa_stat_key))
3577 return;
3578
3579 if (zone_to_nid(z) != numa_node_id())
3580 local_stat = NUMA_OTHER;
3581
3582 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3583 __count_numa_events(z, NUMA_HIT, nr_account);
3584 else {
3585 __count_numa_events(z, NUMA_MISS, nr_account);
3586 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3587 }
3588 __count_numa_events(z, local_stat, nr_account);
3589 #endif
3590 }
3591
3592 /* Remove page from the per-cpu list, caller must protect the list */
3593 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3594 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3595 int migratetype,
3596 unsigned int alloc_flags,
3597 struct per_cpu_pages *pcp,
3598 struct list_head *list)
3599 {
3600 struct page *page;
3601
3602 do {
3603 if (list_empty(list)) {
3604 int batch = READ_ONCE(pcp->batch);
3605 int alloced;
3606
3607 /*
3608 * Scale batch relative to order if batch implies
3609 * free pages can be stored on the PCP. Batch can
3610 * be 1 for small zones or for boot pagesets which
3611 * should never store free pages as the pages may
3612 * belong to arbitrary zones.
3613 */
3614 if (batch > 1)
3615 batch = max(batch >> order, 2);
3616 alloced = rmqueue_bulk(zone, order,
3617 batch, list,
3618 migratetype, alloc_flags);
3619
3620 pcp->count += alloced << order;
3621 if (unlikely(list_empty(list)))
3622 return NULL;
3623 }
3624
3625 page = list_first_entry(list, struct page, lru);
3626 list_del(&page->lru);
3627 pcp->count -= 1 << order;
3628 } while (check_new_pcp(page));
3629
3630 return page;
3631 }
3632
3633 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3634 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3635 struct zone *zone, unsigned int order,
3636 gfp_t gfp_flags, int migratetype,
3637 unsigned int alloc_flags)
3638 {
3639 struct per_cpu_pages *pcp;
3640 struct list_head *list;
3641 struct page *page;
3642 unsigned long flags;
3643
3644 local_lock_irqsave(&pagesets.lock, flags);
3645
3646 /*
3647 * On allocation, reduce the number of pages that are batch freed.
3648 * See nr_pcp_free() where free_factor is increased for subsequent
3649 * frees.
3650 */
3651 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3652 pcp->free_factor >>= 1;
3653 list = &pcp->lists[order_to_pindex(migratetype, order)];
3654 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3655 local_unlock_irqrestore(&pagesets.lock, flags);
3656 if (page) {
3657 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3658 zone_statistics(preferred_zone, zone, 1);
3659 }
3660 return page;
3661 }
3662
3663 /*
3664 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3665 */
3666 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3667 struct page *rmqueue(struct zone *preferred_zone,
3668 struct zone *zone, unsigned int order,
3669 gfp_t gfp_flags, unsigned int alloc_flags,
3670 int migratetype)
3671 {
3672 unsigned long flags;
3673 struct page *page;
3674
3675 if (likely(pcp_allowed_order(order))) {
3676 /*
3677 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3678 * we need to skip it when CMA area isn't allowed.
3679 */
3680 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3681 migratetype != MIGRATE_MOVABLE) {
3682 page = rmqueue_pcplist(preferred_zone, zone, order,
3683 gfp_flags, migratetype, alloc_flags);
3684 goto out;
3685 }
3686 }
3687
3688 /*
3689 * We most definitely don't want callers attempting to
3690 * allocate greater than order-1 page units with __GFP_NOFAIL.
3691 */
3692 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3693 spin_lock_irqsave(&zone->lock, flags);
3694
3695 do {
3696 page = NULL;
3697 /*
3698 * order-0 request can reach here when the pcplist is skipped
3699 * due to non-CMA allocation context. HIGHATOMIC area is
3700 * reserved for high-order atomic allocation, so order-0
3701 * request should skip it.
3702 */
3703 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3704 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3705 if (page)
3706 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3707 }
3708 if (!page)
3709 page = __rmqueue(zone, order, migratetype, alloc_flags);
3710 } while (page && check_new_pages(page, order));
3711 if (!page)
3712 goto failed;
3713
3714 __mod_zone_freepage_state(zone, -(1 << order),
3715 get_pcppage_migratetype(page));
3716 spin_unlock_irqrestore(&zone->lock, flags);
3717
3718 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3719 zone_statistics(preferred_zone, zone, 1);
3720
3721 out:
3722 /* Separate test+clear to avoid unnecessary atomics */
3723 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3724 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3725 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3726 }
3727
3728 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3729 return page;
3730
3731 failed:
3732 spin_unlock_irqrestore(&zone->lock, flags);
3733 return NULL;
3734 }
3735
3736 #ifdef CONFIG_FAIL_PAGE_ALLOC
3737
3738 static struct {
3739 struct fault_attr attr;
3740
3741 bool ignore_gfp_highmem;
3742 bool ignore_gfp_reclaim;
3743 u32 min_order;
3744 } fail_page_alloc = {
3745 .attr = FAULT_ATTR_INITIALIZER,
3746 .ignore_gfp_reclaim = true,
3747 .ignore_gfp_highmem = true,
3748 .min_order = 1,
3749 };
3750
setup_fail_page_alloc(char * str)3751 static int __init setup_fail_page_alloc(char *str)
3752 {
3753 return setup_fault_attr(&fail_page_alloc.attr, str);
3754 }
3755 __setup("fail_page_alloc=", setup_fail_page_alloc);
3756
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3757 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3758 {
3759 if (order < fail_page_alloc.min_order)
3760 return false;
3761 if (gfp_mask & __GFP_NOFAIL)
3762 return false;
3763 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3764 return false;
3765 if (fail_page_alloc.ignore_gfp_reclaim &&
3766 (gfp_mask & __GFP_DIRECT_RECLAIM))
3767 return false;
3768
3769 return should_fail(&fail_page_alloc.attr, 1 << order);
3770 }
3771
3772 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3773
fail_page_alloc_debugfs(void)3774 static int __init fail_page_alloc_debugfs(void)
3775 {
3776 umode_t mode = S_IFREG | 0600;
3777 struct dentry *dir;
3778
3779 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3780 &fail_page_alloc.attr);
3781
3782 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3783 &fail_page_alloc.ignore_gfp_reclaim);
3784 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3785 &fail_page_alloc.ignore_gfp_highmem);
3786 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3787
3788 return 0;
3789 }
3790
3791 late_initcall(fail_page_alloc_debugfs);
3792
3793 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3794
3795 #else /* CONFIG_FAIL_PAGE_ALLOC */
3796
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3797 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3798 {
3799 return false;
3800 }
3801
3802 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3803
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3804 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3805 {
3806 return __should_fail_alloc_page(gfp_mask, order);
3807 }
3808 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3809
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3810 static inline long __zone_watermark_unusable_free(struct zone *z,
3811 unsigned int order, unsigned int alloc_flags)
3812 {
3813 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3814 long unusable_free = (1 << order) - 1;
3815
3816 /*
3817 * If the caller does not have rights to ALLOC_HARDER then subtract
3818 * the high-atomic reserves. This will over-estimate the size of the
3819 * atomic reserve but it avoids a search.
3820 */
3821 if (likely(!alloc_harder))
3822 unusable_free += z->nr_reserved_highatomic;
3823
3824 #ifdef CONFIG_CMA
3825 /* If allocation can't use CMA areas don't use free CMA pages */
3826 if (!(alloc_flags & ALLOC_CMA))
3827 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3828 #endif
3829
3830 return unusable_free;
3831 }
3832
3833 /*
3834 * Return true if free base pages are above 'mark'. For high-order checks it
3835 * will return true of the order-0 watermark is reached and there is at least
3836 * one free page of a suitable size. Checking now avoids taking the zone lock
3837 * to check in the allocation paths if no pages are free.
3838 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3839 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3840 int highest_zoneidx, unsigned int alloc_flags,
3841 long free_pages)
3842 {
3843 long min = mark;
3844 int o;
3845 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3846
3847 /* free_pages may go negative - that's OK */
3848 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3849
3850 if (alloc_flags & ALLOC_HIGH)
3851 min -= min / 2;
3852
3853 if (unlikely(alloc_harder)) {
3854 /*
3855 * OOM victims can try even harder than normal ALLOC_HARDER
3856 * users on the grounds that it's definitely going to be in
3857 * the exit path shortly and free memory. Any allocation it
3858 * makes during the free path will be small and short-lived.
3859 */
3860 if (alloc_flags & ALLOC_OOM)
3861 min -= min / 2;
3862 else
3863 min -= min / 4;
3864 }
3865
3866 /*
3867 * Check watermarks for an order-0 allocation request. If these
3868 * are not met, then a high-order request also cannot go ahead
3869 * even if a suitable page happened to be free.
3870 */
3871 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3872 return false;
3873
3874 /* If this is an order-0 request then the watermark is fine */
3875 if (!order)
3876 return true;
3877
3878 /* For a high-order request, check at least one suitable page is free */
3879 for (o = order; o < MAX_ORDER; o++) {
3880 struct free_area *area = &z->free_area[o];
3881 int mt;
3882
3883 if (!area->nr_free)
3884 continue;
3885
3886 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3887 if (!free_area_empty(area, mt))
3888 return true;
3889 }
3890
3891 #ifdef CONFIG_CMA
3892 if ((alloc_flags & ALLOC_CMA) &&
3893 !free_area_empty(area, MIGRATE_CMA)) {
3894 return true;
3895 }
3896 #endif
3897 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3898 return true;
3899 }
3900 return false;
3901 }
3902
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3903 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3904 int highest_zoneidx, unsigned int alloc_flags)
3905 {
3906 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3907 zone_page_state(z, NR_FREE_PAGES));
3908 }
3909
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3910 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3911 unsigned long mark, int highest_zoneidx,
3912 unsigned int alloc_flags, gfp_t gfp_mask)
3913 {
3914 long free_pages;
3915
3916 free_pages = zone_page_state(z, NR_FREE_PAGES);
3917
3918 /*
3919 * Fast check for order-0 only. If this fails then the reserves
3920 * need to be calculated.
3921 */
3922 if (!order) {
3923 long fast_free;
3924
3925 fast_free = free_pages;
3926 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3927 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3928 return true;
3929 }
3930
3931 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3932 free_pages))
3933 return true;
3934 /*
3935 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3936 * when checking the min watermark. The min watermark is the
3937 * point where boosting is ignored so that kswapd is woken up
3938 * when below the low watermark.
3939 */
3940 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3941 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3942 mark = z->_watermark[WMARK_MIN];
3943 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3944 alloc_flags, free_pages);
3945 }
3946
3947 return false;
3948 }
3949
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3950 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3951 unsigned long mark, int highest_zoneidx)
3952 {
3953 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3954
3955 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3956 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3957
3958 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3959 free_pages);
3960 }
3961
3962 #ifdef CONFIG_NUMA
3963 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3964
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3965 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3966 {
3967 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3968 node_reclaim_distance;
3969 }
3970 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3971 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3972 {
3973 return true;
3974 }
3975 #endif /* CONFIG_NUMA */
3976
3977 /*
3978 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3979 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3980 * premature use of a lower zone may cause lowmem pressure problems that
3981 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3982 * probably too small. It only makes sense to spread allocations to avoid
3983 * fragmentation between the Normal and DMA32 zones.
3984 */
3985 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3986 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3987 {
3988 unsigned int alloc_flags;
3989
3990 /*
3991 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3992 * to save a branch.
3993 */
3994 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3995
3996 #ifdef CONFIG_ZONE_DMA32
3997 if (!zone)
3998 return alloc_flags;
3999
4000 if (zone_idx(zone) != ZONE_NORMAL)
4001 return alloc_flags;
4002
4003 /*
4004 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4005 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4006 * on UMA that if Normal is populated then so is DMA32.
4007 */
4008 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4009 if (nr_online_nodes > 1 && !populated_zone(--zone))
4010 return alloc_flags;
4011
4012 alloc_flags |= ALLOC_NOFRAGMENT;
4013 #endif /* CONFIG_ZONE_DMA32 */
4014 return alloc_flags;
4015 }
4016
4017 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)4018 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4019 unsigned int alloc_flags)
4020 {
4021 #ifdef CONFIG_CMA
4022 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4023 alloc_flags |= ALLOC_CMA;
4024 #endif
4025 return alloc_flags;
4026 }
4027
4028 /*
4029 * get_page_from_freelist goes through the zonelist trying to allocate
4030 * a page.
4031 */
4032 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)4033 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4034 const struct alloc_context *ac)
4035 {
4036 struct zoneref *z;
4037 struct zone *zone;
4038 struct pglist_data *last_pgdat_dirty_limit = NULL;
4039 bool no_fallback;
4040
4041 retry:
4042 /*
4043 * Scan zonelist, looking for a zone with enough free.
4044 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4045 */
4046 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4047 z = ac->preferred_zoneref;
4048 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4049 ac->nodemask) {
4050 struct page *page;
4051 unsigned long mark;
4052
4053 if (cpusets_enabled() &&
4054 (alloc_flags & ALLOC_CPUSET) &&
4055 !__cpuset_zone_allowed(zone, gfp_mask))
4056 continue;
4057 /*
4058 * When allocating a page cache page for writing, we
4059 * want to get it from a node that is within its dirty
4060 * limit, such that no single node holds more than its
4061 * proportional share of globally allowed dirty pages.
4062 * The dirty limits take into account the node's
4063 * lowmem reserves and high watermark so that kswapd
4064 * should be able to balance it without having to
4065 * write pages from its LRU list.
4066 *
4067 * XXX: For now, allow allocations to potentially
4068 * exceed the per-node dirty limit in the slowpath
4069 * (spread_dirty_pages unset) before going into reclaim,
4070 * which is important when on a NUMA setup the allowed
4071 * nodes are together not big enough to reach the
4072 * global limit. The proper fix for these situations
4073 * will require awareness of nodes in the
4074 * dirty-throttling and the flusher threads.
4075 */
4076 if (ac->spread_dirty_pages) {
4077 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4078 continue;
4079
4080 if (!node_dirty_ok(zone->zone_pgdat)) {
4081 last_pgdat_dirty_limit = zone->zone_pgdat;
4082 continue;
4083 }
4084 }
4085
4086 if (no_fallback && nr_online_nodes > 1 &&
4087 zone != ac->preferred_zoneref->zone) {
4088 int local_nid;
4089
4090 /*
4091 * If moving to a remote node, retry but allow
4092 * fragmenting fallbacks. Locality is more important
4093 * than fragmentation avoidance.
4094 */
4095 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4096 if (zone_to_nid(zone) != local_nid) {
4097 alloc_flags &= ~ALLOC_NOFRAGMENT;
4098 goto retry;
4099 }
4100 }
4101
4102 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4103 if (!zone_watermark_fast(zone, order, mark,
4104 ac->highest_zoneidx, alloc_flags,
4105 gfp_mask)) {
4106 int ret;
4107
4108 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4109 /*
4110 * Watermark failed for this zone, but see if we can
4111 * grow this zone if it contains deferred pages.
4112 */
4113 if (static_branch_unlikely(&deferred_pages)) {
4114 if (_deferred_grow_zone(zone, order))
4115 goto try_this_zone;
4116 }
4117 #endif
4118 /* Checked here to keep the fast path fast */
4119 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4120 if (alloc_flags & ALLOC_NO_WATERMARKS)
4121 goto try_this_zone;
4122
4123 if (!node_reclaim_enabled() ||
4124 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4125 continue;
4126
4127 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4128 switch (ret) {
4129 case NODE_RECLAIM_NOSCAN:
4130 /* did not scan */
4131 continue;
4132 case NODE_RECLAIM_FULL:
4133 /* scanned but unreclaimable */
4134 continue;
4135 default:
4136 /* did we reclaim enough */
4137 if (zone_watermark_ok(zone, order, mark,
4138 ac->highest_zoneidx, alloc_flags))
4139 goto try_this_zone;
4140
4141 continue;
4142 }
4143 }
4144
4145 try_this_zone:
4146 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4147 gfp_mask, alloc_flags, ac->migratetype);
4148 if (page) {
4149 prep_new_page(page, order, gfp_mask, alloc_flags);
4150
4151 /*
4152 * If this is a high-order atomic allocation then check
4153 * if the pageblock should be reserved for the future
4154 */
4155 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4156 reserve_highatomic_pageblock(page, zone, order);
4157
4158 return page;
4159 } else {
4160 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4161 /* Try again if zone has deferred pages */
4162 if (static_branch_unlikely(&deferred_pages)) {
4163 if (_deferred_grow_zone(zone, order))
4164 goto try_this_zone;
4165 }
4166 #endif
4167 }
4168 }
4169
4170 /*
4171 * It's possible on a UMA machine to get through all zones that are
4172 * fragmented. If avoiding fragmentation, reset and try again.
4173 */
4174 if (no_fallback) {
4175 alloc_flags &= ~ALLOC_NOFRAGMENT;
4176 goto retry;
4177 }
4178
4179 return NULL;
4180 }
4181
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)4182 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4183 {
4184 unsigned int filter = SHOW_MEM_FILTER_NODES;
4185
4186 /*
4187 * This documents exceptions given to allocations in certain
4188 * contexts that are allowed to allocate outside current's set
4189 * of allowed nodes.
4190 */
4191 if (!(gfp_mask & __GFP_NOMEMALLOC))
4192 if (tsk_is_oom_victim(current) ||
4193 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4194 filter &= ~SHOW_MEM_FILTER_NODES;
4195 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4196 filter &= ~SHOW_MEM_FILTER_NODES;
4197
4198 show_mem(filter, nodemask);
4199 }
4200
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)4201 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4202 {
4203 struct va_format vaf;
4204 va_list args;
4205 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4206
4207 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4208 return;
4209
4210 va_start(args, fmt);
4211 vaf.fmt = fmt;
4212 vaf.va = &args;
4213 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4214 current->comm, &vaf, gfp_mask, &gfp_mask,
4215 nodemask_pr_args(nodemask));
4216 va_end(args);
4217
4218 cpuset_print_current_mems_allowed();
4219 pr_cont("\n");
4220 dump_stack();
4221 warn_alloc_show_mem(gfp_mask, nodemask);
4222 }
4223
4224 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)4225 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4226 unsigned int alloc_flags,
4227 const struct alloc_context *ac)
4228 {
4229 struct page *page;
4230
4231 page = get_page_from_freelist(gfp_mask, order,
4232 alloc_flags|ALLOC_CPUSET, ac);
4233 /*
4234 * fallback to ignore cpuset restriction if our nodes
4235 * are depleted
4236 */
4237 if (!page)
4238 page = get_page_from_freelist(gfp_mask, order,
4239 alloc_flags, ac);
4240
4241 return page;
4242 }
4243
4244 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4245 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4246 const struct alloc_context *ac, unsigned long *did_some_progress)
4247 {
4248 struct oom_control oc = {
4249 .zonelist = ac->zonelist,
4250 .nodemask = ac->nodemask,
4251 .memcg = NULL,
4252 .gfp_mask = gfp_mask,
4253 .order = order,
4254 };
4255 struct page *page;
4256
4257 *did_some_progress = 0;
4258
4259 /*
4260 * Acquire the oom lock. If that fails, somebody else is
4261 * making progress for us.
4262 */
4263 if (!mutex_trylock(&oom_lock)) {
4264 *did_some_progress = 1;
4265 schedule_timeout_uninterruptible(1);
4266 return NULL;
4267 }
4268
4269 /*
4270 * Go through the zonelist yet one more time, keep very high watermark
4271 * here, this is only to catch a parallel oom killing, we must fail if
4272 * we're still under heavy pressure. But make sure that this reclaim
4273 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4274 * allocation which will never fail due to oom_lock already held.
4275 */
4276 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4277 ~__GFP_DIRECT_RECLAIM, order,
4278 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4279 if (page)
4280 goto out;
4281
4282 /* Coredumps can quickly deplete all memory reserves */
4283 if (current->flags & PF_DUMPCORE)
4284 goto out;
4285 /* The OOM killer will not help higher order allocs */
4286 if (order > PAGE_ALLOC_COSTLY_ORDER)
4287 goto out;
4288 /*
4289 * We have already exhausted all our reclaim opportunities without any
4290 * success so it is time to admit defeat. We will skip the OOM killer
4291 * because it is very likely that the caller has a more reasonable
4292 * fallback than shooting a random task.
4293 *
4294 * The OOM killer may not free memory on a specific node.
4295 */
4296 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4297 goto out;
4298 /* The OOM killer does not needlessly kill tasks for lowmem */
4299 if (ac->highest_zoneidx < ZONE_NORMAL)
4300 goto out;
4301 if (pm_suspended_storage())
4302 goto out;
4303 /*
4304 * XXX: GFP_NOFS allocations should rather fail than rely on
4305 * other request to make a forward progress.
4306 * We are in an unfortunate situation where out_of_memory cannot
4307 * do much for this context but let's try it to at least get
4308 * access to memory reserved if the current task is killed (see
4309 * out_of_memory). Once filesystems are ready to handle allocation
4310 * failures more gracefully we should just bail out here.
4311 */
4312
4313 /* Exhausted what can be done so it's blame time */
4314 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4315 *did_some_progress = 1;
4316
4317 /*
4318 * Help non-failing allocations by giving them access to memory
4319 * reserves
4320 */
4321 if (gfp_mask & __GFP_NOFAIL)
4322 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4323 ALLOC_NO_WATERMARKS, ac);
4324 }
4325 out:
4326 mutex_unlock(&oom_lock);
4327 return page;
4328 }
4329
4330 /*
4331 * Maximum number of compaction retries with a progress before OOM
4332 * killer is consider as the only way to move forward.
4333 */
4334 #define MAX_COMPACT_RETRIES 16
4335
4336 #ifdef CONFIG_COMPACTION
4337 /* Try memory compaction for high-order allocations before reclaim */
4338 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4339 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4340 unsigned int alloc_flags, const struct alloc_context *ac,
4341 enum compact_priority prio, enum compact_result *compact_result)
4342 {
4343 struct page *page = NULL;
4344 unsigned long pflags;
4345 unsigned int noreclaim_flag;
4346
4347 if (!order)
4348 return NULL;
4349
4350 psi_memstall_enter(&pflags);
4351 noreclaim_flag = memalloc_noreclaim_save();
4352
4353 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4354 prio, &page);
4355
4356 memalloc_noreclaim_restore(noreclaim_flag);
4357 psi_memstall_leave(&pflags);
4358
4359 if (*compact_result == COMPACT_SKIPPED)
4360 return NULL;
4361 /*
4362 * At least in one zone compaction wasn't deferred or skipped, so let's
4363 * count a compaction stall
4364 */
4365 count_vm_event(COMPACTSTALL);
4366
4367 /* Prep a captured page if available */
4368 if (page)
4369 prep_new_page(page, order, gfp_mask, alloc_flags);
4370
4371 /* Try get a page from the freelist if available */
4372 if (!page)
4373 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4374
4375 if (page) {
4376 struct zone *zone = page_zone(page);
4377
4378 zone->compact_blockskip_flush = false;
4379 compaction_defer_reset(zone, order, true);
4380 count_vm_event(COMPACTSUCCESS);
4381 return page;
4382 }
4383
4384 /*
4385 * It's bad if compaction run occurs and fails. The most likely reason
4386 * is that pages exist, but not enough to satisfy watermarks.
