1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_rwsem making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106 };
107
108 struct shmem_options {
109 unsigned long long blocks;
110 unsigned long long inodes;
111 struct mempolicy *mpol;
112 kuid_t uid;
113 kgid_t gid;
114 umode_t mode;
115 bool full_inums;
116 int huge;
117 int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123
124 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)125 static unsigned long shmem_default_max_blocks(void)
126 {
127 return totalram_pages() / 2;
128 }
129
shmem_default_max_inodes(void)130 static unsigned long shmem_default_max_inodes(void)
131 {
132 unsigned long nr_pages = totalram_pages();
133
134 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 struct page **pagep, enum sgp_type sgp,
140 gfp_t gfp, struct vm_area_struct *vma,
141 vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 struct vm_fault *vmf, vm_fault_t *fault_type);
146
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)147 int shmem_getpage(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp)
149 {
150 return shmem_getpage_gfp(inode, index, pagep, sgp,
151 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153
SHMEM_SB(struct super_block * sb)154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156 return sb->s_fs_info;
157 }
158
159 /*
160 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161 * for shared memory and for shared anonymous (/dev/zero) mappings
162 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163 * consistent with the pre-accounting of private mappings ...
164 */
shmem_acct_size(unsigned long flags,loff_t size)165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167 return (flags & VM_NORESERVE) ?
168 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170
shmem_unacct_size(unsigned long flags,loff_t size)171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173 if (!(flags & VM_NORESERVE))
174 vm_unacct_memory(VM_ACCT(size));
175 }
176
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)177 static inline int shmem_reacct_size(unsigned long flags,
178 loff_t oldsize, loff_t newsize)
179 {
180 if (!(flags & VM_NORESERVE)) {
181 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 return security_vm_enough_memory_mm(current->mm,
183 VM_ACCT(newsize) - VM_ACCT(oldsize));
184 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 }
187 return 0;
188 }
189
190 /*
191 * ... whereas tmpfs objects are accounted incrementally as
192 * pages are allocated, in order to allow large sparse files.
193 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195 */
shmem_acct_block(unsigned long flags,long pages)196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198 if (!(flags & VM_NORESERVE))
199 return 0;
200
201 return security_vm_enough_memory_mm(current->mm,
202 pages * VM_ACCT(PAGE_SIZE));
203 }
204
shmem_unacct_blocks(unsigned long flags,long pages)205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207 if (flags & VM_NORESERVE)
208 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210
shmem_inode_acct_block(struct inode * inode,long pages)211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213 struct shmem_inode_info *info = SHMEM_I(inode);
214 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216 if (shmem_acct_block(info->flags, pages))
217 return false;
218
219 if (sbinfo->max_blocks) {
220 if (percpu_counter_compare(&sbinfo->used_blocks,
221 sbinfo->max_blocks - pages) > 0)
222 goto unacct;
223 percpu_counter_add(&sbinfo->used_blocks, pages);
224 }
225
226 return true;
227
228 unacct:
229 shmem_unacct_blocks(info->flags, pages);
230 return false;
231 }
232
shmem_inode_unacct_blocks(struct inode * inode,long pages)233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238 if (sbinfo->max_blocks)
239 percpu_counter_sub(&sbinfo->used_blocks, pages);
240 shmem_unacct_blocks(info->flags, pages);
241 }
242
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251
vma_is_shmem(struct vm_area_struct * vma)252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254 return vma->vm_ops == &shmem_vm_ops;
255 }
256
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259
260 /*
261 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262 * produces a novel ino for the newly allocated inode.
263 *
264 * It may also be called when making a hard link to permit the space needed by
265 * each dentry. However, in that case, no new inode number is needed since that
266 * internally draws from another pool of inode numbers (currently global
267 * get_next_ino()). This case is indicated by passing NULL as inop.
268 */
269 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273 ino_t ino;
274
275 if (!(sb->s_flags & SB_KERNMOUNT)) {
276 raw_spin_lock(&sbinfo->stat_lock);
277 if (sbinfo->max_inodes) {
278 if (!sbinfo->free_inodes) {
279 raw_spin_unlock(&sbinfo->stat_lock);
280 return -ENOSPC;
281 }
282 sbinfo->free_inodes--;
283 }
284 if (inop) {
285 ino = sbinfo->next_ino++;
286 if (unlikely(is_zero_ino(ino)))
287 ino = sbinfo->next_ino++;
288 if (unlikely(!sbinfo->full_inums &&
289 ino > UINT_MAX)) {
290 /*
291 * Emulate get_next_ino uint wraparound for
292 * compatibility
293 */
294 if (IS_ENABLED(CONFIG_64BIT))
295 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 __func__, MINOR(sb->s_dev));
297 sbinfo->next_ino = 1;
298 ino = sbinfo->next_ino++;
299 }
300 *inop = ino;
301 }
302 raw_spin_unlock(&sbinfo->stat_lock);
303 } else if (inop) {
304 /*
305 * __shmem_file_setup, one of our callers, is lock-free: it
306 * doesn't hold stat_lock in shmem_reserve_inode since
307 * max_inodes is always 0, and is called from potentially
308 * unknown contexts. As such, use a per-cpu batched allocator
309 * which doesn't require the per-sb stat_lock unless we are at
310 * the batch boundary.
311 *
312 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 * shmem mounts are not exposed to userspace, so we don't need
314 * to worry about things like glibc compatibility.
315 */
316 ino_t *next_ino;
317
318 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 ino = *next_ino;
320 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321 raw_spin_lock(&sbinfo->stat_lock);
322 ino = sbinfo->next_ino;
323 sbinfo->next_ino += SHMEM_INO_BATCH;
324 raw_spin_unlock(&sbinfo->stat_lock);
325 if (unlikely(is_zero_ino(ino)))
326 ino++;
327 }
328 *inop = ino;
329 *next_ino = ++ino;
330 put_cpu();
331 }
332
333 return 0;
334 }
335
shmem_free_inode(struct super_block * sb)336 static void shmem_free_inode(struct super_block *sb)
337 {
338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 if (sbinfo->max_inodes) {
340 raw_spin_lock(&sbinfo->stat_lock);
341 sbinfo->free_inodes++;
342 raw_spin_unlock(&sbinfo->stat_lock);
343 }
344 }
345
346 /**
347 * shmem_recalc_inode - recalculate the block usage of an inode
348 * @inode: inode to recalc
349 *
350 * We have to calculate the free blocks since the mm can drop
351 * undirtied hole pages behind our back.
352 *
353 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
354 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355 *
356 * It has to be called with the spinlock held.
357 */
shmem_recalc_inode(struct inode * inode)358 static void shmem_recalc_inode(struct inode *inode)
359 {
360 struct shmem_inode_info *info = SHMEM_I(inode);
361 long freed;
362
363 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 if (freed > 0) {
365 info->alloced -= freed;
366 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367 shmem_inode_unacct_blocks(inode, freed);
368 }
369 }
370
shmem_charge(struct inode * inode,long pages)371 bool shmem_charge(struct inode *inode, long pages)
372 {
373 struct shmem_inode_info *info = SHMEM_I(inode);
374 unsigned long flags;
375
376 if (!shmem_inode_acct_block(inode, pages))
377 return false;
378
379 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 inode->i_mapping->nrpages += pages;
381
382 spin_lock_irqsave(&info->lock, flags);
383 info->alloced += pages;
384 inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 shmem_recalc_inode(inode);
386 spin_unlock_irqrestore(&info->lock, flags);
387
388 return true;
389 }
390
shmem_uncharge(struct inode * inode,long pages)391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393 struct shmem_inode_info *info = SHMEM_I(inode);
394 unsigned long flags;
395
396 /* nrpages adjustment done by __delete_from_page_cache() or caller */
397
398 spin_lock_irqsave(&info->lock, flags);
399 info->alloced -= pages;
400 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 shmem_recalc_inode(inode);
402 spin_unlock_irqrestore(&info->lock, flags);
403
404 shmem_inode_unacct_blocks(inode, pages);
405 }
406
407 /*
408 * Replace item expected in xarray by a new item, while holding xa_lock.
409 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)410 static int shmem_replace_entry(struct address_space *mapping,
411 pgoff_t index, void *expected, void *replacement)
412 {
413 XA_STATE(xas, &mapping->i_pages, index);
414 void *item;
415
416 VM_BUG_ON(!expected);
417 VM_BUG_ON(!replacement);
418 item = xas_load(&xas);
419 if (item != expected)
420 return -ENOENT;
421 xas_store(&xas, replacement);
422 return 0;
423 }
424
425 /*
426 * Sometimes, before we decide whether to proceed or to fail, we must check
427 * that an entry was not already brought back from swap by a racing thread.
428 *
429 * Checking page is not enough: by the time a SwapCache page is locked, it
430 * might be reused, and again be SwapCache, using the same swap as before.
431 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)432 static bool shmem_confirm_swap(struct address_space *mapping,
433 pgoff_t index, swp_entry_t swap)
434 {
435 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437
438 /*
439 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440 *
441 * SHMEM_HUGE_NEVER:
442 * disables huge pages for the mount;
443 * SHMEM_HUGE_ALWAYS:
444 * enables huge pages for the mount;
445 * SHMEM_HUGE_WITHIN_SIZE:
446 * only allocate huge pages if the page will be fully within i_size,
447 * also respect fadvise()/madvise() hints;
448 * SHMEM_HUGE_ADVISE:
449 * only allocate huge pages if requested with fadvise()/madvise();
450 */
451
452 #define SHMEM_HUGE_NEVER 0
453 #define SHMEM_HUGE_ALWAYS 1
454 #define SHMEM_HUGE_WITHIN_SIZE 2
455 #define SHMEM_HUGE_ADVISE 3
456
457 /*
458 * Special values.
459 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460 *
461 * SHMEM_HUGE_DENY:
462 * disables huge on shm_mnt and all mounts, for emergency use;
463 * SHMEM_HUGE_FORCE:
464 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465 *
466 */
467 #define SHMEM_HUGE_DENY (-1)
468 #define SHMEM_HUGE_FORCE (-2)
469
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474
shmem_is_huge(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)475 bool shmem_is_huge(struct vm_area_struct *vma,
476 struct inode *inode, pgoff_t index)
477 {
478 loff_t i_size;
479
480 if (shmem_huge == SHMEM_HUGE_DENY)
481 return false;
482 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484 return false;
485 if (shmem_huge == SHMEM_HUGE_FORCE)
486 return true;
487
488 switch (SHMEM_SB(inode->i_sb)->huge) {
489 case SHMEM_HUGE_ALWAYS:
490 return true;
491 case SHMEM_HUGE_WITHIN_SIZE:
492 index = round_up(index + 1, HPAGE_PMD_NR);
493 i_size = round_up(i_size_read(inode), PAGE_SIZE);
494 if (i_size >> PAGE_SHIFT >= index)
495 return true;
496 fallthrough;
497 case SHMEM_HUGE_ADVISE:
498 if (vma && (vma->vm_flags & VM_HUGEPAGE))
499 return true;
500 fallthrough;
501 default:
502 return false;
503 }
504 }
505
506 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)507 static int shmem_parse_huge(const char *str)
508 {
509 if (!strcmp(str, "never"))
510 return SHMEM_HUGE_NEVER;
511 if (!strcmp(str, "always"))
512 return SHMEM_HUGE_ALWAYS;
513 if (!strcmp(str, "within_size"))
514 return SHMEM_HUGE_WITHIN_SIZE;
515 if (!strcmp(str, "advise"))
516 return SHMEM_HUGE_ADVISE;
517 if (!strcmp(str, "deny"))
518 return SHMEM_HUGE_DENY;
519 if (!strcmp(str, "force"))
520 return SHMEM_HUGE_FORCE;
521 return -EINVAL;
522 }
523 #endif
524
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)526 static const char *shmem_format_huge(int huge)
527 {
528 switch (huge) {
529 case SHMEM_HUGE_NEVER:
530 return "never";
531 case SHMEM_HUGE_ALWAYS:
532 return "always";
533 case SHMEM_HUGE_WITHIN_SIZE:
534 return "within_size";
535 case SHMEM_HUGE_ADVISE:
536 return "advise";
537 case SHMEM_HUGE_DENY:
538 return "deny";
539 case SHMEM_HUGE_FORCE:
540 return "force";
541 default:
542 VM_BUG_ON(1);
543 return "bad_val";
544 }
545 }
546 #endif
547
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 struct shrink_control *sc, unsigned long nr_to_split)
550 {
551 LIST_HEAD(list), *pos, *next;
552 LIST_HEAD(to_remove);
553 struct inode *inode;
554 struct shmem_inode_info *info;
555 struct page *page;
556 unsigned long batch = sc ? sc->nr_to_scan : 128;
557 int removed = 0, split = 0;
558
559 if (list_empty(&sbinfo->shrinklist))
560 return SHRINK_STOP;
561
562 spin_lock(&sbinfo->shrinklist_lock);
563 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565
566 /* pin the inode */
567 inode = igrab(&info->vfs_inode);
568
569 /* inode is about to be evicted */
570 if (!inode) {
571 list_del_init(&info->shrinklist);
572 removed++;
573 goto next;
574 }
575
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 list_move(&info->shrinklist, &to_remove);
580 removed++;
581 goto next;
582 }
583
584 list_move(&info->shrinklist, &list);
585 next:
586 if (!--batch)
587 break;
588 }
589 spin_unlock(&sbinfo->shrinklist_lock);
590
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
595 iput(inode);
596 }
597
598 list_for_each_safe(pos, next, &list) {
599 int ret;
600
601 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 inode = &info->vfs_inode;
603
604 if (nr_to_split && split >= nr_to_split)
605 goto leave;
606
607 page = find_get_page(inode->i_mapping,
608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 if (!page)
610 goto drop;
611
612 /* No huge page at the end of the file: nothing to split */
613 if (!PageTransHuge(page)) {
614 put_page(page);
615 goto drop;
616 }
617
618 /*
619 * Leave the inode on the list if we failed to lock
620 * the page at this time.
621 *
622 * Waiting for the lock may lead to deadlock in the
623 * reclaim path.
624 */
625 if (!trylock_page(page)) {
626 put_page(page);
627 goto leave;
628 }
629
630 ret = split_huge_page(page);
631 unlock_page(page);
632 put_page(page);
633
634 /* If split failed leave the inode on the list */
635 if (ret)
636 goto leave;
637
638 split++;
639 drop:
640 list_del_init(&info->shrinklist);
641 removed++;
642 leave:
643 iput(inode);
644 }
645
646 spin_lock(&sbinfo->shrinklist_lock);
647 list_splice_tail(&list, &sbinfo->shrinklist);
648 sbinfo->shrinklist_len -= removed;
649 spin_unlock(&sbinfo->shrinklist_lock);
650
651 return split;
652 }
653
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)654 static long shmem_unused_huge_scan(struct super_block *sb,
655 struct shrink_control *sc)
656 {
657 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658
659 if (!READ_ONCE(sbinfo->shrinklist_len))
660 return SHRINK_STOP;
661
662 return shmem_unused_huge_shrink(sbinfo, sc, 0);
663 }
664
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)665 static long shmem_unused_huge_count(struct super_block *sb,
666 struct shrink_control *sc)
667 {
668 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669 return READ_ONCE(sbinfo->shrinklist_len);
670 }
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
672
673 #define shmem_huge SHMEM_HUGE_DENY
674
shmem_is_huge(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)675 bool shmem_is_huge(struct vm_area_struct *vma,
676 struct inode *inode, pgoff_t index)
677 {
678 return false;
679 }
680
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682 struct shrink_control *sc, unsigned long nr_to_split)
683 {
684 return 0;
685 }
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687
688 /*
689 * Like add_to_page_cache_locked, but error if expected item has gone.
