1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
4 *
5 * Scatterlist handling helpers.
6 */
7 #include <linux/export.h>
8 #include <linux/slab.h>
9 #include <linux/scatterlist.h>
10 #include <linux/highmem.h>
11 #include <linux/kmemleak.h>
12
13 /**
14 * sg_next - return the next scatterlist entry in a list
15 * @sg: The current sg entry
16 *
17 * Description:
18 * Usually the next entry will be @sg@ + 1, but if this sg element is part
19 * of a chained scatterlist, it could jump to the start of a new
20 * scatterlist array.
21 *
22 **/
sg_next(struct scatterlist * sg)23 struct scatterlist *sg_next(struct scatterlist *sg)
24 {
25 if (sg_is_last(sg))
26 return NULL;
27
28 sg++;
29 if (unlikely(sg_is_chain(sg)))
30 sg = sg_chain_ptr(sg);
31
32 return sg;
33 }
34 EXPORT_SYMBOL(sg_next);
35
36 /**
37 * sg_nents - return total count of entries in scatterlist
38 * @sg: The scatterlist
39 *
40 * Description:
41 * Allows to know how many entries are in sg, taking into account
42 * chaining as well
43 *
44 **/
sg_nents(struct scatterlist * sg)45 int sg_nents(struct scatterlist *sg)
46 {
47 int nents;
48 for (nents = 0; sg; sg = sg_next(sg))
49 nents++;
50 return nents;
51 }
52 EXPORT_SYMBOL(sg_nents);
53
54 /**
55 * sg_nents_for_len - return total count of entries in scatterlist
56 * needed to satisfy the supplied length
57 * @sg: The scatterlist
58 * @len: The total required length
59 *
60 * Description:
61 * Determines the number of entries in sg that are required to meet
62 * the supplied length, taking into account chaining as well
63 *
64 * Returns:
65 * the number of sg entries needed, negative error on failure
66 *
67 **/
sg_nents_for_len(struct scatterlist * sg,u64 len)68 int sg_nents_for_len(struct scatterlist *sg, u64 len)
69 {
70 int nents;
71 u64 total;
72
73 if (!len)
74 return 0;
75
76 for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
77 nents++;
78 total += sg->length;
79 if (total >= len)
80 return nents;
81 }
82
83 return -EINVAL;
84 }
85 EXPORT_SYMBOL(sg_nents_for_len);
86
87 /**
88 * sg_last - return the last scatterlist entry in a list
89 * @sgl: First entry in the scatterlist
90 * @nents: Number of entries in the scatterlist
91 *
92 * Description:
93 * Should only be used casually, it (currently) scans the entire list
94 * to get the last entry.
95 *
96 * Note that the @sgl@ pointer passed in need not be the first one,
97 * the important bit is that @nents@ denotes the number of entries that
98 * exist from @sgl@.
99 *
100 **/
sg_last(struct scatterlist * sgl,unsigned int nents)101 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
102 {
103 struct scatterlist *sg, *ret = NULL;
104 unsigned int i;
105
106 for_each_sg(sgl, sg, nents, i)
107 ret = sg;
108
109 BUG_ON(!sg_is_last(ret));
110 return ret;
111 }
112 EXPORT_SYMBOL(sg_last);
113
114 /**
115 * sg_init_table - Initialize SG table
116 * @sgl: The SG table
117 * @nents: Number of entries in table
118 *
119 * Notes:
120 * If this is part of a chained sg table, sg_mark_end() should be
121 * used only on the last table part.
122 *
123 **/
sg_init_table(struct scatterlist * sgl,unsigned int nents)124 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
125 {
126 memset(sgl, 0, sizeof(*sgl) * nents);
127 sg_init_marker(sgl, nents);
128 }
129 EXPORT_SYMBOL(sg_init_table);
130
131 /**
132 * sg_init_one - Initialize a single entry sg list
133 * @sg: SG entry
134 * @buf: Virtual address for IO
135 * @buflen: IO length
136 *
137 **/
sg_init_one(struct scatterlist * sg,const void * buf,unsigned int buflen)138 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
139 {
140 sg_init_table(sg, 1);
141 sg_set_buf(sg, buf, buflen);
142 }
143 EXPORT_SYMBOL(sg_init_one);
144
145 /*
146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
147 * helpers.
148 */
sg_kmalloc(unsigned int nents,gfp_t gfp_mask)149 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
150 {
151 if (nents == SG_MAX_SINGLE_ALLOC) {
152 /*
153 * Kmemleak doesn't track page allocations as they are not
154 * commonly used (in a raw form) for kernel data structures.