4387 */
4388 count_vm_event(COMPACTFAIL);
4389
4390 cond_resched();
4391
4392 return NULL;
4393 }
4394
4395 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4396 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4397 enum compact_result compact_result,
4398 enum compact_priority *compact_priority,
4399 int *compaction_retries)
4400 {
4401 int max_retries = MAX_COMPACT_RETRIES;
4402 int min_priority;
4403 bool ret = false;
4404 int retries = *compaction_retries;
4405 enum compact_priority priority = *compact_priority;
4406
4407 if (!order)
4408 return false;
4409
4410 if (fatal_signal_pending(current))
4411 return false;
4412
4413 if (compaction_made_progress(compact_result))
4414 (*compaction_retries)++;
4415
4416 /*
4417 * compaction considers all the zone as desperately out of memory
4418 * so it doesn't really make much sense to retry except when the
4419 * failure could be caused by insufficient priority
4420 */
4421 if (compaction_failed(compact_result))
4422 goto check_priority;
4423
4424 /*
4425 * compaction was skipped because there are not enough order-0 pages
4426 * to work with, so we retry only if it looks like reclaim can help.
4427 */
4428 if (compaction_needs_reclaim(compact_result)) {
4429 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4430 goto out;
4431 }
4432
4433 /*
4434 * make sure the compaction wasn't deferred or didn't bail out early
4435 * due to locks contention before we declare that we should give up.
4436 * But the next retry should use a higher priority if allowed, so
4437 * we don't just keep bailing out endlessly.
4438 */
4439 if (compaction_withdrawn(compact_result)) {
4440 goto check_priority;
4441 }
4442
4443 /*
4444 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4445 * costly ones because they are de facto nofail and invoke OOM
4446 * killer to move on while costly can fail and users are ready
4447 * to cope with that. 1/4 retries is rather arbitrary but we
4448 * would need much more detailed feedback from compaction to
4449 * make a better decision.
4450 */
4451 if (order > PAGE_ALLOC_COSTLY_ORDER)
4452 max_retries /= 4;
4453 if (*compaction_retries <= max_retries) {
4454 ret = true;
4455 goto out;
4456 }
4457
4458 /*
4459 * Make sure there are attempts at the highest priority if we exhausted
4460 * all retries or failed at the lower priorities.
4461 */
4462 check_priority:
4463 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4464 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4465
4466 if (*compact_priority > min_priority) {
4467 (*compact_priority)--;
4468 *compaction_retries = 0;
4469 ret = true;
4470 }
4471 out:
4472 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4473 return ret;
4474 }
4475 #else
4476 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4477 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4478 unsigned int alloc_flags, const struct alloc_context *ac,
4479 enum compact_priority prio, enum compact_result *compact_result)
4480 {
4481 *compact_result = COMPACT_SKIPPED;
4482 return NULL;
4483 }
4484
4485 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4486 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4487 enum compact_result compact_result,
4488 enum compact_priority *compact_priority,
4489 int *compaction_retries)
4490 {
4491 struct zone *zone;
4492 struct zoneref *z;
4493
4494 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4495 return false;
4496
4497 /*
4498 * There are setups with compaction disabled which would prefer to loop
4499 * inside the allocator rather than hit the oom killer prematurely.
4500 * Let's give them a good hope and keep retrying while the order-0
4501 * watermarks are OK.
4502 */
4503 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4504 ac->highest_zoneidx, ac->nodemask) {
4505 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4506 ac->highest_zoneidx, alloc_flags))
4507 return true;
4508 }
4509 return false;
4510 }
4511 #endif /* CONFIG_COMPACTION */
4512
4513 #ifdef CONFIG_LOCKDEP
4514 static struct lockdep_map __fs_reclaim_map =
4515 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4516
__need_reclaim(gfp_t gfp_mask)4517 static bool __need_reclaim(gfp_t gfp_mask)
4518 {
4519 /* no reclaim without waiting on it */
4520 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4521 return false;
4522
4523 /* this guy won't enter reclaim */
4524 if (current->flags & PF_MEMALLOC)
4525 return false;
4526
4527 if (gfp_mask & __GFP_NOLOCKDEP)
4528 return false;
4529
4530 return true;
4531 }
4532
__fs_reclaim_acquire(unsigned long ip)4533 void __fs_reclaim_acquire(unsigned long ip)
4534 {
4535 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4536 }
4537
__fs_reclaim_release(unsigned long ip)4538 void __fs_reclaim_release(unsigned long ip)
4539 {
4540 lock_release(&__fs_reclaim_map, ip);
4541 }
4542
fs_reclaim_acquire(gfp_t gfp_mask)4543 void fs_reclaim_acquire(gfp_t gfp_mask)
4544 {
4545 gfp_mask = current_gfp_context(gfp_mask);
4546
4547 if (__need_reclaim(gfp_mask)) {
4548 if (gfp_mask & __GFP_FS)
4549 __fs_reclaim_acquire(_RET_IP_);
4550
4551 #ifdef CONFIG_MMU_NOTIFIER
4552 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4553 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4554 #endif
4555
4556 }
4557 }
4558 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4559
fs_reclaim_release(gfp_t gfp_mask)4560 void fs_reclaim_release(gfp_t gfp_mask)
4561 {
4562 gfp_mask = current_gfp_context(gfp_mask);
4563
4564 if (__need_reclaim(gfp_mask)) {
4565 if (gfp_mask & __GFP_FS)
4566 __fs_reclaim_release(_RET_IP_);
4567 }
4568 }
4569 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4570 #endif
4571
4572 /* Perform direct synchronous page reclaim */
4573 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4574 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4575 const struct alloc_context *ac)
4576 {
4577 unsigned int noreclaim_flag;
4578 unsigned long pflags, progress;
4579
4580 cond_resched();
4581
4582 /* We now go into synchronous reclaim */
4583 cpuset_memory_pressure_bump();
4584 psi_memstall_enter(&pflags);
4585 fs_reclaim_acquire(gfp_mask);
4586 noreclaim_flag = memalloc_noreclaim_save();
4587
4588 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4589 ac->nodemask);
4590
4591 memalloc_noreclaim_restore(noreclaim_flag);
4592 fs_reclaim_release(gfp_mask);
4593 psi_memstall_leave(&pflags);
4594
4595 cond_resched();
4596
4597 return progress;
4598 }
4599
4600 /* The really slow allocator path where we enter direct reclaim */
4601 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4602 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4603 unsigned int alloc_flags, const struct alloc_context *ac,
4604 unsigned long *did_some_progress)
4605 {
4606 struct page *page = NULL;
4607 bool drained = false;
4608
4609 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4610 if (unlikely(!(*did_some_progress)))
4611 return NULL;
4612
4613 retry:
4614 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4615
4616 /*
4617 * If an allocation failed after direct reclaim, it could be because
4618 * pages are pinned on the per-cpu lists or in high alloc reserves.
4619 * Shrink them and try again
4620 */
4621 if (!page && !drained) {
4622 unreserve_highatomic_pageblock(ac, false);
4623 drain_all_pages(NULL);
4624 drained = true;
4625 goto retry;
4626 }
4627
4628 return page;
4629 }
4630
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4631 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4632 const struct alloc_context *ac)
4633 {
4634 struct zoneref *z;
4635 struct zone *zone;
4636 pg_data_t *last_pgdat = NULL;
4637 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4638
4639 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4640 ac->nodemask) {
4641 if (last_pgdat != zone->zone_pgdat)
4642 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4643 last_pgdat = zone->zone_pgdat;
4644 }
4645 }
4646
4647 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4648 gfp_to_alloc_flags(gfp_t gfp_mask)
4649 {
4650 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4651
4652 /*
4653 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4654 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4655 * to save two branches.
4656 */
4657 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4658 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4659
4660 /*
4661 * The caller may dip into page reserves a bit more if the caller
4662 * cannot run direct reclaim, or if the caller has realtime scheduling
4663 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4664 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4665 */
4666 alloc_flags |= (__force int)
4667 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4668
4669 if (gfp_mask & __GFP_ATOMIC) {
4670 /*
4671 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4672 * if it can't schedule.
4673 */
4674 if (!(gfp_mask & __GFP_NOMEMALLOC))
4675 alloc_flags |= ALLOC_HARDER;
4676 /*
4677 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4678 * comment for __cpuset_node_allowed().
4679 */
4680 alloc_flags &= ~ALLOC_CPUSET;
4681 } else if (unlikely(rt_task(current)) && in_task())
4682 alloc_flags |= ALLOC_HARDER;
4683
4684 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4685
4686 return alloc_flags;
4687 }
4688
oom_reserves_allowed(struct task_struct * tsk)4689 static bool oom_reserves_allowed(struct task_struct *tsk)
4690 {
4691 if (!tsk_is_oom_victim(tsk))
4692 return false;
4693
4694 /*
4695 * !MMU doesn't have oom reaper so give access to memory reserves
4696 * only to the thread with TIF_MEMDIE set
4697 */
4698 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4699 return false;
4700
4701 return true;
4702 }
4703
4704 /*
4705 * Distinguish requests which really need access to full memory
4706 * reserves from oom victims which can live with a portion of it
4707 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4708 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4709 {
4710 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4711 return 0;
4712 if (gfp_mask & __GFP_MEMALLOC)
4713 return ALLOC_NO_WATERMARKS;
4714 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4715 return ALLOC_NO_WATERMARKS;
4716 if (!in_interrupt()) {
4717 if (current->flags & PF_MEMALLOC)
4718 return ALLOC_NO_WATERMARKS;
4719 else if (oom_reserves_allowed(current))
4720 return ALLOC_OOM;
4721 }
4722
4723 return 0;
4724 }
4725
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4726 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4727 {
4728 return !!__gfp_pfmemalloc_flags(gfp_mask);
4729 }
4730
4731 /*
4732 * Checks whether it makes sense to retry the reclaim to make a forward progress
4733 * for the given allocation request.
4734 *
4735 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4736 * without success, or when we couldn't even meet the watermark if we
4737 * reclaimed all remaining pages on the LRU lists.
4738 *
4739 * Returns true if a retry is viable or false to enter the oom path.
4740 */
4741 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4742 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4743 struct alloc_context *ac, int alloc_flags,
4744 bool did_some_progress, int *no_progress_loops)
4745 {
4746 struct zone *zone;
4747 struct zoneref *z;
4748 bool ret = false;
4749
4750 /*
4751 * Costly allocations might have made a progress but this doesn't mean
4752 * their order will become available due to high fragmentation so
4753 * always increment the no progress counter for them
4754 */
4755 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4756 *no_progress_loops = 0;
4757 else
4758 (*no_progress_loops)++;
4759
4760 /*
4761 * Make sure we converge to OOM if we cannot make any progress
4762 * several times in the row.
4763 */
4764 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4765 /* Before OOM, exhaust highatomic_reserve */
4766 return unreserve_highatomic_pageblock(ac, true);
4767 }
4768
4769 /*
4770 * Keep reclaiming pages while there is a chance this will lead
4771 * somewhere. If none of the target zones can satisfy our allocation
4772 * request even if all reclaimable pages are considered then we are
4773 * screwed and have to go OOM.
4774 */
4775 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4776 ac->highest_zoneidx, ac->nodemask) {
4777 unsigned long available;
4778 unsigned long reclaimable;
4779 unsigned long min_wmark = min_wmark_pages(zone);
4780 bool wmark;
4781
4782 available = reclaimable = zone_reclaimable_pages(zone);
4783 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4784
4785 /*
4786 * Would the allocation succeed if we reclaimed all
4787 * reclaimable pages?
4788 */
4789 wmark = __zone_watermark_ok(zone, order, min_wmark,
4790 ac->highest_zoneidx, alloc_flags, available);
4791 trace_reclaim_retry_zone(z, order, reclaimable,
4792 available, min_wmark, *no_progress_loops, wmark);
4793 if (wmark) {
4794 ret = true;
4795 break;
4796 }
4797 }
4798
4799 /*
4800 * Memory allocation/reclaim might be called from a WQ context and the
4801 * current implementation of the WQ concurrency control doesn't
4802 * recognize that a particular WQ is congested if the worker thread is
4803 * looping without ever sleeping. Therefore we have to do a short sleep
4804 * here rather than calling cond_resched().
4805 */
4806 if (current->flags & PF_WQ_WORKER)
4807 schedule_timeout_uninterruptible(1);
4808 else
4809 cond_resched();
4810 return ret;
4811 }
4812
4813 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4814 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4815 {
4816 /*
4817 * It's possible that cpuset's mems_allowed and the nodemask from
4818 * mempolicy don't intersect. This should be normally dealt with by
4819 * policy_nodemask(), but it's possible to race with cpuset update in
4820 * such a way the check therein was true, and then it became false
4821 * before we got our cpuset_mems_cookie here.
4822 * This assumes that for all allocations, ac->nodemask can come only
4823 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4824 * when it does not intersect with the cpuset restrictions) or the
4825 * caller can deal with a violated nodemask.
4826 */
4827 if (cpusets_enabled() && ac->nodemask &&
4828 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4829 ac->nodemask = NULL;
4830 return true;
4831 }
4832
4833 /*
4834 * When updating a task's mems_allowed or mempolicy nodemask, it is
4835 * possible to race with parallel threads in such a way that our
4836 * allocation can fail while the mask is being updated. If we are about
4837 * to fail, check if the cpuset changed during allocation and if so,
4838 * retry.
4839 */
4840 if (read_mems_allowed_retry(cpuset_mems_cookie))
4841 return true;
4842
4843 return false;
4844 }
4845
4846 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4847 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4848 struct alloc_context *ac)
4849 {
4850 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4851 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4852 struct page *page = NULL;
4853 unsigned int alloc_flags;
4854 unsigned long did_some_progress;
4855 enum compact_priority compact_priority;
4856 enum compact_result compact_result;
4857 int compaction_retries;
4858 int no_progress_loops;
4859 unsigned int cpuset_mems_cookie;
4860 int reserve_flags;
4861
4862 /*
4863 * We also sanity check to catch abuse of atomic reserves being used by
4864 * callers that are not in atomic context.
4865 */
4866 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4867 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4868 gfp_mask &= ~__GFP_ATOMIC;
4869
4870 retry_cpuset:
4871 compaction_retries = 0;
4872 no_progress_loops = 0;
4873 compact_priority = DEF_COMPACT_PRIORITY;
4874 cpuset_mems_cookie = read_mems_allowed_begin();
4875
4876 /*
4877 * The fast path uses conservative alloc_flags to succeed only until
4878 * kswapd needs to be woken up, and to avoid the cost of setting up
4879 * alloc_flags precisely. So we do that now.
4880 */
4881 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4882
4883 /*
4884 * We need to recalculate the starting point for the zonelist iterator
4885 * because we might have used different nodemask in the fast path, or
4886 * there was a cpuset modification and we are retrying - otherwise we
4887 * could end up iterating over non-eligible zones endlessly.
4888 */
4889 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4890 ac->highest_zoneidx, ac->nodemask);
4891 if (!ac->preferred_zoneref->zone)
4892 goto nopage;
4893
4894 /*
4895 * Check for insane configurations where the cpuset doesn't contain
4896 * any suitable zone to satisfy the request - e.g. non-movable
4897 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4898 */
4899 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4900 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4901 ac->highest_zoneidx,
4902 &cpuset_current_mems_allowed);
4903 if (!z->zone)
4904 goto nopage;
4905 }
4906
4907 if (alloc_flags & ALLOC_KSWAPD)
4908 wake_all_kswapds(order, gfp_mask, ac);
4909
4910 /*
4911 * The adjusted alloc_flags might result in immediate success, so try
4912 * that first
4913 */
4914 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4915 if (page)
4916 goto got_pg;
4917
4918 /*
4919 * For costly allocations, try direct compaction first, as it's likely
4920 * that we have enough base pages and don't need to reclaim. For non-
4921 * movable high-order allocations, do that as well, as compaction will
4922 * try prevent permanent fragmentation by migrating from blocks of the
4923 * same migratetype.
4924 * Don't try this for allocations that are allowed to ignore
4925 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4926 */
4927 if (can_direct_reclaim &&
4928 (costly_order ||
4929 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4930 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4931 page = __alloc_pages_direct_compact(gfp_mask, order,
4932 alloc_flags, ac,
4933 INIT_COMPACT_PRIORITY,
4934 &compact_result);
4935 if (page)
4936 goto got_pg;
4937
4938 /*
4939 * Checks for costly allocations with __GFP_NORETRY, which
4940 * includes some THP page fault allocations
4941 */
4942 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4943 /*
4944 * If allocating entire pageblock(s) and compaction
4945 * failed because all zones are below low watermarks
4946 * or is prohibited because it recently failed at this
4947 * order, fail immediately unless the allocator has
4948 * requested compaction and reclaim retry.
4949 *
4950 * Reclaim is
4951 * - potentially very expensive because zones are far
4952 * below their low watermarks or this is part of very
4953 * bursty high order allocations,
4954 * - not guaranteed to help because isolate_freepages()
4955 * may not iterate over freed pages as part of its
4956 * linear scan, and
4957 * - unlikely to make entire pageblocks free on its
4958 * own.
4959 */
4960 if (compact_result == COMPACT_SKIPPED ||
4961 compact_result == COMPACT_DEFERRED)
4962 goto nopage;
4963
4964 /*
4965 * Looks like reclaim/compaction is worth trying, but
4966 * sync compaction could be very expensive, so keep
4967 * using async compaction.
4968 */
4969 compact_priority = INIT_COMPACT_PRIORITY;
4970 }
4971 }
4972
4973 retry:
4974 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4975 if (alloc_flags & ALLOC_KSWAPD)
4976 wake_all_kswapds(order, gfp_mask, ac);
4977
4978 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4979 if (reserve_flags)
4980 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4981
4982 /*
4983 * Reset the nodemask and zonelist iterators if memory policies can be
4984 * ignored. These allocations are high priority and system rather than
4985 * user oriented.
4986 */
4987 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4988 ac->nodemask = NULL;
4989 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4990 ac->highest_zoneidx, ac->nodemask);
4991 }
4992
4993 /* Attempt with potentially adjusted zonelist and alloc_flags */
4994 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4995 if (page)
4996 goto got_pg;
4997
4998 /* Caller is not willing to reclaim, we can't balance anything */
4999 if (!can_direct_reclaim)
5000 goto nopage;
5001
5002 /* Avoid recursion of direct reclaim */
5003 if (current->flags & PF_MEMALLOC)
5004 goto nopage;
5005
5006 /* Try direct reclaim and then allocating */
5007 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5008 &did_some_progress);
5009 if (page)
5010 goto got_pg;
5011
5012 /* Try direct compaction and then allocating */
5013 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5014 compact_priority, &compact_result);
5015 if (page)
5016 goto got_pg;
5017
5018 /* Do not loop if specifically requested */
5019 if (gfp_mask & __GFP_NORETRY)
5020 goto nopage;
5021
5022 /*
5023 * Do not retry costly high order allocations unless they are
5024 * __GFP_RETRY_MAYFAIL
5025 */
5026 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5027 goto nopage;
5028
5029 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5030 did_some_progress > 0, &no_progress_loops))
5031 goto retry;
5032
5033 /*
5034 * It doesn't make any sense to retry for the compaction if the order-0
5035 * reclaim is not able to make any progress because the current
5036 * implementation of the compaction depends on the sufficient amount
5037 * of free memory (see __compaction_suitable)
5038 */
5039 if (did_some_progress > 0 &&
5040 should_compact_retry(ac, order, alloc_flags,
5041 compact_result, &compact_priority,
5042 &compaction_retries))
5043 goto retry;
5044
5045
5046 /* Deal with possible cpuset update races before we start OOM killing */
5047 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5048 goto retry_cpuset;
5049
5050 /* Reclaim has failed us, start killing things */
5051 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5052 if (page)
5053 goto got_pg;
5054
5055 /* Avoid allocations with no watermarks from looping endlessly */
5056 if (tsk_is_oom_victim(current) &&
5057 (alloc_flags & ALLOC_OOM ||
5058 (gfp_mask & __GFP_NOMEMALLOC)))
5059 goto nopage;
5060
5061 /* Retry as long as the OOM killer is making progress */
5062 if (did_some_progress) {
5063 no_progress_loops = 0;
5064 goto retry;
5065 }
5066
5067 nopage:
5068 /* Deal with possible cpuset update races before we fail */
5069 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5070 goto retry_cpuset;
5071
5072 /*
5073 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5074 * we always retry
5075 */
5076 if (gfp_mask & __GFP_NOFAIL) {
5077 /*
5078 * All existing users of the __GFP_NOFAIL are blockable, so warn
5079 * of any new users that actually require GFP_NOWAIT
5080 */
5081 if (WARN_ON_ONCE(!can_direct_reclaim))
5082 goto fail;
5083
5084 /*
5085 * PF_MEMALLOC request from this context is rather bizarre
5086 * because we cannot reclaim anything and only can loop waiting
5087 * for somebody to do a work for us
5088 */
5089 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5090
5091 /*
5092 * non failing costly orders are a hard requirement which we
5093 * are not prepared for much so let's warn about these users
5094 * so that we can identify them and convert them to something
5095 * else.
5096 */
5097 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5098
5099 /*
5100 * Help non-failing allocations by giving them access to memory
5101 * reserves but do not use ALLOC_NO_WATERMARKS because this
5102 * could deplete whole memory reserves which would just make
5103 * the situation worse
5104 */
5105 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5106 if (page)
5107 goto got_pg;
5108
5109 cond_resched();
5110 goto retry;
5111 }
5112 fail:
5113 warn_alloc(gfp_mask, ac->nodemask,
5114 "page allocation failure: order:%u", order);
5115 got_pg:
5116 return page;
5117 }
5118
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)5119 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5120 int preferred_nid, nodemask_t *nodemask,
5121 struct alloc_context *ac, gfp_t *alloc_gfp,
5122 unsigned int *alloc_flags)
5123 {
5124 ac->highest_zoneidx = gfp_zone(gfp_mask);
5125 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5126 ac->nodemask = nodemask;
5127 ac->migratetype = gfp_migratetype(gfp_mask);
5128
5129 if (cpusets_enabled()) {
5130 *alloc_gfp |= __GFP_HARDWALL;
5131 /*
5132 * When we are in the interrupt context, it is irrelevant
5133 * to the current task context. It means that any node ok.