690 */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)691 static int shmem_add_to_page_cache(struct page *page,
692 struct address_space *mapping,
693 pgoff_t index, void *expected, gfp_t gfp,
694 struct mm_struct *charge_mm)
695 {
696 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
697 unsigned long i = 0;
698 unsigned long nr = compound_nr(page);
699 int error;
700
701 VM_BUG_ON_PAGE(PageTail(page), page);
702 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
703 VM_BUG_ON_PAGE(!PageLocked(page), page);
704 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
705 VM_BUG_ON(expected && PageTransHuge(page));
706
707 page_ref_add(page, nr);
708 page->mapping = mapping;
709 page->index = index;
710
711 if (!PageSwapCache(page)) {
712 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
713 if (error) {
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_FALLBACK);
716 count_vm_event(THP_FILE_FALLBACK_CHARGE);
717 }
718 goto error;
719 }
720 }
721 cgroup_throttle_swaprate(page, gfp);
722
723 do {
724 void *entry;
725 xas_lock_irq(&xas);
726 entry = xas_find_conflict(&xas);
727 if (entry != expected)
728 xas_set_err(&xas, -EEXIST);
729 xas_create_range(&xas);
730 if (xas_error(&xas))
731 goto unlock;
732 next:
733 xas_store(&xas, page);
734 if (++i < nr) {
735 xas_next(&xas);
736 goto next;
737 }
738 if (PageTransHuge(page)) {
739 count_vm_event(THP_FILE_ALLOC);
740 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
741 }
742 mapping->nrpages += nr;
743 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
744 __mod_lruvec_page_state(page, NR_SHMEM, nr);
745 unlock:
746 xas_unlock_irq(&xas);
747 } while (xas_nomem(&xas, gfp));
748
749 if (xas_error(&xas)) {
750 error = xas_error(&xas);
751 goto error;
752 }
753
754 return 0;
755 error:
756 page->mapping = NULL;
757 page_ref_sub(page, nr);
758 return error;
759 }
760
761 /*
762 * Like delete_from_page_cache, but substitutes swap for page.
763 */
shmem_delete_from_page_cache(struct page * page,void * radswap)764 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
765 {
766 struct address_space *mapping = page->mapping;
767 int error;
768
769 VM_BUG_ON_PAGE(PageCompound(page), page);
770
771 xa_lock_irq(&mapping->i_pages);
772 error = shmem_replace_entry(mapping, page->index, page, radswap);
773 page->mapping = NULL;
774 mapping->nrpages--;
775 __dec_lruvec_page_state(page, NR_FILE_PAGES);
776 __dec_lruvec_page_state(page, NR_SHMEM);
777 xa_unlock_irq(&mapping->i_pages);
778 put_page(page);
779 BUG_ON(error);
780 }
781
782 /*
783 * Remove swap entry from page cache, free the swap and its page cache.
784 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)785 static int shmem_free_swap(struct address_space *mapping,
786 pgoff_t index, void *radswap)
787 {
788 void *old;
789
790 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
791 if (old != radswap)
792 return -ENOENT;
793 free_swap_and_cache(radix_to_swp_entry(radswap));
794 return 0;
795 }
796
797 /*
798 * Determine (in bytes) how many of the shmem object's pages mapped by the
799 * given offsets are swapped out.
800 *
801 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
802 * as long as the inode doesn't go away and racy results are not a problem.
803 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)804 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805 pgoff_t start, pgoff_t end)
806 {
807 XA_STATE(xas, &mapping->i_pages, start);
808 struct page *page;
809 unsigned long swapped = 0;
810
811 rcu_read_lock();
812 xas_for_each(&xas, page, end - 1) {
813 if (xas_retry(&xas, page))
814 continue;
815 if (xa_is_value(page))
816 swapped++;
817
818 if (need_resched()) {
819 xas_pause(&xas);
820 cond_resched_rcu();
821 }
822 }
823
824 rcu_read_unlock();
825
826 return swapped << PAGE_SHIFT;
827 }
828
829 /*
830 * Determine (in bytes) how many of the shmem object's pages mapped by the
831 * given vma is swapped out.
832 *
833 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
834 * as long as the inode doesn't go away and racy results are not a problem.
835 */
shmem_swap_usage(struct vm_area_struct * vma)836 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837 {
838 struct inode *inode = file_inode(vma->vm_file);
839 struct shmem_inode_info *info = SHMEM_I(inode);
840 struct address_space *mapping = inode->i_mapping;
841 unsigned long swapped;
842
843 /* Be careful as we don't hold info->lock */
844 swapped = READ_ONCE(info->swapped);
845
846 /*
847 * The easier cases are when the shmem object has nothing in swap, or
848 * the vma maps it whole. Then we can simply use the stats that we
849 * already track.
850 */
851 if (!swapped)
852 return 0;
853
854 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855 return swapped << PAGE_SHIFT;
856
857 /* Here comes the more involved part */
858 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
859 vma->vm_pgoff + vma_pages(vma));
860 }
861
862 /*
863 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
864 */
shmem_unlock_mapping(struct address_space * mapping)865 void shmem_unlock_mapping(struct address_space *mapping)
866 {
867 struct pagevec pvec;
868 pgoff_t index = 0;
869
870 pagevec_init(&pvec);
871 /*
872 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
873 */
874 while (!mapping_unevictable(mapping)) {
875 if (!pagevec_lookup(&pvec, mapping, &index))
876 break;
877 check_move_unevictable_pages(&pvec);
878 pagevec_release(&pvec);
879 cond_resched();
880 }
881 }
882
883 /*
884 * Check whether a hole-punch or truncation needs to split a huge page,
885 * returning true if no split was required, or the split has been successful.
886 *
887 * Eviction (or truncation to 0 size) should never need to split a huge page;
888 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
889 * head, and then succeeded to trylock on tail.
890 *
891 * A split can only succeed when there are no additional references on the
892 * huge page: so the split below relies upon find_get_entries() having stopped
893 * when it found a subpage of the huge page, without getting further references.
894 */
shmem_punch_compound(struct page * page,pgoff_t start,pgoff_t end)895 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
896 {
897 if (!PageTransCompound(page))
898 return true;
899
900 /* Just proceed to delete a huge page wholly within the range punched */
901 if (PageHead(page) &&
902 page->index >= start && page->index + HPAGE_PMD_NR <= end)
903 return true;
904
905 /* Try to split huge page, so we can truly punch the hole or truncate */
906 return split_huge_page(page) >= 0;
907 }
908
909 /*
910 * Remove range of pages and swap entries from page cache, and free them.
911 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
912 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)913 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
914 bool unfalloc)
915 {
916 struct address_space *mapping = inode->i_mapping;
917 struct shmem_inode_info *info = SHMEM_I(inode);
918 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
919 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
920 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
921 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
922 struct pagevec pvec;
923 pgoff_t indices[PAGEVEC_SIZE];
924 long nr_swaps_freed = 0;
925 pgoff_t index;
926 int i;
927
928 if (lend == -1)
929 end = -1; /* unsigned, so actually very big */
930
931 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
932 info->fallocend = start;
933
934 pagevec_init(&pvec);
935 index = start;
936 while (index < end && find_lock_entries(mapping, index, end - 1,
937 &pvec, indices)) {
938 for (i = 0; i < pagevec_count(&pvec); i++) {
939 struct page *page = pvec.pages[i];
940
941 index = indices[i];
942
943 if (xa_is_value(page)) {
944 if (unfalloc)
945 continue;
946 nr_swaps_freed += !shmem_free_swap(mapping,
947 index, page);
948 continue;
949 }
950 index += thp_nr_pages(page) - 1;
951
952 if (!unfalloc || !PageUptodate(page))
953 truncate_inode_page(mapping, page);
954 unlock_page(page);
955 }
956 pagevec_remove_exceptionals(&pvec);
957 pagevec_release(&pvec);
958 cond_resched();
959 index++;
960 }
961
962 if (partial_start) {
963 struct page *page = NULL;
964 shmem_getpage(inode, start - 1, &page, SGP_READ);
965 if (page) {
966 unsigned int top = PAGE_SIZE;
967 if (start > end) {
968 top = partial_end;
969 partial_end = 0;
970 }
971 zero_user_segment(page, partial_start, top);
972 set_page_dirty(page);
973 unlock_page(page);
974 put_page(page);
975 }
976 }
977 if (partial_end) {
978 struct page *page = NULL;
979 shmem_getpage(inode, end, &page, SGP_READ);
980 if (page) {
981 zero_user_segment(page, 0, partial_end);
982 set_page_dirty(page);
983 unlock_page(page);
984 put_page(page);
985 }
986 }
987 if (start >= end)
988 return;
989
990 index = start;
991 while (index < end) {
992 cond_resched();
993
994 if (!find_get_entries(mapping, index, end - 1, &pvec,
995 indices)) {
996 /* If all gone or hole-punch or unfalloc, we're done */
997 if (index == start || end != -1)
998 break;
999 /* But if truncating, restart to make sure all gone */
1000 index = start;
1001 continue;
1002 }
1003 for (i = 0; i < pagevec_count(&pvec); i++) {
1004 struct page *page = pvec.pages[i];
1005
1006 index = indices[i];
1007 if (xa_is_value(page)) {
1008 if (unfalloc)
1009 continue;
1010 if (shmem_free_swap(mapping, index, page)) {
1011 /* Swap was replaced by page: retry */
1012 index--;
1013 break;
1014 }
1015 nr_swaps_freed++;
1016 continue;
1017 }
1018
1019 lock_page(page);
1020
1021 if (!unfalloc || !PageUptodate(page)) {
1022 if (page_mapping(page) != mapping) {
1023 /* Page was replaced by swap: retry */
1024 unlock_page(page);
1025 index--;
1026 break;
1027 }
1028 VM_BUG_ON_PAGE(PageWriteback(page), page);
1029 if (shmem_punch_compound(page, start, end))
1030 truncate_inode_page(mapping, page);
1031 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1032 /* Wipe the page and don't get stuck */
1033 clear_highpage(page);
1034 flush_dcache_page(page);
1035 set_page_dirty(page);
1036 if (index <
1037 round_up(start, HPAGE_PMD_NR))
1038 start = index + 1;
1039 }
1040 }
1041 unlock_page(page);
1042 }
1043 pagevec_remove_exceptionals(&pvec);
1044 pagevec_release(&pvec);
1045 index++;
1046 }
1047
1048 spin_lock_irq(&info->lock);
1049 info->swapped -= nr_swaps_freed;
1050 shmem_recalc_inode(inode);
1051 spin_unlock_irq(&info->lock);
1052 }
1053
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1055 {
1056 shmem_undo_range(inode, lstart, lend, false);
1057 inode->i_ctime = inode->i_mtime = current_time(inode);
1058 }
1059 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1060
shmem_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1061 static int shmem_getattr(struct user_namespace *mnt_userns,
1062 const struct path *path, struct kstat *stat,
1063 u32 request_mask, unsigned int query_flags)
1064 {
1065 struct inode *inode = path->dentry->d_inode;
1066 struct shmem_inode_info *info = SHMEM_I(inode);
1067
1068 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1069 spin_lock_irq(&info->lock);
1070 shmem_recalc_inode(inode);
1071 spin_unlock_irq(&info->lock);
1072 }
1073 generic_fillattr(&init_user_ns, inode, stat);
1074
1075 if (shmem_is_huge(NULL, inode, 0))
1076 stat->blksize = HPAGE_PMD_SIZE;
1077
1078 return 0;
1079 }
1080
shmem_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)1081 static int shmem_setattr(struct user_namespace *mnt_userns,
1082 struct dentry *dentry, struct iattr *attr)
1083 {
1084 struct inode *inode = d_inode(dentry);
1085 struct shmem_inode_info *info = SHMEM_I(inode);
1086 int error;
1087
1088 error = setattr_prepare(&init_user_ns, dentry, attr);
1089 if (error)
1090 return error;
1091
1092 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093 loff_t oldsize = inode->i_size;
1094 loff_t newsize = attr->ia_size;
1095
1096 /* protected by i_rwsem */
1097 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1099 return -EPERM;
1100
1101 if (newsize != oldsize) {
1102 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1103 oldsize, newsize);
1104 if (error)
1105 return error;
1106 i_size_write(inode, newsize);
1107 inode->i_ctime = inode->i_mtime = current_time(inode);
1108 }
1109 if (newsize <= oldsize) {
1110 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1111 if (oldsize > holebegin)
1112 unmap_mapping_range(inode->i_mapping,
1113 holebegin, 0, 1);
1114 if (info->alloced)
1115 shmem_truncate_range(inode,
1116 newsize, (loff_t)-1);
1117 /* unmap again to remove racily COWed private pages */
1118 if (oldsize > holebegin)
1119 unmap_mapping_range(inode->i_mapping,
1120 holebegin, 0, 1);
1121 }
1122 }
1123
1124 setattr_copy(&init_user_ns, inode, attr);
1125 if (attr->ia_valid & ATTR_MODE)
1126 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1127 return error;
1128 }
1129
shmem_evict_inode(struct inode * inode)1130 static void shmem_evict_inode(struct inode *inode)
1131 {
1132 struct shmem_inode_info *info = SHMEM_I(inode);
1133 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1134
1135 if (shmem_mapping(inode->i_mapping)) {
1136 shmem_unacct_size(info->flags, inode->i_size);
1137 inode->i_size = 0;
1138 shmem_truncate_range(inode, 0, (loff_t)-1);
1139 if (!list_empty(&info->shrinklist)) {
1140 spin_lock(&sbinfo->shrinklist_lock);
1141 if (!list_empty(&info->shrinklist)) {
1142 list_del_init(&info->shrinklist);
1143 sbinfo->shrinklist_len--;
1144 }
1145 spin_unlock(&sbinfo->shrinklist_lock);
1146 }
1147 while (!list_empty(&info->swaplist)) {
1148 /* Wait while shmem_unuse() is scanning this inode... */
1149 wait_var_event(&info->stop_eviction,
1150 !atomic_read(&info->stop_eviction));
1151 mutex_lock(&shmem_swaplist_mutex);
1152 /* ...but beware of the race if we peeked too early */
1153 if (!atomic_read(&info->stop_eviction))
1154 list_del_init(&info->swaplist);
1155 mutex_unlock(&shmem_swaplist_mutex);
1156 }
1157 }
1158
1159 simple_xattrs_free(&info->xattrs);
1160 WARN_ON(inode->i_blocks);
1161 shmem_free_inode(inode->i_sb);
1162 clear_inode(inode);
1163 }
1164
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices,unsigned int type,bool frontswap)1165 static int shmem_find_swap_entries(struct address_space *mapping,
1166 pgoff_t start, unsigned int nr_entries,
1167 struct page **entries, pgoff_t *indices,
1168 unsigned int type, bool frontswap)
1169 {
1170 XA_STATE(xas, &mapping->i_pages, start);
1171 struct page *page;
1172 swp_entry_t entry;
1173 unsigned int ret = 0;
1174
1175 if (!nr_entries)
1176 return 0;
1177
1178 rcu_read_lock();
1179 xas_for_each(&xas, page, ULONG_MAX) {
1180 if (xas_retry(&xas, page))
1181 continue;
1182
1183 if (!xa_is_value(page))
1184 continue;
1185
1186 entry = radix_to_swp_entry(page);
1187 if (swp_type(entry) != type)
1188 continue;
1189 if (frontswap &&
1190 !frontswap_test(swap_info[type], swp_offset(entry)))
1191 continue;
1192
1193 indices[ret] = xas.xa_index;
1194 entries[ret] = page;
1195
1196 if (need_resched()) {
1197 xas_pause(&xas);
1198 cond_resched_rcu();
1199 }
1200 if (++ret == nr_entries)
1201 break;
1202 }
1203 rcu_read_unlock();
1204
1205 return ret;
1206 }
1207
1208 /*
1209 * Move the swapped pages for an inode to page cache. Returns the count
1210 * of pages swapped in, or the error in case of failure.
