1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/unicode.h>
24 #include <linux/fscrypt.h>
25
26 #include <linux/uaccess.h>
27
28 #include "internal.h"
29
simple_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)30 int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
31 struct kstat *stat, u32 request_mask,
32 unsigned int query_flags)
33 {
34 struct inode *inode = d_inode(path->dentry);
35 generic_fillattr(&init_user_ns, inode, stat);
36 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
37 return 0;
38 }
39 EXPORT_SYMBOL(simple_getattr);
40
simple_statfs(struct dentry * dentry,struct kstatfs * buf)41 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
42 {
43 buf->f_type = dentry->d_sb->s_magic;
44 buf->f_bsize = PAGE_SIZE;
45 buf->f_namelen = NAME_MAX;
46 return 0;
47 }
48 EXPORT_SYMBOL(simple_statfs);
49
50 /*
51 * Retaining negative dentries for an in-memory filesystem just wastes
52 * memory and lookup time: arrange for them to be deleted immediately.
53 */
always_delete_dentry(const struct dentry * dentry)54 int always_delete_dentry(const struct dentry *dentry)
55 {
56 return 1;
57 }
58 EXPORT_SYMBOL(always_delete_dentry);
59
60 const struct dentry_operations simple_dentry_operations = {
61 .d_delete = always_delete_dentry,
62 };
63 EXPORT_SYMBOL(simple_dentry_operations);
64
65 /*
66 * Lookup the data. This is trivial - if the dentry didn't already
67 * exist, we know it is negative. Set d_op to delete negative dentries.
68 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70 {
71 if (dentry->d_name.len > NAME_MAX)
72 return ERR_PTR(-ENAMETOOLONG);
73 if (!dentry->d_sb->s_d_op)
74 d_set_d_op(dentry, &simple_dentry_operations);
75 d_add(dentry, NULL);
76 return NULL;
77 }
78 EXPORT_SYMBOL(simple_lookup);
79
dcache_dir_open(struct inode * inode,struct file * file)80 int dcache_dir_open(struct inode *inode, struct file *file)
81 {
82 file->private_data = d_alloc_cursor(file->f_path.dentry);
83
84 return file->private_data ? 0 : -ENOMEM;
85 }
86 EXPORT_SYMBOL(dcache_dir_open);
87
dcache_dir_close(struct inode * inode,struct file * file)88 int dcache_dir_close(struct inode *inode, struct file *file)
89 {
90 dput(file->private_data);
91 return 0;
92 }
93 EXPORT_SYMBOL(dcache_dir_close);
94
95 /* parent is locked at least shared */
96 /*
97 * Returns an element of siblings' list.
98 * We are looking for <count>th positive after <p>; if
99 * found, dentry is grabbed and returned to caller.
100 * If no such element exists, NULL is returned.
101 */
scan_positives(struct dentry * cursor,struct list_head * p,loff_t count,struct dentry * last)102 static struct dentry *scan_positives(struct dentry *cursor,
103 struct list_head *p,
104 loff_t count,
105 struct dentry *last)
106 {
107 struct dentry *dentry = cursor->d_parent, *found = NULL;
108
109 spin_lock(&dentry->d_lock);
110 while ((p = p->next) != &dentry->d_subdirs) {
111 struct dentry *d = list_entry(p, struct dentry, d_child);
112 // we must at least skip cursors, to avoid livelocks
113 if (d->d_flags & DCACHE_DENTRY_CURSOR)
114 continue;
115 if (simple_positive(d) && !--count) {
116 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
117 if (simple_positive(d))
118 found = dget_dlock(d);
119 spin_unlock(&d->d_lock);
120 if (likely(found))
121 break;
122 count = 1;
123 }
124 if (need_resched()) {
125 list_move(&cursor->d_child, p);
126 p = &cursor->d_child;
127 spin_unlock(&dentry->d_lock);
128 cond_resched();
129 spin_lock(&dentry->d_lock);
130 }
131 }
132 spin_unlock(&dentry->d_lock);
133 dput(last);
134 return found;
135 }
136
dcache_dir_lseek(struct file * file,loff_t offset,int whence)137 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
138 {
139 struct dentry *dentry = file->f_path.dentry;
140 switch (whence) {
141 case 1:
142 offset += file->f_pos;
143 fallthrough;
144 case 0:
145 if (offset >= 0)
146 break;
147 fallthrough;
148 default:
149 return -EINVAL;
150 }
151 if (offset != file->f_pos) {
152 struct dentry *cursor = file->private_data;
153 struct dentry *to = NULL;
154
155 inode_lock_shared(dentry->d_inode);
156
157 if (offset > 2)
158 to = scan_positives(cursor, &dentry->d_subdirs,
159 offset - 2, NULL);