5134 */
5135 if (in_task() && !ac->nodemask)
5136 ac->nodemask = &cpuset_current_mems_allowed;
5137 else
5138 *alloc_flags |= ALLOC_CPUSET;
5139 }
5140
5141 fs_reclaim_acquire(gfp_mask);
5142 fs_reclaim_release(gfp_mask);
5143
5144 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5145
5146 if (should_fail_alloc_page(gfp_mask, order))
5147 return false;
5148
5149 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5150
5151 /* Dirty zone balancing only done in the fast path */
5152 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5153
5154 /*
5155 * The preferred zone is used for statistics but crucially it is
5156 * also used as the starting point for the zonelist iterator. It
5157 * may get reset for allocations that ignore memory policies.
5158 */
5159 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5160 ac->highest_zoneidx, ac->nodemask);
5161
5162 return true;
5163 }
5164
5165 /*
5166 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5167 * @gfp: GFP flags for the allocation
5168 * @preferred_nid: The preferred NUMA node ID to allocate from
5169 * @nodemask: Set of nodes to allocate from, may be NULL
5170 * @nr_pages: The number of pages desired on the list or array
5171 * @page_list: Optional list to store the allocated pages
5172 * @page_array: Optional array to store the pages
5173 *
5174 * This is a batched version of the page allocator that attempts to
5175 * allocate nr_pages quickly. Pages are added to page_list if page_list
5176 * is not NULL, otherwise it is assumed that the page_array is valid.
5177 *
5178 * For lists, nr_pages is the number of pages that should be allocated.
5179 *
5180 * For arrays, only NULL elements are populated with pages and nr_pages
5181 * is the maximum number of pages that will be stored in the array.
5182 *
5183 * Returns the number of pages on the list or array.
5184 */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)5185 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5186 nodemask_t *nodemask, int nr_pages,
5187 struct list_head *page_list,
5188 struct page **page_array)
5189 {
5190 struct page *page;
5191 unsigned long flags;
5192 struct zone *zone;
5193 struct zoneref *z;
5194 struct per_cpu_pages *pcp;
5195 struct list_head *pcp_list;
5196 struct alloc_context ac;
5197 gfp_t alloc_gfp;
5198 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5199 int nr_populated = 0, nr_account = 0;
5200
5201 /*
5202 * Skip populated array elements to determine if any pages need
5203 * to be allocated before disabling IRQs.
5204 */
5205 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5206 nr_populated++;
5207
5208 /* No pages requested? */
5209 if (unlikely(nr_pages <= 0))
5210 goto out;
5211
5212 /* Already populated array? */
5213 if (unlikely(page_array && nr_pages - nr_populated == 0))
5214 goto out;
5215
5216 /* Bulk allocator does not support memcg accounting. */
5217 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5218 goto failed;
5219
5220 /* Use the single page allocator for one page. */
5221 if (nr_pages - nr_populated == 1)
5222 goto failed;
5223
5224 #ifdef CONFIG_PAGE_OWNER
5225 /*
5226 * PAGE_OWNER may recurse into the allocator to allocate space to
5227 * save the stack with pagesets.lock held. Releasing/reacquiring
5228 * removes much of the performance benefit of bulk allocation so
5229 * force the caller to allocate one page at a time as it'll have
5230 * similar performance to added complexity to the bulk allocator.
5231 */
5232 if (static_branch_unlikely(&page_owner_inited))
5233 goto failed;
5234 #endif
5235
5236 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5237 gfp &= gfp_allowed_mask;
5238 alloc_gfp = gfp;
5239 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5240 goto out;
5241 gfp = alloc_gfp;
5242
5243 /* Find an allowed local zone that meets the low watermark. */
5244 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5245 unsigned long mark;
5246
5247 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5248 !__cpuset_zone_allowed(zone, gfp)) {
5249 continue;
5250 }
5251
5252 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5253 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5254 goto failed;
5255 }
5256
5257 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5258 if (zone_watermark_fast(zone, 0, mark,
5259 zonelist_zone_idx(ac.preferred_zoneref),
5260 alloc_flags, gfp)) {
5261 break;
5262 }
5263 }
5264
5265 /*
5266 * If there are no allowed local zones that meets the watermarks then
5267 * try to allocate a single page and reclaim if necessary.
5268 */
5269 if (unlikely(!zone))
5270 goto failed;
5271
5272 /* Attempt the batch allocation */
5273 local_lock_irqsave(&pagesets.lock, flags);
5274 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5275 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5276
5277 while (nr_populated < nr_pages) {
5278
5279 /* Skip existing pages */
5280 if (page_array && page_array[nr_populated]) {
5281 nr_populated++;
5282 continue;
5283 }
5284
5285 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5286 pcp, pcp_list);
5287 if (unlikely(!page)) {
5288 /* Try and get at least one page */
5289 if (!nr_populated)
5290 goto failed_irq;
5291 break;
5292 }
5293 nr_account++;
5294
5295 prep_new_page(page, 0, gfp, 0);
5296 if (page_list)
5297 list_add(&page->lru, page_list);
5298 else
5299 page_array[nr_populated] = page;
5300 nr_populated++;
5301 }
5302
5303 local_unlock_irqrestore(&pagesets.lock, flags);
5304
5305 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5306 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5307
5308 out:
5309 return nr_populated;
5310
5311 failed_irq:
5312 local_unlock_irqrestore(&pagesets.lock, flags);
5313
5314 failed:
5315 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5316 if (page) {
5317 if (page_list)
5318 list_add(&page->lru, page_list);
5319 else
5320 page_array[nr_populated] = page;
5321 nr_populated++;
5322 }
5323
5324 goto out;
5325 }
5326 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5327
5328 /*
5329 * This is the 'heart' of the zoned buddy allocator.
5330 */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5331 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5332 nodemask_t *nodemask)
5333 {
5334 struct page *page;
5335 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5336 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5337 struct alloc_context ac = { };
5338
5339 /*
5340 * There are several places where we assume that the order value is sane
5341 * so bail out early if the request is out of bound.
5342 */
5343 if (unlikely(order >= MAX_ORDER)) {
5344 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5345 return NULL;
5346 }
5347
5348 gfp &= gfp_allowed_mask;
5349 /*
5350 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5351 * resp. GFP_NOIO which has to be inherited for all allocation requests
5352 * from a particular context which has been marked by
5353 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5354 * movable zones are not used during allocation.
5355 */
5356 gfp = current_gfp_context(gfp);
5357 alloc_gfp = gfp;
5358 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5359 &alloc_gfp, &alloc_flags))
5360 return NULL;
5361
5362 /*
5363 * Forbid the first pass from falling back to types that fragment
5364 * memory until all local zones are considered.
5365 */
5366 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5367
5368 /* First allocation attempt */
5369 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5370 if (likely(page))
5371 goto out;
5372
5373 alloc_gfp = gfp;
5374 ac.spread_dirty_pages = false;
5375
5376 /*
5377 * Restore the original nodemask if it was potentially replaced with
5378 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5379 */
5380 ac.nodemask = nodemask;
5381
5382 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5383
5384 out:
5385 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5386 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5387 __free_pages(page, order);
5388 page = NULL;
5389 }
5390
5391 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5392
5393 return page;
5394 }
5395 EXPORT_SYMBOL(__alloc_pages);
5396
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5397 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5398 nodemask_t *nodemask)
5399 {
5400 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5401 preferred_nid, nodemask);
5402
5403 if (page && order > 1)
5404 prep_transhuge_page(page);
5405 return (struct folio *)page;
5406 }
5407 EXPORT_SYMBOL(__folio_alloc);
5408
5409 /*
5410 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5411 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5412 * you need to access high mem.
5413 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)5414 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5415 {
5416 struct page *page;
5417
5418 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5419 if (!page)
5420 return 0;
5421 return (unsigned long) page_address(page);
5422 }
5423 EXPORT_SYMBOL(__get_free_pages);
5424
get_zeroed_page(gfp_t gfp_mask)5425 unsigned long get_zeroed_page(gfp_t gfp_mask)
5426 {
5427 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5428 }
5429 EXPORT_SYMBOL(get_zeroed_page);
5430
5431 /**
5432 * __free_pages - Free pages allocated with alloc_pages().
5433 * @page: The page pointer returned from alloc_pages().
5434 * @order: The order of the allocation.
5435 *
5436 * This function can free multi-page allocations that are not compound
5437 * pages. It does not check that the @order passed in matches that of
5438 * the allocation, so it is easy to leak memory. Freeing more memory
5439 * than was allocated will probably emit a warning.
5440 *
5441 * If the last reference to this page is speculative, it will be released
5442 * by put_page() which only frees the first page of a non-compound
5443 * allocation. To prevent the remaining pages from being leaked, we free
5444 * the subsequent pages here. If you want to use the page's reference
5445 * count to decide when to free the allocation, you should allocate a
5446 * compound page, and use put_page() instead of __free_pages().
5447 *
5448 * Context: May be called in interrupt context or while holding a normal
5449 * spinlock, but not in NMI context or while holding a raw spinlock.
5450 */
__free_pages(struct page * page,unsigned int order)5451 void __free_pages(struct page *page, unsigned int order)
5452 {
5453 if (put_page_testzero(page))
5454 free_the_page(page, order);
5455 else if (!PageHead(page))
5456 while (order-- > 0)
5457 free_the_page(page + (1 << order), order);
5458 }
5459 EXPORT_SYMBOL(__free_pages);
5460
free_pages(unsigned long addr,unsigned int order)5461 void free_pages(unsigned long addr, unsigned int order)
5462 {
5463 if (addr != 0) {
5464 VM_BUG_ON(!virt_addr_valid((void *)addr));
5465 __free_pages(virt_to_page((void *)addr), order);
5466 }
5467 }
5468
5469 EXPORT_SYMBOL(free_pages);
5470
5471 /*
5472 * Page Fragment:
5473 * An arbitrary-length arbitrary-offset area of memory which resides
5474 * within a 0 or higher order page. Multiple fragments within that page
5475 * are individually refcounted, in the page's reference counter.
5476 *
5477 * The page_frag functions below provide a simple allocation framework for
5478 * page fragments. This is used by the network stack and network device
5479 * drivers to provide a backing region of memory for use as either an
5480 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5481 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5482 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5483 gfp_t gfp_mask)
5484 {
5485 struct page *page = NULL;
5486 gfp_t gfp = gfp_mask;
5487
5488 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5489 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5490 __GFP_NOMEMALLOC;
5491 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5492 PAGE_FRAG_CACHE_MAX_ORDER);
5493 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5494 #endif
5495 if (unlikely(!page))
5496 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5497
5498 nc->va = page ? page_address(page) : NULL;
5499
5500 return page;
5501 }
5502
__page_frag_cache_drain(struct page * page,unsigned int count)5503 void __page_frag_cache_drain(struct page *page, unsigned int count)
5504 {
5505 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5506
5507 if (page_ref_sub_and_test(page, count))
5508 free_the_page(page, compound_order(page));
5509 }
5510 EXPORT_SYMBOL(__page_frag_cache_drain);
5511
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)5512 void *page_frag_alloc_align(struct page_frag_cache *nc,
5513 unsigned int fragsz, gfp_t gfp_mask,
5514 unsigned int align_mask)
5515 {
5516 unsigned int size = PAGE_SIZE;
5517 struct page *page;
5518 int offset;
5519
5520 if (unlikely(!nc->va)) {
5521 refill:
5522 page = __page_frag_cache_refill(nc, gfp_mask);
5523 if (!page)
5524 return NULL;
5525
5526 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5527 /* if size can vary use size else just use PAGE_SIZE */
5528 size = nc->size;
5529 #endif
5530 /* Even if we own the page, we do not use atomic_set().
5531 * This would break get_page_unless_zero() users.
5532 */
5533 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5534
5535 /* reset page count bias and offset to start of new frag */
5536 nc->pfmemalloc = page_is_pfmemalloc(page);
5537 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5538 nc->offset = size;
5539 }
5540
5541 offset = nc->offset - fragsz;
5542 if (unlikely(offset < 0)) {
5543 page = virt_to_page(nc->va);
5544
5545 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5546 goto refill;
5547
5548 if (unlikely(nc->pfmemalloc)) {
5549 free_the_page(page, compound_order(page));
5550 goto refill;
5551 }
5552
5553 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5554 /* if size can vary use size else just use PAGE_SIZE */
5555 size = nc->size;
5556 #endif
5557 /* OK, page count is 0, we can safely set it */
5558 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5559
5560 /* reset page count bias and offset to start of new frag */
5561 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5562 offset = size - fragsz;
5563 }
5564
5565 nc->pagecnt_bias--;
5566 offset &= align_mask;
5567 nc->offset = offset;
5568
5569 return nc->va + offset;
5570 }
5571 EXPORT_SYMBOL(page_frag_alloc_align);
5572
5573 /*
5574 * Frees a page fragment allocated out of either a compound or order 0 page.
5575 */
page_frag_free(void * addr)5576 void page_frag_free(void *addr)
5577 {
5578 struct page *page = virt_to_head_page(addr);
5579
5580 if (unlikely(put_page_testzero(page)))
5581 free_the_page(page, compound_order(page));
5582 }
5583 EXPORT_SYMBOL(page_frag_free);
5584
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5585 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5586 size_t size)
5587 {
5588 if (addr) {
5589 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5590 unsigned long used = addr + PAGE_ALIGN(size);
5591
5592 split_page(virt_to_page((void *)addr), order);
5593 while (used < alloc_end) {
5594 free_page(used);
5595 used += PAGE_SIZE;
5596 }
5597 }
5598 return (void *)addr;
5599 }
5600
5601 /**
5602 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5603 * @size: the number of bytes to allocate
5604 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5605 *
5606 * This function is similar to alloc_pages(), except that it allocates the
5607 * minimum number of pages to satisfy the request. alloc_pages() can only
5608 * allocate memory in power-of-two pages.
5609 *
5610 * This function is also limited by MAX_ORDER.
5611 *
5612 * Memory allocated by this function must be released by free_pages_exact().
5613 *
5614 * Return: pointer to the allocated area or %NULL in case of error.
5615 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)5616 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5617 {
5618 unsigned int order = get_order(size);
5619 unsigned long addr;
5620
5621 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5622 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5623
5624 addr = __get_free_pages(gfp_mask, order);
5625 return make_alloc_exact(addr, order, size);
5626 }
5627 EXPORT_SYMBOL(alloc_pages_exact);
5628
5629 /**
5630 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5631 * pages on a node.
5632 * @nid: the preferred node ID where memory should be allocated
5633 * @size: the number of bytes to allocate
5634 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5635 *
5636 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5637 * back.
5638 *
5639 * Return: pointer to the allocated area or %NULL in case of error.
5640 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5641 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5642 {
5643 unsigned int order = get_order(size);
5644 struct page *p;
5645
5646 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5647 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5648
5649 p = alloc_pages_node(nid, gfp_mask, order);
5650 if (!p)
5651 return NULL;
5652 return make_alloc_exact((unsigned long)page_address(p), order, size);
5653 }
5654
5655 /**
5656 * free_pages_exact - release memory allocated via alloc_pages_exact()
5657 * @virt: the value returned by alloc_pages_exact.
5658 * @size: size of allocation, same value as passed to alloc_pages_exact().
5659 *
5660 * Release the memory allocated by a previous call to alloc_pages_exact.
5661 */
free_pages_exact(void * virt,size_t size)5662 void free_pages_exact(void *virt, size_t size)
5663 {
5664 unsigned long addr = (unsigned long)virt;
5665 unsigned long end = addr + PAGE_ALIGN(size);
5666
5667 while (addr < end) {
5668 free_page(addr);
5669 addr += PAGE_SIZE;
5670 }
5671 }
5672 EXPORT_SYMBOL(free_pages_exact);
5673
5674 /**
5675 * nr_free_zone_pages - count number of pages beyond high watermark
5676 * @offset: The zone index of the highest zone
5677 *
5678 * nr_free_zone_pages() counts the number of pages which are beyond the
5679 * high watermark within all zones at or below a given zone index. For each
5680 * zone, the number of pages is calculated as:
5681 *
5682 * nr_free_zone_pages = managed_pages - high_pages
5683 *
5684 * Return: number of pages beyond high watermark.
5685 */
nr_free_zone_pages(int offset)5686 static unsigned long nr_free_zone_pages(int offset)
5687 {
5688 struct zoneref *z;
5689 struct zone *zone;
5690
5691 /* Just pick one node, since fallback list is circular */
5692 unsigned long sum = 0;
5693
5694 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5695
5696 for_each_zone_zonelist(zone, z, zonelist, offset) {
5697 unsigned long size = zone_managed_pages(zone);
5698 unsigned long high = high_wmark_pages(zone);
5699 if (size > high)
5700 sum += size - high;
5701 }
5702
5703 return sum;
5704 }
5705
5706 /**
5707 * nr_free_buffer_pages - count number of pages beyond high watermark
5708 *
5709 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5710 * watermark within ZONE_DMA and ZONE_NORMAL.
5711 *
5712 * Return: number of pages beyond high watermark within ZONE_DMA and
5713 * ZONE_NORMAL.
5714 */
nr_free_buffer_pages(void)5715 unsigned long nr_free_buffer_pages(void)
5716 {
5717 return nr_free_zone_pages(gfp_zone(GFP_USER));
5718 }
5719 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5720
show_node(struct zone * zone)5721 static inline void show_node(struct zone *zone)
5722 {
5723 if (IS_ENABLED(CONFIG_NUMA))
5724 printk("Node %d ", zone_to_nid(zone));
5725 }
5726
si_mem_available(void)5727 long si_mem_available(void)
5728 {
5729 long available;
5730 unsigned long pagecache;
5731 unsigned long wmark_low = 0;
5732 unsigned long pages[NR_LRU_LISTS];
5733 unsigned long reclaimable;
5734 struct zone *zone;
5735 int lru;
5736
5737 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5738 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5739
5740 for_each_zone(zone)
5741 wmark_low += low_wmark_pages(zone);
5742
5743 /*
5744 * Estimate the amount of memory available for userspace allocations,
5745 * without causing swapping.
5746 */
5747 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5748
5749 /*
5750 * Not all the page cache can be freed, otherwise the system will
5751 * start swapping. Assume at least half of the page cache, or the
5752 * low watermark worth of cache, needs to stay.
5753 */
5754 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5755 pagecache -= min(pagecache / 2, wmark_low);
5756 available += pagecache;
5757
5758 /*
5759 * Part of the reclaimable slab and other kernel memory consists of
5760 * items that are in use, and cannot be freed. Cap this estimate at the
5761 * low watermark.
5762 */
5763 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5764 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5765 available += reclaimable - min(reclaimable / 2, wmark_low);
5766
5767 if (available < 0)
5768 available = 0;
5769 return available;
5770 }
5771 EXPORT_SYMBOL_GPL(si_mem_available);
5772
si_meminfo(struct sysinfo * val)5773 void si_meminfo(struct sysinfo *val)
5774 {
5775 val->totalram = totalram_pages();
5776 val->sharedram = global_node_page_state(NR_SHMEM);
5777 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5778 val->bufferram = nr_blockdev_pages();
5779 val->totalhigh = totalhigh_pages();
5780 val->freehigh = nr_free_highpages();
5781 val->mem_unit = PAGE_SIZE;
5782 }
5783
5784 EXPORT_SYMBOL(si_meminfo);
5785
5786 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)5787 void si_meminfo_node(struct sysinfo *val, int nid)
5788 {
5789 int zone_type; /* needs to be signed */
5790 unsigned long managed_pages = 0;
5791 unsigned long managed_highpages = 0;
5792 unsigned long free_highpages = 0;
5793 pg_data_t *pgdat = NODE_DATA(nid);
5794
5795 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5796 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5797 val->totalram = managed_pages;
5798 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5799 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5800 #ifdef CONFIG_HIGHMEM
5801 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5802 struct zone *zone = &pgdat->node_zones[zone_type];
5803
5804 if (is_highmem(zone)) {
5805 managed_highpages += zone_managed_pages(zone);
5806 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5807 }
5808 }
5809 val->totalhigh = managed_highpages;
5810 val->freehigh = free_highpages;
5811 #else
5812 val->totalhigh = managed_highpages;
5813 val->freehigh = free_highpages;
5814 #endif
5815 val->mem_unit = PAGE_SIZE;
5816 }
5817 #endif
5818
5819 /*
5820 * Determine whether the node should be displayed or not, depending on whether
5821 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5822 */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)5823 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5824 {
5825 if (!(flags & SHOW_MEM_FILTER_NODES))
5826 return false;
5827
5828 /*
5829 * no node mask - aka implicit memory numa policy. Do not bother with
5830 * the synchronization - read_mems_allowed_begin - because we do not
5831 * have to be precise here.
5832 */
5833 if (!nodemask)
5834 nodemask = &cpuset_current_mems_allowed;
5835
5836 return !node_isset(nid, *nodemask);
5837 }
5838
5839 #define K(x) ((x) << (PAGE_SHIFT-10))
5840
show_migration_types(unsigned char type)5841 static void show_migration_types(unsigned char type)
5842 {
5843 static const char types[MIGRATE_TYPES] = {
5844 [MIGRATE_UNMOVABLE] = 'U',
5845 [MIGRATE_MOVABLE] = 'M',
5846 [MIGRATE_RECLAIMABLE] = 'E',
5847 [MIGRATE_HIGHATOMIC] = 'H',
5848 #ifdef CONFIG_CMA
5849 [MIGRATE_CMA] = 'C',
5850 #endif
5851 #ifdef CONFIG_MEMORY_ISOLATION
5852 [MIGRATE_ISOLATE] = 'I',
5853 #endif
5854 };
5855 char tmp[MIGRATE_TYPES + 1];
5856 char *p = tmp;
5857 int i;
5858
5859 for (i = 0; i < MIGRATE_TYPES; i++) {
5860 if (type & (1 << i))
5861 *p++ = types[i];
5862 }
5863
5864 *p = '\0';
5865 printk(KERN_CONT "(%s) ", tmp);
5866 }
5867
5868 /*
5869 * Show free area list (used inside shift_scroll-lock stuff)
5870 * We also calculate the percentage fragmentation. We do this by counting the
5871 * memory on each free list with the exception of the first item on the list.
5872 *
5873 * Bits in @filter:
5874 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5875 * cpuset.