1211 */
shmem_unuse_swap_entries(struct inode * inode,struct pagevec pvec,pgoff_t * indices)1212 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1213 pgoff_t *indices)
1214 {
1215 int i = 0;
1216 int ret = 0;
1217 int error = 0;
1218 struct address_space *mapping = inode->i_mapping;
1219
1220 for (i = 0; i < pvec.nr; i++) {
1221 struct page *page = pvec.pages[i];
1222
1223 if (!xa_is_value(page))
1224 continue;
1225 error = shmem_swapin_page(inode, indices[i],
1226 &page, SGP_CACHE,
1227 mapping_gfp_mask(mapping),
1228 NULL, NULL);
1229 if (error == 0) {
1230 unlock_page(page);
1231 put_page(page);
1232 ret++;
1233 }
1234 if (error == -ENOMEM)
1235 break;
1236 error = 0;
1237 }
1238 return error ? error : ret;
1239 }
1240
1241 /*
1242 * If swap found in inode, free it and move page from swapcache to filecache.
1243 */
shmem_unuse_inode(struct inode * inode,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1244 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1245 bool frontswap, unsigned long *fs_pages_to_unuse)
1246 {
1247 struct address_space *mapping = inode->i_mapping;
1248 pgoff_t start = 0;
1249 struct pagevec pvec;
1250 pgoff_t indices[PAGEVEC_SIZE];
1251 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1252 int ret = 0;
1253
1254 pagevec_init(&pvec);
1255 do {
1256 unsigned int nr_entries = PAGEVEC_SIZE;
1257
1258 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1259 nr_entries = *fs_pages_to_unuse;
1260
1261 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1262 pvec.pages, indices,
1263 type, frontswap);
1264 if (pvec.nr == 0) {
1265 ret = 0;
1266 break;
1267 }
1268
1269 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1270 if (ret < 0)
1271 break;
1272
1273 if (frontswap_partial) {
1274 *fs_pages_to_unuse -= ret;
1275 if (*fs_pages_to_unuse == 0) {
1276 ret = FRONTSWAP_PAGES_UNUSED;
1277 break;
1278 }
1279 }
1280
1281 start = indices[pvec.nr - 1];
1282 } while (true);
1283
1284 return ret;
1285 }
1286
1287 /*
1288 * Read all the shared memory data that resides in the swap
1289 * device 'type' back into memory, so the swap device can be
1290 * unused.
1291 */
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1292 int shmem_unuse(unsigned int type, bool frontswap,
1293 unsigned long *fs_pages_to_unuse)
1294 {
1295 struct shmem_inode_info *info, *next;
1296 int error = 0;
1297
1298 if (list_empty(&shmem_swaplist))
1299 return 0;
1300
1301 mutex_lock(&shmem_swaplist_mutex);
1302 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1303 if (!info->swapped) {
1304 list_del_init(&info->swaplist);
1305 continue;
1306 }
1307 /*
1308 * Drop the swaplist mutex while searching the inode for swap;
1309 * but before doing so, make sure shmem_evict_inode() will not
1310 * remove placeholder inode from swaplist, nor let it be freed
1311 * (igrab() would protect from unlink, but not from unmount).
1312 */
1313 atomic_inc(&info->stop_eviction);
1314 mutex_unlock(&shmem_swaplist_mutex);
1315
1316 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1317 fs_pages_to_unuse);
1318 cond_resched();
1319
1320 mutex_lock(&shmem_swaplist_mutex);
1321 next = list_next_entry(info, swaplist);
1322 if (!info->swapped)
1323 list_del_init(&info->swaplist);
1324 if (atomic_dec_and_test(&info->stop_eviction))
1325 wake_up_var(&info->stop_eviction);
1326 if (error)
1327 break;
1328 }
1329 mutex_unlock(&shmem_swaplist_mutex);
1330
1331 return error;
1332 }
1333
1334 /*
1335 * Move the page from the page cache to the swap cache.
1336 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1337 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1338 {
1339 struct shmem_inode_info *info;
1340 struct address_space *mapping;
1341 struct inode *inode;
1342 swp_entry_t swap;
1343 pgoff_t index;
1344
1345 /*
1346 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1347 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1348 * and its shmem_writeback() needs them to be split when swapping.
1349 */
1350 if (PageTransCompound(page)) {
1351 /* Ensure the subpages are still dirty */
1352 SetPageDirty(page);
1353 if (split_huge_page(page) < 0)
1354 goto redirty;
1355 ClearPageDirty(page);
1356 }
1357
1358 BUG_ON(!PageLocked(page));
1359 mapping = page->mapping;
1360 index = page->index;
1361 inode = mapping->host;
1362 info = SHMEM_I(inode);
1363 if (info->flags & VM_LOCKED)
1364 goto redirty;
1365 if (!total_swap_pages)
1366 goto redirty;
1367
1368 /*
1369 * Our capabilities prevent regular writeback or sync from ever calling
1370 * shmem_writepage; but a stacking filesystem might use ->writepage of
1371 * its underlying filesystem, in which case tmpfs should write out to
1372 * swap only in response to memory pressure, and not for the writeback
1373 * threads or sync.
1374 */
1375 if (!wbc->for_reclaim) {
1376 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1377 goto redirty;
1378 }
1379
1380 /*
1381 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1382 * value into swapfile.c, the only way we can correctly account for a
1383 * fallocated page arriving here is now to initialize it and write it.
1384 *
1385 * That's okay for a page already fallocated earlier, but if we have
1386 * not yet completed the fallocation, then (a) we want to keep track
1387 * of this page in case we have to undo it, and (b) it may not be a
1388 * good idea to continue anyway, once we're pushing into swap. So
1389 * reactivate the page, and let shmem_fallocate() quit when too many.
1390 */
1391 if (!PageUptodate(page)) {
1392 if (inode->i_private) {
1393 struct shmem_falloc *shmem_falloc;
1394 spin_lock(&inode->i_lock);
1395 shmem_falloc = inode->i_private;
1396 if (shmem_falloc &&
1397 !shmem_falloc->waitq &&
1398 index >= shmem_falloc->start &&
1399 index < shmem_falloc->next)
1400 shmem_falloc->nr_unswapped++;
1401 else
1402 shmem_falloc = NULL;
1403 spin_unlock(&inode->i_lock);
1404 if (shmem_falloc)
1405 goto redirty;
1406 }
1407 clear_highpage(page);
1408 flush_dcache_page(page);
1409 SetPageUptodate(page);
1410 }
1411
1412 swap = get_swap_page(page);
1413 if (!swap.val)
1414 goto redirty;
1415
1416 /*
1417 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1418 * if it's not already there. Do it now before the page is
1419 * moved to swap cache, when its pagelock no longer protects
1420 * the inode from eviction. But don't unlock the mutex until
1421 * we've incremented swapped, because shmem_unuse_inode() will
1422 * prune a !swapped inode from the swaplist under this mutex.
1423 */
1424 mutex_lock(&shmem_swaplist_mutex);
1425 if (list_empty(&info->swaplist))
1426 list_add(&info->swaplist, &shmem_swaplist);
1427
1428 if (add_to_swap_cache(page, swap,
1429 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1430 NULL) == 0) {
1431 spin_lock_irq(&info->lock);
1432 shmem_recalc_inode(inode);
1433 info->swapped++;
1434 spin_unlock_irq(&info->lock);
1435
1436 swap_shmem_alloc(swap);
1437 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1438
1439 mutex_unlock(&shmem_swaplist_mutex);
1440 BUG_ON(page_mapped(page));
1441 swap_writepage(page, wbc);
1442 return 0;
1443 }
1444
1445 mutex_unlock(&shmem_swaplist_mutex);
1446 put_swap_page(page, swap);
1447 redirty:
1448 set_page_dirty(page);
1449 if (wbc->for_reclaim)
1450 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1451 unlock_page(page);
1452 return 0;
1453 }
1454
1455 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1456 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1457 {
1458 char buffer[64];
1459
1460 if (!mpol || mpol->mode == MPOL_DEFAULT)
1461 return; /* show nothing */
1462
1463 mpol_to_str(buffer, sizeof(buffer), mpol);
1464
1465 seq_printf(seq, ",mpol=%s", buffer);
1466 }
1467
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1468 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1469 {
1470 struct mempolicy *mpol = NULL;
1471 if (sbinfo->mpol) {
1472 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1473 mpol = sbinfo->mpol;
1474 mpol_get(mpol);
1475 raw_spin_unlock(&sbinfo->stat_lock);
1476 }
1477 return mpol;
1478 }
1479 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1480 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1481 {
1482 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1483 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1484 {
1485 return NULL;
1486 }
1487 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1488 #ifndef CONFIG_NUMA
1489 #define vm_policy vm_private_data
1490 #endif
1491
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1492 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1493 struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 /* Create a pseudo vma that just contains the policy */
1496 vma_init(vma, NULL);
1497 /* Bias interleave by inode number to distribute better across nodes */
1498 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1499 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1500 }
1501
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1502 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1503 {
1504 /* Drop reference taken by mpol_shared_policy_lookup() */
1505 mpol_cond_put(vma->vm_policy);
1506 }
1507
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1508 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1509 struct shmem_inode_info *info, pgoff_t index)
1510 {
1511 struct vm_area_struct pvma;
1512 struct page *page;
1513 struct vm_fault vmf = {
1514 .vma = &pvma,
1515 };
1516
1517 shmem_pseudo_vma_init(&pvma, info, index);
1518 page = swap_cluster_readahead(swap, gfp, &vmf);
1519 shmem_pseudo_vma_destroy(&pvma);
1520
1521 return page;
1522 }
1523
1524 /*
1525 * Make sure huge_gfp is always more limited than limit_gfp.
1526 * Some of the flags set permissions, while others set limitations.
1527 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1528 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1529 {
1530 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1531 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1532 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1533 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1534
1535 /* Allow allocations only from the originally specified zones. */
1536 result |= zoneflags;
1537
1538 /*
1539 * Minimize the result gfp by taking the union with the deny flags,
1540 * and the intersection of the allow flags.
1541 */
1542 result |= (limit_gfp & denyflags);
1543 result |= (huge_gfp & limit_gfp) & allowflags;
1544
1545 return result;
1546 }
1547
shmem_alloc_hugepage(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1548 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1549 struct shmem_inode_info *info, pgoff_t index)
1550 {
1551 struct vm_area_struct pvma;
1552 struct address_space *mapping = info->vfs_inode.i_mapping;
1553 pgoff_t hindex;
1554 struct page *page;
1555
1556 hindex = round_down(index, HPAGE_PMD_NR);
1557 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1558 XA_PRESENT))
1559 return NULL;
1560
1561 shmem_pseudo_vma_init(&pvma, info, hindex);
1562 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1563 true);
1564 shmem_pseudo_vma_destroy(&pvma);
1565 if (page)
1566 prep_transhuge_page(page);
1567 else
1568 count_vm_event(THP_FILE_FALLBACK);
1569 return page;
1570 }
1571
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1572 static struct page *shmem_alloc_page(gfp_t gfp,
1573 struct shmem_inode_info *info, pgoff_t index)
1574 {
1575 struct vm_area_struct pvma;
1576 struct page *page;
1577
1578 shmem_pseudo_vma_init(&pvma, info, index);
1579 page = alloc_page_vma(gfp, &pvma, 0);
1580 shmem_pseudo_vma_destroy(&pvma);
1581
1582 return page;
1583 }
1584
shmem_alloc_and_acct_page(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1585 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1586 struct inode *inode,
1587 pgoff_t index, bool huge)
1588 {
1589 struct shmem_inode_info *info = SHMEM_I(inode);
1590 struct page *page;
1591 int nr;
1592 int err = -ENOSPC;
1593
1594 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1595 huge = false;
1596 nr = huge ? HPAGE_PMD_NR : 1;
1597
1598 if (!shmem_inode_acct_block(inode, nr))
1599 goto failed;
1600
1601 if (huge)
1602 page = shmem_alloc_hugepage(gfp, info, index);
1603 else
1604 page = shmem_alloc_page(gfp, info, index);
1605 if (page) {
1606 __SetPageLocked(page);
1607 __SetPageSwapBacked(page);
1608 return page;
1609 }
1610
1611 err = -ENOMEM;
1612 shmem_inode_unacct_blocks(inode, nr);
1613 failed:
1614 return ERR_PTR(err);
1615 }
1616
1617 /*
1618 * When a page is moved from swapcache to shmem filecache (either by the
1619 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1620 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1621 * ignorance of the mapping it belongs to. If that mapping has special
1622 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1623 * we may need to copy to a suitable page before moving to filecache.
1624 *
1625 * In a future release, this may well be extended to respect cpuset and
1626 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1627 * but for now it is a simple matter of zone.
1628 */
shmem_should_replace_page(struct page * page,gfp_t gfp)1629 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1630 {
1631 return page_zonenum(page) > gfp_zone(gfp);
1632 }
1633
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1634 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1635 struct shmem_inode_info *info, pgoff_t index)
1636 {
1637 struct page *oldpage, *newpage;
1638 struct folio *old, *new;
1639 struct address_space *swap_mapping;
1640 swp_entry_t entry;
1641 pgoff_t swap_index;
1642 int error;
1643
1644 oldpage = *pagep;
1645 entry.val = page_private(oldpage);
1646 swap_index = swp_offset(entry);
1647 swap_mapping = page_mapping(oldpage);
1648
1649 /*
1650 * We have arrived here because our zones are constrained, so don't
1651 * limit chance of success by further cpuset and node constraints.
1652 */
1653 gfp &= ~GFP_CONSTRAINT_MASK;
1654 newpage = shmem_alloc_page(gfp, info, index);
1655 if (!newpage)
1656 return -ENOMEM;
1657
1658 get_page(newpage);
1659 copy_highpage(newpage, oldpage);
1660 flush_dcache_page(newpage);
1661
1662 __SetPageLocked(newpage);
1663 __SetPageSwapBacked(newpage);
1664 SetPageUptodate(newpage);
1665 set_page_private(newpage, entry.val);
1666 SetPageSwapCache(newpage);
1667
1668 /*
1669 * Our caller will very soon move newpage out of swapcache, but it's
1670 * a nice clean interface for us to replace oldpage by newpage there.
1671 */
1672 xa_lock_irq(&swap_mapping->i_pages);
1673 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1674 if (!error) {
1675 old = page_folio(oldpage);
1676 new = page_folio(newpage);
1677 mem_cgroup_migrate(old, new);
1678 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1679 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1680 }
1681 xa_unlock_irq(&swap_mapping->i_pages);
1682
1683 if (unlikely(error)) {
1684 /*
1685 * Is this possible? I think not, now that our callers check
1686 * both PageSwapCache and page_private after getting page lock;
1687 * but be defensive. Reverse old to newpage for clear and free.
1688 */
1689 oldpage = newpage;
1690 } else {
1691 lru_cache_add(newpage);
1692 *pagep = newpage;
1693 }
1694
1695 ClearPageSwapCache(oldpage);
1696 set_page_private(oldpage, 0);
1697
1698 unlock_page(oldpage);
1699 put_page(oldpage);
1700 put_page(oldpage);
1701 return error;
1702 }
1703
1704 /*
1705 * Swap in the page pointed to by *pagep.
1706 * Caller has to make sure that *pagep contains a valid swapped page.
1707 * Returns 0 and the page in pagep if success. On failure, returns the
1708 * error code and NULL in *pagep.