160 spin_lock(&dentry->d_lock);
161 if (to)
162 list_move(&cursor->d_child, &to->d_child);
163 else
164 list_del_init(&cursor->d_child);
165 spin_unlock(&dentry->d_lock);
166 dput(to);
167
168 file->f_pos = offset;
169
170 inode_unlock_shared(dentry->d_inode);
171 }
172 return offset;
173 }
174 EXPORT_SYMBOL(dcache_dir_lseek);
175
176 /* Relationship between i_mode and the DT_xxx types */
dt_type(struct inode * inode)177 static inline unsigned char dt_type(struct inode *inode)
178 {
179 return (inode->i_mode >> 12) & 15;
180 }
181
182 /*
183 * Directory is locked and all positive dentries in it are safe, since
184 * for ramfs-type trees they can't go away without unlink() or rmdir(),
185 * both impossible due to the lock on directory.
186 */
187
dcache_readdir(struct file * file,struct dir_context * ctx)188 int dcache_readdir(struct file *file, struct dir_context *ctx)
189 {
190 struct dentry *dentry = file->f_path.dentry;
191 struct dentry *cursor = file->private_data;
192 struct list_head *anchor = &dentry->d_subdirs;
193 struct dentry *next = NULL;
194 struct list_head *p;
195
196 if (!dir_emit_dots(file, ctx))
197 return 0;
198
199 if (ctx->pos == 2)
200 p = anchor;
201 else if (!list_empty(&cursor->d_child))
202 p = &cursor->d_child;
203 else
204 return 0;
205
206 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
207 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
208 d_inode(next)->i_ino, dt_type(d_inode(next))))
209 break;
210 ctx->pos++;
211 p = &next->d_child;
212 }
213 spin_lock(&dentry->d_lock);
214 if (next)
215 list_move_tail(&cursor->d_child, &next->d_child);
216 else
217 list_del_init(&cursor->d_child);
218 spin_unlock(&dentry->d_lock);
219 dput(next);
220
221 return 0;
222 }
223 EXPORT_SYMBOL(dcache_readdir);
224
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)225 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
226 {
227 return -EISDIR;
228 }
229 EXPORT_SYMBOL(generic_read_dir);
230
231 const struct file_operations simple_dir_operations = {
232 .open = dcache_dir_open,
233 .release = dcache_dir_close,
234 .llseek = dcache_dir_lseek,
235 .read = generic_read_dir,
236 .iterate_shared = dcache_readdir,
237 .fsync = noop_fsync,
238 };
239 EXPORT_SYMBOL(simple_dir_operations);
240
241 const struct inode_operations simple_dir_inode_operations = {
242 .lookup = simple_lookup,
243 };
244 EXPORT_SYMBOL(simple_dir_inode_operations);
245
find_next_child(struct dentry * parent,struct dentry * prev)246 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
247 {
248 struct dentry *child = NULL;
249 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
250
251 spin_lock(&parent->d_lock);
252 while ((p = p->next) != &parent->d_subdirs) {
253 struct dentry *d = container_of(p, struct dentry, d_child);
254 if (simple_positive(d)) {
255 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
256 if (simple_positive(d))
257 child = dget_dlock(d);
258 spin_unlock(&d->d_lock);
259 if (likely(child))
260 break;
261 }
262 }
263 spin_unlock(&parent->d_lock);
264 dput(prev);
265 return child;
266 }
267
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))268 void simple_recursive_removal(struct dentry *dentry,
269 void (*callback)(struct dentry *))
270 {
271 struct dentry *this = dget(dentry);
272 while (true) {
273 struct dentry *victim = NULL, *child;
274 struct inode *inode = this->d_inode;
275
276 inode_lock(inode);
277 if (d_is_dir(this))
278 inode->i_flags |= S_DEAD;
279 while ((child = find_next_child(this, victim)) == NULL) {
280 // kill and ascend
281 // update metadata while it's still locked
282 inode->i_ctime = current_time(inode);
283 clear_nlink(inode);
284 inode_unlock(inode);
285 victim = this;
286 this = this->d_parent;
287 inode = this->d_inode;
288 inode_lock(inode);
289 if (simple_positive(victim)) {
290 d_invalidate(victim); // avoid lost mounts
291 if (d_is_dir(victim))
292 fsnotify_rmdir(inode, victim);
293 else
294 fsnotify_unlink(inode, victim);
295 if (callback)
296 callback(victim);
297 dput(victim); // unpin it
298 }
299 if (victim == dentry) {
300 inode->i_ctime = inode->i_mtime =
301 current_time(inode);
302 if (d_is_dir(dentry))
303 drop_nlink(inode);