5876 */
show_free_areas(unsigned int filter,nodemask_t * nodemask)5877 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5878 {
5879 unsigned long free_pcp = 0;
5880 int cpu;
5881 struct zone *zone;
5882 pg_data_t *pgdat;
5883
5884 for_each_populated_zone(zone) {
5885 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5886 continue;
5887
5888 for_each_online_cpu(cpu)
5889 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5890 }
5891
5892 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5893 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5894 " unevictable:%lu dirty:%lu writeback:%lu\n"
5895 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5896 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5897 " kernel_misc_reclaimable:%lu\n"
5898 " free:%lu free_pcp:%lu free_cma:%lu\n",
5899 global_node_page_state(NR_ACTIVE_ANON),
5900 global_node_page_state(NR_INACTIVE_ANON),
5901 global_node_page_state(NR_ISOLATED_ANON),
5902 global_node_page_state(NR_ACTIVE_FILE),
5903 global_node_page_state(NR_INACTIVE_FILE),
5904 global_node_page_state(NR_ISOLATED_FILE),
5905 global_node_page_state(NR_UNEVICTABLE),
5906 global_node_page_state(NR_FILE_DIRTY),
5907 global_node_page_state(NR_WRITEBACK),
5908 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5909 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5910 global_node_page_state(NR_FILE_MAPPED),
5911 global_node_page_state(NR_SHMEM),
5912 global_node_page_state(NR_PAGETABLE),
5913 global_zone_page_state(NR_BOUNCE),
5914 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5915 global_zone_page_state(NR_FREE_PAGES),
5916 free_pcp,
5917 global_zone_page_state(NR_FREE_CMA_PAGES));
5918
5919 for_each_online_pgdat(pgdat) {
5920 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5921 continue;
5922
5923 printk("Node %d"
5924 " active_anon:%lukB"
5925 " inactive_anon:%lukB"
5926 " active_file:%lukB"
5927 " inactive_file:%lukB"
5928 " unevictable:%lukB"
5929 " isolated(anon):%lukB"
5930 " isolated(file):%lukB"
5931 " mapped:%lukB"
5932 " dirty:%lukB"
5933 " writeback:%lukB"
5934 " shmem:%lukB"
5935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5936 " shmem_thp: %lukB"
5937 " shmem_pmdmapped: %lukB"
5938 " anon_thp: %lukB"
5939 #endif
5940 " writeback_tmp:%lukB"
5941 " kernel_stack:%lukB"
5942 #ifdef CONFIG_SHADOW_CALL_STACK
5943 " shadow_call_stack:%lukB"
5944 #endif
5945 " pagetables:%lukB"
5946 " all_unreclaimable? %s"
5947 "\n",
5948 pgdat->node_id,
5949 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5950 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5951 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5952 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5953 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5954 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5955 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5956 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5957 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5958 K(node_page_state(pgdat, NR_WRITEBACK)),
5959 K(node_page_state(pgdat, NR_SHMEM)),
5960 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5961 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5962 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5963 K(node_page_state(pgdat, NR_ANON_THPS)),
5964 #endif
5965 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5966 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5967 #ifdef CONFIG_SHADOW_CALL_STACK
5968 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5969 #endif
5970 K(node_page_state(pgdat, NR_PAGETABLE)),
5971 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5972 "yes" : "no");
5973 }
5974
5975 for_each_populated_zone(zone) {
5976 int i;
5977
5978 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5979 continue;
5980
5981 free_pcp = 0;
5982 for_each_online_cpu(cpu)
5983 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5984
5985 show_node(zone);
5986 printk(KERN_CONT
5987 "%s"
5988 " free:%lukB"
5989 " boost:%lukB"
5990 " min:%lukB"
5991 " low:%lukB"
5992 " high:%lukB"
5993 " reserved_highatomic:%luKB"
5994 " active_anon:%lukB"
5995 " inactive_anon:%lukB"
5996 " active_file:%lukB"
5997 " inactive_file:%lukB"
5998 " unevictable:%lukB"
5999 " writepending:%lukB"
6000 " present:%lukB"
6001 " managed:%lukB"
6002 " mlocked:%lukB"
6003 " bounce:%lukB"
6004 " free_pcp:%lukB"
6005 " local_pcp:%ukB"
6006 " free_cma:%lukB"
6007 "\n",
6008 zone->name,
6009 K(zone_page_state(zone, NR_FREE_PAGES)),
6010 K(zone->watermark_boost),
6011 K(min_wmark_pages(zone)),
6012 K(low_wmark_pages(zone)),
6013 K(high_wmark_pages(zone)),
6014 K(zone->nr_reserved_highatomic),
6015 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6016 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6017 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6018 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6019 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6020 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6021 K(zone->present_pages),
6022 K(zone_managed_pages(zone)),
6023 K(zone_page_state(zone, NR_MLOCK)),
6024 K(zone_page_state(zone, NR_BOUNCE)),
6025 K(free_pcp),
6026 K(this_cpu_read(zone->per_cpu_pageset->count)),
6027 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6028 printk("lowmem_reserve[]:");
6029 for (i = 0; i < MAX_NR_ZONES; i++)
6030 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6031 printk(KERN_CONT "\n");
6032 }
6033
6034 for_each_populated_zone(zone) {
6035 unsigned int order;
6036 unsigned long nr[MAX_ORDER], flags, total = 0;
6037 unsigned char types[MAX_ORDER];
6038
6039 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6040 continue;
6041 show_node(zone);
6042 printk(KERN_CONT "%s: ", zone->name);
6043
6044 spin_lock_irqsave(&zone->lock, flags);
6045 for (order = 0; order < MAX_ORDER; order++) {
6046 struct free_area *area = &zone->free_area[order];
6047 int type;
6048
6049 nr[order] = area->nr_free;
6050 total += nr[order] << order;
6051
6052 types[order] = 0;
6053 for (type = 0; type < MIGRATE_TYPES; type++) {
6054 if (!free_area_empty(area, type))
6055 types[order] |= 1 << type;
6056 }
6057 }
6058 spin_unlock_irqrestore(&zone->lock, flags);
6059 for (order = 0; order < MAX_ORDER; order++) {
6060 printk(KERN_CONT "%lu*%lukB ",
6061 nr[order], K(1UL) << order);
6062 if (nr[order])
6063 show_migration_types(types[order]);
6064 }
6065 printk(KERN_CONT "= %lukB\n", K(total));
6066 }
6067
6068 hugetlb_show_meminfo();
6069
6070 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6071
6072 show_swap_cache_info();
6073 }
6074
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)6075 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6076 {
6077 zoneref->zone = zone;
6078 zoneref->zone_idx = zone_idx(zone);
6079 }
6080
6081 /*
6082 * Builds allocation fallback zone lists.
6083 *
6084 * Add all populated zones of a node to the zonelist.
6085 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)6086 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6087 {
6088 struct zone *zone;
6089 enum zone_type zone_type = MAX_NR_ZONES;
6090 int nr_zones = 0;
6091
6092 do {
6093 zone_type--;
6094 zone = pgdat->node_zones + zone_type;
6095 if (managed_zone(zone)) {
6096 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6097 check_highest_zone(zone_type);
6098 }
6099 } while (zone_type);
6100
6101 return nr_zones;
6102 }
6103
6104 #ifdef CONFIG_NUMA
6105
__parse_numa_zonelist_order(char * s)6106 static int __parse_numa_zonelist_order(char *s)
6107 {
6108 /*
6109 * We used to support different zonelists modes but they turned
6110 * out to be just not useful. Let's keep the warning in place
6111 * if somebody still use the cmd line parameter so that we do
6112 * not fail it silently
6113 */
6114 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6115 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6116 return -EINVAL;
6117 }
6118 return 0;
6119 }
6120
6121 char numa_zonelist_order[] = "Node";
6122
6123 /*
6124 * sysctl handler for numa_zonelist_order
6125 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6126 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6127 void *buffer, size_t *length, loff_t *ppos)
6128 {
6129 if (write)
6130 return __parse_numa_zonelist_order(buffer);
6131 return proc_dostring(table, write, buffer, length, ppos);
6132 }
6133
6134
6135 #define MAX_NODE_LOAD (nr_online_nodes)
6136 static int node_load[MAX_NUMNODES];
6137
6138 /**
6139 * find_next_best_node - find the next node that should appear in a given node's fallback list
6140 * @node: node whose fallback list we're appending
6141 * @used_node_mask: nodemask_t of already used nodes
6142 *
6143 * We use a number of factors to determine which is the next node that should
6144 * appear on a given node's fallback list. The node should not have appeared
6145 * already in @node's fallback list, and it should be the next closest node
6146 * according to the distance array (which contains arbitrary distance values
6147 * from each node to each node in the system), and should also prefer nodes
6148 * with no CPUs, since presumably they'll have very little allocation pressure
6149 * on them otherwise.
6150 *
6151 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6152 */
find_next_best_node(int node,nodemask_t * used_node_mask)6153 int find_next_best_node(int node, nodemask_t *used_node_mask)
6154 {
6155 int n, val;
6156 int min_val = INT_MAX;
6157 int best_node = NUMA_NO_NODE;
6158
6159 /* Use the local node if we haven't already */
6160 if (!node_isset(node, *used_node_mask)) {
6161 node_set(node, *used_node_mask);
6162 return node;
6163 }
6164
6165 for_each_node_state(n, N_MEMORY) {
6166
6167 /* Don't want a node to appear more than once */
6168 if (node_isset(n, *used_node_mask))
6169 continue;
6170
6171 /* Use the distance array to find the distance */
6172 val = node_distance(node, n);
6173
6174 /* Penalize nodes under us ("prefer the next node") */
6175 val += (n < node);
6176
6177 /* Give preference to headless and unused nodes */
6178 if (!cpumask_empty(cpumask_of_node(n)))
6179 val += PENALTY_FOR_NODE_WITH_CPUS;
6180
6181 /* Slight preference for less loaded node */
6182 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6183 val += node_load[n];
6184
6185 if (val < min_val) {
6186 min_val = val;
6187 best_node = n;
6188 }
6189 }
6190
6191 if (best_node >= 0)
6192 node_set(best_node, *used_node_mask);
6193
6194 return best_node;
6195 }
6196
6197
6198 /*
6199 * Build zonelists ordered by node and zones within node.
6200 * This results in maximum locality--normal zone overflows into local
6201 * DMA zone, if any--but risks exhausting DMA zone.
6202 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)6203 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6204 unsigned nr_nodes)
6205 {
6206 struct zoneref *zonerefs;
6207 int i;
6208
6209 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6210
6211 for (i = 0; i < nr_nodes; i++) {
6212 int nr_zones;
6213
6214 pg_data_t *node = NODE_DATA(node_order[i]);
6215
6216 nr_zones = build_zonerefs_node(node, zonerefs);
6217 zonerefs += nr_zones;
6218 }
6219 zonerefs->zone = NULL;
6220 zonerefs->zone_idx = 0;
6221 }
6222
6223 /*
6224 * Build gfp_thisnode zonelists
6225 */
build_thisnode_zonelists(pg_data_t * pgdat)6226 static void build_thisnode_zonelists(pg_data_t *pgdat)
6227 {
6228 struct zoneref *zonerefs;
6229 int nr_zones;
6230
6231 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6232 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6233 zonerefs += nr_zones;
6234 zonerefs->zone = NULL;
6235 zonerefs->zone_idx = 0;
6236 }
6237
6238 /*
6239 * Build zonelists ordered by zone and nodes within zones.
6240 * This results in conserving DMA zone[s] until all Normal memory is
6241 * exhausted, but results in overflowing to remote node while memory
6242 * may still exist in local DMA zone.
6243 */
6244
build_zonelists(pg_data_t * pgdat)6245 static void build_zonelists(pg_data_t *pgdat)
6246 {
6247 static int node_order[MAX_NUMNODES];
6248 int node, load, nr_nodes = 0;
6249 nodemask_t used_mask = NODE_MASK_NONE;
6250 int local_node, prev_node;
6251
6252 /* NUMA-aware ordering of nodes */
6253 local_node = pgdat->node_id;
6254 load = nr_online_nodes;
6255 prev_node = local_node;
6256
6257 memset(node_order, 0, sizeof(node_order));
6258 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6259 /*
6260 * We don't want to pressure a particular node.
6261 * So adding penalty to the first node in same
6262 * distance group to make it round-robin.
6263 */
6264 if (node_distance(local_node, node) !=
6265 node_distance(local_node, prev_node))
6266 node_load[node] += load;
6267
6268 node_order[nr_nodes++] = node;
6269 prev_node = node;
6270 load--;
6271 }
6272
6273 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6274 build_thisnode_zonelists(pgdat);
6275 pr_info("Fallback order for Node %d: ", local_node);
6276 for (node = 0; node < nr_nodes; node++)
6277 pr_cont("%d ", node_order[node]);
6278 pr_cont("\n");
6279 }
6280
6281 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6282 /*
6283 * Return node id of node used for "local" allocations.
6284 * I.e., first node id of first zone in arg node's generic zonelist.
6285 * Used for initializing percpu 'numa_mem', which is used primarily
6286 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6287 */
local_memory_node(int node)6288 int local_memory_node(int node)
6289 {
6290 struct zoneref *z;
6291
6292 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6293 gfp_zone(GFP_KERNEL),
6294 NULL);
6295 return zone_to_nid(z->zone);
6296 }
6297 #endif
6298
6299 static void setup_min_unmapped_ratio(void);
6300 static void setup_min_slab_ratio(void);
6301 #else /* CONFIG_NUMA */
6302
build_zonelists(pg_data_t * pgdat)6303 static void build_zonelists(pg_data_t *pgdat)
6304 {
6305 int node, local_node;
6306 struct zoneref *zonerefs;
6307 int nr_zones;
6308
6309 local_node = pgdat->node_id;
6310
6311 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6312 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6313 zonerefs += nr_zones;
6314
6315 /*
6316 * Now we build the zonelist so that it contains the zones
6317 * of all the other nodes.
6318 * We don't want to pressure a particular node, so when
6319 * building the zones for node N, we make sure that the
6320 * zones coming right after the local ones are those from
6321 * node N+1 (modulo N)
6322 */
6323 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6324 if (!node_online(node))
6325 continue;
6326 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6327 zonerefs += nr_zones;
6328 }
6329 for (node = 0; node < local_node; node++) {
6330 if (!node_online(node))
6331 continue;
6332 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6333 zonerefs += nr_zones;
6334 }
6335
6336 zonerefs->zone = NULL;
6337 zonerefs->zone_idx = 0;
6338 }
6339
6340 #endif /* CONFIG_NUMA */
6341
6342 /*
6343 * Boot pageset table. One per cpu which is going to be used for all
6344 * zones and all nodes. The parameters will be set in such a way
6345 * that an item put on a list will immediately be handed over to
6346 * the buddy list. This is safe since pageset manipulation is done
6347 * with interrupts disabled.
6348 *
6349 * The boot_pagesets must be kept even after bootup is complete for
6350 * unused processors and/or zones. They do play a role for bootstrapping
6351 * hotplugged processors.
6352 *
6353 * zoneinfo_show() and maybe other functions do
6354 * not check if the processor is online before following the pageset pointer.
6355 * Other parts of the kernel may not check if the zone is available.
6356 */
6357 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6358 /* These effectively disable the pcplists in the boot pageset completely */
6359 #define BOOT_PAGESET_HIGH 0
6360 #define BOOT_PAGESET_BATCH 1
6361 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6362 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6363 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6364
__build_all_zonelists(void * data)6365 static void __build_all_zonelists(void *data)
6366 {
6367 int nid;
6368 int __maybe_unused cpu;
6369 pg_data_t *self = data;
6370 static DEFINE_SPINLOCK(lock);
6371
6372 spin_lock(&lock);
6373
6374 #ifdef CONFIG_NUMA
6375 memset(node_load, 0, sizeof(node_load));
6376 #endif
6377
6378 /*
6379 * This node is hotadded and no memory is yet present. So just
6380 * building zonelists is fine - no need to touch other nodes.
6381 */
6382 if (self && !node_online(self->node_id)) {
6383 build_zonelists(self);
6384 } else {
6385 for_each_online_node(nid) {
6386 pg_data_t *pgdat = NODE_DATA(nid);
6387
6388 build_zonelists(pgdat);
6389 }
6390
6391 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6392 /*
6393 * We now know the "local memory node" for each node--
6394 * i.e., the node of the first zone in the generic zonelist.
6395 * Set up numa_mem percpu variable for on-line cpus. During
6396 * boot, only the boot cpu should be on-line; we'll init the
6397 * secondary cpus' numa_mem as they come on-line. During
6398 * node/memory hotplug, we'll fixup all on-line cpus.
6399 */
6400 for_each_online_cpu(cpu)
6401 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6402 #endif
6403 }
6404
6405 spin_unlock(&lock);
6406 }
6407
6408 static noinline void __init
build_all_zonelists_init(void)6409 build_all_zonelists_init(void)
6410 {
6411 int cpu;
6412
6413 __build_all_zonelists(NULL);
6414
6415 /*
6416 * Initialize the boot_pagesets that are going to be used
6417 * for bootstrapping processors. The real pagesets for
6418 * each zone will be allocated later when the per cpu
6419 * allocator is available.
6420 *
6421 * boot_pagesets are used also for bootstrapping offline
6422 * cpus if the system is already booted because the pagesets
6423 * are needed to initialize allocators on a specific cpu too.
6424 * F.e. the percpu allocator needs the page allocator which
6425 * needs the percpu allocator in order to allocate its pagesets
6426 * (a chicken-egg dilemma).
6427 */
6428 for_each_possible_cpu(cpu)
6429 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6430
6431 mminit_verify_zonelist();
6432 cpuset_init_current_mems_allowed();
6433 }
6434
6435 /*
6436 * unless system_state == SYSTEM_BOOTING.
6437 *
6438 * __ref due to call of __init annotated helper build_all_zonelists_init
6439 * [protected by SYSTEM_BOOTING].
6440 */
build_all_zonelists(pg_data_t * pgdat)6441 void __ref build_all_zonelists(pg_data_t *pgdat)
6442 {
6443 unsigned long vm_total_pages;
6444
6445 if (system_state == SYSTEM_BOOTING) {
6446 build_all_zonelists_init();
6447 } else {
6448 __build_all_zonelists(pgdat);
6449 /* cpuset refresh routine should be here */
6450 }
6451 /* Get the number of free pages beyond high watermark in all zones. */
6452 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6453 /*
6454 * Disable grouping by mobility if the number of pages in the
6455 * system is too low to allow the mechanism to work. It would be
6456 * more accurate, but expensive to check per-zone. This check is
6457 * made on memory-hotadd so a system can start with mobility
6458 * disabled and enable it later
6459 */
6460 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6461 page_group_by_mobility_disabled = 1;
6462 else
6463 page_group_by_mobility_disabled = 0;
6464
6465 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6466 nr_online_nodes,
6467 page_group_by_mobility_disabled ? "off" : "on",
6468 vm_total_pages);
6469 #ifdef CONFIG_NUMA
6470 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6471 #endif
6472 }
6473
6474 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6475 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6476 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6477 {
6478 static struct memblock_region *r;
6479
6480 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6481 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6482 for_each_mem_region(r) {
6483 if (*pfn < memblock_region_memory_end_pfn(r))
6484 break;
6485 }
6486 }
6487 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6488 memblock_is_mirror(r)) {
6489 *pfn = memblock_region_memory_end_pfn(r);
6490 return true;
6491 }
6492 }
6493 return false;
6494 }
6495
6496 /*
6497 * Initially all pages are reserved - free ones are freed
6498 * up by memblock_free_all() once the early boot process is
6499 * done. Non-atomic initialization, single-pass.
6500 *
6501 * All aligned pageblocks are initialized to the specified migratetype
6502 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6503 * zone stats (e.g., nr_isolate_pageblock) are touched.
6504 */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)6505 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6506 unsigned long start_pfn, unsigned long zone_end_pfn,
6507 enum meminit_context context,
6508 struct vmem_altmap *altmap, int migratetype)
6509 {
6510 unsigned long pfn, end_pfn = start_pfn + size;
6511 struct page *page;
6512
6513 if (highest_memmap_pfn < end_pfn - 1)
6514 highest_memmap_pfn = end_pfn - 1;
6515
6516 #ifdef CONFIG_ZONE_DEVICE
6517 /*
6518 * Honor reservation requested by the driver for this ZONE_DEVICE
6519 * memory. We limit the total number of pages to initialize to just
6520 * those that might contain the memory mapping. We will defer the
6521 * ZONE_DEVICE page initialization until after we have released
6522 * the hotplug lock.
6523 */
6524 if (zone == ZONE_DEVICE) {
6525 if (!altmap)
6526 return;
6527
6528 if (start_pfn == altmap->base_pfn)
6529 start_pfn += altmap->reserve;
6530 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6531 }
6532 #endif
6533
6534 for (pfn = start_pfn; pfn < end_pfn; ) {
6535 /*
6536 * There can be holes in boot-time mem_map[]s handed to this
6537 * function. They do not exist on hotplugged memory.
6538 */
6539 if (context == MEMINIT_EARLY) {
6540 if (overlap_memmap_init(zone, &pfn))
6541 continue;
6542 if (defer_init(nid, pfn, zone_end_pfn))
6543 break;
6544 }
6545
6546 page = pfn_to_page(pfn);
6547 __init_single_page(page, pfn, zone, nid);
6548 if (context == MEMINIT_HOTPLUG)
6549 __SetPageReserved(page);
6550
6551 /*
6552 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6553 * such that unmovable allocations won't be scattered all
6554 * over the place during system boot.
6555 */
6556 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6557 set_pageblock_migratetype(page, migratetype);
6558 cond_resched();
6559 }
6560 pfn++;
6561 }
6562 }
6563
6564 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)6565 void __ref memmap_init_zone_device(struct zone *zone,
6566 unsigned long start_pfn,
6567 unsigned long nr_pages,
6568 struct dev_pagemap *pgmap)
6569 {
6570 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6571 struct pglist_data *pgdat = zone->zone_pgdat;
6572 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6573 unsigned long zone_idx = zone_idx(zone);
6574 unsigned long start = jiffies;
6575 int nid = pgdat->node_id;
6576
6577 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6578 return;
6579
6580 /*
6581 * The call to memmap_init should have already taken care
6582 * of the pages reserved for the memmap, so we can just jump to
6583 * the end of that region and start processing the device pages.
6584 */
6585 if (altmap) {
6586 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6587 nr_pages = end_pfn - start_pfn;
6588 }
6589
6590 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6591 struct page *page = pfn_to_page(pfn);
6592
6593 __init_single_page(page, pfn, zone_idx, nid);
6594
6595 /*
6596 * Mark page reserved as it will need to wait for onlining
6597 * phase for it to be fully associated with a zone.
6598 *
6599 * We can use the non-atomic __set_bit operation for setting
6600 * the flag as we are still initializing the pages.
6601 */
6602 __SetPageReserved(page);
6603
6604 /*
6605 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6606 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6607 * ever freed or placed on a driver-private list.