155 * As we chain together a list of pages and then a normal
156 * kmalloc (tracked by kmemleak), in order to for that last
157 * allocation not to become decoupled (and thus a
158 * false-positive) we need to inform kmemleak of all the
159 * intermediate allocations.
160 */
161 void *ptr = (void *) __get_free_page(gfp_mask);
162 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
163 return ptr;
164 } else
165 return kmalloc_array(nents, sizeof(struct scatterlist),
166 gfp_mask);
167 }
168
sg_kfree(struct scatterlist * sg,unsigned int nents)169 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
170 {
171 if (nents == SG_MAX_SINGLE_ALLOC) {
172 kmemleak_free(sg);
173 free_page((unsigned long) sg);
174 } else
175 kfree(sg);
176 }
177
178 /**
179 * __sg_free_table - Free a previously mapped sg table
180 * @table: The sg table header to use
181 * @max_ents: The maximum number of entries per single scatterlist
182 * @nents_first_chunk: Number of entries int the (preallocated) first
183 * scatterlist chunk, 0 means no such preallocated first chunk
184 * @free_fn: Free function
185 * @num_ents: Number of entries in the table
186 *
187 * Description:
188 * Free an sg table previously allocated and setup with
189 * __sg_alloc_table(). The @max_ents value must be identical to
190 * that previously used with __sg_alloc_table().
191 *
192 **/
__sg_free_table(struct sg_table * table,unsigned int max_ents,unsigned int nents_first_chunk,sg_free_fn * free_fn,unsigned int num_ents)193 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
194 unsigned int nents_first_chunk, sg_free_fn *free_fn,
195 unsigned int num_ents)
196 {
197 struct scatterlist *sgl, *next;
198 unsigned curr_max_ents = nents_first_chunk ?: max_ents;
199
200 if (unlikely(!table->sgl))
201 return;
202
203 sgl = table->sgl;
204 while (num_ents) {
205 unsigned int alloc_size = num_ents;
206 unsigned int sg_size;
207
208 /*
209 * If we have more than max_ents segments left,
210 * then assign 'next' to the sg table after the current one.
211 * sg_size is then one less than alloc size, since the last
212 * element is the chain pointer.
213 */
214 if (alloc_size > curr_max_ents) {
215 next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
216 alloc_size = curr_max_ents;
217 sg_size = alloc_size - 1;
218 } else {
219 sg_size = alloc_size;
220 next = NULL;
221 }
222
223 num_ents -= sg_size;
224 if (nents_first_chunk)
225 nents_first_chunk = 0;
226 else
227 free_fn(sgl, alloc_size);
228 sgl = next;
229 curr_max_ents = max_ents;
230 }
231
232 table->sgl = NULL;
233 }
234 EXPORT_SYMBOL(__sg_free_table);
235
236 /**
237 * sg_free_append_table - Free a previously allocated append sg table.
238 * @table: The mapped sg append table header
239 *
240 **/
sg_free_append_table(struct sg_append_table * table)241 void sg_free_append_table(struct sg_append_table *table)
242 {
243 __sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, false, sg_kfree,
244 table->total_nents);
245 }
246 EXPORT_SYMBOL(sg_free_append_table);
247
248
249 /**
250 * sg_free_table - Free a previously allocated sg table
251 * @table: The mapped sg table header
252 *
253 **/
sg_free_table(struct sg_table * table)254 void sg_free_table(struct sg_table *table)
255 {
256 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree,
257 table->orig_nents);
258 }
259 EXPORT_SYMBOL(sg_free_table);
260
261 /**
262 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
263 * @table: The sg table header to use
264 * @nents: Number of entries in sg list
265 * @max_ents: The maximum number of entries the allocator returns per call
266 * @nents_first_chunk: Number of entries int the (preallocated) first
267 * scatterlist chunk, 0 means no such preallocated chunk provided by user
268 * @gfp_mask: GFP allocation mask
269 * @alloc_fn: Allocator to use
270 *
271 * Description:
272 * This function returns a @table @nents long. The allocator is
273 * defined to return scatterlist chunks of maximum size @max_ents.
274 * Thus if @nents is bigger than @max_ents, the scatterlists will be
275 * chained in units of @max_ents.
276 *
277 * Notes:
278 * If this function returns non-0 (eg failure), the caller must call
279 * __sg_free_table() to cleanup any leftover allocations.