304 inode_unlock(inode);
305 dput(dentry);
306 return;
307 }
308 }
309 inode_unlock(inode);
310 this = child;
311 }
312 }
313 EXPORT_SYMBOL(simple_recursive_removal);
314
315 static const struct super_operations simple_super_operations = {
316 .statfs = simple_statfs,
317 };
318
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)319 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
320 {
321 struct pseudo_fs_context *ctx = fc->fs_private;
322 struct inode *root;
323
324 s->s_maxbytes = MAX_LFS_FILESIZE;
325 s->s_blocksize = PAGE_SIZE;
326 s->s_blocksize_bits = PAGE_SHIFT;
327 s->s_magic = ctx->magic;
328 s->s_op = ctx->ops ?: &simple_super_operations;
329 s->s_xattr = ctx->xattr;
330 s->s_time_gran = 1;
331 root = new_inode(s);
332 if (!root)
333 return -ENOMEM;
334
335 /*
336 * since this is the first inode, make it number 1. New inodes created
337 * after this must take care not to collide with it (by passing
338 * max_reserved of 1 to iunique).
339 */
340 root->i_ino = 1;
341 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
342 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
343 s->s_root = d_make_root(root);
344 if (!s->s_root)
345 return -ENOMEM;
346 s->s_d_op = ctx->dops;
347 return 0;
348 }
349
pseudo_fs_get_tree(struct fs_context * fc)350 static int pseudo_fs_get_tree(struct fs_context *fc)
351 {
352 return get_tree_nodev(fc, pseudo_fs_fill_super);
353 }
354
pseudo_fs_free(struct fs_context * fc)355 static void pseudo_fs_free(struct fs_context *fc)
356 {
357 kfree(fc->fs_private);
358 }
359
360 static const struct fs_context_operations pseudo_fs_context_ops = {
361 .free = pseudo_fs_free,
362 .get_tree = pseudo_fs_get_tree,
363 };
364
365 /*
366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
367 * will never be mountable)
368 */
init_pseudo(struct fs_context * fc,unsigned long magic)369 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
370 unsigned long magic)
371 {
372 struct pseudo_fs_context *ctx;
373
374 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
375 if (likely(ctx)) {
376 ctx->magic = magic;
377 fc->fs_private = ctx;
378 fc->ops = &pseudo_fs_context_ops;
379 fc->sb_flags |= SB_NOUSER;
380 fc->global = true;
381 }
382 return ctx;
383 }
384 EXPORT_SYMBOL(init_pseudo);
385
simple_open(struct inode * inode,struct file * file)386 int simple_open(struct inode *inode, struct file *file)
387 {
388 if (inode->i_private)
389 file->private_data = inode->i_private;
390 return 0;
391 }
392 EXPORT_SYMBOL(simple_open);
393
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)394 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
395 {
396 struct inode *inode = d_inode(old_dentry);
397
398 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
399 inc_nlink(inode);
400 ihold(inode);
401 dget(dentry);
402 d_instantiate(dentry, inode);
403 return 0;
404 }
405 EXPORT_SYMBOL(simple_link);
406
simple_empty(struct dentry * dentry)407 int simple_empty(struct dentry *dentry)
408 {
409 struct dentry *child;
410 int ret = 0;
411
412 spin_lock(&dentry->d_lock);
413 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
414 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
415 if (simple_positive(child)) {
416 spin_unlock(&child->d_lock);
417 goto out;
418 }
419 spin_unlock(&child->d_lock);
420 }
421 ret = 1;
422 out:
423 spin_unlock(&dentry->d_lock);
424 return ret;
425 }
426 EXPORT_SYMBOL(simple_empty);
427
simple_unlink(struct inode * dir,struct dentry * dentry)428 int simple_unlink(struct inode *dir, struct dentry *dentry)
429 {
430 struct inode *inode = d_inode(dentry);
431
432 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
433 drop_nlink(inode);
434 dput(dentry);
435 return 0;
436 }
437 EXPORT_SYMBOL(simple_unlink);
438
simple_rmdir(struct inode * dir,struct dentry * dentry)439 int simple_rmdir(struct inode *dir, struct dentry *dentry)
440 {
441 if (!simple_empty(dentry))
442 return -ENOTEMPTY;
443
444 drop_nlink(d_inode(dentry));
445 simple_unlink(dir, dentry);
446 drop_nlink(dir);
447 return 0;
448 }
449 EXPORT_SYMBOL(simple_rmdir);
450
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)451 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