6608 */
6609 page->pgmap = pgmap;
6610 page->zone_device_data = NULL;
6611
6612 /*
6613 * Mark the block movable so that blocks are reserved for
6614 * movable at startup. This will force kernel allocations
6615 * to reserve their blocks rather than leaking throughout
6616 * the address space during boot when many long-lived
6617 * kernel allocations are made.
6618 *
6619 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6620 * because this is done early in section_activate()
6621 */
6622 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6623 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6624 cond_resched();
6625 }
6626 }
6627
6628 pr_info("%s initialised %lu pages in %ums\n", __func__,
6629 nr_pages, jiffies_to_msecs(jiffies - start));
6630 }
6631
6632 #endif
zone_init_free_lists(struct zone * zone)6633 static void __meminit zone_init_free_lists(struct zone *zone)
6634 {
6635 unsigned int order, t;
6636 for_each_migratetype_order(order, t) {
6637 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6638 zone->free_area[order].nr_free = 0;
6639 }
6640 }
6641
6642 /*
6643 * Only struct pages that correspond to ranges defined by memblock.memory
6644 * are zeroed and initialized by going through __init_single_page() during
6645 * memmap_init_zone_range().
6646 *
6647 * But, there could be struct pages that correspond to holes in
6648 * memblock.memory. This can happen because of the following reasons:
6649 * - physical memory bank size is not necessarily the exact multiple of the
6650 * arbitrary section size
6651 * - early reserved memory may not be listed in memblock.memory
6652 * - memory layouts defined with memmap= kernel parameter may not align
6653 * nicely with memmap sections
6654 *
6655 * Explicitly initialize those struct pages so that:
6656 * - PG_Reserved is set
6657 * - zone and node links point to zone and node that span the page if the
6658 * hole is in the middle of a zone
6659 * - zone and node links point to adjacent zone/node if the hole falls on
6660 * the zone boundary; the pages in such holes will be prepended to the
6661 * zone/node above the hole except for the trailing pages in the last
6662 * section that will be appended to the zone/node below.
6663 */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)6664 static void __init init_unavailable_range(unsigned long spfn,
6665 unsigned long epfn,
6666 int zone, int node)
6667 {
6668 unsigned long pfn;
6669 u64 pgcnt = 0;
6670
6671 for (pfn = spfn; pfn < epfn; pfn++) {
6672 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6673 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6674 + pageblock_nr_pages - 1;
6675 continue;
6676 }
6677 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6678 __SetPageReserved(pfn_to_page(pfn));
6679 pgcnt++;
6680 }
6681
6682 if (pgcnt)
6683 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6684 node, zone_names[zone], pgcnt);
6685 }
6686
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)6687 static void __init memmap_init_zone_range(struct zone *zone,
6688 unsigned long start_pfn,
6689 unsigned long end_pfn,
6690 unsigned long *hole_pfn)
6691 {
6692 unsigned long zone_start_pfn = zone->zone_start_pfn;
6693 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6694 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6695
6696 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6697 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6698
6699 if (start_pfn >= end_pfn)
6700 return;
6701
6702 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6703 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6704
6705 if (*hole_pfn < start_pfn)
6706 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6707
6708 *hole_pfn = end_pfn;
6709 }
6710
memmap_init(void)6711 static void __init memmap_init(void)
6712 {
6713 unsigned long start_pfn, end_pfn;
6714 unsigned long hole_pfn = 0;
6715 int i, j, zone_id = 0, nid;
6716
6717 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6718 struct pglist_data *node = NODE_DATA(nid);
6719
6720 for (j = 0; j < MAX_NR_ZONES; j++) {
6721 struct zone *zone = node->node_zones + j;
6722
6723 if (!populated_zone(zone))
6724 continue;
6725
6726 memmap_init_zone_range(zone, start_pfn, end_pfn,
6727 &hole_pfn);
6728 zone_id = j;
6729 }
6730 }
6731
6732 #ifdef CONFIG_SPARSEMEM
6733 /*
6734 * Initialize the memory map for hole in the range [memory_end,
6735 * section_end].
6736 * Append the pages in this hole to the highest zone in the last
6737 * node.
6738 * The call to init_unavailable_range() is outside the ifdef to
6739 * silence the compiler warining about zone_id set but not used;
6740 * for FLATMEM it is a nop anyway
6741 */
6742 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6743 if (hole_pfn < end_pfn)
6744 #endif
6745 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6746 }
6747
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)6748 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6749 phys_addr_t min_addr, int nid, bool exact_nid)
6750 {
6751 void *ptr;
6752
6753 if (exact_nid)
6754 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6755 MEMBLOCK_ALLOC_ACCESSIBLE,
6756 nid);
6757 else
6758 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6759 MEMBLOCK_ALLOC_ACCESSIBLE,
6760 nid);
6761
6762 if (ptr && size > 0)
6763 page_init_poison(ptr, size);
6764
6765 return ptr;
6766 }
6767
zone_batchsize(struct zone * zone)6768 static int zone_batchsize(struct zone *zone)
6769 {
6770 #ifdef CONFIG_MMU
6771 int batch;
6772
6773 /*
6774 * The number of pages to batch allocate is either ~0.1%
6775 * of the zone or 1MB, whichever is smaller. The batch
6776 * size is striking a balance between allocation latency
6777 * and zone lock contention.
6778 */
6779 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6780 batch /= 4; /* We effectively *= 4 below */
6781 if (batch < 1)
6782 batch = 1;
6783
6784 /*
6785 * Clamp the batch to a 2^n - 1 value. Having a power
6786 * of 2 value was found to be more likely to have
6787 * suboptimal cache aliasing properties in some cases.
6788 *
6789 * For example if 2 tasks are alternately allocating
6790 * batches of pages, one task can end up with a lot
6791 * of pages of one half of the possible page colors
6792 * and the other with pages of the other colors.
6793 */
6794 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6795
6796 return batch;
6797
6798 #else
6799 /* The deferral and batching of frees should be suppressed under NOMMU
6800 * conditions.
6801 *
6802 * The problem is that NOMMU needs to be able to allocate large chunks
6803 * of contiguous memory as there's no hardware page translation to
6804 * assemble apparent contiguous memory from discontiguous pages.
6805 *
6806 * Queueing large contiguous runs of pages for batching, however,
6807 * causes the pages to actually be freed in smaller chunks. As there
6808 * can be a significant delay between the individual batches being
6809 * recycled, this leads to the once large chunks of space being
6810 * fragmented and becoming unavailable for high-order allocations.
6811 */
6812 return 0;
6813 #endif
6814 }
6815
zone_highsize(struct zone * zone,int batch,int cpu_online)6816 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6817 {
6818 #ifdef CONFIG_MMU
6819 int high;
6820 int nr_split_cpus;
6821 unsigned long total_pages;
6822
6823 if (!percpu_pagelist_high_fraction) {
6824 /*
6825 * By default, the high value of the pcp is based on the zone
6826 * low watermark so that if they are full then background
6827 * reclaim will not be started prematurely.
6828 */
6829 total_pages = low_wmark_pages(zone);
6830 } else {
6831 /*
6832 * If percpu_pagelist_high_fraction is configured, the high
6833 * value is based on a fraction of the managed pages in the
6834 * zone.
6835 */
6836 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6837 }
6838
6839 /*
6840 * Split the high value across all online CPUs local to the zone. Note
6841 * that early in boot that CPUs may not be online yet and that during
6842 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6843 * onlined. For memory nodes that have no CPUs, split pcp->high across
6844 * all online CPUs to mitigate the risk that reclaim is triggered
6845 * prematurely due to pages stored on pcp lists.
6846 */
6847 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6848 if (!nr_split_cpus)
6849 nr_split_cpus = num_online_cpus();
6850 high = total_pages / nr_split_cpus;
6851
6852 /*
6853 * Ensure high is at least batch*4. The multiple is based on the
6854 * historical relationship between high and batch.
6855 */
6856 high = max(high, batch << 2);
6857
6858 return high;
6859 #else
6860 return 0;
6861 #endif
6862 }
6863
6864 /*
6865 * pcp->high and pcp->batch values are related and generally batch is lower
6866 * than high. They are also related to pcp->count such that count is lower
6867 * than high, and as soon as it reaches high, the pcplist is flushed.
6868 *
6869 * However, guaranteeing these relations at all times would require e.g. write
6870 * barriers here but also careful usage of read barriers at the read side, and
6871 * thus be prone to error and bad for performance. Thus the update only prevents
6872 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6873 * can cope with those fields changing asynchronously, and fully trust only the
6874 * pcp->count field on the local CPU with interrupts disabled.
6875 *
6876 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6877 * outside of boot time (or some other assurance that no concurrent updaters
6878 * exist).
6879 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)6880 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6881 unsigned long batch)
6882 {
6883 WRITE_ONCE(pcp->batch, batch);
6884 WRITE_ONCE(pcp->high, high);
6885 }
6886
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)6887 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6888 {
6889 int pindex;
6890
6891 memset(pcp, 0, sizeof(*pcp));
6892 memset(pzstats, 0, sizeof(*pzstats));
6893
6894 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6895 INIT_LIST_HEAD(&pcp->lists[pindex]);
6896
6897 /*
6898 * Set batch and high values safe for a boot pageset. A true percpu
6899 * pageset's initialization will update them subsequently. Here we don't
6900 * need to be as careful as pageset_update() as nobody can access the
6901 * pageset yet.
6902 */
6903 pcp->high = BOOT_PAGESET_HIGH;
6904 pcp->batch = BOOT_PAGESET_BATCH;
6905 pcp->free_factor = 0;
6906 }
6907
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)6908 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6909 unsigned long batch)
6910 {
6911 struct per_cpu_pages *pcp;
6912 int cpu;
6913
6914 for_each_possible_cpu(cpu) {
6915 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6916 pageset_update(pcp, high, batch);
6917 }
6918 }
6919
6920 /*
6921 * Calculate and set new high and batch values for all per-cpu pagesets of a
6922 * zone based on the zone's size.
6923 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)6924 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6925 {
6926 int new_high, new_batch;
6927
6928 new_batch = max(1, zone_batchsize(zone));
6929 new_high = zone_highsize(zone, new_batch, cpu_online);
6930
6931 if (zone->pageset_high == new_high &&
6932 zone->pageset_batch == new_batch)
6933 return;
6934
6935 zone->pageset_high = new_high;
6936 zone->pageset_batch = new_batch;
6937
6938 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6939 }
6940
setup_zone_pageset(struct zone * zone)6941 void __meminit setup_zone_pageset(struct zone *zone)
6942 {
6943 int cpu;
6944
6945 /* Size may be 0 on !SMP && !NUMA */
6946 if (sizeof(struct per_cpu_zonestat) > 0)
6947 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6948
6949 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6950 for_each_possible_cpu(cpu) {
6951 struct per_cpu_pages *pcp;
6952 struct per_cpu_zonestat *pzstats;
6953
6954 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6955 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6956 per_cpu_pages_init(pcp, pzstats);
6957 }
6958
6959 zone_set_pageset_high_and_batch(zone, 0);
6960 }
6961
6962 /*
6963 * Allocate per cpu pagesets and initialize them.
6964 * Before this call only boot pagesets were available.
6965 */
setup_per_cpu_pageset(void)6966 void __init setup_per_cpu_pageset(void)
6967 {
6968 struct pglist_data *pgdat;
6969 struct zone *zone;
6970 int __maybe_unused cpu;
6971
6972 for_each_populated_zone(zone)
6973 setup_zone_pageset(zone);
6974
6975 #ifdef CONFIG_NUMA
6976 /*
6977 * Unpopulated zones continue using the boot pagesets.
6978 * The numa stats for these pagesets need to be reset.
6979 * Otherwise, they will end up skewing the stats of
6980 * the nodes these zones are associated with.
6981 */
6982 for_each_possible_cpu(cpu) {
6983 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6984 memset(pzstats->vm_numa_event, 0,
6985 sizeof(pzstats->vm_numa_event));
6986 }
6987 #endif
6988
6989 for_each_online_pgdat(pgdat)
6990 pgdat->per_cpu_nodestats =
6991 alloc_percpu(struct per_cpu_nodestat);
6992 }
6993
zone_pcp_init(struct zone * zone)6994 static __meminit void zone_pcp_init(struct zone *zone)
6995 {
6996 /*
6997 * per cpu subsystem is not up at this point. The following code
6998 * relies on the ability of the linker to provide the
6999 * offset of a (static) per cpu variable into the per cpu area.
7000 */
7001 zone->per_cpu_pageset = &boot_pageset;
7002 zone->per_cpu_zonestats = &boot_zonestats;
7003 zone->pageset_high = BOOT_PAGESET_HIGH;
7004 zone->pageset_batch = BOOT_PAGESET_BATCH;
7005
7006 if (populated_zone(zone))
7007 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7008 zone->present_pages, zone_batchsize(zone));
7009 }
7010
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)7011 void __meminit init_currently_empty_zone(struct zone *zone,
7012 unsigned long zone_start_pfn,
7013 unsigned long size)
7014 {
7015 struct pglist_data *pgdat = zone->zone_pgdat;
7016 int zone_idx = zone_idx(zone) + 1;
7017
7018 if (zone_idx > pgdat->nr_zones)
7019 pgdat->nr_zones = zone_idx;
7020
7021 zone->zone_start_pfn = zone_start_pfn;
7022
7023 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7024 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7025 pgdat->node_id,
7026 (unsigned long)zone_idx(zone),
7027 zone_start_pfn, (zone_start_pfn + size));
7028
7029 zone_init_free_lists(zone);
7030 zone->initialized = 1;
7031 }
7032
7033 /**
7034 * get_pfn_range_for_nid - Return the start and end page frames for a node
7035 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7036 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7037 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7038 *
7039 * It returns the start and end page frame of a node based on information
7040 * provided by memblock_set_node(). If called for a node
7041 * with no available memory, a warning is printed and the start and end
7042 * PFNs will be 0.
7043 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)7044 void __init get_pfn_range_for_nid(unsigned int nid,
7045 unsigned long *start_pfn, unsigned long *end_pfn)
7046 {
7047 unsigned long this_start_pfn, this_end_pfn;
7048 int i;
7049
7050 *start_pfn = -1UL;
7051 *end_pfn = 0;
7052
7053 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7054 *start_pfn = min(*start_pfn, this_start_pfn);
7055 *end_pfn = max(*end_pfn, this_end_pfn);
7056 }
7057
7058 if (*start_pfn == -1UL)
7059 *start_pfn = 0;
7060 }
7061
7062 /*
7063 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7064 * assumption is made that zones within a node are ordered in monotonic
7065 * increasing memory addresses so that the "highest" populated zone is used
7066 */
find_usable_zone_for_movable(void)7067 static void __init find_usable_zone_for_movable(void)
7068 {
7069 int zone_index;
7070 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7071 if (zone_index == ZONE_MOVABLE)
7072 continue;
7073
7074 if (arch_zone_highest_possible_pfn[zone_index] >
7075 arch_zone_lowest_possible_pfn[zone_index])
7076 break;
7077 }
7078
7079 VM_BUG_ON(zone_index == -1);
7080 movable_zone = zone_index;
7081 }
7082
7083 /*
7084 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7085 * because it is sized independent of architecture. Unlike the other zones,
7086 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7087 * in each node depending on the size of each node and how evenly kernelcore
7088 * is distributed. This helper function adjusts the zone ranges
7089 * provided by the architecture for a given node by using the end of the
7090 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7091 * zones within a node are in order of monotonic increases memory addresses
7092 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7093 static void __init adjust_zone_range_for_zone_movable(int nid,
7094 unsigned long zone_type,
7095 unsigned long node_start_pfn,
7096 unsigned long node_end_pfn,
7097 unsigned long *zone_start_pfn,
7098 unsigned long *zone_end_pfn)
7099 {
7100 /* Only adjust if ZONE_MOVABLE is on this node */
7101 if (zone_movable_pfn[nid]) {
7102 /* Size ZONE_MOVABLE */
7103 if (zone_type == ZONE_MOVABLE) {
7104 *zone_start_pfn = zone_movable_pfn[nid];
7105 *zone_end_pfn = min(node_end_pfn,
7106 arch_zone_highest_possible_pfn[movable_zone]);
7107
7108 /* Adjust for ZONE_MOVABLE starting within this range */
7109 } else if (!mirrored_kernelcore &&
7110 *zone_start_pfn < zone_movable_pfn[nid] &&
7111 *zone_end_pfn > zone_movable_pfn[nid]) {
7112 *zone_end_pfn = zone_movable_pfn[nid];
7113
7114 /* Check if this whole range is within ZONE_MOVABLE */
7115 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7116 *zone_start_pfn = *zone_end_pfn;
7117 }
7118 }
7119
7120 /*
7121 * Return the number of pages a zone spans in a node, including holes
7122 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7123 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7124 static unsigned long __init zone_spanned_pages_in_node(int nid,
7125 unsigned long zone_type,
7126 unsigned long node_start_pfn,
7127 unsigned long node_end_pfn,
7128 unsigned long *zone_start_pfn,
7129 unsigned long *zone_end_pfn)
7130 {
7131 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7132 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7133 /* When hotadd a new node from cpu_up(), the node should be empty */
7134 if (!node_start_pfn && !node_end_pfn)
7135 return 0;
7136
7137 /* Get the start and end of the zone */
7138 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7139 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7140 adjust_zone_range_for_zone_movable(nid, zone_type,
7141 node_start_pfn, node_end_pfn,
7142 zone_start_pfn, zone_end_pfn);
7143
7144 /* Check that this node has pages within the zone's required range */
7145 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7146 return 0;
7147
7148 /* Move the zone boundaries inside the node if necessary */
7149 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7150 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7151
7152 /* Return the spanned pages */
7153 return *zone_end_pfn - *zone_start_pfn;
7154 }
7155
7156 /*
7157 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7158 * then all holes in the requested range will be accounted for.
7159 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)7160 unsigned long __init __absent_pages_in_range(int nid,
7161 unsigned long range_start_pfn,
7162 unsigned long range_end_pfn)
7163 {
7164 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7165 unsigned long start_pfn, end_pfn;
7166 int i;
7167
7168 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7169 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7170 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7171 nr_absent -= end_pfn - start_pfn;
7172 }
7173 return nr_absent;
7174 }
7175
7176 /**
7177 * absent_pages_in_range - Return number of page frames in holes within a range
7178 * @start_pfn: The start PFN to start searching for holes
7179 * @end_pfn: The end PFN to stop searching for holes
7180 *
7181 * Return: the number of pages frames in memory holes within a range.
7182 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)7183 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7184 unsigned long end_pfn)
7185 {
7186 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7187 }
7188
7189 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn)7190 static unsigned long __init zone_absent_pages_in_node(int nid,
7191 unsigned long zone_type,
7192 unsigned long node_start_pfn,
7193 unsigned long node_end_pfn)
7194 {
7195 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7196 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7197 unsigned long zone_start_pfn, zone_end_pfn;
7198 unsigned long nr_absent;
7199
7200 /* When hotadd a new node from cpu_up(), the node should be empty */
7201 if (!node_start_pfn && !node_end_pfn)
7202 return 0;
7203
7204 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7205 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7206
7207 adjust_zone_range_for_zone_movable(nid, zone_type,
7208 node_start_pfn, node_end_pfn,
7209 &zone_start_pfn, &zone_end_pfn);
7210 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7211
7212 /*
7213 * ZONE_MOVABLE handling.
7214 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7215 * and vice versa.
7216 */
7217 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7218 unsigned long start_pfn, end_pfn;
7219 struct memblock_region *r;
7220
7221 for_each_mem_region(r) {
7222 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7223 zone_start_pfn, zone_end_pfn);
7224 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7225 zone_start_pfn, zone_end_pfn);
7226
7227 if (zone_type == ZONE_MOVABLE &&
7228 memblock_is_mirror(r))
7229 nr_absent += end_pfn - start_pfn;
7230
7231 if (zone_type == ZONE_NORMAL &&
7232 !memblock_is_mirror(r))
7233 nr_absent += end_pfn - start_pfn;
7234 }
7235 }
7236
7237 return nr_absent;
7238 }
7239
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)7240 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7241 unsigned long node_start_pfn,
7242 unsigned long node_end_pfn)
7243 {
7244 unsigned long realtotalpages = 0, totalpages = 0;
7245 enum zone_type i;
7246
7247 for (i = 0; i < MAX_NR_ZONES; i++) {
7248 struct zone *zone = pgdat->node_zones + i;
7249 unsigned long zone_start_pfn, zone_end_pfn;
7250 unsigned long spanned, absent;
7251 unsigned long size, real_size;
7252
7253 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7254 node_start_pfn,
7255 node_end_pfn,
7256 &zone_start_pfn,
7257 &zone_end_pfn);
7258 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7259 node_start_pfn,
7260 node_end_pfn);
7261
7262 size = spanned;
7263 real_size = size - absent;
7264
7265 if (size)
7266 zone->zone_start_pfn = zone_start_pfn;
7267 else
7268 zone->zone_start_pfn = 0;
7269 zone->spanned_pages = size;
7270 zone->present_pages = real_size;
7271 #if defined(CONFIG_MEMORY_HOTPLUG)
7272 zone->present_early_pages = real_size;
7273 #endif
7274
7275 totalpages += size;
7276 realtotalpages += real_size;
7277 }
7278
7279 pgdat->node_spanned_pages = totalpages;
7280 pgdat->node_present_pages = realtotalpages;
7281 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7282 }
7283
7284 #ifndef CONFIG_SPARSEMEM
7285 /*
7286 * Calculate the size of the zone->blockflags rounded to an unsigned long
7287 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7288 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7289 * round what is now in bits to nearest long in bits, then return it in
7290 * bytes.
7291 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)7292 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7293 {
7294 unsigned long usemapsize;
7295
7296 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7297 usemapsize = roundup(zonesize, pageblock_nr_pages);
7298 usemapsize = usemapsize >> pageblock_order;
7299 usemapsize *= NR_PAGEBLOCK_BITS;
7300 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7301
7302 return usemapsize / 8;
7303 }
7304
setup_usemap(struct zone * zone)7305 static void __ref setup_usemap(struct zone *zone)
7306 {
7307 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7308 zone->spanned_pages);
7309 zone->pageblock_flags = NULL;
7310 if (usemapsize) {
7311 zone->pageblock_flags =
7312 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7313 zone_to_nid(zone));
7314 if (!zone->pageblock_flags)
7315 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7316 usemapsize, zone->name, zone_to_nid(zone));
7317 }
7318 }
7319 #else
setup_usemap(struct zone * zone)7320 static inline void setup_usemap(struct zone *zone) {}
7321 #endif /* CONFIG_SPARSEMEM */
7322
7323 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7324
7325 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)7326 void __init set_pageblock_order(void)
7327 {
7328 unsigned int order;
7329
7330 /* Check that pageblock_nr_pages has not already been setup */
7331 if (pageblock_order)
7332 return;
7333
7334 if (HPAGE_SHIFT > PAGE_SHIFT)
7335 order = HUGETLB_PAGE_ORDER;
7336 else
7337 order = MAX_ORDER - 1;
7338
7339 /*
7340 * Assume the largest contiguous order of interest is a huge page.