1709 */
shmem_swapin_page(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1710 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1711 struct page **pagep, enum sgp_type sgp,
1712 gfp_t gfp, struct vm_area_struct *vma,
1713 vm_fault_t *fault_type)
1714 {
1715 struct address_space *mapping = inode->i_mapping;
1716 struct shmem_inode_info *info = SHMEM_I(inode);
1717 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1718 struct page *page;
1719 swp_entry_t swap;
1720 int error;
1721
1722 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1723 swap = radix_to_swp_entry(*pagep);
1724 *pagep = NULL;
1725
1726 /* Look it up and read it in.. */
1727 page = lookup_swap_cache(swap, NULL, 0);
1728 if (!page) {
1729 /* Or update major stats only when swapin succeeds?? */
1730 if (fault_type) {
1731 *fault_type |= VM_FAULT_MAJOR;
1732 count_vm_event(PGMAJFAULT);
1733 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1734 }
1735 /* Here we actually start the io */
1736 page = shmem_swapin(swap, gfp, info, index);
1737 if (!page) {
1738 error = -ENOMEM;
1739 goto failed;
1740 }
1741 }
1742
1743 /* We have to do this with page locked to prevent races */
1744 lock_page(page);
1745 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1746 !shmem_confirm_swap(mapping, index, swap)) {
1747 error = -EEXIST;
1748 goto unlock;
1749 }
1750 if (!PageUptodate(page)) {
1751 error = -EIO;
1752 goto failed;
1753 }
1754 wait_on_page_writeback(page);
1755
1756 /*
1757 * Some architectures may have to restore extra metadata to the
1758 * physical page after reading from swap.
1759 */
1760 arch_swap_restore(swap, page);
1761
1762 if (shmem_should_replace_page(page, gfp)) {
1763 error = shmem_replace_page(&page, gfp, info, index);
1764 if (error)
1765 goto failed;
1766 }
1767
1768 error = shmem_add_to_page_cache(page, mapping, index,
1769 swp_to_radix_entry(swap), gfp,
1770 charge_mm);
1771 if (error)
1772 goto failed;
1773
1774 spin_lock_irq(&info->lock);
1775 info->swapped--;
1776 shmem_recalc_inode(inode);
1777 spin_unlock_irq(&info->lock);
1778
1779 if (sgp == SGP_WRITE)
1780 mark_page_accessed(page);
1781
1782 delete_from_swap_cache(page);
1783 set_page_dirty(page);
1784 swap_free(swap);
1785
1786 *pagep = page;
1787 return 0;
1788 failed:
1789 if (!shmem_confirm_swap(mapping, index, swap))
1790 error = -EEXIST;
1791 unlock:
1792 if (page) {
1793 unlock_page(page);
1794 put_page(page);
1795 }
1796
1797 return error;
1798 }
1799
1800 /*
1801 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1802 *
1803 * If we allocate a new one we do not mark it dirty. That's up to the
1804 * vm. If we swap it in we mark it dirty since we also free the swap
1805 * entry since a page cannot live in both the swap and page cache.
1806 *
1807 * vma, vmf, and fault_type are only supplied by shmem_fault:
1808 * otherwise they are NULL.
1809 */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1810 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1811 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1812 struct vm_area_struct *vma, struct vm_fault *vmf,
1813 vm_fault_t *fault_type)
1814 {
1815 struct address_space *mapping = inode->i_mapping;
1816 struct shmem_inode_info *info = SHMEM_I(inode);
1817 struct shmem_sb_info *sbinfo;
1818 struct mm_struct *charge_mm;
1819 struct page *page;
1820 pgoff_t hindex = index;
1821 gfp_t huge_gfp;
1822 int error;
1823 int once = 0;
1824 int alloced = 0;
1825
1826 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1827 return -EFBIG;
1828 repeat:
1829 if (sgp <= SGP_CACHE &&
1830 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1831 return -EINVAL;
1832 }
1833
1834 sbinfo = SHMEM_SB(inode->i_sb);
1835 charge_mm = vma ? vma->vm_mm : NULL;
1836
1837 page = pagecache_get_page(mapping, index,
1838 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1839
1840 if (page && vma && userfaultfd_minor(vma)) {
1841 if (!xa_is_value(page)) {
1842 unlock_page(page);
1843 put_page(page);
1844 }
1845 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1846 return 0;
1847 }
1848
1849 if (xa_is_value(page)) {
1850 error = shmem_swapin_page(inode, index, &page,
1851 sgp, gfp, vma, fault_type);
1852 if (error == -EEXIST)
1853 goto repeat;
1854
1855 *pagep = page;
1856 return error;
1857 }
1858
1859 if (page) {
1860 hindex = page->index;
1861 if (sgp == SGP_WRITE)
1862 mark_page_accessed(page);
1863 if (PageUptodate(page))
1864 goto out;
1865 /* fallocated page */
1866 if (sgp != SGP_READ)
1867 goto clear;
1868 unlock_page(page);
1869 put_page(page);
1870 }
1871
1872 /*
1873 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1874 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1875 */
1876 *pagep = NULL;
1877 if (sgp == SGP_READ)
1878 return 0;
1879 if (sgp == SGP_NOALLOC)
1880 return -ENOENT;
1881
1882 /*
1883 * Fast cache lookup and swap lookup did not find it: allocate.
1884 */
1885
1886 if (vma && userfaultfd_missing(vma)) {
1887 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1888 return 0;
1889 }
1890
1891 /* Never use a huge page for shmem_symlink() */
1892 if (S_ISLNK(inode->i_mode))
1893 goto alloc_nohuge;
1894 if (!shmem_is_huge(vma, inode, index))
1895 goto alloc_nohuge;
1896
1897 huge_gfp = vma_thp_gfp_mask(vma);
1898 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1899 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1900 if (IS_ERR(page)) {
1901 alloc_nohuge:
1902 page = shmem_alloc_and_acct_page(gfp, inode,
1903 index, false);
1904 }
1905 if (IS_ERR(page)) {
1906 int retry = 5;
1907
1908 error = PTR_ERR(page);
1909 page = NULL;
1910 if (error != -ENOSPC)
1911 goto unlock;
1912 /*
1913 * Try to reclaim some space by splitting a huge page
1914 * beyond i_size on the filesystem.
1915 */
1916 while (retry--) {
1917 int ret;
1918
1919 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1920 if (ret == SHRINK_STOP)
1921 break;
1922 if (ret)
1923 goto alloc_nohuge;
1924 }
1925 goto unlock;
1926 }
1927
1928 if (PageTransHuge(page))
1929 hindex = round_down(index, HPAGE_PMD_NR);
1930 else
1931 hindex = index;
1932
1933 if (sgp == SGP_WRITE)
1934 __SetPageReferenced(page);
1935
1936 error = shmem_add_to_page_cache(page, mapping, hindex,
1937 NULL, gfp & GFP_RECLAIM_MASK,
1938 charge_mm);
1939 if (error)
1940 goto unacct;
1941 lru_cache_add(page);
1942
1943 spin_lock_irq(&info->lock);
1944 info->alloced += compound_nr(page);
1945 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1946 shmem_recalc_inode(inode);
1947 spin_unlock_irq(&info->lock);
1948 alloced = true;
1949
1950 if (PageTransHuge(page) &&
1951 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1952 hindex + HPAGE_PMD_NR - 1) {
1953 /*
1954 * Part of the huge page is beyond i_size: subject
1955 * to shrink under memory pressure.
1956 */
1957 spin_lock(&sbinfo->shrinklist_lock);
1958 /*
1959 * _careful to defend against unlocked access to
1960 * ->shrink_list in shmem_unused_huge_shrink()
1961 */
1962 if (list_empty_careful(&info->shrinklist)) {
1963 list_add_tail(&info->shrinklist,
1964 &sbinfo->shrinklist);
1965 sbinfo->shrinklist_len++;
1966 }
1967 spin_unlock(&sbinfo->shrinklist_lock);
1968 }
1969
1970 /*
1971 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1972 */
1973 if (sgp == SGP_FALLOC)
1974 sgp = SGP_WRITE;
1975 clear:
1976 /*
1977 * Let SGP_WRITE caller clear ends if write does not fill page;
1978 * but SGP_FALLOC on a page fallocated earlier must initialize
1979 * it now, lest undo on failure cancel our earlier guarantee.
1980 */
1981 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1982 int i;
1983
1984 for (i = 0; i < compound_nr(page); i++) {
1985 clear_highpage(page + i);
1986 flush_dcache_page(page + i);
1987 }
1988 SetPageUptodate(page);
1989 }
1990
1991 /* Perhaps the file has been truncated since we checked */
1992 if (sgp <= SGP_CACHE &&
1993 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1994 if (alloced) {
1995 ClearPageDirty(page);
1996 delete_from_page_cache(page);
1997 spin_lock_irq(&info->lock);
1998 shmem_recalc_inode(inode);
1999 spin_unlock_irq(&info->lock);
2000 }
2001 error = -EINVAL;
2002 goto unlock;
2003 }
2004 out:
2005 *pagep = page + index - hindex;
2006 return 0;
2007
2008 /*
2009 * Error recovery.
2010 */
2011 unacct:
2012 shmem_inode_unacct_blocks(inode, compound_nr(page));
2013
2014 if (PageTransHuge(page)) {
2015 unlock_page(page);
2016 put_page(page);
2017 goto alloc_nohuge;
2018 }
2019 unlock:
2020 if (page) {
2021 unlock_page(page);
2022 put_page(page);
2023 }
2024 if (error == -ENOSPC && !once++) {
2025 spin_lock_irq(&info->lock);
2026 shmem_recalc_inode(inode);
2027 spin_unlock_irq(&info->lock);
2028 goto repeat;
2029 }
2030 if (error == -EEXIST)
2031 goto repeat;
2032 return error;
2033 }
2034
2035 /*
2036 * This is like autoremove_wake_function, but it removes the wait queue
2037 * entry unconditionally - even if something else had already woken the
2038 * target.
2039 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2040 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2041 {
2042 int ret = default_wake_function(wait, mode, sync, key);
2043 list_del_init(&wait->entry);
2044 return ret;
2045 }
2046
shmem_fault(struct vm_fault * vmf)2047 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2048 {
2049 struct vm_area_struct *vma = vmf->vma;
2050 struct inode *inode = file_inode(vma->vm_file);
2051 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2052 int err;
2053 vm_fault_t ret = VM_FAULT_LOCKED;
2054
2055 /*
2056 * Trinity finds that probing a hole which tmpfs is punching can
2057 * prevent the hole-punch from ever completing: which in turn
2058 * locks writers out with its hold on i_rwsem. So refrain from
2059 * faulting pages into the hole while it's being punched. Although
2060 * shmem_undo_range() does remove the additions, it may be unable to
2061 * keep up, as each new page needs its own unmap_mapping_range() call,
2062 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2063 *
2064 * It does not matter if we sometimes reach this check just before the
2065 * hole-punch begins, so that one fault then races with the punch:
2066 * we just need to make racing faults a rare case.
2067 *
2068 * The implementation below would be much simpler if we just used a
2069 * standard mutex or completion: but we cannot take i_rwsem in fault,
2070 * and bloating every shmem inode for this unlikely case would be sad.
2071 */
2072 if (unlikely(inode->i_private)) {
2073 struct shmem_falloc *shmem_falloc;
2074
2075 spin_lock(&inode->i_lock);
2076 shmem_falloc = inode->i_private;
2077 if (shmem_falloc &&
2078 shmem_falloc->waitq &&
2079 vmf->pgoff >= shmem_falloc->start &&
2080 vmf->pgoff < shmem_falloc->next) {
2081 struct file *fpin;
2082 wait_queue_head_t *shmem_falloc_waitq;
2083 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2084
2085 ret = VM_FAULT_NOPAGE;
2086 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2087 if (fpin)
2088 ret = VM_FAULT_RETRY;
2089
2090 shmem_falloc_waitq = shmem_falloc->waitq;
2091 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2092 TASK_UNINTERRUPTIBLE);
2093 spin_unlock(&inode->i_lock);
2094 schedule();
2095
2096 /*
2097 * shmem_falloc_waitq points into the shmem_fallocate()
2098 * stack of the hole-punching task: shmem_falloc_waitq
2099 * is usually invalid by the time we reach here, but
2100 * finish_wait() does not dereference it in that case;
2101 * though i_lock needed lest racing with wake_up_all().
2102 */
2103 spin_lock(&inode->i_lock);
2104 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2105 spin_unlock(&inode->i_lock);
2106
2107 if (fpin)
2108 fput(fpin);
2109 return ret;
2110 }
2111 spin_unlock(&inode->i_lock);
2112 }
2113
2114 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2115 gfp, vma, vmf, &ret);
2116 if (err)
2117 return vmf_error(err);
2118 return ret;
2119 }
2120
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2121 unsigned long shmem_get_unmapped_area(struct file *file,
2122 unsigned long uaddr, unsigned long len,
2123 unsigned long pgoff, unsigned long flags)
2124 {
2125 unsigned long (*get_area)(struct file *,
2126 unsigned long, unsigned long, unsigned long, unsigned long);
2127 unsigned long addr;
2128 unsigned long offset;
2129 unsigned long inflated_len;
2130 unsigned long inflated_addr;
2131 unsigned long inflated_offset;
2132
2133 if (len > TASK_SIZE)
2134 return -ENOMEM;
2135
2136 get_area = current->mm->get_unmapped_area;
2137 addr = get_area(file, uaddr, len, pgoff, flags);
2138
2139 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2140 return addr;
2141 if (IS_ERR_VALUE(addr))
2142 return addr;
2143 if (addr & ~PAGE_MASK)
2144 return addr;
2145 if (addr > TASK_SIZE - len)
2146 return addr;
2147
2148 if (shmem_huge == SHMEM_HUGE_DENY)
2149 return addr;
2150 if (len < HPAGE_PMD_SIZE)
2151 return addr;
2152 if (flags & MAP_FIXED)
2153 return addr;
2154 /*
2155 * Our priority is to support MAP_SHARED mapped hugely;
2156 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2157 * But if caller specified an address hint and we allocated area there
2158 * successfully, respect that as before.
2159 */
2160 if (uaddr == addr)
2161 return addr;
2162
2163 if (shmem_huge != SHMEM_HUGE_FORCE) {
2164 struct super_block *sb;
2165
2166 if (file) {
2167 VM_BUG_ON(file->f_op != &shmem_file_operations);
2168 sb = file_inode(file)->i_sb;
2169 } else {
2170 /*
2171 * Called directly from mm/mmap.c, or drivers/char/mem.c
2172 * for "/dev/zero", to create a shared anonymous object.
2173 */
2174 if (IS_ERR(shm_mnt))
2175 return addr;
2176 sb = shm_mnt->mnt_sb;
2177 }
2178 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2179 return addr;
2180 }
2181
2182 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2183 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2184 return addr;
2185 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2186 return addr;
2187
2188 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2189 if (inflated_len > TASK_SIZE)
2190 return addr;
2191 if (inflated_len < len)
2192 return addr;
2193
2194 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2195 if (IS_ERR_VALUE(inflated_addr))
2196 return addr;
2197 if (inflated_addr & ~PAGE_MASK)
2198 return addr;
2199
2200 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2201 inflated_addr += offset - inflated_offset;
2202 if (inflated_offset > offset)
2203 inflated_addr += HPAGE_PMD_SIZE;
2204
2205 if (inflated_addr > TASK_SIZE - len)
2206 return addr;
2207 return inflated_addr;
2208 }
2209
2210 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2211 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2212 {
2213 struct inode *inode = file_inode(vma->vm_file);
2214 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2215 }
2216
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2217 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2218 unsigned long addr)
2219 {
2220 struct inode *inode = file_inode(vma->vm_file);
2221 pgoff_t index;
2222
2223 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2224 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2225 }
2226 #endif
2227
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2228 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2229 {
2230 struct inode *inode = file_inode(file);
2231 struct shmem_inode_info *info = SHMEM_I(inode);
2232 int retval = -ENOMEM;
2233
2234 /*
2235 * What serializes the accesses to info->flags?