280 *
281 **/
__sg_alloc_table(struct sg_table * table,unsigned int nents,unsigned int max_ents,struct scatterlist * first_chunk,unsigned int nents_first_chunk,gfp_t gfp_mask,sg_alloc_fn * alloc_fn)282 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
283 unsigned int max_ents, struct scatterlist *first_chunk,
284 unsigned int nents_first_chunk, gfp_t gfp_mask,
285 sg_alloc_fn *alloc_fn)
286 {
287 struct scatterlist *sg, *prv;
288 unsigned int left;
289 unsigned curr_max_ents = nents_first_chunk ?: max_ents;
290 unsigned prv_max_ents;
291
292 memset(table, 0, sizeof(*table));
293
294 if (nents == 0)
295 return -EINVAL;
296 #ifdef CONFIG_ARCH_NO_SG_CHAIN
297 if (WARN_ON_ONCE(nents > max_ents))
298 return -EINVAL;
299 #endif
300
301 left = nents;
302 prv = NULL;
303 do {
304 unsigned int sg_size, alloc_size = left;
305
306 if (alloc_size > curr_max_ents) {
307 alloc_size = curr_max_ents;
308 sg_size = alloc_size - 1;
309 } else
310 sg_size = alloc_size;
311
312 left -= sg_size;
313
314 if (first_chunk) {
315 sg = first_chunk;
316 first_chunk = NULL;
317 } else {
318 sg = alloc_fn(alloc_size, gfp_mask);
319 }
320 if (unlikely(!sg)) {
321 /*
322 * Adjust entry count to reflect that the last
323 * entry of the previous table won't be used for
324 * linkage. Without this, sg_kfree() may get
325 * confused.
326 */
327 if (prv)
328 table->nents = ++table->orig_nents;
329
330 return -ENOMEM;
331 }
332
333 sg_init_table(sg, alloc_size);
334 table->nents = table->orig_nents += sg_size;
335
336 /*
337 * If this is the first mapping, assign the sg table header.
338 * If this is not the first mapping, chain previous part.
339 */
340 if (prv)
341 sg_chain(prv, prv_max_ents, sg);
342 else
343 table->sgl = sg;
344
345 /*
346 * If no more entries after this one, mark the end
347 */
348 if (!left)
349 sg_mark_end(&sg[sg_size - 1]);
350
351 prv = sg;
352 prv_max_ents = curr_max_ents;
353 curr_max_ents = max_ents;
354 } while (left);
355
356 return 0;
357 }
358 EXPORT_SYMBOL(__sg_alloc_table);
359
360 /**
361 * sg_alloc_table - Allocate and initialize an sg table
362 * @table: The sg table header to use
363 * @nents: Number of entries in sg list
364 * @gfp_mask: GFP allocation mask
365 *
366 * Description:
367 * Allocate and initialize an sg table. If @nents@ is larger than
368 * SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
369 *
370 **/
sg_alloc_table(struct sg_table * table,unsigned int nents,gfp_t gfp_mask)371 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
372 {
373 int ret;
374
375 ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
376 NULL, 0, gfp_mask, sg_kmalloc);
377 if (unlikely(ret))
378 sg_free_table(table);
379 return ret;
380 }
381 EXPORT_SYMBOL(sg_alloc_table);
382
get_next_sg(struct sg_append_table * table,struct scatterlist * cur,unsigned long needed_sges,gfp_t gfp_mask)383 static struct scatterlist *get_next_sg(struct sg_append_table *table,
384 struct scatterlist *cur,
385 unsigned long needed_sges,
386 gfp_t gfp_mask)
387 {
388 struct scatterlist *new_sg, *next_sg;
389 unsigned int alloc_size;
390
391 if (cur) {
392 next_sg = sg_next(cur);
393 /* Check if last entry should be keeped for chainning */
394 if (!sg_is_last(next_sg) || needed_sges == 1)
395 return next_sg;
396 }
397
398 alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
399 new_sg = sg_kmalloc(alloc_size, gfp_mask);
400 if (!new_sg)
401 return ERR_PTR(-ENOMEM);
402 sg_init_table(new_sg, alloc_size);
403 if (cur) {
404 table->total_nents += alloc_size - 1;
405 __sg_chain(next_sg, new_sg);
406 } else {
407 table->sgt.sgl = new_sg;
408 table->total_nents = alloc_size;
409 }
410 return new_sg;
411 }
412
413 /**
414 * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
415 * table from an array of pages
416 * @sgt_append: The sg append table to use
417 * @pages: Pointer to an array of page pointers
418 * @n_pages: Number of pages in the pages array
419 * @offset: Offset from start of the first page to the start of a buffer
420 * @size: Number of valid bytes in the buffer (after offset)
421 * @max_segment: Maximum size of a scatterlist element in bytes
422 * @left_pages: Left pages caller have to set after this call
423 * @gfp_mask: GFP allocation mask
424 *
425 * Description:
426 * In the first call it allocate and initialize an sg table from a list of
427 * pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
428 * the pages are squashed into a single scatterlist entry up to the maximum
429 * size specified in @max_segment. A user may provide an offset at a start
430 * and a size of valid data in a buffer specified by the page array. The
431 * returned sg table is released by sg_free_append_table
432 *
433 * Returns:
434 * 0 on success, negative error on failure
435 *
436 * Notes:
437 * If this function returns non-0 (eg failure), the caller must call
438 * sg_free_append_table() to cleanup any leftover allocations.