7341 * This value may be variable depending on boot parameters on IA64 and
7342 * powerpc.
7343 */
7344 pageblock_order = order;
7345 }
7346 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7347
7348 /*
7349 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7350 * is unused as pageblock_order is set at compile-time. See
7351 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7352 * the kernel config
7353 */
set_pageblock_order(void)7354 void __init set_pageblock_order(void)
7355 {
7356 }
7357
7358 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7359
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)7360 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7361 unsigned long present_pages)
7362 {
7363 unsigned long pages = spanned_pages;
7364
7365 /*
7366 * Provide a more accurate estimation if there are holes within
7367 * the zone and SPARSEMEM is in use. If there are holes within the
7368 * zone, each populated memory region may cost us one or two extra
7369 * memmap pages due to alignment because memmap pages for each
7370 * populated regions may not be naturally aligned on page boundary.
7371 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7372 */
7373 if (spanned_pages > present_pages + (present_pages >> 4) &&
7374 IS_ENABLED(CONFIG_SPARSEMEM))
7375 pages = present_pages;
7376
7377 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7378 }
7379
7380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)7381 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7382 {
7383 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7384
7385 spin_lock_init(&ds_queue->split_queue_lock);
7386 INIT_LIST_HEAD(&ds_queue->split_queue);
7387 ds_queue->split_queue_len = 0;
7388 }
7389 #else
pgdat_init_split_queue(struct pglist_data * pgdat)7390 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7391 #endif
7392
7393 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)7394 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7395 {
7396 init_waitqueue_head(&pgdat->kcompactd_wait);
7397 }
7398 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)7399 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7400 #endif
7401
pgdat_init_internals(struct pglist_data * pgdat)7402 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7403 {
7404 int i;
7405
7406 pgdat_resize_init(pgdat);
7407
7408 pgdat_init_split_queue(pgdat);
7409 pgdat_init_kcompactd(pgdat);
7410
7411 init_waitqueue_head(&pgdat->kswapd_wait);
7412 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7413
7414 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7415 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7416
7417 pgdat_page_ext_init(pgdat);
7418 lruvec_init(&pgdat->__lruvec);
7419 }
7420
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)7421 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7422 unsigned long remaining_pages)
7423 {
7424 atomic_long_set(&zone->managed_pages, remaining_pages);
7425 zone_set_nid(zone, nid);
7426 zone->name = zone_names[idx];
7427 zone->zone_pgdat = NODE_DATA(nid);
7428 spin_lock_init(&zone->lock);
7429 zone_seqlock_init(zone);
7430 zone_pcp_init(zone);
7431 }
7432
7433 /*
7434 * Set up the zone data structures
7435 * - init pgdat internals
7436 * - init all zones belonging to this node
7437 *
7438 * NOTE: this function is only called during memory hotplug
7439 */
7440 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)7441 void __ref free_area_init_core_hotplug(int nid)
7442 {
7443 enum zone_type z;
7444 pg_data_t *pgdat = NODE_DATA(nid);
7445
7446 pgdat_init_internals(pgdat);
7447 for (z = 0; z < MAX_NR_ZONES; z++)
7448 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7449 }
7450 #endif
7451
7452 /*
7453 * Set up the zone data structures:
7454 * - mark all pages reserved
7455 * - mark all memory queues empty
7456 * - clear the memory bitmaps
7457 *
7458 * NOTE: pgdat should get zeroed by caller.
7459 * NOTE: this function is only called during early init.
7460 */
free_area_init_core(struct pglist_data * pgdat)7461 static void __init free_area_init_core(struct pglist_data *pgdat)
7462 {
7463 enum zone_type j;
7464 int nid = pgdat->node_id;
7465
7466 pgdat_init_internals(pgdat);
7467 pgdat->per_cpu_nodestats = &boot_nodestats;
7468
7469 for (j = 0; j < MAX_NR_ZONES; j++) {
7470 struct zone *zone = pgdat->node_zones + j;
7471 unsigned long size, freesize, memmap_pages;
7472
7473 size = zone->spanned_pages;
7474 freesize = zone->present_pages;
7475
7476 /*
7477 * Adjust freesize so that it accounts for how much memory
7478 * is used by this zone for memmap. This affects the watermark
7479 * and per-cpu initialisations
7480 */
7481 memmap_pages = calc_memmap_size(size, freesize);
7482 if (!is_highmem_idx(j)) {
7483 if (freesize >= memmap_pages) {
7484 freesize -= memmap_pages;
7485 if (memmap_pages)
7486 pr_debug(" %s zone: %lu pages used for memmap\n",
7487 zone_names[j], memmap_pages);
7488 } else
7489 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7490 zone_names[j], memmap_pages, freesize);
7491 }
7492
7493 /* Account for reserved pages */
7494 if (j == 0 && freesize > dma_reserve) {
7495 freesize -= dma_reserve;
7496 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7497 }
7498
7499 if (!is_highmem_idx(j))
7500 nr_kernel_pages += freesize;
7501 /* Charge for highmem memmap if there are enough kernel pages */
7502 else if (nr_kernel_pages > memmap_pages * 2)
7503 nr_kernel_pages -= memmap_pages;
7504 nr_all_pages += freesize;
7505
7506 /*
7507 * Set an approximate value for lowmem here, it will be adjusted
7508 * when the bootmem allocator frees pages into the buddy system.
7509 * And all highmem pages will be managed by the buddy system.
7510 */
7511 zone_init_internals(zone, j, nid, freesize);
7512
7513 if (!size)
7514 continue;
7515
7516 set_pageblock_order();
7517 setup_usemap(zone);
7518 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7519 }
7520 }
7521
7522 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)7523 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7524 {
7525 unsigned long __maybe_unused start = 0;
7526 unsigned long __maybe_unused offset = 0;
7527
7528 /* Skip empty nodes */
7529 if (!pgdat->node_spanned_pages)
7530 return;
7531
7532 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7533 offset = pgdat->node_start_pfn - start;
7534 /* ia64 gets its own node_mem_map, before this, without bootmem */
7535 if (!pgdat->node_mem_map) {
7536 unsigned long size, end;
7537 struct page *map;
7538
7539 /*
7540 * The zone's endpoints aren't required to be MAX_ORDER
7541 * aligned but the node_mem_map endpoints must be in order
7542 * for the buddy allocator to function correctly.
7543 */
7544 end = pgdat_end_pfn(pgdat);
7545 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7546 size = (end - start) * sizeof(struct page);
7547 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7548 pgdat->node_id, false);
7549 if (!map)
7550 panic("Failed to allocate %ld bytes for node %d memory map\n",
7551 size, pgdat->node_id);
7552 pgdat->node_mem_map = map + offset;
7553 }
7554 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7555 __func__, pgdat->node_id, (unsigned long)pgdat,
7556 (unsigned long)pgdat->node_mem_map);
7557 #ifndef CONFIG_NUMA
7558 /*
7559 * With no DISCONTIG, the global mem_map is just set as node 0's
7560 */
7561 if (pgdat == NODE_DATA(0)) {
7562 mem_map = NODE_DATA(0)->node_mem_map;
7563 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7564 mem_map -= offset;
7565 }
7566 #endif
7567 }
7568 #else
alloc_node_mem_map(struct pglist_data * pgdat)7569 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7570 #endif /* CONFIG_FLATMEM */
7571
7572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7573 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7574 {
7575 pgdat->first_deferred_pfn = ULONG_MAX;
7576 }
7577 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7578 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7579 #endif
7580
free_area_init_node(int nid)7581 static void __init free_area_init_node(int nid)
7582 {
7583 pg_data_t *pgdat = NODE_DATA(nid);
7584 unsigned long start_pfn = 0;
7585 unsigned long end_pfn = 0;
7586
7587 /* pg_data_t should be reset to zero when it's allocated */
7588 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7589
7590 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7591
7592 pgdat->node_id = nid;
7593 pgdat->node_start_pfn = start_pfn;
7594 pgdat->per_cpu_nodestats = NULL;
7595
7596 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7597 (u64)start_pfn << PAGE_SHIFT,
7598 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7599 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7600
7601 alloc_node_mem_map(pgdat);
7602 pgdat_set_deferred_range(pgdat);
7603
7604 free_area_init_core(pgdat);
7605 }
7606
free_area_init_memoryless_node(int nid)7607 void __init free_area_init_memoryless_node(int nid)
7608 {
7609 free_area_init_node(nid);
7610 }
7611
7612 #if MAX_NUMNODES > 1
7613 /*
7614 * Figure out the number of possible node ids.
7615 */
setup_nr_node_ids(void)7616 void __init setup_nr_node_ids(void)
7617 {
7618 unsigned int highest;
7619
7620 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7621 nr_node_ids = highest + 1;
7622 }
7623 #endif
7624
7625 /**
7626 * node_map_pfn_alignment - determine the maximum internode alignment
7627 *
7628 * This function should be called after node map is populated and sorted.
7629 * It calculates the maximum power of two alignment which can distinguish
7630 * all the nodes.
7631 *
7632 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7633 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7634 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7635 * shifted, 1GiB is enough and this function will indicate so.
7636 *
7637 * This is used to test whether pfn -> nid mapping of the chosen memory
7638 * model has fine enough granularity to avoid incorrect mapping for the
7639 * populated node map.
7640 *
7641 * Return: the determined alignment in pfn's. 0 if there is no alignment
7642 * requirement (single node).
7643 */
node_map_pfn_alignment(void)7644 unsigned long __init node_map_pfn_alignment(void)
7645 {
7646 unsigned long accl_mask = 0, last_end = 0;
7647 unsigned long start, end, mask;
7648 int last_nid = NUMA_NO_NODE;
7649 int i, nid;
7650
7651 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7652 if (!start || last_nid < 0 || last_nid == nid) {
7653 last_nid = nid;
7654 last_end = end;
7655 continue;
7656 }
7657
7658 /*
7659 * Start with a mask granular enough to pin-point to the
7660 * start pfn and tick off bits one-by-one until it becomes
7661 * too coarse to separate the current node from the last.
7662 */
7663 mask = ~((1 << __ffs(start)) - 1);
7664 while (mask && last_end <= (start & (mask << 1)))
7665 mask <<= 1;
7666
7667 /* accumulate all internode masks */
7668 accl_mask |= mask;
7669 }
7670
7671 /* convert mask to number of pages */
7672 return ~accl_mask + 1;
7673 }
7674
7675 /**
7676 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7677 *
7678 * Return: the minimum PFN based on information provided via
7679 * memblock_set_node().
7680 */
find_min_pfn_with_active_regions(void)7681 unsigned long __init find_min_pfn_with_active_regions(void)
7682 {
7683 return PHYS_PFN(memblock_start_of_DRAM());
7684 }
7685
7686 /*
7687 * early_calculate_totalpages()
7688 * Sum pages in active regions for movable zone.
7689 * Populate N_MEMORY for calculating usable_nodes.
7690 */
early_calculate_totalpages(void)7691 static unsigned long __init early_calculate_totalpages(void)
7692 {
7693 unsigned long totalpages = 0;
7694 unsigned long start_pfn, end_pfn;
7695 int i, nid;
7696
7697 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7698 unsigned long pages = end_pfn - start_pfn;
7699
7700 totalpages += pages;
7701 if (pages)
7702 node_set_state(nid, N_MEMORY);
7703 }
7704 return totalpages;
7705 }
7706
7707 /*
7708 * Find the PFN the Movable zone begins in each node. Kernel memory
7709 * is spread evenly between nodes as long as the nodes have enough
7710 * memory. When they don't, some nodes will have more kernelcore than
7711 * others
7712 */
find_zone_movable_pfns_for_nodes(void)7713 static void __init find_zone_movable_pfns_for_nodes(void)
7714 {
7715 int i, nid;
7716 unsigned long usable_startpfn;
7717 unsigned long kernelcore_node, kernelcore_remaining;
7718 /* save the state before borrow the nodemask */
7719 nodemask_t saved_node_state = node_states[N_MEMORY];
7720 unsigned long totalpages = early_calculate_totalpages();
7721 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7722 struct memblock_region *r;
7723
7724 /* Need to find movable_zone earlier when movable_node is specified. */
7725 find_usable_zone_for_movable();
7726
7727 /*
7728 * If movable_node is specified, ignore kernelcore and movablecore
7729 * options.
7730 */
7731 if (movable_node_is_enabled()) {
7732 for_each_mem_region(r) {
7733 if (!memblock_is_hotpluggable(r))
7734 continue;
7735
7736 nid = memblock_get_region_node(r);
7737
7738 usable_startpfn = PFN_DOWN(r->base);
7739 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7740 min(usable_startpfn, zone_movable_pfn[nid]) :
7741 usable_startpfn;
7742 }
7743
7744 goto out2;
7745 }
7746
7747 /*
7748 * If kernelcore=mirror is specified, ignore movablecore option
7749 */
7750 if (mirrored_kernelcore) {
7751 bool mem_below_4gb_not_mirrored = false;
7752
7753 for_each_mem_region(r) {
7754 if (memblock_is_mirror(r))
7755 continue;
7756
7757 nid = memblock_get_region_node(r);
7758
7759 usable_startpfn = memblock_region_memory_base_pfn(r);
7760
7761 if (usable_startpfn < 0x100000) {
7762 mem_below_4gb_not_mirrored = true;
7763 continue;
7764 }
7765
7766 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7767 min(usable_startpfn, zone_movable_pfn[nid]) :
7768 usable_startpfn;
7769 }
7770
7771 if (mem_below_4gb_not_mirrored)
7772 pr_warn("This configuration results in unmirrored kernel memory.\n");
7773
7774 goto out2;
7775 }
7776
7777 /*
7778 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7779 * amount of necessary memory.
7780 */
7781 if (required_kernelcore_percent)
7782 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7783 10000UL;
7784 if (required_movablecore_percent)
7785 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7786 10000UL;
7787
7788 /*
7789 * If movablecore= was specified, calculate what size of
7790 * kernelcore that corresponds so that memory usable for
7791 * any allocation type is evenly spread. If both kernelcore
7792 * and movablecore are specified, then the value of kernelcore
7793 * will be used for required_kernelcore if it's greater than
7794 * what movablecore would have allowed.
7795 */
7796 if (required_movablecore) {
7797 unsigned long corepages;
7798
7799 /*
7800 * Round-up so that ZONE_MOVABLE is at least as large as what
7801 * was requested by the user
7802 */
7803 required_movablecore =
7804 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7805 required_movablecore = min(totalpages, required_movablecore);
7806 corepages = totalpages - required_movablecore;
7807
7808 required_kernelcore = max(required_kernelcore, corepages);
7809 }
7810
7811 /*
7812 * If kernelcore was not specified or kernelcore size is larger
7813 * than totalpages, there is no ZONE_MOVABLE.
7814 */
7815 if (!required_kernelcore || required_kernelcore >= totalpages)
7816 goto out;
7817
7818 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7819 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7820
7821 restart:
7822 /* Spread kernelcore memory as evenly as possible throughout nodes */
7823 kernelcore_node = required_kernelcore / usable_nodes;
7824 for_each_node_state(nid, N_MEMORY) {
7825 unsigned long start_pfn, end_pfn;
7826
7827 /*
7828 * Recalculate kernelcore_node if the division per node
7829 * now exceeds what is necessary to satisfy the requested
7830 * amount of memory for the kernel
7831 */
7832 if (required_kernelcore < kernelcore_node)
7833 kernelcore_node = required_kernelcore / usable_nodes;
7834
7835 /*
7836 * As the map is walked, we track how much memory is usable
7837 * by the kernel using kernelcore_remaining. When it is
7838 * 0, the rest of the node is usable by ZONE_MOVABLE
7839 */
7840 kernelcore_remaining = kernelcore_node;
7841
7842 /* Go through each range of PFNs within this node */
7843 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7844 unsigned long size_pages;
7845
7846 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7847 if (start_pfn >= end_pfn)
7848 continue;
7849
7850 /* Account for what is only usable for kernelcore */
7851 if (start_pfn < usable_startpfn) {
7852 unsigned long kernel_pages;
7853 kernel_pages = min(end_pfn, usable_startpfn)
7854 - start_pfn;
7855
7856 kernelcore_remaining -= min(kernel_pages,
7857 kernelcore_remaining);
7858 required_kernelcore -= min(kernel_pages,
7859 required_kernelcore);
7860
7861 /* Continue if range is now fully accounted */
7862 if (end_pfn <= usable_startpfn) {
7863
7864 /*
7865 * Push zone_movable_pfn to the end so
7866 * that if we have to rebalance
7867 * kernelcore across nodes, we will
7868 * not double account here
7869 */
7870 zone_movable_pfn[nid] = end_pfn;
7871 continue;
7872 }
7873 start_pfn = usable_startpfn;
7874 }
7875
7876 /*
7877 * The usable PFN range for ZONE_MOVABLE is from
7878 * start_pfn->end_pfn. Calculate size_pages as the
7879 * number of pages used as kernelcore
7880 */
7881 size_pages = end_pfn - start_pfn;
7882 if (size_pages > kernelcore_remaining)
7883 size_pages = kernelcore_remaining;
7884 zone_movable_pfn[nid] = start_pfn + size_pages;
7885
7886 /*
7887 * Some kernelcore has been met, update counts and
7888 * break if the kernelcore for this node has been
7889 * satisfied
7890 */
7891 required_kernelcore -= min(required_kernelcore,
7892 size_pages);
7893 kernelcore_remaining -= size_pages;
7894 if (!kernelcore_remaining)
7895 break;
7896 }
7897 }
7898
7899 /*
7900 * If there is still required_kernelcore, we do another pass with one
7901 * less node in the count. This will push zone_movable_pfn[nid] further
7902 * along on the nodes that still have memory until kernelcore is
7903 * satisfied
7904 */
7905 usable_nodes--;
7906 if (usable_nodes && required_kernelcore > usable_nodes)
7907 goto restart;
7908
7909 out2:
7910 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7911 for (nid = 0; nid < MAX_NUMNODES; nid++)
7912 zone_movable_pfn[nid] =
7913 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7914
7915 out:
7916 /* restore the node_state */
7917 node_states[N_MEMORY] = saved_node_state;
7918 }
7919
7920 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)7921 static void check_for_memory(pg_data_t *pgdat, int nid)
7922 {
7923 enum zone_type zone_type;
7924
7925 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7926 struct zone *zone = &pgdat->node_zones[zone_type];
7927 if (populated_zone(zone)) {
7928 if (IS_ENABLED(CONFIG_HIGHMEM))
7929 node_set_state(nid, N_HIGH_MEMORY);
7930 if (zone_type <= ZONE_NORMAL)
7931 node_set_state(nid, N_NORMAL_MEMORY);
7932 break;
7933 }
7934 }
7935 }
7936
7937 /*
7938 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7939 * such cases we allow max_zone_pfn sorted in the descending order
7940 */
arch_has_descending_max_zone_pfns(void)7941 bool __weak arch_has_descending_max_zone_pfns(void)
7942 {
7943 return false;
7944 }
7945
7946 /**
7947 * free_area_init - Initialise all pg_data_t and zone data
7948 * @max_zone_pfn: an array of max PFNs for each zone
7949 *
7950 * This will call free_area_init_node() for each active node in the system.
7951 * Using the page ranges provided by memblock_set_node(), the size of each
7952 * zone in each node and their holes is calculated. If the maximum PFN
7953 * between two adjacent zones match, it is assumed that the zone is empty.
7954 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7955 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7956 * starts where the previous one ended. For example, ZONE_DMA32 starts
7957 * at arch_max_dma_pfn.
7958 */
free_area_init(unsigned long * max_zone_pfn)7959 void __init free_area_init(unsigned long *max_zone_pfn)
7960 {
7961 unsigned long start_pfn, end_pfn;
7962 int i, nid, zone;
7963 bool descending;
7964
7965 /* Record where the zone boundaries are */
7966 memset(arch_zone_lowest_possible_pfn, 0,
7967 sizeof(arch_zone_lowest_possible_pfn));
7968 memset(arch_zone_highest_possible_pfn, 0,
7969 sizeof(arch_zone_highest_possible_pfn));
7970
7971 start_pfn = find_min_pfn_with_active_regions();
7972 descending = arch_has_descending_max_zone_pfns();
7973
7974 for (i = 0; i < MAX_NR_ZONES; i++) {
7975 if (descending)
7976 zone = MAX_NR_ZONES - i - 1;
7977 else
7978 zone = i;
7979
7980 if (zone == ZONE_MOVABLE)
7981 continue;
7982
7983 end_pfn = max(max_zone_pfn[zone], start_pfn);
7984 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7985 arch_zone_highest_possible_pfn[zone] = end_pfn;
7986
7987 start_pfn = end_pfn;
7988 }
7989
7990 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7991 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7992 find_zone_movable_pfns_for_nodes();
7993
7994 /* Print out the zone ranges */
7995 pr_info("Zone ranges:\n");
7996 for (i = 0; i < MAX_NR_ZONES; i++) {
7997 if (i == ZONE_MOVABLE)
7998 continue;
7999 pr_info(" %-8s ", zone_names[i]);
8000 if (arch_zone_lowest_possible_pfn[i] ==
8001 arch_zone_highest_possible_pfn[i])
8002 pr_cont("empty\n");
8003 else
8004 pr_cont("[mem %#018Lx-%#018Lx]\n",
8005 (u64)arch_zone_lowest_possible_pfn[i]
8006 << PAGE_SHIFT,
8007 ((u64)arch_zone_highest_possible_pfn[i]
8008 << PAGE_SHIFT) - 1);
8009 }
8010
8011 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8012 pr_info("Movable zone start for each node\n");
8013 for (i = 0; i < MAX_NUMNODES; i++) {
8014 if (zone_movable_pfn[i])
8015 pr_info(" Node %d: %#018Lx\n", i,
8016 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8017 }
8018
8019 /*
8020 * Print out the early node map, and initialize the
8021 * subsection-map relative to active online memory ranges to
8022 * enable future "sub-section" extensions of the memory map.
