1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * FIPS-180-2 compliant SHA-512 and SHA-384 implementation
4 *
5 * SHA-512 code by Jean-Luc Cooke <jlcooke@certainkey.com>
6 *
7 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
8 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
9 * Copyright (c) 2003 Kyle McMartin <kyle@debian.org>
10 * Copyright (c) 2020 Reuben Dowle <reuben.dowle@4rf.com>
11 */
12
13 #ifndef USE_HOSTCC
14 #include <common.h>
15 #include <linux/string.h>
16 #else
17 #include <string.h>
18 #endif /* USE_HOSTCC */
19 #include <compiler.h>
20 #include <watchdog.h>
21 #include <u-boot/sha512.h>
22
23 const uint8_t sha384_der_prefix[SHA384_DER_LEN] = {
24 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
25 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
26 0x00, 0x04, 0x30
27 };
28
29 const uint8_t sha512_der_prefix[SHA512_DER_LEN] = {
30 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
31 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
32 0x00, 0x04, 0x40
33 };
34
35 #define SHA384_H0 0xcbbb9d5dc1059ed8ULL
36 #define SHA384_H1 0x629a292a367cd507ULL
37 #define SHA384_H2 0x9159015a3070dd17ULL
38 #define SHA384_H3 0x152fecd8f70e5939ULL
39 #define SHA384_H4 0x67332667ffc00b31ULL
40 #define SHA384_H5 0x8eb44a8768581511ULL
41 #define SHA384_H6 0xdb0c2e0d64f98fa7ULL
42 #define SHA384_H7 0x47b5481dbefa4fa4ULL
43
44 #define SHA512_H0 0x6a09e667f3bcc908ULL
45 #define SHA512_H1 0xbb67ae8584caa73bULL
46 #define SHA512_H2 0x3c6ef372fe94f82bULL
47 #define SHA512_H3 0xa54ff53a5f1d36f1ULL
48 #define SHA512_H4 0x510e527fade682d1ULL
49 #define SHA512_H5 0x9b05688c2b3e6c1fULL
50 #define SHA512_H6 0x1f83d9abfb41bd6bULL
51 #define SHA512_H7 0x5be0cd19137e2179ULL
52
Ch(uint64_t x,uint64_t y,uint64_t z)53 static inline uint64_t Ch(uint64_t x, uint64_t y, uint64_t z)
54 {
55 return z ^ (x & (y ^ z));
56 }
57
Maj(uint64_t x,uint64_t y,uint64_t z)58 static inline uint64_t Maj(uint64_t x, uint64_t y, uint64_t z)
59 {
60 return (x & y) | (z & (x | y));
61 }
62
63 static const uint64_t sha512_K[80] = {
64 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
65 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
66 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
67 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
68 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
69 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
70 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
71 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
72 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
73 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
74 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
75 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
76 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
77 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
78 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
79 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
80 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
81 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
82 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
83 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
84 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
85 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
86 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
87 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
88 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
89 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
90 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
91 };
92
ror64(uint64_t word,unsigned int shift)93 static inline uint64_t ror64(uint64_t word, unsigned int shift)
94 {
95 return (word >> (shift & 63)) | (word << ((-shift) & 63));
96 }
97
98 #define e0(x) (ror64(x,28) ^ ror64(x,34) ^ ror64(x,39))
99 #define e1(x) (ror64(x,14) ^ ror64(x,18) ^ ror64(x,41))
100 #define s0(x) (ror64(x, 1) ^ ror64(x, 8) ^ (x >> 7))
101 #define s1(x) (ror64(x,19) ^ ror64(x,61) ^ (x >> 6))
102
103 /*
104 * 64-bit integer manipulation macros (big endian)
105 */
106 #ifndef GET_UINT64_BE
107 #define GET_UINT64_BE(n,b,i) { \
108 (n) = ( (unsigned long long) (b)[(i) ] << 56 ) \
109 | ( (unsigned long long) (b)[(i) + 1] << 48 ) \
110 | ( (unsigned long long) (b)[(i) + 2] << 40 ) \