439 *
440 * In the fist call, sgt_append must by initialized.
441 */
sg_alloc_append_table_from_pages(struct sg_append_table * sgt_append,struct page ** pages,unsigned int n_pages,unsigned int offset,unsigned long size,unsigned int max_segment,unsigned int left_pages,gfp_t gfp_mask)442 int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
443 struct page **pages, unsigned int n_pages, unsigned int offset,
444 unsigned long size, unsigned int max_segment,
445 unsigned int left_pages, gfp_t gfp_mask)
446 {
447 unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
448 unsigned int added_nents = 0;
449 struct scatterlist *s = sgt_append->prv;
450
451 /*
452 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
453 * otherwise it can overshoot.
454 */
455 max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
456 if (WARN_ON(max_segment < PAGE_SIZE))
457 return -EINVAL;
458
459 if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
460 return -EOPNOTSUPP;
461
462 if (sgt_append->prv) {
463 unsigned long paddr =
464 (page_to_pfn(sg_page(sgt_append->prv)) * PAGE_SIZE +
465 sgt_append->prv->offset + sgt_append->prv->length) /
466 PAGE_SIZE;
467
468 if (WARN_ON(offset))
469 return -EINVAL;
470
471 /* Merge contiguous pages into the last SG */
472 prv_len = sgt_append->prv->length;
473 while (n_pages && page_to_pfn(pages[0]) == paddr) {
474 if (sgt_append->prv->length + PAGE_SIZE > max_segment)
475 break;
476 sgt_append->prv->length += PAGE_SIZE;
477 paddr++;
478 pages++;
479 n_pages--;
480 }
481 if (!n_pages)
482 goto out;
483 }
484
485 /* compute number of contiguous chunks */
486 chunks = 1;
487 seg_len = 0;
488 for (i = 1; i < n_pages; i++) {
489 seg_len += PAGE_SIZE;
490 if (seg_len >= max_segment ||
491 page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
492 chunks++;
493 seg_len = 0;
494 }
495 }
496
497 /* merging chunks and putting them into the scatterlist */
498 cur_page = 0;
499 for (i = 0; i < chunks; i++) {
500 unsigned int j, chunk_size;
501
502 /* look for the end of the current chunk */
503 seg_len = 0;
504 for (j = cur_page + 1; j < n_pages; j++) {
505 seg_len += PAGE_SIZE;
506 if (seg_len >= max_segment ||
507 page_to_pfn(pages[j]) !=
508 page_to_pfn(pages[j - 1]) + 1)
509 break;
510 }
511
512 /* Pass how many chunks might be left */
513 s = get_next_sg(sgt_append, s, chunks - i + left_pages,
514 gfp_mask);
515 if (IS_ERR(s)) {
516 /*
517 * Adjust entry length to be as before function was
518 * called.
519 */
520 if (sgt_append->prv)
521 sgt_append->prv->length = prv_len;
522 return PTR_ERR(s);
523 }
524 chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
525 sg_set_page(s, pages[cur_page],
526 min_t(unsigned long, size, chunk_size), offset);
527 added_nents++;
528 size -= chunk_size;
529 offset = 0;
530 cur_page = j;
531 }
532 sgt_append->sgt.nents += added_nents;
533 sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
534 sgt_append->prv = s;
535 out:
536 if (!left_pages)
537 sg_mark_end(s);
538 return 0;
539 }
540 EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
541
542 /**
543 * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
544 * an array of pages and given maximum
545 * segment.
546 * @sgt: The sg table header to use
547 * @pages: Pointer to an array of page pointers
548 * @n_pages: Number of pages in the pages array
549 * @offset: Offset from start of the first page to the start of a buffer
550 * @size: Number of valid bytes in the buffer (after offset)
551 * @max_segment: Maximum size of a scatterlist element in bytes
552 * @gfp_mask: GFP allocation mask
553 *
554 * Description:
555 * Allocate and initialize an sg table from a list of pages. Contiguous
556 * ranges of the pages are squashed into a single scatterlist node up to the
557 * maximum size specified in @max_segment. A user may provide an offset at a
558 * start and a size of valid data in a buffer specified by the page array.