8023 */
8024 pr_info("Early memory node ranges\n");
8025 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8026 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8027 (u64)start_pfn << PAGE_SHIFT,
8028 ((u64)end_pfn << PAGE_SHIFT) - 1);
8029 subsection_map_init(start_pfn, end_pfn - start_pfn);
8030 }
8031
8032 /* Initialise every node */
8033 mminit_verify_pageflags_layout();
8034 setup_nr_node_ids();
8035 for_each_online_node(nid) {
8036 pg_data_t *pgdat = NODE_DATA(nid);
8037 free_area_init_node(nid);
8038
8039 /* Any memory on that node */
8040 if (pgdat->node_present_pages)
8041 node_set_state(nid, N_MEMORY);
8042 check_for_memory(pgdat, nid);
8043 }
8044
8045 memmap_init();
8046 }
8047
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)8048 static int __init cmdline_parse_core(char *p, unsigned long *core,
8049 unsigned long *percent)
8050 {
8051 unsigned long long coremem;
8052 char *endptr;
8053
8054 if (!p)
8055 return -EINVAL;
8056
8057 /* Value may be a percentage of total memory, otherwise bytes */
8058 coremem = simple_strtoull(p, &endptr, 0);
8059 if (*endptr == '%') {
8060 /* Paranoid check for percent values greater than 100 */
8061 WARN_ON(coremem > 100);
8062
8063 *percent = coremem;
8064 } else {
8065 coremem = memparse(p, &p);
8066 /* Paranoid check that UL is enough for the coremem value */
8067 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8068
8069 *core = coremem >> PAGE_SHIFT;
8070 *percent = 0UL;
8071 }
8072 return 0;
8073 }
8074
8075 /*
8076 * kernelcore=size sets the amount of memory for use for allocations that
8077 * cannot be reclaimed or migrated.
8078 */
cmdline_parse_kernelcore(char * p)8079 static int __init cmdline_parse_kernelcore(char *p)
8080 {
8081 /* parse kernelcore=mirror */
8082 if (parse_option_str(p, "mirror")) {
8083 mirrored_kernelcore = true;
8084 return 0;
8085 }
8086
8087 return cmdline_parse_core(p, &required_kernelcore,
8088 &required_kernelcore_percent);
8089 }
8090
8091 /*
8092 * movablecore=size sets the amount of memory for use for allocations that
8093 * can be reclaimed or migrated.
8094 */
cmdline_parse_movablecore(char * p)8095 static int __init cmdline_parse_movablecore(char *p)
8096 {
8097 return cmdline_parse_core(p, &required_movablecore,
8098 &required_movablecore_percent);
8099 }
8100
8101 early_param("kernelcore", cmdline_parse_kernelcore);
8102 early_param("movablecore", cmdline_parse_movablecore);
8103
adjust_managed_page_count(struct page * page,long count)8104 void adjust_managed_page_count(struct page *page, long count)
8105 {
8106 atomic_long_add(count, &page_zone(page)->managed_pages);
8107 totalram_pages_add(count);
8108 #ifdef CONFIG_HIGHMEM
8109 if (PageHighMem(page))
8110 totalhigh_pages_add(count);
8111 #endif
8112 }
8113 EXPORT_SYMBOL(adjust_managed_page_count);
8114
free_reserved_area(void * start,void * end,int poison,const char * s)8115 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8116 {
8117 void *pos;
8118 unsigned long pages = 0;
8119
8120 start = (void *)PAGE_ALIGN((unsigned long)start);
8121 end = (void *)((unsigned long)end & PAGE_MASK);
8122 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8123 struct page *page = virt_to_page(pos);
8124 void *direct_map_addr;
8125
8126 /*
8127 * 'direct_map_addr' might be different from 'pos'
8128 * because some architectures' virt_to_page()
8129 * work with aliases. Getting the direct map
8130 * address ensures that we get a _writeable_
8131 * alias for the memset().
8132 */
8133 direct_map_addr = page_address(page);
8134 /*
8135 * Perform a kasan-unchecked memset() since this memory
8136 * has not been initialized.
8137 */
8138 direct_map_addr = kasan_reset_tag(direct_map_addr);
8139 if ((unsigned int)poison <= 0xFF)
8140 memset(direct_map_addr, poison, PAGE_SIZE);
8141
8142 free_reserved_page(page);
8143 }
8144
8145 if (pages && s)
8146 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8147
8148 return pages;
8149 }
8150
mem_init_print_info(void)8151 void __init mem_init_print_info(void)
8152 {
8153 unsigned long physpages, codesize, datasize, rosize, bss_size;
8154 unsigned long init_code_size, init_data_size;
8155
8156 physpages = get_num_physpages();
8157 codesize = _etext - _stext;
8158 datasize = _edata - _sdata;
8159 rosize = __end_rodata - __start_rodata;
8160 bss_size = __bss_stop - __bss_start;
8161 init_data_size = __init_end - __init_begin;
8162 init_code_size = _einittext - _sinittext;
8163
8164 /*
8165 * Detect special cases and adjust section sizes accordingly:
8166 * 1) .init.* may be embedded into .data sections
8167 * 2) .init.text.* may be out of [__init_begin, __init_end],
8168 * please refer to arch/tile/kernel/vmlinux.lds.S.
8169 * 3) .rodata.* may be embedded into .text or .data sections.
8170 */
8171 #define adj_init_size(start, end, size, pos, adj) \
8172 do { \
8173 if (start <= pos && pos < end && size > adj) \
8174 size -= adj; \
8175 } while (0)
8176
8177 adj_init_size(__init_begin, __init_end, init_data_size,
8178 _sinittext, init_code_size);
8179 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8180 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8181 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8182 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8183
8184 #undef adj_init_size
8185
8186 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8187 #ifdef CONFIG_HIGHMEM
8188 ", %luK highmem"
8189 #endif
8190 ")\n",
8191 K(nr_free_pages()), K(physpages),
8192 codesize >> 10, datasize >> 10, rosize >> 10,
8193 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8194 K(physpages - totalram_pages() - totalcma_pages),
8195 K(totalcma_pages)
8196 #ifdef CONFIG_HIGHMEM
8197 , K(totalhigh_pages())
8198 #endif
8199 );
8200 }
8201
8202 /**
8203 * set_dma_reserve - set the specified number of pages reserved in the first zone
8204 * @new_dma_reserve: The number of pages to mark reserved
8205 *
8206 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8207 * In the DMA zone, a significant percentage may be consumed by kernel image
8208 * and other unfreeable allocations which can skew the watermarks badly. This
8209 * function may optionally be used to account for unfreeable pages in the
8210 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8211 * smaller per-cpu batchsize.
8212 */
set_dma_reserve(unsigned long new_dma_reserve)8213 void __init set_dma_reserve(unsigned long new_dma_reserve)
8214 {
8215 dma_reserve = new_dma_reserve;
8216 }
8217
page_alloc_cpu_dead(unsigned int cpu)8218 static int page_alloc_cpu_dead(unsigned int cpu)
8219 {
8220 struct zone *zone;
8221
8222 lru_add_drain_cpu(cpu);
8223 drain_pages(cpu);
8224
8225 /*
8226 * Spill the event counters of the dead processor
8227 * into the current processors event counters.
8228 * This artificially elevates the count of the current
8229 * processor.
8230 */
8231 vm_events_fold_cpu(cpu);
8232
8233 /*
8234 * Zero the differential counters of the dead processor
8235 * so that the vm statistics are consistent.
8236 *
8237 * This is only okay since the processor is dead and cannot
8238 * race with what we are doing.
8239 */
8240 cpu_vm_stats_fold(cpu);
8241
8242 for_each_populated_zone(zone)
8243 zone_pcp_update(zone, 0);
8244
8245 return 0;
8246 }
8247
page_alloc_cpu_online(unsigned int cpu)8248 static int page_alloc_cpu_online(unsigned int cpu)
8249 {
8250 struct zone *zone;
8251
8252 for_each_populated_zone(zone)
8253 zone_pcp_update(zone, 1);
8254 return 0;
8255 }
8256
8257 #ifdef CONFIG_NUMA
8258 int hashdist = HASHDIST_DEFAULT;
8259
set_hashdist(char * str)8260 static int __init set_hashdist(char *str)
8261 {
8262 if (!str)
8263 return 0;
8264 hashdist = simple_strtoul(str, &str, 0);
8265 return 1;
8266 }
8267 __setup("hashdist=", set_hashdist);
8268 #endif
8269
page_alloc_init(void)8270 void __init page_alloc_init(void)
8271 {
8272 int ret;
8273
8274 #ifdef CONFIG_NUMA
8275 if (num_node_state(N_MEMORY) == 1)
8276 hashdist = 0;
8277 #endif
8278
8279 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8280 "mm/page_alloc:pcp",
8281 page_alloc_cpu_online,
8282 page_alloc_cpu_dead);
8283 WARN_ON(ret < 0);
8284 }
8285
8286 /*
8287 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8288 * or min_free_kbytes changes.
8289 */
calculate_totalreserve_pages(void)8290 static void calculate_totalreserve_pages(void)
8291 {
8292 struct pglist_data *pgdat;
8293 unsigned long reserve_pages = 0;
8294 enum zone_type i, j;
8295
8296 for_each_online_pgdat(pgdat) {
8297
8298 pgdat->totalreserve_pages = 0;
8299
8300 for (i = 0; i < MAX_NR_ZONES; i++) {
8301 struct zone *zone = pgdat->node_zones + i;
8302 long max = 0;
8303 unsigned long managed_pages = zone_managed_pages(zone);
8304
8305 /* Find valid and maximum lowmem_reserve in the zone */
8306 for (j = i; j < MAX_NR_ZONES; j++) {
8307 if (zone->lowmem_reserve[j] > max)
8308 max = zone->lowmem_reserve[j];
8309 }
8310
8311 /* we treat the high watermark as reserved pages. */
8312 max += high_wmark_pages(zone);
8313
8314 if (max > managed_pages)
8315 max = managed_pages;
8316
8317 pgdat->totalreserve_pages += max;
8318
8319 reserve_pages += max;
8320 }
8321 }
8322 totalreserve_pages = reserve_pages;
8323 }
8324
8325 /*
8326 * setup_per_zone_lowmem_reserve - called whenever
8327 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8328 * has a correct pages reserved value, so an adequate number of
8329 * pages are left in the zone after a successful __alloc_pages().
8330 */
setup_per_zone_lowmem_reserve(void)8331 static void setup_per_zone_lowmem_reserve(void)
8332 {
8333 struct pglist_data *pgdat;
8334 enum zone_type i, j;
8335
8336 for_each_online_pgdat(pgdat) {
8337 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8338 struct zone *zone = &pgdat->node_zones[i];
8339 int ratio = sysctl_lowmem_reserve_ratio[i];
8340 bool clear = !ratio || !zone_managed_pages(zone);
8341 unsigned long managed_pages = 0;
8342
8343 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8344 struct zone *upper_zone = &pgdat->node_zones[j];
8345
8346 managed_pages += zone_managed_pages(upper_zone);
8347
8348 if (clear)
8349 zone->lowmem_reserve[j] = 0;
8350 else
8351 zone->lowmem_reserve[j] = managed_pages / ratio;
8352 }
8353 }
8354 }
8355
8356 /* update totalreserve_pages */
8357 calculate_totalreserve_pages();
8358 }
8359
__setup_per_zone_wmarks(void)8360 static void __setup_per_zone_wmarks(void)
8361 {
8362 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8363 unsigned long lowmem_pages = 0;
8364 struct zone *zone;
8365 unsigned long flags;
8366
8367 /* Calculate total number of !ZONE_HIGHMEM pages */
8368 for_each_zone(zone) {
8369 if (!is_highmem(zone))
8370 lowmem_pages += zone_managed_pages(zone);
8371 }
8372
8373 for_each_zone(zone) {
8374 u64 tmp;
8375
8376 spin_lock_irqsave(&zone->lock, flags);
8377 tmp = (u64)pages_min * zone_managed_pages(zone);
8378 do_div(tmp, lowmem_pages);
8379 if (is_highmem(zone)) {
8380 /*
8381 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8382 * need highmem pages, so cap pages_min to a small
8383 * value here.
8384 *
8385 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8386 * deltas control async page reclaim, and so should
8387 * not be capped for highmem.
8388 */
8389 unsigned long min_pages;
8390
8391 min_pages = zone_managed_pages(zone) / 1024;
8392 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8393 zone->_watermark[WMARK_MIN] = min_pages;
8394 } else {
8395 /*
8396 * If it's a lowmem zone, reserve a number of pages
8397 * proportionate to the zone's size.
8398 */
8399 zone->_watermark[WMARK_MIN] = tmp;
8400 }
8401
8402 /*
8403 * Set the kswapd watermarks distance according to the
8404 * scale factor in proportion to available memory, but
8405 * ensure a minimum size on small systems.
8406 */
8407 tmp = max_t(u64, tmp >> 2,
8408 mult_frac(zone_managed_pages(zone),
8409 watermark_scale_factor, 10000));
8410
8411 zone->watermark_boost = 0;
8412 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8413 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8414
8415 spin_unlock_irqrestore(&zone->lock, flags);
8416 }
8417
8418 /* update totalreserve_pages */
8419 calculate_totalreserve_pages();
8420 }
8421
8422 /**
8423 * setup_per_zone_wmarks - called when min_free_kbytes changes
8424 * or when memory is hot-{added|removed}
8425 *
8426 * Ensures that the watermark[min,low,high] values for each zone are set
8427 * correctly with respect to min_free_kbytes.
8428 */
setup_per_zone_wmarks(void)8429 void setup_per_zone_wmarks(void)
8430 {
8431 struct zone *zone;
8432 static DEFINE_SPINLOCK(lock);
8433
8434 spin_lock(&lock);
8435 __setup_per_zone_wmarks();
8436 spin_unlock(&lock);
8437
8438 /*
8439 * The watermark size have changed so update the pcpu batch
8440 * and high limits or the limits may be inappropriate.
8441 */
8442 for_each_zone(zone)
8443 zone_pcp_update(zone, 0);
8444 }
8445
8446 /*
8447 * Initialise min_free_kbytes.
8448 *
8449 * For small machines we want it small (128k min). For large machines
8450 * we want it large (256MB max). But it is not linear, because network
8451 * bandwidth does not increase linearly with machine size. We use
8452 *
8453 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8454 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8455 *
8456 * which yields
8457 *
8458 * 16MB: 512k
8459 * 32MB: 724k
8460 * 64MB: 1024k
8461 * 128MB: 1448k
8462 * 256MB: 2048k
8463 * 512MB: 2896k
8464 * 1024MB: 4096k
8465 * 2048MB: 5792k
8466 * 4096MB: 8192k
8467 * 8192MB: 11584k
8468 * 16384MB: 16384k
8469 */
calculate_min_free_kbytes(void)8470 void calculate_min_free_kbytes(void)
8471 {
8472 unsigned long lowmem_kbytes;
8473 int new_min_free_kbytes;
8474
8475 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8476 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8477
8478 if (new_min_free_kbytes > user_min_free_kbytes)
8479 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8480 else
8481 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8482 new_min_free_kbytes, user_min_free_kbytes);
8483
8484 }
8485
init_per_zone_wmark_min(void)8486 int __meminit init_per_zone_wmark_min(void)
8487 {
8488 calculate_min_free_kbytes();
8489 setup_per_zone_wmarks();
8490 refresh_zone_stat_thresholds();
8491 setup_per_zone_lowmem_reserve();
8492
8493 #ifdef CONFIG_NUMA
8494 setup_min_unmapped_ratio();
8495 setup_min_slab_ratio();
8496 #endif
8497
8498 khugepaged_min_free_kbytes_update();
8499
8500 return 0;
8501 }
postcore_initcall(init_per_zone_wmark_min)8502 postcore_initcall(init_per_zone_wmark_min)
8503
8504 /*
8505 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8506 * that we can call two helper functions whenever min_free_kbytes
8507 * changes.
8508 */
8509 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8510 void *buffer, size_t *length, loff_t *ppos)
8511 {
8512 int rc;
8513
8514 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8515 if (rc)
8516 return rc;
8517
8518 if (write) {
8519 user_min_free_kbytes = min_free_kbytes;
8520 setup_per_zone_wmarks();
8521 }
8522 return 0;
8523 }
8524
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8525 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8526 void *buffer, size_t *length, loff_t *ppos)
8527 {
8528 int rc;
8529
8530 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8531 if (rc)
8532 return rc;
8533
8534 if (write)
8535 setup_per_zone_wmarks();
8536
8537 return 0;
8538 }
8539
8540 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8541 static void setup_min_unmapped_ratio(void)
8542 {
8543 pg_data_t *pgdat;
8544 struct zone *zone;
8545
8546 for_each_online_pgdat(pgdat)
8547 pgdat->min_unmapped_pages = 0;
8548
8549 for_each_zone(zone)
8550 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8551 sysctl_min_unmapped_ratio) / 100;
8552 }
8553
8554
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8555 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8556 void *buffer, size_t *length, loff_t *ppos)
8557 {
8558 int rc;
8559
8560 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8561 if (rc)
8562 return rc;
8563
8564 setup_min_unmapped_ratio();
8565
8566 return 0;
8567 }
8568
setup_min_slab_ratio(void)8569 static void setup_min_slab_ratio(void)
8570 {
8571 pg_data_t *pgdat;
8572 struct zone *zone;
8573
8574 for_each_online_pgdat(pgdat)
8575 pgdat->min_slab_pages = 0;
8576
8577 for_each_zone(zone)
8578 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8579 sysctl_min_slab_ratio) / 100;
8580 }
8581
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8582 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8583 void *buffer, size_t *length, loff_t *ppos)
8584 {
8585 int rc;
8586
8587 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8588 if (rc)
8589 return rc;
8590
8591 setup_min_slab_ratio();
8592
8593 return 0;
8594 }
8595 #endif
8596
8597 /*
8598 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8599 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8600 * whenever sysctl_lowmem_reserve_ratio changes.
8601 *
8602 * The reserve ratio obviously has absolutely no relation with the
8603 * minimum watermarks. The lowmem reserve ratio can only make sense
8604 * if in function of the boot time zone sizes.
8605 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8606 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8607 void *buffer, size_t *length, loff_t *ppos)
8608 {
8609 int i;
8610
8611 proc_dointvec_minmax(table, write, buffer, length, ppos);
8612
8613 for (i = 0; i < MAX_NR_ZONES; i++) {
8614 if (sysctl_lowmem_reserve_ratio[i] < 1)
8615 sysctl_lowmem_reserve_ratio[i] = 0;
8616 }
8617
8618 setup_per_zone_lowmem_reserve();
8619 return 0;
8620 }
8621
8622 /*
8623 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8624 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8625 * pagelist can have before it gets flushed back to buddy allocator.
8626 */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8627 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8628 int write, void *buffer, size_t *length, loff_t *ppos)
8629 {
8630 struct zone *zone;
8631 int old_percpu_pagelist_high_fraction;
8632 int ret;
8633
8634 mutex_lock(&pcp_batch_high_lock);
8635 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8636
8637 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8638 if (!write || ret < 0)
8639 goto out;
8640
8641 /* Sanity checking to avoid pcp imbalance */
8642 if (percpu_pagelist_high_fraction &&
8643 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8644 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8645 ret = -EINVAL;
8646 goto out;
8647 }
8648
8649 /* No change? */
8650 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8651 goto out;
8652
8653 for_each_populated_zone(zone)
8654 zone_set_pageset_high_and_batch(zone, 0);
8655 out:
8656 mutex_unlock(&pcp_batch_high_lock);
8657 return ret;
8658 }
8659
8660 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8661 /*
8662 * Returns the number of pages that arch has reserved but
8663 * is not known to alloc_large_system_hash().
8664 */
arch_reserved_kernel_pages(void)8665 static unsigned long __init arch_reserved_kernel_pages(void)
8666 {
8667 return 0;
8668 }
8669 #endif
8670
8671 /*
8672 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8673 * machines. As memory size is increased the scale is also increased but at
8674 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8675 * quadruples the scale is increased by one, which means the size of hash table
8676 * only doubles, instead of quadrupling as well.
8677 * Because 32-bit systems cannot have large physical memory, where this scaling
8678 * makes sense, it is disabled on such platforms.
8679 */
8680 #if __BITS_PER_LONG > 32
8681 #define ADAPT_SCALE_BASE (64ul << 30)
8682 #define ADAPT_SCALE_SHIFT 2
8683 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8684 #endif
8685
8686 /*
8687 * allocate a large system hash table from bootmem
8688 * - it is assumed that the hash table must contain an exact power-of-2
8689 * quantity of entries
8690 * - limit is the number of hash buckets, not the total allocation size
8691 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)8692 void *__init alloc_large_system_hash(const char *tablename,
8693 unsigned long bucketsize,
8694 unsigned long numentries,
8695 int scale,
8696 int flags,
8697 unsigned int *_hash_shift,
8698 unsigned int *_hash_mask,
8699 unsigned long low_limit,
8700 unsigned long high_limit)
8701 {
8702 unsigned long long max = high_limit;
8703 unsigned long log2qty, size;
8704 void *table = NULL;
8705 gfp_t gfp_flags;
8706 bool virt;
8707 bool huge;
8708
8709 /* allow the kernel cmdline to have a say */
8710 if (!numentries) {
8711 /* round applicable memory size up to nearest megabyte */
8712 numentries = nr_kernel_pages;
8713 numentries -= arch_reserved_kernel_pages();
8714
8715 /* It isn't necessary when PAGE_SIZE >= 1MB */
8716 if (PAGE_SHIFT < 20)
8717 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8718
8719 #if __BITS_PER_LONG > 32
8720 if (!high_limit) {
8721 unsigned long adapt;
8722
8723 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8724 adapt <<= ADAPT_SCALE_SHIFT)
8725 scale++;
8726 }
8727 #endif
8728
8729 /* limit to 1 bucket per 2^scale bytes of low memory */
8730 if (scale > PAGE_SHIFT)
8731 numentries >>= (scale - PAGE_SHIFT);
8732 else
8733 numentries <<= (PAGE_SHIFT - scale);
8734
8735 /* Make sure we've got at least a 0-order allocation.. */
8736 if (unlikely(flags & HASH_SMALL)) {
8737 /* Makes no sense without HASH_EARLY */
8738 WARN_ON(!(flags & HASH_EARLY));
8739 if (!(numentries >> *_hash_shift)) {
8740 numentries = 1UL << *_hash_shift;
8741 BUG_ON(!numentries);
8742 }
8743 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8744 numentries = PAGE_SIZE / bucketsize;
8745 }
8746 numentries = roundup_pow_of_two(numentries);
8747
8748 /* limit allocation size to 1/16 total memory by default */
8749 if (max == 0) {
8750 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8751 do_div(max, bucketsize);
8752 }
8753 max = min(max, 0x80000000ULL);
8754
8755 if (numentries < low_limit)
8756 numentries = low_limit;
8757 if (numentries > max)
8758 numentries = max;
8759
8760 log2qty = ilog2(numentries);
8761
8762 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8763 do {
8764 virt = false;
8765 size = bucketsize << log2qty;
8766 if (flags & HASH_EARLY) {
8767 if (flags & HASH_ZERO)
8768 table = memblock_alloc(size, SMP_CACHE_BYTES);
8769 else
8770 table = memblock_alloc_raw(size,
8771 SMP_CACHE_BYTES);
8772 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8773 table = __vmalloc(size, gfp_flags);
8774 virt = true;
8775 if (table)
8776 huge = is_vm_area_hugepages(table);
8777 } else {
8778 /*
8779 * If bucketsize is not a power-of-two, we may free
8780 * some pages at the end of hash table which
8781 * alloc_pages_exact() automatically does
8782 */
8783 table = alloc_pages_exact(size, gfp_flags);
8784 kmemleak_alloc(table, size, 1, gfp_flags);
8785 }
8786 } while (!table && size > PAGE_SIZE && --log2qty);
8787
8788 if (!table)
8789 panic("Failed to allocate %s hash table\n", tablename);
8790
8791 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8792 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8793 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8794
8795 if (_hash_shift)
8796 *_hash_shift = log2qty;
8797 if (_hash_mask)
8798 *_hash_mask = (1 << log2qty) - 1;
8799
8800 return table;
8801 }
8802
8803 /*
8804 * This function checks whether pageblock includes unmovable pages or not.