2236 * ipc_lock_object() when called from shmctl_do_lock(),
2237 * no serialization needed when called from shm_destroy().
2238 */
2239 if (lock && !(info->flags & VM_LOCKED)) {
2240 if (!user_shm_lock(inode->i_size, ucounts))
2241 goto out_nomem;
2242 info->flags |= VM_LOCKED;
2243 mapping_set_unevictable(file->f_mapping);
2244 }
2245 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2246 user_shm_unlock(inode->i_size, ucounts);
2247 info->flags &= ~VM_LOCKED;
2248 mapping_clear_unevictable(file->f_mapping);
2249 }
2250 retval = 0;
2251
2252 out_nomem:
2253 return retval;
2254 }
2255
shmem_mmap(struct file * file,struct vm_area_struct * vma)2256 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2257 {
2258 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2259 int ret;
2260
2261 ret = seal_check_future_write(info->seals, vma);
2262 if (ret)
2263 return ret;
2264
2265 /* arm64 - allow memory tagging on RAM-based files */
2266 vma->vm_flags |= VM_MTE_ALLOWED;
2267
2268 file_accessed(file);
2269 vma->vm_ops = &shmem_vm_ops;
2270 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2271 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2272 (vma->vm_end & HPAGE_PMD_MASK)) {
2273 khugepaged_enter(vma, vma->vm_flags);
2274 }
2275 return 0;
2276 }
2277
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2278 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2279 umode_t mode, dev_t dev, unsigned long flags)
2280 {
2281 struct inode *inode;
2282 struct shmem_inode_info *info;
2283 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2284 ino_t ino;
2285
2286 if (shmem_reserve_inode(sb, &ino))
2287 return NULL;
2288
2289 inode = new_inode(sb);
2290 if (inode) {
2291 inode->i_ino = ino;
2292 inode_init_owner(&init_user_ns, inode, dir, mode);
2293 inode->i_blocks = 0;
2294 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2295 inode->i_generation = prandom_u32();
2296 info = SHMEM_I(inode);
2297 memset(info, 0, (char *)inode - (char *)info);
2298 spin_lock_init(&info->lock);
2299 atomic_set(&info->stop_eviction, 0);
2300 info->seals = F_SEAL_SEAL;
2301 info->flags = flags & VM_NORESERVE;
2302 INIT_LIST_HEAD(&info->shrinklist);
2303 INIT_LIST_HEAD(&info->swaplist);
2304 simple_xattrs_init(&info->xattrs);
2305 cache_no_acl(inode);
2306 mapping_set_large_folios(inode->i_mapping);
2307
2308 switch (mode & S_IFMT) {
2309 default:
2310 inode->i_op = &shmem_special_inode_operations;
2311 init_special_inode(inode, mode, dev);
2312 break;
2313 case S_IFREG:
2314 inode->i_mapping->a_ops = &shmem_aops;
2315 inode->i_op = &shmem_inode_operations;
2316 inode->i_fop = &shmem_file_operations;
2317 mpol_shared_policy_init(&info->policy,
2318 shmem_get_sbmpol(sbinfo));
2319 break;
2320 case S_IFDIR:
2321 inc_nlink(inode);
2322 /* Some things misbehave if size == 0 on a directory */
2323 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324 inode->i_op = &shmem_dir_inode_operations;
2325 inode->i_fop = &simple_dir_operations;
2326 break;
2327 case S_IFLNK:
2328 /*
2329 * Must not load anything in the rbtree,
2330 * mpol_free_shared_policy will not be called.
2331 */
2332 mpol_shared_policy_init(&info->policy, NULL);
2333 break;
2334 }
2335
2336 lockdep_annotate_inode_mutex_key(inode);
2337 } else
2338 shmem_free_inode(sb);
2339 return inode;
2340 }
2341
2342 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,struct page ** pagep)2343 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2344 pmd_t *dst_pmd,
2345 struct vm_area_struct *dst_vma,
2346 unsigned long dst_addr,
2347 unsigned long src_addr,
2348 bool zeropage,
2349 struct page **pagep)
2350 {
2351 struct inode *inode = file_inode(dst_vma->vm_file);
2352 struct shmem_inode_info *info = SHMEM_I(inode);
2353 struct address_space *mapping = inode->i_mapping;
2354 gfp_t gfp = mapping_gfp_mask(mapping);
2355 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2356 void *page_kaddr;
2357 struct page *page;
2358 int ret;
2359 pgoff_t max_off;
2360
2361 if (!shmem_inode_acct_block(inode, 1)) {
2362 /*
2363 * We may have got a page, returned -ENOENT triggering a retry,
2364 * and now we find ourselves with -ENOMEM. Release the page, to
2365 * avoid a BUG_ON in our caller.
2366 */
2367 if (unlikely(*pagep)) {
2368 put_page(*pagep);
2369 *pagep = NULL;
2370 }
2371 return -ENOMEM;
2372 }
2373
2374 if (!*pagep) {
2375 ret = -ENOMEM;
2376 page = shmem_alloc_page(gfp, info, pgoff);
2377 if (!page)
2378 goto out_unacct_blocks;
2379
2380 if (!zeropage) { /* COPY */
2381 page_kaddr = kmap_atomic(page);
2382 ret = copy_from_user(page_kaddr,
2383 (const void __user *)src_addr,
2384 PAGE_SIZE);
2385 kunmap_atomic(page_kaddr);
2386
2387 /* fallback to copy_from_user outside mmap_lock */
2388 if (unlikely(ret)) {
2389 *pagep = page;
2390 ret = -ENOENT;
2391 /* don't free the page */
2392 goto out_unacct_blocks;
2393 }
2394 } else { /* ZEROPAGE */
2395 clear_highpage(page);
2396 }
2397 } else {
2398 page = *pagep;
2399 *pagep = NULL;
2400 }
2401
2402 VM_BUG_ON(PageLocked(page));
2403 VM_BUG_ON(PageSwapBacked(page));
2404 __SetPageLocked(page);
2405 __SetPageSwapBacked(page);
2406 __SetPageUptodate(page);
2407
2408 ret = -EFAULT;
2409 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2410 if (unlikely(pgoff >= max_off))
2411 goto out_release;
2412
2413 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2414 gfp & GFP_RECLAIM_MASK, dst_mm);
2415 if (ret)
2416 goto out_release;
2417
2418 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2419 page, true, false);
2420 if (ret)
2421 goto out_delete_from_cache;
2422
2423 spin_lock_irq(&info->lock);
2424 info->alloced++;
2425 inode->i_blocks += BLOCKS_PER_PAGE;
2426 shmem_recalc_inode(inode);
2427 spin_unlock_irq(&info->lock);
2428
2429 unlock_page(page);
2430 return 0;
2431 out_delete_from_cache:
2432 delete_from_page_cache(page);
2433 out_release:
2434 unlock_page(page);
2435 put_page(page);
2436 out_unacct_blocks:
2437 shmem_inode_unacct_blocks(inode, 1);
2438 return ret;
2439 }
2440 #endif /* CONFIG_USERFAULTFD */
2441
2442 #ifdef CONFIG_TMPFS
2443 static const struct inode_operations shmem_symlink_inode_operations;
2444 static const struct inode_operations shmem_short_symlink_operations;
2445
2446 #ifdef CONFIG_TMPFS_XATTR
2447 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2448 #else
2449 #define shmem_initxattrs NULL
2450 #endif
2451
2452 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2453 shmem_write_begin(struct file *file, struct address_space *mapping,
2454 loff_t pos, unsigned len, unsigned flags,
2455 struct page **pagep, void **fsdata)
2456 {
2457 struct inode *inode = mapping->host;
2458 struct shmem_inode_info *info = SHMEM_I(inode);
2459 pgoff_t index = pos >> PAGE_SHIFT;
2460
2461 /* i_rwsem is held by caller */
2462 if (unlikely(info->seals & (F_SEAL_GROW |
2463 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2464 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2465 return -EPERM;
2466 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2467 return -EPERM;
2468 }
2469
2470 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2471 }
2472
2473 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2474 shmem_write_end(struct file *file, struct address_space *mapping,
2475 loff_t pos, unsigned len, unsigned copied,
2476 struct page *page, void *fsdata)
2477 {
2478 struct inode *inode = mapping->host;
2479
2480 if (pos + copied > inode->i_size)
2481 i_size_write(inode, pos + copied);
2482
2483 if (!PageUptodate(page)) {
2484 struct page *head = compound_head(page);
2485 if (PageTransCompound(page)) {
2486 int i;
2487
2488 for (i = 0; i < HPAGE_PMD_NR; i++) {
2489 if (head + i == page)
2490 continue;
2491 clear_highpage(head + i);
2492 flush_dcache_page(head + i);
2493 }
2494 }
2495 if (copied < PAGE_SIZE) {
2496 unsigned from = pos & (PAGE_SIZE - 1);
2497 zero_user_segments(page, 0, from,
2498 from + copied, PAGE_SIZE);
2499 }
2500 SetPageUptodate(head);
2501 }
2502 set_page_dirty(page);
2503 unlock_page(page);
2504 put_page(page);
2505
2506 return copied;
2507 }
2508
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2509 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2510 {
2511 struct file *file = iocb->ki_filp;
2512 struct inode *inode = file_inode(file);
2513 struct address_space *mapping = inode->i_mapping;
2514 pgoff_t index;
2515 unsigned long offset;
2516 enum sgp_type sgp = SGP_READ;
2517 int error = 0;
2518 ssize_t retval = 0;
2519 loff_t *ppos = &iocb->ki_pos;
2520
2521 /*
2522 * Might this read be for a stacking filesystem? Then when reading
2523 * holes of a sparse file, we actually need to allocate those pages,
2524 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2525 */
2526 if (!iter_is_iovec(to))
2527 sgp = SGP_CACHE;
2528
2529 index = *ppos >> PAGE_SHIFT;
2530 offset = *ppos & ~PAGE_MASK;
2531
2532 for (;;) {
2533 struct page *page = NULL;
2534 pgoff_t end_index;
2535 unsigned long nr, ret;
2536 loff_t i_size = i_size_read(inode);
2537
2538 end_index = i_size >> PAGE_SHIFT;
2539 if (index > end_index)
2540 break;
2541 if (index == end_index) {
2542 nr = i_size & ~PAGE_MASK;
2543 if (nr <= offset)
2544 break;
2545 }
2546
2547 error = shmem_getpage(inode, index, &page, sgp);
2548 if (error) {
2549 if (error == -EINVAL)
2550 error = 0;
2551 break;
2552 }
2553 if (page) {
2554 if (sgp == SGP_CACHE)
2555 set_page_dirty(page);
2556 unlock_page(page);
2557 }
2558
2559 /*
2560 * We must evaluate after, since reads (unlike writes)
2561 * are called without i_rwsem protection against truncate
2562 */
2563 nr = PAGE_SIZE;
2564 i_size = i_size_read(inode);
2565 end_index = i_size >> PAGE_SHIFT;
2566 if (index == end_index) {
2567 nr = i_size & ~PAGE_MASK;
2568 if (nr <= offset) {
2569 if (page)
2570 put_page(page);
2571 break;
2572 }
2573 }
2574 nr -= offset;
2575
2576 if (page) {
2577 /*
2578 * If users can be writing to this page using arbitrary
2579 * virtual addresses, take care about potential aliasing
2580 * before reading the page on the kernel side.
2581 */
2582 if (mapping_writably_mapped(mapping))
2583 flush_dcache_page(page);
2584 /*
2585 * Mark the page accessed if we read the beginning.
2586 */
2587 if (!offset)
2588 mark_page_accessed(page);
2589 } else {
2590 page = ZERO_PAGE(0);
2591 get_page(page);
2592 }
2593
2594 /*
2595 * Ok, we have the page, and it's up-to-date, so
2596 * now we can copy it to user space...
2597 */
2598 ret = copy_page_to_iter(page, offset, nr, to);
2599 retval += ret;
2600 offset += ret;
2601 index += offset >> PAGE_SHIFT;
2602 offset &= ~PAGE_MASK;
2603
2604 put_page(page);
2605 if (!iov_iter_count(to))
2606 break;
2607 if (ret < nr) {
2608 error = -EFAULT;
2609 break;
2610 }
2611 cond_resched();
2612 }
2613
2614 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2615 file_accessed(file);
2616 return retval ? retval : error;
2617 }
2618
shmem_file_llseek(struct file * file,loff_t offset,int whence)2619 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2620 {
2621 struct address_space *mapping = file->f_mapping;
2622 struct inode *inode = mapping->host;
2623
2624 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2625 return generic_file_llseek_size(file, offset, whence,
2626 MAX_LFS_FILESIZE, i_size_read(inode));
2627 if (offset < 0)
2628 return -ENXIO;
2629
2630 inode_lock(inode);
2631 /* We're holding i_rwsem so we can access i_size directly */
2632 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2633 if (offset >= 0)
2634 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2635 inode_unlock(inode);
2636 return offset;
2637 }
2638
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2639 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2640 loff_t len)
2641 {
2642 struct inode *inode = file_inode(file);
2643 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2644 struct shmem_inode_info *info = SHMEM_I(inode);
2645 struct shmem_falloc shmem_falloc;
2646 pgoff_t start, index, end, undo_fallocend;
2647 int error;
2648
2649 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2650 return -EOPNOTSUPP;
2651
2652 inode_lock(inode);
2653
2654 if (mode & FALLOC_FL_PUNCH_HOLE) {
2655 struct address_space *mapping = file->f_mapping;
2656 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2657 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2658 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2659
2660 /* protected by i_rwsem */
2661 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2662 error = -EPERM;
2663 goto out;
2664 }
2665
2666 shmem_falloc.waitq = &shmem_falloc_waitq;
2667 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2668 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2669 spin_lock(&inode->i_lock);
2670 inode->i_private = &shmem_falloc;
2671 spin_unlock(&inode->i_lock);
2672
2673 if ((u64)unmap_end > (u64)unmap_start)
2674 unmap_mapping_range(mapping, unmap_start,
2675 1 + unmap_end - unmap_start, 0);
2676 shmem_truncate_range(inode, offset, offset + len - 1);
2677 /* No need to unmap again: hole-punching leaves COWed pages */
2678
2679 spin_lock(&inode->i_lock);
2680 inode->i_private = NULL;
2681 wake_up_all(&shmem_falloc_waitq);
2682 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2683 spin_unlock(&inode->i_lock);
2684 error = 0;
2685 goto out;
2686 }
2687
2688 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2689 error = inode_newsize_ok(inode, offset + len);
2690 if (error)
2691 goto out;
2692
2693 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2694 error = -EPERM;
2695 goto out;
2696 }
2697
2698 start = offset >> PAGE_SHIFT;
2699 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2700 /* Try to avoid a swapstorm if len is impossible to satisfy */
2701 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2702 error = -ENOSPC;
2703 goto out;
2704 }
2705
2706 shmem_falloc.waitq = NULL;
2707 shmem_falloc.start = start;
2708 shmem_falloc.next = start;
2709 shmem_falloc.nr_falloced = 0;
2710 shmem_falloc.nr_unswapped = 0;
2711 spin_lock(&inode->i_lock);
2712 inode->i_private = &shmem_falloc;
2713 spin_unlock(&inode->i_lock);
2714
2715 /*
2716 * info->fallocend is only relevant when huge pages might be
2717 * involved: to prevent split_huge_page() freeing fallocated
2718 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2719 */
2720 undo_fallocend = info->fallocend;
2721 if (info->fallocend < end)
2722 info->fallocend = end;
2723
2724 for (index = start; index < end; ) {
2725 struct page *page;
2726
2727 /*
2728 * Good, the fallocate(2) manpage permits EINTR: we may have
2729 * been interrupted because we are using up too much memory.