559 *
560 * The returned sg table is released by sg_free_table.
561 *
562 * Returns:
563 * 0 on success, negative error on failure
564 */
sg_alloc_table_from_pages_segment(struct sg_table * sgt,struct page ** pages,unsigned int n_pages,unsigned int offset,unsigned long size,unsigned int max_segment,gfp_t gfp_mask)565 int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
566 unsigned int n_pages, unsigned int offset,
567 unsigned long size, unsigned int max_segment,
568 gfp_t gfp_mask)
569 {
570 struct sg_append_table append = {};
571 int err;
572
573 err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
574 size, max_segment, 0, gfp_mask);
575 if (err) {
576 sg_free_append_table(&append);
577 return err;
578 }
579 memcpy(sgt, &append.sgt, sizeof(*sgt));
580 WARN_ON(append.total_nents != sgt->orig_nents);
581 return 0;
582 }
583 EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
584
585 #ifdef CONFIG_SGL_ALLOC
586
587 /**
588 * sgl_alloc_order - allocate a scatterlist and its pages
589 * @length: Length in bytes of the scatterlist. Must be at least one
590 * @order: Second argument for alloc_pages()
591 * @chainable: Whether or not to allocate an extra element in the scatterlist
592 * for scatterlist chaining purposes
593 * @gfp: Memory allocation flags
594 * @nent_p: [out] Number of entries in the scatterlist that have pages
595 *
596 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
597 */
sgl_alloc_order(unsigned long long length,unsigned int order,bool chainable,gfp_t gfp,unsigned int * nent_p)598 struct scatterlist *sgl_alloc_order(unsigned long long length,
599 unsigned int order, bool chainable,
600 gfp_t gfp, unsigned int *nent_p)
601 {
602 struct scatterlist *sgl, *sg;
603 struct page *page;
604 unsigned int nent, nalloc;
605 u32 elem_len;
606
607 nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
608 /* Check for integer overflow */
609 if (length > (nent << (PAGE_SHIFT + order)))
610 return NULL;
611 nalloc = nent;
612 if (chainable) {
613 /* Check for integer overflow */
614 if (nalloc + 1 < nalloc)
615 return NULL;
616 nalloc++;
617 }
618 sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
619 gfp & ~GFP_DMA);
620 if (!sgl)
621 return NULL;
622
623 sg_init_table(sgl, nalloc);
624 sg = sgl;
625 while (length) {
626 elem_len = min_t(u64, length, PAGE_SIZE << order);
627 page = alloc_pages(gfp, order);
628 if (!page) {
629 sgl_free_order(sgl, order);
630 return NULL;
631 }
632
633 sg_set_page(sg, page, elem_len, 0);
634 length -= elem_len;
635 sg = sg_next(sg);
636 }
637 WARN_ONCE(length, "length = %lld\n", length);
638 if (nent_p)
639 *nent_p = nent;
640 return sgl;
641 }
642 EXPORT_SYMBOL(sgl_alloc_order);
643
644 /**
645 * sgl_alloc - allocate a scatterlist and its pages
646 * @length: Length in bytes of the scatterlist
647 * @gfp: Memory allocation flags
648 * @nent_p: [out] Number of entries in the scatterlist
649 *
650 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
651 */
sgl_alloc(unsigned long long length,gfp_t gfp,unsigned int * nent_p)652 struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
653 unsigned int *nent_p)
654 {
655 return sgl_alloc_order(length, 0, false, gfp, nent_p);
656 }
657 EXPORT_SYMBOL(sgl_alloc);
658
659 /**
660 * sgl_free_n_order - free a scatterlist and its pages
661 * @sgl: Scatterlist with one or more elements
662 * @nents: Maximum number of elements to free
663 * @order: Second argument for __free_pages()
664 *
665 * Notes:
666 * - If several scatterlists have been chained and each chain element is
667 * freed separately then it's essential to set nents correctly to avoid that a
668 * page would get freed twice.
669 * - All pages in a chained scatterlist can be freed at once by setting @nents
670 * to a high number.