111 | ( (unsigned long long) (b)[(i) + 3] << 32 ) \
112 | ( (unsigned long long) (b)[(i) + 4] << 24 ) \
113 | ( (unsigned long long) (b)[(i) + 5] << 16 ) \
114 | ( (unsigned long long) (b)[(i) + 6] << 8 ) \
115 | ( (unsigned long long) (b)[(i) + 7] ); \
116 }
117 #endif
118 #ifndef PUT_UINT64_BE
119 #define PUT_UINT64_BE(n,b,i) { \
120 (b)[(i) ] = (unsigned char) ( (n) >> 56 ); \
121 (b)[(i) + 1] = (unsigned char) ( (n) >> 48 ); \
122 (b)[(i) + 2] = (unsigned char) ( (n) >> 40 ); \
123 (b)[(i) + 3] = (unsigned char) ( (n) >> 32 ); \
124 (b)[(i) + 4] = (unsigned char) ( (n) >> 24 ); \
125 (b)[(i) + 5] = (unsigned char) ( (n) >> 16 ); \
126 (b)[(i) + 6] = (unsigned char) ( (n) >> 8 ); \
127 (b)[(i) + 7] = (unsigned char) ( (n) ); \
128 }
129 #endif
130
LOAD_OP(int I,uint64_t * W,const uint8_t * input)131 static inline void LOAD_OP(int I, uint64_t *W, const uint8_t *input)
132 {
133 GET_UINT64_BE(W[I], input, I*8);
134 }
135
BLEND_OP(int I,uint64_t * W)136 static inline void BLEND_OP(int I, uint64_t *W)
137 {
138 W[I & 15] += s1(W[(I-2) & 15]) + W[(I-7) & 15] + s0(W[(I-15) & 15]);
139 }
140
141 static void
sha512_transform(uint64_t * state,const uint8_t * input)142 sha512_transform(uint64_t *state, const uint8_t *input)
143 {
144 uint64_t a, b, c, d, e, f, g, h, t1, t2;
145
146 int i;
147 uint64_t W[16];
148
149 /* load the state into our registers */
150 a=state[0]; b=state[1]; c=state[2]; d=state[3];
151 e=state[4]; f=state[5]; g=state[6]; h=state[7];
152
153 /* now iterate */
154 for (i=0; i<80; i+=8) {
155 if (!(i & 8)) {
156 int j;
157
158 if (i < 16) {
159 /* load the input */
160 for (j = 0; j < 16; j++)
161 LOAD_OP(i + j, W, input);
162 } else {
163 for (j = 0; j < 16; j++) {
164 BLEND_OP(i + j, W);
165 }
166 }
167 }
168
169 t1 = h + e1(e) + Ch(e,f,g) + sha512_K[i ] + W[(i & 15)];
170 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
171 t1 = g + e1(d) + Ch(d,e,f) + sha512_K[i+1] + W[(i & 15) + 1];
172 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
173 t1 = f + e1(c) + Ch(c,d,e) + sha512_K[i+2] + W[(i & 15) + 2];
174 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
175 t1 = e + e1(b) + Ch(b,c,d) + sha512_K[i+3] + W[(i & 15) + 3];
176 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
177 t1 = d + e1(a) + Ch(a,b,c) + sha512_K[i+4] + W[(i & 15) + 4];
178 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
179 t1 = c + e1(h) + Ch(h,a,b) + sha512_K[i+5] + W[(i & 15) + 5];
180 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
181 t1 = b + e1(g) + Ch(g,h,a) + sha512_K[i+6] + W[(i & 15) + 6];
182 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
183 t1 = a + e1(f) + Ch(f,g,h) + sha512_K[i+7] + W[(i & 15) + 7];
184 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
185 }
186
187 state[0] += a; state[1] += b; state[2] += c; state[3] += d;
188 state[4] += e; state[5] += f; state[6] += g; state[7] += h;
189
190 /* erase our data */
191 a = b = c = d = e = f = g = h = t1 = t2 = 0;
192 }
193
sha512_block_fn(sha512_context * sst,const uint8_t * src,int blocks)194 static void sha512_block_fn(sha512_context *sst, const uint8_t *src,
195 int blocks)
196 {
197 while (blocks--) {
198 sha512_transform(sst->state, src);
199 src += SHA512_BLOCK_SIZE;
200 }
201 }
202
sha512_base_do_update(sha512_context * sctx,const uint8_t * data,unsigned int len)203 static void sha512_base_do_update(sha512_context *sctx,
204 const uint8_t *data,
205 unsigned int len)
206 {
207 unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
208
209 sctx->count[0] += len;
210 if (sctx->count[0] < len)
211 sctx->count[1]++;
212
213 if (unlikely((partial + len) >= SHA512_BLOCK_SIZE)) {
214 int blocks;
215
216 if (partial) {
217 int p = SHA512_BLOCK_SIZE - partial;
218
219 memcpy(sctx->buf + partial, data, p);
220 data += p;
221 len -= p;
222
223 sha512_block_fn(sctx, sctx->buf, 1);
224 }
225
226 blocks = len / SHA512_BLOCK_SIZE;
227 len %= SHA512_BLOCK_SIZE;
228
229 if (blocks) {
230 sha512_block_fn(sctx, data, blocks);
231 data += blocks * SHA512_BLOCK_SIZE;
232 }
233 partial = 0;
234 }
235 if (len)
236 memcpy(sctx->buf + partial, data, len);
237 }
238
sha512_base_do_finalize(sha512_context * sctx)239 static void sha512_base_do_finalize(sha512_context *sctx)
240 {
241 const int bit_offset = SHA512_BLOCK_SIZE - sizeof(uint64_t[2]);
242 uint64_t *bits = (uint64_t *)(sctx->buf + bit_offset);