8805 *
8806 * PageLRU check without isolation or lru_lock could race so that
8807 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8808 * check without lock_page also may miss some movable non-lru pages at
8809 * race condition. So you can't expect this function should be exact.
8810 *
8811 * Returns a page without holding a reference. If the caller wants to
8812 * dereference that page (e.g., dumping), it has to make sure that it
8813 * cannot get removed (e.g., via memory unplug) concurrently.
8814 *
8815 */
has_unmovable_pages(struct zone * zone,struct page * page,int migratetype,int flags)8816 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8817 int migratetype, int flags)
8818 {
8819 unsigned long iter = 0;
8820 unsigned long pfn = page_to_pfn(page);
8821 unsigned long offset = pfn % pageblock_nr_pages;
8822
8823 if (is_migrate_cma_page(page)) {
8824 /*
8825 * CMA allocations (alloc_contig_range) really need to mark
8826 * isolate CMA pageblocks even when they are not movable in fact
8827 * so consider them movable here.
8828 */
8829 if (is_migrate_cma(migratetype))
8830 return NULL;
8831
8832 return page;
8833 }
8834
8835 for (; iter < pageblock_nr_pages - offset; iter++) {
8836 page = pfn_to_page(pfn + iter);
8837
8838 /*
8839 * Both, bootmem allocations and memory holes are marked
8840 * PG_reserved and are unmovable. We can even have unmovable
8841 * allocations inside ZONE_MOVABLE, for example when
8842 * specifying "movablecore".
8843 */
8844 if (PageReserved(page))
8845 return page;
8846
8847 /*
8848 * If the zone is movable and we have ruled out all reserved
8849 * pages then it should be reasonably safe to assume the rest
8850 * is movable.
8851 */
8852 if (zone_idx(zone) == ZONE_MOVABLE)
8853 continue;
8854
8855 /*
8856 * Hugepages are not in LRU lists, but they're movable.
8857 * THPs are on the LRU, but need to be counted as #small pages.
8858 * We need not scan over tail pages because we don't
8859 * handle each tail page individually in migration.
8860 */
8861 if (PageHuge(page) || PageTransCompound(page)) {
8862 struct page *head = compound_head(page);
8863 unsigned int skip_pages;
8864
8865 if (PageHuge(page)) {
8866 if (!hugepage_migration_supported(page_hstate(head)))
8867 return page;
8868 } else if (!PageLRU(head) && !__PageMovable(head)) {
8869 return page;
8870 }
8871
8872 skip_pages = compound_nr(head) - (page - head);
8873 iter += skip_pages - 1;
8874 continue;
8875 }
8876
8877 /*
8878 * We can't use page_count without pin a page
8879 * because another CPU can free compound page.
8880 * This check already skips compound tails of THP
8881 * because their page->_refcount is zero at all time.
8882 */
8883 if (!page_ref_count(page)) {
8884 if (PageBuddy(page))
8885 iter += (1 << buddy_order(page)) - 1;
8886 continue;
8887 }
8888
8889 /*
8890 * The HWPoisoned page may be not in buddy system, and
8891 * page_count() is not 0.
8892 */
8893 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8894 continue;
8895
8896 /*
8897 * We treat all PageOffline() pages as movable when offlining
8898 * to give drivers a chance to decrement their reference count
8899 * in MEM_GOING_OFFLINE in order to indicate that these pages
8900 * can be offlined as there are no direct references anymore.
8901 * For actually unmovable PageOffline() where the driver does
8902 * not support this, we will fail later when trying to actually
8903 * move these pages that still have a reference count > 0.
8904 * (false negatives in this function only)
8905 */
8906 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8907 continue;
8908
8909 if (__PageMovable(page) || PageLRU(page))
8910 continue;
8911
8912 /*
8913 * If there are RECLAIMABLE pages, we need to check
8914 * it. But now, memory offline itself doesn't call
8915 * shrink_node_slabs() and it still to be fixed.
8916 */
8917 return page;
8918 }
8919 return NULL;
8920 }
8921
8922 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)8923 static unsigned long pfn_max_align_down(unsigned long pfn)
8924 {
8925 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8926 pageblock_nr_pages) - 1);
8927 }
8928
pfn_max_align_up(unsigned long pfn)8929 static unsigned long pfn_max_align_up(unsigned long pfn)
8930 {
8931 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8932 pageblock_nr_pages));
8933 }
8934
8935 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8936 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8937 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)8938 static void alloc_contig_dump_pages(struct list_head *page_list)
8939 {
8940 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8941
8942 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8943 struct page *page;
8944
8945 dump_stack();
8946 list_for_each_entry(page, page_list, lru)
8947 dump_page(page, "migration failure");
8948 }
8949 }
8950 #else
alloc_contig_dump_pages(struct list_head * page_list)8951 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8952 {
8953 }
8954 #endif
8955
8956 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)8957 static int __alloc_contig_migrate_range(struct compact_control *cc,
8958 unsigned long start, unsigned long end)
8959 {
8960 /* This function is based on compact_zone() from compaction.c. */
8961 unsigned int nr_reclaimed;
8962 unsigned long pfn = start;
8963 unsigned int tries = 0;
8964 int ret = 0;
8965 struct migration_target_control mtc = {
8966 .nid = zone_to_nid(cc->zone),
8967 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8968 };
8969
8970 lru_cache_disable();
8971
8972 while (pfn < end || !list_empty(&cc->migratepages)) {
8973 if (fatal_signal_pending(current)) {
8974 ret = -EINTR;
8975 break;
8976 }
8977
8978 if (list_empty(&cc->migratepages)) {
8979 cc->nr_migratepages = 0;
8980 ret = isolate_migratepages_range(cc, pfn, end);
8981 if (ret && ret != -EAGAIN)
8982 break;
8983 pfn = cc->migrate_pfn;
8984 tries = 0;
8985 } else if (++tries == 5) {
8986 ret = -EBUSY;
8987 break;
8988 }
8989
8990 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8991 &cc->migratepages);
8992 cc->nr_migratepages -= nr_reclaimed;
8993
8994 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8995 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
8996
8997 /*
8998 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8999 * to retry again over this error, so do the same here.
9000 */
9001 if (ret == -ENOMEM)
9002 break;
9003 }
9004
9005 lru_cache_enable();
9006 if (ret < 0) {
9007 if (ret == -EBUSY)
9008 alloc_contig_dump_pages(&cc->migratepages);
9009 putback_movable_pages(&cc->migratepages);
9010 return ret;
9011 }
9012 return 0;
9013 }
9014
9015 /**
9016 * alloc_contig_range() -- tries to allocate given range of pages
9017 * @start: start PFN to allocate
9018 * @end: one-past-the-last PFN to allocate
9019 * @migratetype: migratetype of the underlying pageblocks (either
9020 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9021 * in range must have the same migratetype and it must
9022 * be either of the two.
9023 * @gfp_mask: GFP mask to use during compaction
9024 *
9025 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9026 * aligned. The PFN range must belong to a single zone.
9027 *
9028 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9029 * pageblocks in the range. Once isolated, the pageblocks should not
9030 * be modified by others.
9031 *
9032 * Return: zero on success or negative error code. On success all
9033 * pages which PFN is in [start, end) are allocated for the caller and
9034 * need to be freed with free_contig_range().
9035 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)9036 int alloc_contig_range(unsigned long start, unsigned long end,
9037 unsigned migratetype, gfp_t gfp_mask)
9038 {
9039 unsigned long outer_start, outer_end;
9040 unsigned int order;
9041 int ret = 0;
9042
9043 struct compact_control cc = {
9044 .nr_migratepages = 0,
9045 .order = -1,
9046 .zone = page_zone(pfn_to_page(start)),
9047 .mode = MIGRATE_SYNC,
9048 .ignore_skip_hint = true,
9049 .no_set_skip_hint = true,
9050 .gfp_mask = current_gfp_context(gfp_mask),
9051 .alloc_contig = true,
9052 };
9053 INIT_LIST_HEAD(&cc.migratepages);
9054
9055 /*
9056 * What we do here is we mark all pageblocks in range as
9057 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9058 * have different sizes, and due to the way page allocator
9059 * work, we align the range to biggest of the two pages so
9060 * that page allocator won't try to merge buddies from
9061 * different pageblocks and change MIGRATE_ISOLATE to some
9062 * other migration type.
9063 *
9064 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9065 * migrate the pages from an unaligned range (ie. pages that
9066 * we are interested in). This will put all the pages in
9067 * range back to page allocator as MIGRATE_ISOLATE.
9068 *
9069 * When this is done, we take the pages in range from page
9070 * allocator removing them from the buddy system. This way
9071 * page allocator will never consider using them.
9072 *
9073 * This lets us mark the pageblocks back as
9074 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9075 * aligned range but not in the unaligned, original range are
9076 * put back to page allocator so that buddy can use them.
9077 */
9078
9079 ret = start_isolate_page_range(pfn_max_align_down(start),
9080 pfn_max_align_up(end), migratetype, 0);
9081 if (ret)
9082 return ret;
9083
9084 drain_all_pages(cc.zone);
9085
9086 /*
9087 * In case of -EBUSY, we'd like to know which page causes problem.
9088 * So, just fall through. test_pages_isolated() has a tracepoint
9089 * which will report the busy page.
9090 *
9091 * It is possible that busy pages could become available before
9092 * the call to test_pages_isolated, and the range will actually be
9093 * allocated. So, if we fall through be sure to clear ret so that
9094 * -EBUSY is not accidentally used or returned to caller.
9095 */
9096 ret = __alloc_contig_migrate_range(&cc, start, end);
9097 if (ret && ret != -EBUSY)
9098 goto done;
9099 ret = 0;
9100
9101 /*
9102 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9103 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9104 * more, all pages in [start, end) are free in page allocator.
9105 * What we are going to do is to allocate all pages from
9106 * [start, end) (that is remove them from page allocator).
9107 *
9108 * The only problem is that pages at the beginning and at the
9109 * end of interesting range may be not aligned with pages that
9110 * page allocator holds, ie. they can be part of higher order
9111 * pages. Because of this, we reserve the bigger range and
9112 * once this is done free the pages we are not interested in.
9113 *
9114 * We don't have to hold zone->lock here because the pages are
9115 * isolated thus they won't get removed from buddy.
9116 */
9117
9118 order = 0;
9119 outer_start = start;
9120 while (!PageBuddy(pfn_to_page(outer_start))) {
9121 if (++order >= MAX_ORDER) {
9122 outer_start = start;
9123 break;
9124 }
9125 outer_start &= ~0UL << order;
9126 }
9127
9128 if (outer_start != start) {
9129 order = buddy_order(pfn_to_page(outer_start));
9130
9131 /*
9132 * outer_start page could be small order buddy page and
9133 * it doesn't include start page. Adjust outer_start
9134 * in this case to report failed page properly
9135 * on tracepoint in test_pages_isolated()
9136 */
9137 if (outer_start + (1UL << order) <= start)
9138 outer_start = start;
9139 }
9140
9141 /* Make sure the range is really isolated. */
9142 if (test_pages_isolated(outer_start, end, 0)) {
9143 ret = -EBUSY;
9144 goto done;
9145 }
9146
9147 /* Grab isolated pages from freelists. */
9148 outer_end = isolate_freepages_range(&cc, outer_start, end);
9149 if (!outer_end) {
9150 ret = -EBUSY;
9151 goto done;
9152 }
9153
9154 /* Free head and tail (if any) */
9155 if (start != outer_start)
9156 free_contig_range(outer_start, start - outer_start);
9157 if (end != outer_end)
9158 free_contig_range(end, outer_end - end);
9159
9160 done:
9161 undo_isolate_page_range(pfn_max_align_down(start),
9162 pfn_max_align_up(end), migratetype);
9163 return ret;
9164 }
9165 EXPORT_SYMBOL(alloc_contig_range);
9166
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)9167 static int __alloc_contig_pages(unsigned long start_pfn,
9168 unsigned long nr_pages, gfp_t gfp_mask)
9169 {
9170 unsigned long end_pfn = start_pfn + nr_pages;
9171
9172 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9173 gfp_mask);
9174 }
9175
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)9176 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9177 unsigned long nr_pages)
9178 {
9179 unsigned long i, end_pfn = start_pfn + nr_pages;
9180 struct page *page;
9181
9182 for (i = start_pfn; i < end_pfn; i++) {
9183 page = pfn_to_online_page(i);
9184 if (!page)
9185 return false;
9186
9187 if (page_zone(page) != z)
9188 return false;
9189
9190 if (PageReserved(page))
9191 return false;
9192 }
9193 return true;
9194 }
9195
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)9196 static bool zone_spans_last_pfn(const struct zone *zone,
9197 unsigned long start_pfn, unsigned long nr_pages)
9198 {
9199 unsigned long last_pfn = start_pfn + nr_pages - 1;
9200
9201 return zone_spans_pfn(zone, last_pfn);
9202 }
9203
9204 /**
9205 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9206 * @nr_pages: Number of contiguous pages to allocate
9207 * @gfp_mask: GFP mask to limit search and used during compaction
9208 * @nid: Target node
9209 * @nodemask: Mask for other possible nodes
9210 *
9211 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9212 * on an applicable zonelist to find a contiguous pfn range which can then be
9213 * tried for allocation with alloc_contig_range(). This routine is intended
9214 * for allocation requests which can not be fulfilled with the buddy allocator.
9215 *
9216 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9217 * power of two then the alignment is guaranteed to be to the given nr_pages
9218 * (e.g. 1GB request would be aligned to 1GB).
9219 *
9220 * Allocated pages can be freed with free_contig_range() or by manually calling
9221 * __free_page() on each allocated page.
9222 *
9223 * Return: pointer to contiguous pages on success, or NULL if not successful.
9224 */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)9225 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9226 int nid, nodemask_t *nodemask)
9227 {
9228 unsigned long ret, pfn, flags;
9229 struct zonelist *zonelist;
9230 struct zone *zone;
9231 struct zoneref *z;
9232
9233 zonelist = node_zonelist(nid, gfp_mask);
9234 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9235 gfp_zone(gfp_mask), nodemask) {
9236 spin_lock_irqsave(&zone->lock, flags);
9237
9238 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9239 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9240 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9241 /*
9242 * We release the zone lock here because
9243 * alloc_contig_range() will also lock the zone
9244 * at some point. If there's an allocation
9245 * spinning on this lock, it may win the race
9246 * and cause alloc_contig_range() to fail...
9247 */
9248 spin_unlock_irqrestore(&zone->lock, flags);
9249 ret = __alloc_contig_pages(pfn, nr_pages,
9250 gfp_mask);
9251 if (!ret)
9252 return pfn_to_page(pfn);
9253 spin_lock_irqsave(&zone->lock, flags);
9254 }
9255 pfn += nr_pages;
9256 }
9257 spin_unlock_irqrestore(&zone->lock, flags);
9258 }
9259 return NULL;
9260 }
9261 #endif /* CONFIG_CONTIG_ALLOC */
9262
free_contig_range(unsigned long pfn,unsigned long nr_pages)9263 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9264 {
9265 unsigned long count = 0;
9266
9267 for (; nr_pages--; pfn++) {
9268 struct page *page = pfn_to_page(pfn);
9269
9270 count += page_count(page) != 1;
9271 __free_page(page);
9272 }
9273 WARN(count != 0, "%lu pages are still in use!\n", count);
9274 }
9275 EXPORT_SYMBOL(free_contig_range);
9276
9277 /*
9278 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9279 * page high values need to be recalculated.
9280 */
zone_pcp_update(struct zone * zone,int cpu_online)9281 void zone_pcp_update(struct zone *zone, int cpu_online)
9282 {
9283 mutex_lock(&pcp_batch_high_lock);
9284 zone_set_pageset_high_and_batch(zone, cpu_online);
9285 mutex_unlock(&pcp_batch_high_lock);
9286 }
9287
9288 /*
9289 * Effectively disable pcplists for the zone by setting the high limit to 0
9290 * and draining all cpus. A concurrent page freeing on another CPU that's about
9291 * to put the page on pcplist will either finish before the drain and the page
9292 * will be drained, or observe the new high limit and skip the pcplist.
9293 *
9294 * Must be paired with a call to zone_pcp_enable().
9295 */
zone_pcp_disable(struct zone * zone)9296 void zone_pcp_disable(struct zone *zone)
9297 {
9298 mutex_lock(&pcp_batch_high_lock);
9299 __zone_set_pageset_high_and_batch(zone, 0, 1);
9300 __drain_all_pages(zone, true);
9301 }
9302
zone_pcp_enable(struct zone * zone)9303 void zone_pcp_enable(struct zone *zone)
9304 {
9305 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9306 mutex_unlock(&pcp_batch_high_lock);
9307 }
9308
zone_pcp_reset(struct zone * zone)9309 void zone_pcp_reset(struct zone *zone)
9310 {
9311 int cpu;
9312 struct per_cpu_zonestat *pzstats;
9313
9314 if (zone->per_cpu_pageset != &boot_pageset) {
9315 for_each_online_cpu(cpu) {
9316 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9317 drain_zonestat(zone, pzstats);
9318 }
9319 free_percpu(zone->per_cpu_pageset);
9320 free_percpu(zone->per_cpu_zonestats);
9321 zone->per_cpu_pageset = &boot_pageset;
9322 zone->per_cpu_zonestats = &boot_zonestats;
9323 }
9324 }
9325
9326 #ifdef CONFIG_MEMORY_HOTREMOVE
9327 /*
9328 * All pages in the range must be in a single zone, must not contain holes,
9329 * must span full sections, and must be isolated before calling this function.
9330 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)9331 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9332 {
9333 unsigned long pfn = start_pfn;
9334 struct page *page;
9335 struct zone *zone;
9336 unsigned int order;
9337 unsigned long flags;
9338
9339 offline_mem_sections(pfn, end_pfn);
9340 zone = page_zone(pfn_to_page(pfn));
9341 spin_lock_irqsave(&zone->lock, flags);
9342 while (pfn < end_pfn) {
9343 page = pfn_to_page(pfn);
9344 /*
9345 * The HWPoisoned page may be not in buddy system, and
9346 * page_count() is not 0.
9347 */
9348 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9349 pfn++;
9350 continue;
9351 }
9352 /*
9353 * At this point all remaining PageOffline() pages have a
9354 * reference count of 0 and can simply be skipped.
9355 */
9356 if (PageOffline(page)) {
9357 BUG_ON(page_count(page));
9358 BUG_ON(PageBuddy(page));
9359 pfn++;
9360 continue;
9361 }
9362
9363 BUG_ON(page_count(page));
9364 BUG_ON(!PageBuddy(page));
9365 order = buddy_order(page);
9366 del_page_from_free_list(page, zone, order);
9367 pfn += (1 << order);
9368 }
9369 spin_unlock_irqrestore(&zone->lock, flags);
9370 }
9371 #endif
9372
9373 /*
9374 * This function returns a stable result only if called under zone lock.
9375 */
is_free_buddy_page(struct page * page)9376 bool is_free_buddy_page(struct page *page)
9377 {
9378 unsigned long pfn = page_to_pfn(page);
9379 unsigned int order;
9380
9381 for (order = 0; order < MAX_ORDER; order++) {
9382 struct page *page_head = page - (pfn & ((1 << order) - 1));
9383
9384 if (PageBuddy(page_head) &&
9385 buddy_order_unsafe(page_head) >= order)
9386 break;
9387 }
9388
9389 return order < MAX_ORDER;
9390 }
9391
9392 #ifdef CONFIG_MEMORY_FAILURE
9393 /*
9394 * Break down a higher-order page in sub-pages, and keep our target out of
9395 * buddy allocator.
9396 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)9397 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9398 struct page *target, int low, int high,
9399 int migratetype)
9400 {
9401 unsigned long size = 1 << high;
9402 struct page *current_buddy, *next_page;
9403
9404 while (high > low) {
9405 high--;
9406 size >>= 1;
9407
9408 if (target >= &page[size]) {
9409 next_page = page + size;
9410 current_buddy = page;
9411 } else {
9412 next_page = page;
9413 current_buddy = page + size;
9414 }
9415
9416 if (set_page_guard(zone, current_buddy, high, migratetype))
9417 continue;
9418
9419 if (current_buddy != target) {
9420 add_to_free_list(current_buddy, zone, high, migratetype);
9421 set_buddy_order(current_buddy, high);
9422 page = next_page;
9423 }
9424 }
9425 }
9426
9427 /*
9428 * Take a page that will be marked as poisoned off the buddy allocator.
9429 */
take_page_off_buddy(struct page * page)9430 bool take_page_off_buddy(struct page *page)
9431 {
9432 struct zone *zone = page_zone(page);
9433 unsigned long pfn = page_to_pfn(page);
9434 unsigned long flags;
9435 unsigned int order;
9436 bool ret = false;
9437
9438 spin_lock_irqsave(&zone->lock, flags);
9439 for (order = 0; order < MAX_ORDER; order++) {
9440 struct page *page_head = page - (pfn & ((1 << order) - 1));
9441 int page_order = buddy_order(page_head);
9442
9443 if (PageBuddy(page_head) && page_order >= order) {
9444 unsigned long pfn_head = page_to_pfn(page_head);
9445 int migratetype = get_pfnblock_migratetype(page_head,
9446 pfn_head);
9447
9448 del_page_from_free_list(page_head, zone, page_order);
9449 break_down_buddy_pages(zone, page_head, page, 0,
9450 page_order, migratetype);
9451 if (!is_migrate_isolate(migratetype))
9452 __mod_zone_freepage_state(zone, -1, migratetype);
9453 ret = true;
9454 break;
9455 }
9456 if (page_count(page_head) > 0)
9457 break;
9458 }
9459 spin_unlock_irqrestore(&zone->lock, flags);
9460 return ret;
9461 }
9462 #endif
9463