2730 */
2731 if (signal_pending(current))
2732 error = -EINTR;
2733 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2734 error = -ENOMEM;
2735 else
2736 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2737 if (error) {
2738 info->fallocend = undo_fallocend;
2739 /* Remove the !PageUptodate pages we added */
2740 if (index > start) {
2741 shmem_undo_range(inode,
2742 (loff_t)start << PAGE_SHIFT,
2743 ((loff_t)index << PAGE_SHIFT) - 1, true);
2744 }
2745 goto undone;
2746 }
2747
2748 index++;
2749 /*
2750 * Here is a more important optimization than it appears:
2751 * a second SGP_FALLOC on the same huge page will clear it,
2752 * making it PageUptodate and un-undoable if we fail later.
2753 */
2754 if (PageTransCompound(page)) {
2755 index = round_up(index, HPAGE_PMD_NR);
2756 /* Beware 32-bit wraparound */
2757 if (!index)
2758 index--;
2759 }
2760
2761 /*
2762 * Inform shmem_writepage() how far we have reached.
2763 * No need for lock or barrier: we have the page lock.
2764 */
2765 if (!PageUptodate(page))
2766 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2767 shmem_falloc.next = index;
2768
2769 /*
2770 * If !PageUptodate, leave it that way so that freeable pages
2771 * can be recognized if we need to rollback on error later.
2772 * But set_page_dirty so that memory pressure will swap rather
2773 * than free the pages we are allocating (and SGP_CACHE pages
2774 * might still be clean: we now need to mark those dirty too).
2775 */
2776 set_page_dirty(page);
2777 unlock_page(page);
2778 put_page(page);
2779 cond_resched();
2780 }
2781
2782 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2783 i_size_write(inode, offset + len);
2784 inode->i_ctime = current_time(inode);
2785 undone:
2786 spin_lock(&inode->i_lock);
2787 inode->i_private = NULL;
2788 spin_unlock(&inode->i_lock);
2789 out:
2790 inode_unlock(inode);
2791 return error;
2792 }
2793
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2794 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2795 {
2796 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2797
2798 buf->f_type = TMPFS_MAGIC;
2799 buf->f_bsize = PAGE_SIZE;
2800 buf->f_namelen = NAME_MAX;
2801 if (sbinfo->max_blocks) {
2802 buf->f_blocks = sbinfo->max_blocks;
2803 buf->f_bavail =
2804 buf->f_bfree = sbinfo->max_blocks -
2805 percpu_counter_sum(&sbinfo->used_blocks);
2806 }
2807 if (sbinfo->max_inodes) {
2808 buf->f_files = sbinfo->max_inodes;
2809 buf->f_ffree = sbinfo->free_inodes;
2810 }
2811 /* else leave those fields 0 like simple_statfs */
2812
2813 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2814
2815 return 0;
2816 }
2817
2818 /*
2819 * File creation. Allocate an inode, and we're done..
2820 */
2821 static int
shmem_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2822 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2823 struct dentry *dentry, umode_t mode, dev_t dev)
2824 {
2825 struct inode *inode;
2826 int error = -ENOSPC;
2827
2828 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2829 if (inode) {
2830 error = simple_acl_create(dir, inode);
2831 if (error)
2832 goto out_iput;
2833 error = security_inode_init_security(inode, dir,
2834 &dentry->d_name,
2835 shmem_initxattrs, NULL);
2836 if (error && error != -EOPNOTSUPP)
2837 goto out_iput;
2838
2839 error = 0;
2840 dir->i_size += BOGO_DIRENT_SIZE;
2841 dir->i_ctime = dir->i_mtime = current_time(dir);
2842 d_instantiate(dentry, inode);
2843 dget(dentry); /* Extra count - pin the dentry in core */
2844 }
2845 return error;
2846 out_iput:
2847 iput(inode);
2848 return error;
2849 }
2850
2851 static int
shmem_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2852 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2853 struct dentry *dentry, umode_t mode)
2854 {
2855 struct inode *inode;
2856 int error = -ENOSPC;
2857
2858 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2859 if (inode) {
2860 error = security_inode_init_security(inode, dir,
2861 NULL,
2862 shmem_initxattrs, NULL);
2863 if (error && error != -EOPNOTSUPP)
2864 goto out_iput;
2865 error = simple_acl_create(dir, inode);
2866 if (error)
2867 goto out_iput;
2868 d_tmpfile(dentry, inode);
2869 }
2870 return error;
2871 out_iput:
2872 iput(inode);
2873 return error;
2874 }
2875
shmem_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2876 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2877 struct dentry *dentry, umode_t mode)
2878 {
2879 int error;
2880
2881 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2882 mode | S_IFDIR, 0)))
2883 return error;
2884 inc_nlink(dir);
2885 return 0;
2886 }
2887
shmem_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2888 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2889 struct dentry *dentry, umode_t mode, bool excl)
2890 {
2891 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2892 }
2893
2894 /*
2895 * Link a file..
2896 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2897 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2898 {
2899 struct inode *inode = d_inode(old_dentry);
2900 int ret = 0;
2901
2902 /*
2903 * No ordinary (disk based) filesystem counts links as inodes;
2904 * but each new link needs a new dentry, pinning lowmem, and
2905 * tmpfs dentries cannot be pruned until they are unlinked.
2906 * But if an O_TMPFILE file is linked into the tmpfs, the
2907 * first link must skip that, to get the accounting right.
2908 */
2909 if (inode->i_nlink) {
2910 ret = shmem_reserve_inode(inode->i_sb, NULL);
2911 if (ret)
2912 goto out;
2913 }
2914
2915 dir->i_size += BOGO_DIRENT_SIZE;
2916 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2917 inc_nlink(inode);
2918 ihold(inode); /* New dentry reference */
2919 dget(dentry); /* Extra pinning count for the created dentry */
2920 d_instantiate(dentry, inode);
2921 out:
2922 return ret;
2923 }
2924
shmem_unlink(struct inode * dir,struct dentry * dentry)2925 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2926 {
2927 struct inode *inode = d_inode(dentry);
2928
2929 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2930 shmem_free_inode(inode->i_sb);
2931
2932 dir->i_size -= BOGO_DIRENT_SIZE;
2933 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2934 drop_nlink(inode);
2935 dput(dentry); /* Undo the count from "create" - this does all the work */
2936 return 0;
2937 }
2938
shmem_rmdir(struct inode * dir,struct dentry * dentry)2939 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2940 {
2941 if (!simple_empty(dentry))
2942 return -ENOTEMPTY;
2943
2944 drop_nlink(d_inode(dentry));
2945 drop_nlink(dir);
2946 return shmem_unlink(dir, dentry);
2947 }
2948
shmem_whiteout(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry)2949 static int shmem_whiteout(struct user_namespace *mnt_userns,
2950 struct inode *old_dir, struct dentry *old_dentry)
2951 {
2952 struct dentry *whiteout;
2953 int error;
2954
2955 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2956 if (!whiteout)
2957 return -ENOMEM;
2958
2959 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2960 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2961 dput(whiteout);
2962 if (error)
2963 return error;
2964
2965 /*
2966 * Cheat and hash the whiteout while the old dentry is still in
2967 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2968 *
2969 * d_lookup() will consistently find one of them at this point,
2970 * not sure which one, but that isn't even important.
2971 */
2972 d_rehash(whiteout);
2973 return 0;
2974 }
2975
2976 /*
2977 * The VFS layer already does all the dentry stuff for rename,
2978 * we just have to decrement the usage count for the target if
2979 * it exists so that the VFS layer correctly free's it when it
2980 * gets overwritten.
2981 */
shmem_rename2(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2982 static int shmem_rename2(struct user_namespace *mnt_userns,
2983 struct inode *old_dir, struct dentry *old_dentry,
2984 struct inode *new_dir, struct dentry *new_dentry,
2985 unsigned int flags)
2986 {
2987 struct inode *inode = d_inode(old_dentry);
2988 int they_are_dirs = S_ISDIR(inode->i_mode);
2989
2990 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2991 return -EINVAL;
2992
2993 if (flags & RENAME_EXCHANGE)
2994 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2995
2996 if (!simple_empty(new_dentry))
2997 return -ENOTEMPTY;
2998
2999 if (flags & RENAME_WHITEOUT) {
3000 int error;
3001
3002 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3003 if (error)
3004 return error;
3005 }
3006
3007 if (d_really_is_positive(new_dentry)) {
3008 (void) shmem_unlink(new_dir, new_dentry);
3009 if (they_are_dirs) {
3010 drop_nlink(d_inode(new_dentry));
3011 drop_nlink(old_dir);
3012 }
3013 } else if (they_are_dirs) {
3014 drop_nlink(old_dir);
3015 inc_nlink(new_dir);
3016 }
3017
3018 old_dir->i_size -= BOGO_DIRENT_SIZE;
3019 new_dir->i_size += BOGO_DIRENT_SIZE;
3020 old_dir->i_ctime = old_dir->i_mtime =
3021 new_dir->i_ctime = new_dir->i_mtime =
3022 inode->i_ctime = current_time(old_dir);
3023 return 0;
3024 }
3025
shmem_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)3026 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3027 struct dentry *dentry, const char *symname)
3028 {
3029 int error;
3030 int len;
3031 struct inode *inode;
3032 struct page *page;
3033
3034 len = strlen(symname) + 1;
3035 if (len > PAGE_SIZE)
3036 return -ENAMETOOLONG;
3037
3038 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3039 VM_NORESERVE);
3040 if (!inode)
3041 return -ENOSPC;
3042
3043 error = security_inode_init_security(inode, dir, &dentry->d_name,
3044 shmem_initxattrs, NULL);
3045 if (error && error != -EOPNOTSUPP) {
3046 iput(inode);
3047 return error;
3048 }
3049
3050 inode->i_size = len-1;
3051 if (len <= SHORT_SYMLINK_LEN) {
3052 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3053 if (!inode->i_link) {
3054 iput(inode);
3055 return -ENOMEM;
3056 }
3057 inode->i_op = &shmem_short_symlink_operations;
3058 } else {
3059 inode_nohighmem(inode);
3060 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3061 if (error) {
3062 iput(inode);
3063 return error;
3064 }
3065 inode->i_mapping->a_ops = &shmem_aops;
3066 inode->i_op = &shmem_symlink_inode_operations;
3067 memcpy(page_address(page), symname, len);
3068 SetPageUptodate(page);
3069 set_page_dirty(page);
3070 unlock_page(page);
3071 put_page(page);
3072 }
3073 dir->i_size += BOGO_DIRENT_SIZE;
3074 dir->i_ctime = dir->i_mtime = current_time(dir);
3075 d_instantiate(dentry, inode);
3076 dget(dentry);
3077 return 0;
3078 }
3079
shmem_put_link(void * arg)3080 static void shmem_put_link(void *arg)
3081 {
3082 mark_page_accessed(arg);
3083 put_page(arg);
3084 }
3085
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3086 static const char *shmem_get_link(struct dentry *dentry,
3087 struct inode *inode,
3088 struct delayed_call *done)
3089 {
3090 struct page *page = NULL;
3091 int error;
3092 if (!dentry) {
3093 page = find_get_page(inode->i_mapping, 0);
3094 if (!page)
3095 return ERR_PTR(-ECHILD);
3096 if (!PageUptodate(page)) {
3097 put_page(page);
3098 return ERR_PTR(-ECHILD);
3099 }
3100 } else {
3101 error = shmem_getpage(inode, 0, &page, SGP_READ);
3102 if (error)
3103 return ERR_PTR(error);
3104 unlock_page(page);
3105 }
3106 set_delayed_call(done, shmem_put_link, page);
3107 return page_address(page);
3108 }
3109
3110 #ifdef CONFIG_TMPFS_XATTR
3111 /*
3112 * Superblocks without xattr inode operations may get some security.* xattr
3113 * support from the LSM "for free". As soon as we have any other xattrs
3114 * like ACLs, we also need to implement the security.* handlers at
3115 * filesystem level, though.
3116 */
3117
3118 /*
3119 * Callback for security_inode_init_security() for acquiring xattrs.