452 struct inode *new_dir, struct dentry *new_dentry)
453 {
454 bool old_is_dir = d_is_dir(old_dentry);
455 bool new_is_dir = d_is_dir(new_dentry);
456
457 if (old_dir != new_dir && old_is_dir != new_is_dir) {
458 if (old_is_dir) {
459 drop_nlink(old_dir);
460 inc_nlink(new_dir);
461 } else {
462 drop_nlink(new_dir);
463 inc_nlink(old_dir);
464 }
465 }
466 old_dir->i_ctime = old_dir->i_mtime =
467 new_dir->i_ctime = new_dir->i_mtime =
468 d_inode(old_dentry)->i_ctime =
469 d_inode(new_dentry)->i_ctime = current_time(old_dir);
470
471 return 0;
472 }
473 EXPORT_SYMBOL_GPL(simple_rename_exchange);
474
simple_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)475 int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
476 struct dentry *old_dentry, struct inode *new_dir,
477 struct dentry *new_dentry, unsigned int flags)
478 {
479 struct inode *inode = d_inode(old_dentry);
480 int they_are_dirs = d_is_dir(old_dentry);
481
482 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
483 return -EINVAL;
484
485 if (flags & RENAME_EXCHANGE)
486 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
487
488 if (!simple_empty(new_dentry))
489 return -ENOTEMPTY;
490
491 if (d_really_is_positive(new_dentry)) {
492 simple_unlink(new_dir, new_dentry);
493 if (they_are_dirs) {
494 drop_nlink(d_inode(new_dentry));
495 drop_nlink(old_dir);
496 }
497 } else if (they_are_dirs) {
498 drop_nlink(old_dir);
499 inc_nlink(new_dir);
500 }
501
502 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
503 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
504
505 return 0;
506 }
507 EXPORT_SYMBOL(simple_rename);
508
509 /**
510 * simple_setattr - setattr for simple filesystem
511 * @mnt_userns: user namespace of the target mount
512 * @dentry: dentry
513 * @iattr: iattr structure
514 *
515 * Returns 0 on success, -error on failure.
516 *
517 * simple_setattr is a simple ->setattr implementation without a proper
518 * implementation of size changes.
519 *
520 * It can either be used for in-memory filesystems or special files
521 * on simple regular filesystems. Anything that needs to change on-disk
522 * or wire state on size changes needs its own setattr method.
523 */
simple_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * iattr)524 int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
525 struct iattr *iattr)
526 {
527 struct inode *inode = d_inode(dentry);
528 int error;
529
530 error = setattr_prepare(mnt_userns, dentry, iattr);
531 if (error)
532 return error;
533
534 if (iattr->ia_valid & ATTR_SIZE)
535 truncate_setsize(inode, iattr->ia_size);
536 setattr_copy(mnt_userns, inode, iattr);
537 mark_inode_dirty(inode);
538 return 0;
539 }
540 EXPORT_SYMBOL(simple_setattr);
541
simple_readpage(struct file * file,struct page * page)542 static int simple_readpage(struct file *file, struct page *page)
543 {
544 clear_highpage(page);
545 flush_dcache_page(page);
546 SetPageUptodate(page);
547 unlock_page(page);
548 return 0;
549 }
550
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)551 int simple_write_begin(struct file *file, struct address_space *mapping,
552 loff_t pos, unsigned len, unsigned flags,
553 struct page **pagep, void **fsdata)
554 {
555 struct page *page;
556 pgoff_t index;
557
558 index = pos >> PAGE_SHIFT;
559
560 page = grab_cache_page_write_begin(mapping, index, flags);
561 if (!page)
562 return -ENOMEM;
563
564 *pagep = page;
565
566 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
567 unsigned from = pos & (PAGE_SIZE - 1);
568
569 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
570 }
571 return 0;
572 }
573 EXPORT_SYMBOL(simple_write_begin);
574
575 /**
576 * simple_write_end - .write_end helper for non-block-device FSes
577 * @file: See .write_end of address_space_operations
578 * @mapping: "
579 * @pos: "
580 * @len: "
581 * @copied: "
582 * @page: "
583 * @fsdata: "
584 *
585 * simple_write_end does the minimum needed for updating a page after writing is
586 * done. It has the same API signature as the .write_end of
587 * address_space_operations vector. So it can just be set onto .write_end for
588 * FSes that don't need any other processing. i_mutex is assumed to be held.