243 unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
244
245 sctx->buf[partial++] = 0x80;
246 if (partial > bit_offset) {
247 memset(sctx->buf + partial, 0x0, SHA512_BLOCK_SIZE - partial);
248 partial = 0;
249
250 sha512_block_fn(sctx, sctx->buf, 1);
251 }
252
253 memset(sctx->buf + partial, 0x0, bit_offset - partial);
254 bits[0] = cpu_to_be64(sctx->count[1] << 3 | sctx->count[0] >> 61);
255 bits[1] = cpu_to_be64(sctx->count[0] << 3);
256 sha512_block_fn(sctx, sctx->buf, 1);
257 }
258
259 #if defined(CONFIG_SHA384)
sha384_starts(sha512_context * ctx)260 void sha384_starts(sha512_context * ctx)
261 {
262 ctx->state[0] = SHA384_H0;
263 ctx->state[1] = SHA384_H1;
264 ctx->state[2] = SHA384_H2;
265 ctx->state[3] = SHA384_H3;
266 ctx->state[4] = SHA384_H4;
267 ctx->state[5] = SHA384_H5;
268 ctx->state[6] = SHA384_H6;
269 ctx->state[7] = SHA384_H7;
270 ctx->count[0] = ctx->count[1] = 0;
271 }
272
sha384_update(sha512_context * ctx,const uint8_t * input,uint32_t length)273 void sha384_update(sha512_context *ctx, const uint8_t *input, uint32_t length)
274 {
275 sha512_base_do_update(ctx, input, length);
276 }
277
sha384_finish(sha512_context * ctx,uint8_t digest[SHA384_SUM_LEN])278 void sha384_finish(sha512_context * ctx, uint8_t digest[SHA384_SUM_LEN])
279 {
280 int i;
281
282 sha512_base_do_finalize(ctx);
283 for(i=0; i<SHA384_SUM_LEN / sizeof(uint64_t); i++)
284 PUT_UINT64_BE(ctx->state[i], digest, i * 8);
285 }
286
287 /*
288 * Output = SHA-512( input buffer ). Trigger the watchdog every 'chunk_sz'
289 * bytes of input processed.
290 */
sha384_csum_wd(const unsigned char * input,unsigned int ilen,unsigned char * output,unsigned int chunk_sz)291 void sha384_csum_wd(const unsigned char *input, unsigned int ilen,
292 unsigned char *output, unsigned int chunk_sz)
293 {
294 sha512_context ctx;
295 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
296 const unsigned char *end;
297 unsigned char *curr;
298 int chunk;
299 #endif
300
301 sha384_starts(&ctx);
302
303 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
304 curr = (unsigned char *)input;
305 end = input + ilen;
306 while (curr < end) {
307 chunk = end - curr;
308 if (chunk > chunk_sz)
309 chunk = chunk_sz;
310 sha384_update(&ctx, curr, chunk);
311 curr += chunk;
312 WATCHDOG_RESET();
313 }
314 #else
315 sha384_update(&ctx, input, ilen);
316 #endif
317
318 sha384_finish(&ctx, output);
319 }
320
321 #endif
322
323 #if defined(CONFIG_SHA512)
sha512_starts(sha512_context * ctx)324 void sha512_starts(sha512_context * ctx)
325 {
326 ctx->state[0] = SHA512_H0;
327 ctx->state[1] = SHA512_H1;
328 ctx->state[2] = SHA512_H2;
329 ctx->state[3] = SHA512_H3;
330 ctx->state[4] = SHA512_H4;
331 ctx->state[5] = SHA512_H5;
332 ctx->state[6] = SHA512_H6;
333 ctx->state[7] = SHA512_H7;
334 ctx->count[0] = ctx->count[1] = 0;
335 }
336
sha512_update(sha512_context * ctx,const uint8_t * input,uint32_t length)337 void sha512_update(sha512_context *ctx, const uint8_t *input, uint32_t length)
338 {
339 sha512_base_do_update(ctx, input, length);
340 }
341
sha512_finish(sha512_context * ctx,uint8_t digest[SHA512_SUM_LEN])342 void sha512_finish(sha512_context * ctx, uint8_t digest[SHA512_SUM_LEN])
343 {
344 int i;
345
346 sha512_base_do_finalize(ctx);
347 for(i=0; i<SHA512_SUM_LEN / sizeof(uint64_t); i++)
348 PUT_UINT64_BE(ctx->state[i], digest, i * 8);
349 }
350
351 /*
352 * Output = SHA-512( input buffer ). Trigger the watchdog every 'chunk_sz'
353 * bytes of input processed.
354 */
sha512_csum_wd(const unsigned char * input,unsigned int ilen,unsigned char * output,unsigned int chunk_sz)355 void sha512_csum_wd(const unsigned char *input, unsigned int ilen,
356 unsigned char *output, unsigned int chunk_sz)
357 {
358 sha512_context ctx;
359 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
360 const unsigned char *end;
361 unsigned char *curr;
362 int chunk;
363 #endif
364
365 sha512_starts(&ctx);
366
367 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
368 curr = (unsigned char *)input;
369 end = input + ilen;
370 while (curr < end) {
371 chunk = end - curr;
372 if (chunk > chunk_sz)
373 chunk = chunk_sz;
374 sha512_update(&ctx, curr, chunk);
375 curr += chunk;
376 WATCHDOG_RESET();
377 }
378 #else
379 sha512_update(&ctx, input, ilen);
380 #endif
381
382 sha512_finish(&ctx, output);
383 }
384 #endif
385