3120 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3121 static int shmem_initxattrs(struct inode *inode,
3122 const struct xattr *xattr_array,
3123 void *fs_info)
3124 {
3125 struct shmem_inode_info *info = SHMEM_I(inode);
3126 const struct xattr *xattr;
3127 struct simple_xattr *new_xattr;
3128 size_t len;
3129
3130 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3131 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3132 if (!new_xattr)
3133 return -ENOMEM;
3134
3135 len = strlen(xattr->name) + 1;
3136 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3137 GFP_KERNEL);
3138 if (!new_xattr->name) {
3139 kvfree(new_xattr);
3140 return -ENOMEM;
3141 }
3142
3143 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3144 XATTR_SECURITY_PREFIX_LEN);
3145 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3146 xattr->name, len);
3147
3148 simple_xattr_list_add(&info->xattrs, new_xattr);
3149 }
3150
3151 return 0;
3152 }
3153
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3154 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3155 struct dentry *unused, struct inode *inode,
3156 const char *name, void *buffer, size_t size)
3157 {
3158 struct shmem_inode_info *info = SHMEM_I(inode);
3159
3160 name = xattr_full_name(handler, name);
3161 return simple_xattr_get(&info->xattrs, name, buffer, size);
3162 }
3163
shmem_xattr_handler_set(const struct xattr_handler * handler,struct user_namespace * mnt_userns,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3164 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3165 struct user_namespace *mnt_userns,
3166 struct dentry *unused, struct inode *inode,
3167 const char *name, const void *value,
3168 size_t size, int flags)
3169 {
3170 struct shmem_inode_info *info = SHMEM_I(inode);
3171
3172 name = xattr_full_name(handler, name);
3173 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3174 }
3175
3176 static const struct xattr_handler shmem_security_xattr_handler = {
3177 .prefix = XATTR_SECURITY_PREFIX,
3178 .get = shmem_xattr_handler_get,
3179 .set = shmem_xattr_handler_set,
3180 };
3181
3182 static const struct xattr_handler shmem_trusted_xattr_handler = {
3183 .prefix = XATTR_TRUSTED_PREFIX,
3184 .get = shmem_xattr_handler_get,
3185 .set = shmem_xattr_handler_set,
3186 };
3187
3188 static const struct xattr_handler *shmem_xattr_handlers[] = {
3189 #ifdef CONFIG_TMPFS_POSIX_ACL
3190 &posix_acl_access_xattr_handler,
3191 &posix_acl_default_xattr_handler,
3192 #endif
3193 &shmem_security_xattr_handler,
3194 &shmem_trusted_xattr_handler,
3195 NULL
3196 };
3197
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3198 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3199 {
3200 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3201 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3202 }
3203 #endif /* CONFIG_TMPFS_XATTR */
3204
3205 static const struct inode_operations shmem_short_symlink_operations = {
3206 .get_link = simple_get_link,
3207 #ifdef CONFIG_TMPFS_XATTR
3208 .listxattr = shmem_listxattr,
3209 #endif
3210 };
3211
3212 static const struct inode_operations shmem_symlink_inode_operations = {
3213 .get_link = shmem_get_link,
3214 #ifdef CONFIG_TMPFS_XATTR
3215 .listxattr = shmem_listxattr,
3216 #endif
3217 };
3218
shmem_get_parent(struct dentry * child)3219 static struct dentry *shmem_get_parent(struct dentry *child)
3220 {
3221 return ERR_PTR(-ESTALE);
3222 }
3223
shmem_match(struct inode * ino,void * vfh)3224 static int shmem_match(struct inode *ino, void *vfh)
3225 {
3226 __u32 *fh = vfh;
3227 __u64 inum = fh[2];
3228 inum = (inum << 32) | fh[1];
3229 return ino->i_ino == inum && fh[0] == ino->i_generation;
3230 }
3231
3232 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3233 static struct dentry *shmem_find_alias(struct inode *inode)
3234 {
3235 struct dentry *alias = d_find_alias(inode);
3236
3237 return alias ?: d_find_any_alias(inode);
3238 }
3239
3240
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3241 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3242 struct fid *fid, int fh_len, int fh_type)
3243 {
3244 struct inode *inode;
3245 struct dentry *dentry = NULL;
3246 u64 inum;
3247
3248 if (fh_len < 3)
3249 return NULL;
3250
3251 inum = fid->raw[2];
3252 inum = (inum << 32) | fid->raw[1];
3253
3254 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3255 shmem_match, fid->raw);
3256 if (inode) {
3257 dentry = shmem_find_alias(inode);
3258 iput(inode);
3259 }
3260
3261 return dentry;
3262 }
3263
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3264 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3265 struct inode *parent)
3266 {
3267 if (*len < 3) {
3268 *len = 3;
3269 return FILEID_INVALID;
3270 }
3271
3272 if (inode_unhashed(inode)) {
3273 /* Unfortunately insert_inode_hash is not idempotent,
3274 * so as we hash inodes here rather than at creation
3275 * time, we need a lock to ensure we only try
3276 * to do it once
3277 */
3278 static DEFINE_SPINLOCK(lock);
3279 spin_lock(&lock);
3280 if (inode_unhashed(inode))
3281 __insert_inode_hash(inode,
3282 inode->i_ino + inode->i_generation);
3283 spin_unlock(&lock);
3284 }
3285
3286 fh[0] = inode->i_generation;
3287 fh[1] = inode->i_ino;
3288 fh[2] = ((__u64)inode->i_ino) >> 32;
3289
3290 *len = 3;
3291 return 1;
3292 }
3293
3294 static const struct export_operations shmem_export_ops = {
3295 .get_parent = shmem_get_parent,
3296 .encode_fh = shmem_encode_fh,
3297 .fh_to_dentry = shmem_fh_to_dentry,
3298 };
3299
3300 enum shmem_param {
3301 Opt_gid,
3302 Opt_huge,
3303 Opt_mode,
3304 Opt_mpol,
3305 Opt_nr_blocks,
3306 Opt_nr_inodes,
3307 Opt_size,
3308 Opt_uid,
3309 Opt_inode32,
3310 Opt_inode64,
3311 };
3312
3313 static const struct constant_table shmem_param_enums_huge[] = {
3314 {"never", SHMEM_HUGE_NEVER },
3315 {"always", SHMEM_HUGE_ALWAYS },
3316 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3317 {"advise", SHMEM_HUGE_ADVISE },
3318 {}
3319 };
3320
3321 const struct fs_parameter_spec shmem_fs_parameters[] = {
3322 fsparam_u32 ("gid", Opt_gid),
3323 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3324 fsparam_u32oct("mode", Opt_mode),
3325 fsparam_string("mpol", Opt_mpol),
3326 fsparam_string("nr_blocks", Opt_nr_blocks),
3327 fsparam_string("nr_inodes", Opt_nr_inodes),
3328 fsparam_string("size", Opt_size),
3329 fsparam_u32 ("uid", Opt_uid),
3330 fsparam_flag ("inode32", Opt_inode32),
3331 fsparam_flag ("inode64", Opt_inode64),
3332 {}
3333 };
3334
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3335 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3336 {
3337 struct shmem_options *ctx = fc->fs_private;
3338 struct fs_parse_result result;
3339 unsigned long long size;
3340 char *rest;
3341 int opt;
3342
3343 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3344 if (opt < 0)
3345 return opt;
3346
3347 switch (opt) {
3348 case Opt_size:
3349 size = memparse(param->string, &rest);
3350 if (*rest == '%') {
3351 size <<= PAGE_SHIFT;
3352 size *= totalram_pages();
3353 do_div(size, 100);
3354 rest++;
3355 }
3356 if (*rest)
3357 goto bad_value;
3358 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3359 ctx->seen |= SHMEM_SEEN_BLOCKS;
3360 break;
3361 case Opt_nr_blocks:
3362 ctx->blocks = memparse(param->string, &rest);
3363 if (*rest)
3364 goto bad_value;
3365 ctx->seen |= SHMEM_SEEN_BLOCKS;
3366 break;
3367 case Opt_nr_inodes:
3368 ctx->inodes = memparse(param->string, &rest);
3369 if (*rest)
3370 goto bad_value;
3371 ctx->seen |= SHMEM_SEEN_INODES;
3372 break;
3373 case Opt_mode:
3374 ctx->mode = result.uint_32 & 07777;
3375 break;
3376 case Opt_uid:
3377 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3378 if (!uid_valid(ctx->uid))
3379 goto bad_value;
3380 break;
3381 case Opt_gid:
3382 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3383 if (!gid_valid(ctx->gid))
3384 goto bad_value;
3385 break;
3386 case Opt_huge:
3387 ctx->huge = result.uint_32;
3388 if (ctx->huge != SHMEM_HUGE_NEVER &&
3389 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3390 has_transparent_hugepage()))
3391 goto unsupported_parameter;
3392 ctx->seen |= SHMEM_SEEN_HUGE;
3393 break;
3394 case Opt_mpol:
3395 if (IS_ENABLED(CONFIG_NUMA)) {
3396 mpol_put(ctx->mpol);
3397 ctx->mpol = NULL;
3398 if (mpol_parse_str(param->string, &ctx->mpol))
3399 goto bad_value;
3400 break;
3401 }
3402 goto unsupported_parameter;
3403 case Opt_inode32:
3404 ctx->full_inums = false;
3405 ctx->seen |= SHMEM_SEEN_INUMS;
3406 break;
3407 case Opt_inode64:
3408 if (sizeof(ino_t) < 8) {
3409 return invalfc(fc,
3410 "Cannot use inode64 with <64bit inums in kernel\n");
3411 }
3412 ctx->full_inums = true;
3413 ctx->seen |= SHMEM_SEEN_INUMS;
3414 break;
3415 }
3416 return 0;
3417
3418 unsupported_parameter:
3419 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3420 bad_value:
3421 return invalfc(fc, "Bad value for '%s'", param->key);
3422 }
3423
shmem_parse_options(struct fs_context * fc,void * data)3424 static int shmem_parse_options(struct fs_context *fc, void *data)
3425 {
3426 char *options = data;
3427
3428 if (options) {
3429 int err = security_sb_eat_lsm_opts(options, &fc->security);
3430 if (err)
3431 return err;
3432 }
3433
3434 while (options != NULL) {
3435 char *this_char = options;
3436 for (;;) {
3437 /*
3438 * NUL-terminate this option: unfortunately,
3439 * mount options form a comma-separated list,
3440 * but mpol's nodelist may also contain commas.
3441 */
3442 options = strchr(options, ',');
3443 if (options == NULL)
3444 break;
3445 options++;
3446 if (!isdigit(*options)) {
3447 options[-1] = '\0';
3448 break;
3449 }
3450 }
3451 if (*this_char) {
3452 char *value = strchr(this_char, '=');
3453 size_t len = 0;
3454 int err;
3455
3456 if (value) {
3457 *value++ = '\0';
3458 len = strlen(value);
3459 }
3460 err = vfs_parse_fs_string(fc, this_char, value, len);
3461 if (err < 0)
3462 return err;
3463 }
3464 }
3465 return 0;
3466 }
3467
3468 /*
3469 * Reconfigure a shmem filesystem.
3470 *
3471 * Note that we disallow change from limited->unlimited blocks/inodes while any
3472 * are in use; but we must separately disallow unlimited->limited, because in
3473 * that case we have no record of how much is already in use.
3474 */
shmem_reconfigure(struct fs_context * fc)3475 static int shmem_reconfigure(struct fs_context *fc)
3476 {
3477 struct shmem_options *ctx = fc->fs_private;
3478 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3479 unsigned long inodes;
3480 struct mempolicy *mpol = NULL;
3481 const char *err;
3482
3483 raw_spin_lock(&sbinfo->stat_lock);
3484 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3485 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3486 if (!sbinfo->max_blocks) {
3487 err = "Cannot retroactively limit size";
3488 goto out;
3489 }
3490 if (percpu_counter_compare(&sbinfo->used_blocks,
3491 ctx->blocks) > 0) {
3492 err = "Too small a size for current use";
3493 goto out;
3494 }
3495 }
3496 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3497 if (!sbinfo->max_inodes) {
3498 err = "Cannot retroactively limit inodes";
3499 goto out;
3500 }
3501 if (ctx->inodes < inodes) {
3502 err = "Too few inodes for current use";
3503 goto out;
3504 }
3505 }
3506
3507 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3508 sbinfo->next_ino > UINT_MAX) {
3509 err = "Current inum too high to switch to 32-bit inums";
3510 goto out;
3511 }
3512
3513 if (ctx->seen & SHMEM_SEEN_HUGE)
3514 sbinfo->huge = ctx->huge;
3515 if (ctx->seen & SHMEM_SEEN_INUMS)
3516 sbinfo->full_inums = ctx->full_inums;
3517 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3518 sbinfo->max_blocks = ctx->blocks;
3519 if (ctx->seen & SHMEM_SEEN_INODES) {
3520 sbinfo->max_inodes = ctx->inodes;
3521 sbinfo->free_inodes = ctx->inodes - inodes;
3522 }
3523
3524 /*
3525 * Preserve previous mempolicy unless mpol remount option was specified.
3526 */
3527 if (ctx->mpol) {
3528 mpol = sbinfo->mpol;
3529 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3530 ctx->mpol = NULL;
3531 }
3532 raw_spin_unlock(&sbinfo->stat_lock);
3533 mpol_put(mpol);
3534 return 0;
3535 out:
3536 raw_spin_unlock(&sbinfo->stat_lock);
3537 return invalfc(fc, "%s", err);
3538 }
3539
shmem_show_options(struct seq_file * seq,struct dentry * root)3540 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3541 {
3542 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3543
3544 if (sbinfo->max_blocks != shmem_default_max_blocks())
3545 seq_printf(seq, ",size=%luk",
3546 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3547 if (sbinfo->max_inodes != shmem_default_max_inodes())
3548 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3549 if (sbinfo->mode != (0777 | S_ISVTX))
3550 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3551 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3552 seq_printf(seq, ",uid=%u",
3553 from_kuid_munged(&init_user_ns, sbinfo->uid));
3554 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3555 seq_printf(seq, ",gid=%u",
3556 from_kgid_munged(&init_user_ns, sbinfo->gid));
3557
3558 /*
3559 * Showing inode{64,32} might be useful even if it's the system default,
3560 * since then people don't have to resort to checking both here and
3561 * /proc/config.gz to confirm 64-bit inums were successfully applied
3562 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3563 *
3564 * We hide it when inode64 isn't the default and we are using 32-bit
3565 * inodes, since that probably just means the feature isn't even under
3566 * consideration.
3567 *
3568 * As such:
3569 *
3570 * +-----------------+-----------------+
3571 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3572 * +------------------+-----------------+-----------------+
3573 * | full_inums=true | show | show |
3574 * | full_inums=false | show | hide |
3575 * +------------------+-----------------+-----------------+
3576 *
3577 */
3578 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3579 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3581 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3582 if (sbinfo->huge)
3583 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3584 #endif
3585 shmem_show_mpol(seq, sbinfo->mpol);
3586 return 0;
3587 }
3588
3589 #endif /* CONFIG_TMPFS */
3590
shmem_put_super(struct super_block * sb)3591 static void shmem_put_super(struct super_block *sb)
3592 {
3593 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3594
3595 free_percpu(sbinfo->ino_batch);
3596 percpu_counter_destroy(&sbinfo->used_blocks);
3597 mpol_put(sbinfo->mpol);
3598 kfree(sbinfo);
3599 sb->s_fs_info = NULL;
3600 }
3601
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3602 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3603 {
3604 struct shmem_options *ctx = fc->fs_private;
3605 struct inode *inode;
3606 struct shmem_sb_info *sbinfo;
3607
3608 /* Round up to L1_CACHE_BYTES to resist false sharing */
3609 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3610 L1_CACHE_BYTES), GFP_KERNEL);
3611 if (!sbinfo)
3612 return -ENOMEM;
3613
3614 sb->s_fs_info = sbinfo;
3615
3616 #ifdef CONFIG_TMPFS
3617 /*
3618 * Per default we only allow half of the physical ram per
3619 * tmpfs instance, limiting inodes to one per page of lowmem;
3620 * but the internal instance is left unlimited.