671 */
sgl_free_n_order(struct scatterlist * sgl,int nents,int order)672 void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
673 {
674 struct scatterlist *sg;
675 struct page *page;
676 int i;
677
678 for_each_sg(sgl, sg, nents, i) {
679 if (!sg)
680 break;
681 page = sg_page(sg);
682 if (page)
683 __free_pages(page, order);
684 }
685 kfree(sgl);
686 }
687 EXPORT_SYMBOL(sgl_free_n_order);
688
689 /**
690 * sgl_free_order - free a scatterlist and its pages
691 * @sgl: Scatterlist with one or more elements
692 * @order: Second argument for __free_pages()
693 */
sgl_free_order(struct scatterlist * sgl,int order)694 void sgl_free_order(struct scatterlist *sgl, int order)
695 {
696 sgl_free_n_order(sgl, INT_MAX, order);
697 }
698 EXPORT_SYMBOL(sgl_free_order);
699
700 /**
701 * sgl_free - free a scatterlist and its pages
702 * @sgl: Scatterlist with one or more elements
703 */
sgl_free(struct scatterlist * sgl)704 void sgl_free(struct scatterlist *sgl)
705 {
706 sgl_free_order(sgl, 0);
707 }
708 EXPORT_SYMBOL(sgl_free);
709
710 #endif /* CONFIG_SGL_ALLOC */
711
__sg_page_iter_start(struct sg_page_iter * piter,struct scatterlist * sglist,unsigned int nents,unsigned long pgoffset)712 void __sg_page_iter_start(struct sg_page_iter *piter,
713 struct scatterlist *sglist, unsigned int nents,
714 unsigned long pgoffset)
715 {
716 piter->__pg_advance = 0;
717 piter->__nents = nents;
718
719 piter->sg = sglist;
720 piter->sg_pgoffset = pgoffset;
721 }
722 EXPORT_SYMBOL(__sg_page_iter_start);
723
sg_page_count(struct scatterlist * sg)724 static int sg_page_count(struct scatterlist *sg)
725 {
726 return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
727 }
728
__sg_page_iter_next(struct sg_page_iter * piter)729 bool __sg_page_iter_next(struct sg_page_iter *piter)
730 {
731 if (!piter->__nents || !piter->sg)
732 return false;
733
734 piter->sg_pgoffset += piter->__pg_advance;
735 piter->__pg_advance = 1;
736
737 while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
738 piter->sg_pgoffset -= sg_page_count(piter->sg);
739 piter->sg = sg_next(piter->sg);
740 if (!--piter->__nents || !piter->sg)
741 return false;
742 }
743
744 return true;
745 }
746 EXPORT_SYMBOL(__sg_page_iter_next);
747
sg_dma_page_count(struct scatterlist * sg)748 static int sg_dma_page_count(struct scatterlist *sg)
749 {
750 return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
751 }
752
__sg_page_iter_dma_next(struct sg_dma_page_iter * dma_iter)753 bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
754 {
755 struct sg_page_iter *piter = &dma_iter->base;
756
757 if (!piter->__nents || !piter->sg)
758 return false;
759
760 piter->sg_pgoffset += piter->__pg_advance;
761 piter->__pg_advance = 1;
762
763 while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
764 piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
765 piter->sg = sg_next(piter->sg);
766 if (!--piter->__nents || !piter->sg)
767 return false;
768 }
769
770 return true;
771 }
772 EXPORT_SYMBOL(__sg_page_iter_dma_next);
773
774 /**
775 * sg_miter_start - start mapping iteration over a sg list
776 * @miter: sg mapping iter to be started
777 * @sgl: sg list to iterate over
778 * @nents: number of sg entries
779 *
780 * Description:
781 * Starts mapping iterator @miter.
782 *
783 * Context:
784 * Don't care.
785 */
sg_miter_start(struct sg_mapping_iter * miter,struct scatterlist * sgl,unsigned int nents,unsigned int flags)786 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
787 unsigned int nents, unsigned int flags)
788 {
789 memset(miter, 0, sizeof(struct sg_mapping_iter));
790
791 __sg_page_iter_start(&miter->piter, sgl, nents, 0);
792 WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
793 miter->__flags = flags;
794 }
795 EXPORT_SYMBOL(sg_miter_start);
796
sg_miter_get_next_page(struct sg_mapping_iter * miter)797 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
798 {
799 if (!miter->__remaining) {
800 struct scatterlist *sg;
801
802 if (!__sg_page_iter_next(&miter->piter))
803 return false;
804
805 sg = miter->piter.sg;
806
807 miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
808 miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
809 miter->__offset &= PAGE_SIZE - 1;
810 miter->__remaining = sg->offset + sg->length -
811 (miter->piter.sg_pgoffset << PAGE_SHIFT) -
812 miter->__offset;
813 miter->__remaining = min_t(unsigned long, miter->__remaining,
814 PAGE_SIZE - miter->__offset);
815 }
816
817 return true;
818 }
819
820 /**
821 * sg_miter_skip - reposition mapping iterator
822 * @miter: sg mapping iter to be skipped
823 * @offset: number of bytes to plus the current location
824 *
825 * Description:
826 * Sets the offset of @miter to its current location plus @offset bytes.
827 * If mapping iterator @miter has been proceeded by sg_miter_next(), this
828 * stops @miter.
829 *
830 * Context:
831 * Don't care.
832 *
833 * Returns:
834 * true if @miter contains the valid mapping. false if end of sg
835 * list is reached.
836 */
sg_miter_skip(struct sg_mapping_iter * miter,off_t offset)837 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
838 {
839 sg_miter_stop(miter);
840
841 while (offset) {
842 off_t consumed;
843
844 if (!sg_miter_get_next_page(miter))
845 return false;
846
847 consumed = min_t(off_t, offset, miter->__remaining);
848 miter->__offset += consumed;
849 miter->__remaining -= consumed;
850 offset -= consumed;
851 }
852
853 return true;
854 }
855 EXPORT_SYMBOL(sg_miter_skip);
856
857 /**
858 * sg_miter_next - proceed mapping iterator to the next mapping
859 * @miter: sg mapping iter to proceed
860 *
861 * Description:
862 * Proceeds @miter to the next mapping. @miter should have been started
863 * using sg_miter_start(). On successful return, @miter->page,
864 * @miter->addr and @miter->length point to the current mapping.
865 *
866 * Context:
867 * May sleep if !SG_MITER_ATOMIC.
868 *
869 * Returns:
870 * true if @miter contains the next mapping. false if end of sg
871 * list is reached.
872 */
sg_miter_next(struct sg_mapping_iter * miter)873 bool sg_miter_next(struct sg_mapping_iter *miter)
874 {
875 sg_miter_stop(miter);
876
877 /*
878 * Get to the next page if necessary.
879 * __remaining, __offset is adjusted by sg_miter_stop
880 */
881 if (!sg_miter_get_next_page(miter))
882 return false;
883
884 miter->page = sg_page_iter_page(&miter->piter);
885 miter->consumed = miter->length = miter->__remaining;
886
887 if (miter->__flags & SG_MITER_ATOMIC)
888 miter->addr = kmap_atomic(miter->page) + miter->__offset;
889 else
890 miter->addr = kmap(miter->page) + miter->__offset;
891
892 return true;
893 }
894 EXPORT_SYMBOL(sg_miter_next);
895
896 /**
897 * sg_miter_stop - stop mapping iteration
898 * @miter: sg mapping iter to be stopped
899 *
900 * Description:
901 * Stops mapping iterator @miter. @miter should have been started
902 * using sg_miter_start(). A stopped iteration can be resumed by
903 * calling sg_miter_next() on it. This is useful when resources (kmap)
904 * need to be released during iteration.
905 *
906 * Context:
907 * Don't care otherwise.
908 */
sg_miter_stop(struct sg_mapping_iter * miter)909 void sg_miter_stop(struct sg_mapping_iter *miter)
910 {
911 WARN_ON(miter->consumed > miter->length);
912
913 /* drop resources from the last iteration */
914 if (miter->addr) {
915 miter->__offset += miter->consumed;
916 miter->__remaining -= miter->consumed;
917
918 if (miter->__flags & SG_MITER_TO_SG)
919 flush_dcache_page(miter->page);
920
921 if (miter->__flags & SG_MITER_ATOMIC) {
922 WARN_ON_ONCE(!pagefault_disabled());
923 kunmap_atomic(miter->addr);
924 } else
925 kunmap(miter->page);
926
927 miter->page = NULL;
928 miter->addr = NULL;
929 miter->length = 0;
930 miter->consumed = 0;
931 }
932 }
933 EXPORT_SYMBOL(sg_miter_stop);
934
935 /**
936 * sg_copy_buffer - Copy data between a linear buffer and an SG list
937 * @sgl: The SG list
938 * @nents: Number of SG entries
939 * @buf: Where to copy from
940 * @buflen: The number of bytes to copy
941 * @skip: Number of bytes to skip before copying
942 * @to_buffer: transfer direction (true == from an sg list to a
943 * buffer, false == from a buffer to an sg list)
944 *
945 * Returns the number of copied bytes.