3621 */
3622 if (!(sb->s_flags & SB_KERNMOUNT)) {
3623 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3624 ctx->blocks = shmem_default_max_blocks();
3625 if (!(ctx->seen & SHMEM_SEEN_INODES))
3626 ctx->inodes = shmem_default_max_inodes();
3627 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3628 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3629 } else {
3630 sb->s_flags |= SB_NOUSER;
3631 }
3632 sb->s_export_op = &shmem_export_ops;
3633 sb->s_flags |= SB_NOSEC;
3634 #else
3635 sb->s_flags |= SB_NOUSER;
3636 #endif
3637 sbinfo->max_blocks = ctx->blocks;
3638 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3639 if (sb->s_flags & SB_KERNMOUNT) {
3640 sbinfo->ino_batch = alloc_percpu(ino_t);
3641 if (!sbinfo->ino_batch)
3642 goto failed;
3643 }
3644 sbinfo->uid = ctx->uid;
3645 sbinfo->gid = ctx->gid;
3646 sbinfo->full_inums = ctx->full_inums;
3647 sbinfo->mode = ctx->mode;
3648 sbinfo->huge = ctx->huge;
3649 sbinfo->mpol = ctx->mpol;
3650 ctx->mpol = NULL;
3651
3652 raw_spin_lock_init(&sbinfo->stat_lock);
3653 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3654 goto failed;
3655 spin_lock_init(&sbinfo->shrinklist_lock);
3656 INIT_LIST_HEAD(&sbinfo->shrinklist);
3657
3658 sb->s_maxbytes = MAX_LFS_FILESIZE;
3659 sb->s_blocksize = PAGE_SIZE;
3660 sb->s_blocksize_bits = PAGE_SHIFT;
3661 sb->s_magic = TMPFS_MAGIC;
3662 sb->s_op = &shmem_ops;
3663 sb->s_time_gran = 1;
3664 #ifdef CONFIG_TMPFS_XATTR
3665 sb->s_xattr = shmem_xattr_handlers;
3666 #endif
3667 #ifdef CONFIG_TMPFS_POSIX_ACL
3668 sb->s_flags |= SB_POSIXACL;
3669 #endif
3670 uuid_gen(&sb->s_uuid);
3671
3672 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3673 if (!inode)
3674 goto failed;
3675 inode->i_uid = sbinfo->uid;
3676 inode->i_gid = sbinfo->gid;
3677 sb->s_root = d_make_root(inode);
3678 if (!sb->s_root)
3679 goto failed;
3680 return 0;
3681
3682 failed:
3683 shmem_put_super(sb);
3684 return -ENOMEM;
3685 }
3686
shmem_get_tree(struct fs_context * fc)3687 static int shmem_get_tree(struct fs_context *fc)
3688 {
3689 return get_tree_nodev(fc, shmem_fill_super);
3690 }
3691
shmem_free_fc(struct fs_context * fc)3692 static void shmem_free_fc(struct fs_context *fc)
3693 {
3694 struct shmem_options *ctx = fc->fs_private;
3695
3696 if (ctx) {
3697 mpol_put(ctx->mpol);
3698 kfree(ctx);
3699 }
3700 }
3701
3702 static const struct fs_context_operations shmem_fs_context_ops = {
3703 .free = shmem_free_fc,
3704 .get_tree = shmem_get_tree,
3705 #ifdef CONFIG_TMPFS
3706 .parse_monolithic = shmem_parse_options,
3707 .parse_param = shmem_parse_one,
3708 .reconfigure = shmem_reconfigure,
3709 #endif
3710 };
3711
3712 static struct kmem_cache *shmem_inode_cachep;
3713
shmem_alloc_inode(struct super_block * sb)3714 static struct inode *shmem_alloc_inode(struct super_block *sb)
3715 {
3716 struct shmem_inode_info *info;
3717 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3718 if (!info)
3719 return NULL;
3720 return &info->vfs_inode;
3721 }
3722
shmem_free_in_core_inode(struct inode * inode)3723 static void shmem_free_in_core_inode(struct inode *inode)
3724 {
3725 if (S_ISLNK(inode->i_mode))
3726 kfree(inode->i_link);
3727 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3728 }
3729
shmem_destroy_inode(struct inode * inode)3730 static void shmem_destroy_inode(struct inode *inode)
3731 {
3732 if (S_ISREG(inode->i_mode))
3733 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3734 }
3735
shmem_init_inode(void * foo)3736 static void shmem_init_inode(void *foo)
3737 {
3738 struct shmem_inode_info *info = foo;
3739 inode_init_once(&info->vfs_inode);
3740 }
3741
shmem_init_inodecache(void)3742 static void shmem_init_inodecache(void)
3743 {
3744 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3745 sizeof(struct shmem_inode_info),
3746 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3747 }
3748
shmem_destroy_inodecache(void)3749 static void shmem_destroy_inodecache(void)
3750 {
3751 kmem_cache_destroy(shmem_inode_cachep);
3752 }
3753
3754 const struct address_space_operations shmem_aops = {
3755 .writepage = shmem_writepage,
3756 .set_page_dirty = __set_page_dirty_no_writeback,
3757 #ifdef CONFIG_TMPFS
3758 .write_begin = shmem_write_begin,
3759 .write_end = shmem_write_end,
3760 #endif
3761 #ifdef CONFIG_MIGRATION
3762 .migratepage = migrate_page,
3763 #endif
3764 .error_remove_page = generic_error_remove_page,
3765 };
3766 EXPORT_SYMBOL(shmem_aops);
3767
3768 static const struct file_operations shmem_file_operations = {
3769 .mmap = shmem_mmap,
3770 .get_unmapped_area = shmem_get_unmapped_area,
3771 #ifdef CONFIG_TMPFS
3772 .llseek = shmem_file_llseek,
3773 .read_iter = shmem_file_read_iter,
3774 .write_iter = generic_file_write_iter,
3775 .fsync = noop_fsync,
3776 .splice_read = generic_file_splice_read,
3777 .splice_write = iter_file_splice_write,
3778 .fallocate = shmem_fallocate,
3779 #endif
3780 };
3781
3782 static const struct inode_operations shmem_inode_operations = {
3783 .getattr = shmem_getattr,
3784 .setattr = shmem_setattr,
3785 #ifdef CONFIG_TMPFS_XATTR
3786 .listxattr = shmem_listxattr,
3787 .set_acl = simple_set_acl,
3788 #endif
3789 };
3790
3791 static const struct inode_operations shmem_dir_inode_operations = {
3792 #ifdef CONFIG_TMPFS
3793 .create = shmem_create,
3794 .lookup = simple_lookup,
3795 .link = shmem_link,
3796 .unlink = shmem_unlink,
3797 .symlink = shmem_symlink,
3798 .mkdir = shmem_mkdir,
3799 .rmdir = shmem_rmdir,
3800 .mknod = shmem_mknod,
3801 .rename = shmem_rename2,
3802 .tmpfile = shmem_tmpfile,
3803 #endif
3804 #ifdef CONFIG_TMPFS_XATTR
3805 .listxattr = shmem_listxattr,
3806 #endif
3807 #ifdef CONFIG_TMPFS_POSIX_ACL
3808 .setattr = shmem_setattr,
3809 .set_acl = simple_set_acl,
3810 #endif
3811 };
3812
3813 static const struct inode_operations shmem_special_inode_operations = {
3814 #ifdef CONFIG_TMPFS_XATTR
3815 .listxattr = shmem_listxattr,
3816 #endif
3817 #ifdef CONFIG_TMPFS_POSIX_ACL
3818 .setattr = shmem_setattr,
3819 .set_acl = simple_set_acl,
3820 #endif
3821 };
3822
3823 static const struct super_operations shmem_ops = {
3824 .alloc_inode = shmem_alloc_inode,
3825 .free_inode = shmem_free_in_core_inode,
3826 .destroy_inode = shmem_destroy_inode,
3827 #ifdef CONFIG_TMPFS
3828 .statfs = shmem_statfs,
3829 .show_options = shmem_show_options,
3830 #endif
3831 .evict_inode = shmem_evict_inode,
3832 .drop_inode = generic_delete_inode,
3833 .put_super = shmem_put_super,
3834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3835 .nr_cached_objects = shmem_unused_huge_count,
3836 .free_cached_objects = shmem_unused_huge_scan,
3837 #endif
3838 };
3839
3840 static const struct vm_operations_struct shmem_vm_ops = {
3841 .fault = shmem_fault,
3842 .map_pages = filemap_map_pages,
3843 #ifdef CONFIG_NUMA
3844 .set_policy = shmem_set_policy,
3845 .get_policy = shmem_get_policy,
3846 #endif
3847 };
3848
shmem_init_fs_context(struct fs_context * fc)3849 int shmem_init_fs_context(struct fs_context *fc)
3850 {
3851 struct shmem_options *ctx;
3852
3853 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3854 if (!ctx)
3855 return -ENOMEM;
3856
3857 ctx->mode = 0777 | S_ISVTX;
3858 ctx->uid = current_fsuid();
3859 ctx->gid = current_fsgid();
3860
3861 fc->fs_private = ctx;
3862 fc->ops = &shmem_fs_context_ops;
3863 return 0;
3864 }
3865
3866 static struct file_system_type shmem_fs_type = {
3867 .owner = THIS_MODULE,
3868 .name = "tmpfs",
3869 .init_fs_context = shmem_init_fs_context,
3870 #ifdef CONFIG_TMPFS
3871 .parameters = shmem_fs_parameters,
3872 #endif
3873 .kill_sb = kill_litter_super,
3874 .fs_flags = FS_USERNS_MOUNT,
3875 };
3876
shmem_init(void)3877 int __init shmem_init(void)
3878 {
3879 int error;
3880
3881 shmem_init_inodecache();
3882
3883 error = register_filesystem(&shmem_fs_type);
3884 if (error) {
3885 pr_err("Could not register tmpfs\n");
3886 goto out2;
3887 }
3888
3889 shm_mnt = kern_mount(&shmem_fs_type);
3890 if (IS_ERR(shm_mnt)) {
3891 error = PTR_ERR(shm_mnt);
3892 pr_err("Could not kern_mount tmpfs\n");
3893 goto out1;
3894 }
3895
3896 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3897 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3898 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3899 else
3900 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3901 #endif
3902 return 0;
3903
3904 out1:
3905 unregister_filesystem(&shmem_fs_type);
3906 out2:
3907 shmem_destroy_inodecache();
3908 shm_mnt = ERR_PTR(error);
3909 return error;
3910 }
3911
3912 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3913 static ssize_t shmem_enabled_show(struct kobject *kobj,
3914 struct kobj_attribute *attr, char *buf)
3915 {
3916 static const int values[] = {
3917 SHMEM_HUGE_ALWAYS,
3918 SHMEM_HUGE_WITHIN_SIZE,
3919 SHMEM_HUGE_ADVISE,
3920 SHMEM_HUGE_NEVER,
3921 SHMEM_HUGE_DENY,
3922 SHMEM_HUGE_FORCE,
3923 };
3924 int len = 0;
3925 int i;
3926
3927 for (i = 0; i < ARRAY_SIZE(values); i++) {
3928 len += sysfs_emit_at(buf, len,
3929 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3930 i ? " " : "",
3931 shmem_format_huge(values[i]));
3932 }
3933
3934 len += sysfs_emit_at(buf, len, "\n");
3935
3936 return len;
3937 }
3938
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3939 static ssize_t shmem_enabled_store(struct kobject *kobj,
3940 struct kobj_attribute *attr, const char *buf, size_t count)
3941 {
3942 char tmp[16];
3943 int huge;
3944
3945 if (count + 1 > sizeof(tmp))
3946 return -EINVAL;
3947 memcpy(tmp, buf, count);
3948 tmp[count] = '\0';
3949 if (count && tmp[count - 1] == '\n')
3950 tmp[count - 1] = '\0';
3951
3952 huge = shmem_parse_huge(tmp);
3953 if (huge == -EINVAL)
3954 return -EINVAL;
3955 if (!has_transparent_hugepage() &&
3956 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3957 return -EINVAL;
3958
3959 shmem_huge = huge;
3960 if (shmem_huge > SHMEM_HUGE_DENY)
3961 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3962 return count;
3963 }
3964
3965 struct kobj_attribute shmem_enabled_attr =
3966 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3967 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3968
3969 #else /* !CONFIG_SHMEM */
3970
3971 /*
3972 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3973 *
3974 * This is intended for small system where the benefits of the full
3975 * shmem code (swap-backed and resource-limited) are outweighed by
3976 * their complexity. On systems without swap this code should be
3977 * effectively equivalent, but much lighter weight.
3978 */
3979
3980 static struct file_system_type shmem_fs_type = {
3981 .name = "tmpfs",
3982 .init_fs_context = ramfs_init_fs_context,
3983 .parameters = ramfs_fs_parameters,
3984 .kill_sb = kill_litter_super,
3985 .fs_flags = FS_USERNS_MOUNT,
3986 };
3987
shmem_init(void)3988 int __init shmem_init(void)
3989 {
3990 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3991
3992 shm_mnt = kern_mount(&shmem_fs_type);
3993 BUG_ON(IS_ERR(shm_mnt));
3994
3995 return 0;
3996 }
3997
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)3998 int shmem_unuse(unsigned int type, bool frontswap,
3999 unsigned long *fs_pages_to_unuse)
4000 {
4001 return 0;
4002 }
4003
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)4004 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4005 {
4006 return 0;
4007 }
4008
shmem_unlock_mapping(struct address_space * mapping)4009 void shmem_unlock_mapping(struct address_space *mapping)
4010 {
4011 }
4012
4013 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4014 unsigned long shmem_get_unmapped_area(struct file *file,
4015 unsigned long addr, unsigned long len,
4016 unsigned long pgoff, unsigned long flags)
4017 {
4018 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4019 }
4020 #endif
4021
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4022 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4023 {
4024 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4025 }
4026 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4027
4028 #define shmem_vm_ops generic_file_vm_ops
4029 #define shmem_file_operations ramfs_file_operations
4030 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4031 #define shmem_acct_size(flags, size) 0
4032 #define shmem_unacct_size(flags, size) do {} while (0)
4033
4034 #endif /* CONFIG_SHMEM */
4035
4036 /* common code */
4037
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4038 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4039 unsigned long flags, unsigned int i_flags)
4040 {
4041 struct inode *inode;
4042 struct file *res;
4043
4044 if (IS_ERR(mnt))
4045 return ERR_CAST(mnt);
4046
4047 if (size < 0 || size > MAX_LFS_FILESIZE)
4048 return ERR_PTR(-EINVAL);
4049
4050 if (shmem_acct_size(flags, size))
4051 return ERR_PTR(-ENOMEM);
4052
4053 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4054 flags);
4055 if (unlikely(!inode)) {
4056 shmem_unacct_size(flags, size);
4057 return ERR_PTR(-ENOSPC);
4058 }
4059 inode->i_flags |= i_flags;
4060 inode->i_size = size;
4061 clear_nlink(inode); /* It is unlinked */
4062 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4063 if (!IS_ERR(res))
4064 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4065 &shmem_file_operations);
4066 if (IS_ERR(res))
4067 iput(inode);
4068 return res;
4069 }
4070
4071 /**
4072 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4073 * kernel internal. There will be NO LSM permission checks against the
4074 * underlying inode. So users of this interface must do LSM checks at a
4075 * higher layer. The users are the big_key and shm implementations. LSM
4076 * checks are provided at the key or shm level rather than the inode.
4077 * @name: name for dentry (to be seen in /proc/<pid>/maps
4078 * @size: size to be set for the file
4079 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4080 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4081 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4082 {
4083 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4084 }
4085
4086 /**
4087 * shmem_file_setup - get an unlinked file living in tmpfs
4088 * @name: name for dentry (to be seen in /proc/<pid>/maps
4089 * @size: size to be set for the file
4090 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4091 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4092 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4093 {
4094 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4095 }
4096 EXPORT_SYMBOL_GPL(shmem_file_setup);
4097
4098 /**
4099 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4100 * @mnt: the tmpfs mount where the file will be created
4101 * @name: name for dentry (to be seen in /proc/<pid>/maps
4102 * @size: size to be set for the file
4103 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4104 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4105 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4106 loff_t size, unsigned long flags)
4107 {
4108 return __shmem_file_setup(mnt, name, size, flags, 0);
4109 }
4110 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4111
4112 /**
4113 * shmem_zero_setup - setup a shared anonymous mapping
4114 * @vma: the vma to be mmapped is prepared by do_mmap
4115 */
shmem_zero_setup(struct vm_area_struct * vma)4116 int shmem_zero_setup(struct vm_area_struct *vma)
4117 {
4118 struct file *file;
4119 loff_t size = vma->vm_end - vma->vm_start;
4120
4121 /*
4122 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4123 * between XFS directory reading and selinux: since this file is only
4124 * accessible to the user through its mapping, use S_PRIVATE flag to
4125 * bypass file security, in the same way as shmem_kernel_file_setup().
4126 */
4127 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4128 if (IS_ERR(file))
4129 return PTR_ERR(file);
4130
4131 if (vma->vm_file)
4132 fput(vma->vm_file);
4133 vma->vm_file = file;
4134 vma->vm_ops = &shmem_vm_ops;
4135
4136 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4137 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4138 (vma->vm_end & HPAGE_PMD_MASK)) {
4139 khugepaged_enter(vma, vma->vm_flags);
4140 }
4141
4142 return 0;
4143 }
4144
4145 /**
4146 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4147 * @mapping: the page's address_space
4148 * @index: the page index
4149 * @gfp: the page allocator flags to use if allocating
4150 *
4151 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4152 * with any new page allocations done using the specified allocation flags.
4153 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4154 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4155 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4156 *
4157 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4158 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4159 */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4160 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4161 pgoff_t index, gfp_t gfp)
4162 {
4163 #ifdef CONFIG_SHMEM
4164 struct inode *inode = mapping->host;
4165 struct page *page;
4166 int error;
4167
4168 BUG_ON(!shmem_mapping(mapping));
4169 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4170 gfp, NULL, NULL, NULL);
4171 if (error)
4172 page = ERR_PTR(error);
4173 else
4174 unlock_page(page);
4175 return page;
4176 #else
4177 /*
4178 * The tiny !SHMEM case uses ramfs without swap
4179 */
4180 return read_cache_page_gfp(mapping, index, gfp);
4181 #endif
4182 }
4183 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4184