946 *
947 **/
sg_copy_buffer(struct scatterlist * sgl,unsigned int nents,void * buf,size_t buflen,off_t skip,bool to_buffer)948 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
949 size_t buflen, off_t skip, bool to_buffer)
950 {
951 unsigned int offset = 0;
952 struct sg_mapping_iter miter;
953 unsigned int sg_flags = SG_MITER_ATOMIC;
954
955 if (to_buffer)
956 sg_flags |= SG_MITER_FROM_SG;
957 else
958 sg_flags |= SG_MITER_TO_SG;
959
960 sg_miter_start(&miter, sgl, nents, sg_flags);
961
962 if (!sg_miter_skip(&miter, skip))
963 return 0;
964
965 while ((offset < buflen) && sg_miter_next(&miter)) {
966 unsigned int len;
967
968 len = min(miter.length, buflen - offset);
969
970 if (to_buffer)
971 memcpy(buf + offset, miter.addr, len);
972 else
973 memcpy(miter.addr, buf + offset, len);
974
975 offset += len;
976 }
977
978 sg_miter_stop(&miter);
979
980 return offset;
981 }
982 EXPORT_SYMBOL(sg_copy_buffer);
983
984 /**
985 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
986 * @sgl: The SG list
987 * @nents: Number of SG entries
988 * @buf: Where to copy from
989 * @buflen: The number of bytes to copy
990 *
991 * Returns the number of copied bytes.
992 *
993 **/
sg_copy_from_buffer(struct scatterlist * sgl,unsigned int nents,const void * buf,size_t buflen)994 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
995 const void *buf, size_t buflen)
996 {
997 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
998 }
999 EXPORT_SYMBOL(sg_copy_from_buffer);
1000
1001 /**
1002 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
1003 * @sgl: The SG list
1004 * @nents: Number of SG entries
1005 * @buf: Where to copy to
1006 * @buflen: The number of bytes to copy
1007 *
1008 * Returns the number of copied bytes.
1009 *
1010 **/
sg_copy_to_buffer(struct scatterlist * sgl,unsigned int nents,void * buf,size_t buflen)1011 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1012 void *buf, size_t buflen)
1013 {
1014 return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
1015 }
1016 EXPORT_SYMBOL(sg_copy_to_buffer);
1017
1018 /**
1019 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
1020 * @sgl: The SG list
1021 * @nents: Number of SG entries
1022 * @buf: Where to copy from
1023 * @buflen: The number of bytes to copy
1024 * @skip: Number of bytes to skip before copying
1025 *
1026 * Returns the number of copied bytes.
1027 *
1028 **/
sg_pcopy_from_buffer(struct scatterlist * sgl,unsigned int nents,const void * buf,size_t buflen,off_t skip)1029 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1030 const void *buf, size_t buflen, off_t skip)
1031 {
1032 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1033 }
1034 EXPORT_SYMBOL(sg_pcopy_from_buffer);
1035
1036 /**
1037 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1038 * @sgl: The SG list
1039 * @nents: Number of SG entries
1040 * @buf: Where to copy to
1041 * @buflen: The number of bytes to copy
1042 * @skip: Number of bytes to skip before copying
1043 *
1044 * Returns the number of copied bytes.
1045 *
1046 **/
sg_pcopy_to_buffer(struct scatterlist * sgl,unsigned int nents,void * buf,size_t buflen,off_t skip)1047 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1048 void *buf, size_t buflen, off_t skip)
1049 {
1050 return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1051 }
1052 EXPORT_SYMBOL(sg_pcopy_to_buffer);
1053
1054 /**
1055 * sg_zero_buffer - Zero-out a part of a SG list
1056 * @sgl: The SG list
1057 * @nents: Number of SG entries
1058 * @buflen: The number of bytes to zero out
1059 * @skip: Number of bytes to skip before zeroing
1060 *
1061 * Returns the number of bytes zeroed.
1062 **/
sg_zero_buffer(struct scatterlist * sgl,unsigned int nents,size_t buflen,off_t skip)1063 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1064 size_t buflen, off_t skip)
1065 {
1066 unsigned int offset = 0;
1067 struct sg_mapping_iter miter;
1068 unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1069
1070 sg_miter_start(&miter, sgl, nents, sg_flags);
1071
1072 if (!sg_miter_skip(&miter, skip))
1073 return false;
1074
1075 while (offset < buflen && sg_miter_next(&miter)) {
1076 unsigned int len;
1077
1078 len = min(miter.length, buflen - offset);
1079 memset(miter.addr, 0, len);
1080
1081 offset += len;
1082 }
1083
1084 sg_miter_stop(&miter);
1085 return offset;
1086 }
1087 EXPORT_SYMBOL(sg_zero_buffer);
1088