589 * Block based filesystems should use generic_write_end().
590 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
591 * is not called, so a filesystem that actually does store data in .write_inode
592 * should extend on what's done here with a call to mark_inode_dirty() in the
593 * case that i_size has changed.
594 *
595 * Use *ONLY* with simple_readpage()
596 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)597 static int simple_write_end(struct file *file, struct address_space *mapping,
598 loff_t pos, unsigned len, unsigned copied,
599 struct page *page, void *fsdata)
600 {
601 struct inode *inode = page->mapping->host;
602 loff_t last_pos = pos + copied;
603
604 /* zero the stale part of the page if we did a short copy */
605 if (!PageUptodate(page)) {
606 if (copied < len) {
607 unsigned from = pos & (PAGE_SIZE - 1);
608
609 zero_user(page, from + copied, len - copied);
610 }
611 SetPageUptodate(page);
612 }
613 /*
614 * No need to use i_size_read() here, the i_size
615 * cannot change under us because we hold the i_mutex.
616 */
617 if (last_pos > inode->i_size)
618 i_size_write(inode, last_pos);
619
620 set_page_dirty(page);
621 unlock_page(page);
622 put_page(page);
623
624 return copied;
625 }
626
627 /*
628 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
629 */
630 const struct address_space_operations ram_aops = {
631 .readpage = simple_readpage,
632 .write_begin = simple_write_begin,
633 .write_end = simple_write_end,
634 .set_page_dirty = __set_page_dirty_no_writeback,
635 };
636 EXPORT_SYMBOL(ram_aops);
637
638 /*
639 * the inodes created here are not hashed. If you use iunique to generate
640 * unique inode values later for this filesystem, then you must take care
641 * to pass it an appropriate max_reserved value to avoid collisions.
642 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)643 int simple_fill_super(struct super_block *s, unsigned long magic,
644 const struct tree_descr *files)
645 {
646 struct inode *inode;
647 struct dentry *root;
648 struct dentry *dentry;
649 int i;
650
651 s->s_blocksize = PAGE_SIZE;
652 s->s_blocksize_bits = PAGE_SHIFT;
653 s->s_magic = magic;
654 s->s_op = &simple_super_operations;
655 s->s_time_gran = 1;
656
657 inode = new_inode(s);
658 if (!inode)
659 return -ENOMEM;
660 /*
661 * because the root inode is 1, the files array must not contain an
662 * entry at index 1
663 */
664 inode->i_ino = 1;
665 inode->i_mode = S_IFDIR | 0755;
666 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
667 inode->i_op = &simple_dir_inode_operations;
668 inode->i_fop = &simple_dir_operations;
669 set_nlink(inode, 2);
670 root = d_make_root(inode);
671 if (!root)
672 return -ENOMEM;
673 for (i = 0; !files->name || files->name[0]; i++, files++) {
674 if (!files->name)
675 continue;
676
677 /* warn if it tries to conflict with the root inode */
678 if (unlikely(i == 1))
679 printk(KERN_WARNING "%s: %s passed in a files array"
680 "with an index of 1!\n", __func__,
681 s->s_type->name);
682
683 dentry = d_alloc_name(root, files->name);
684 if (!dentry)
685 goto out;
686 inode = new_inode(s);
687 if (!inode) {
688 dput(dentry);
689 goto out;
690 }
691 inode->i_mode = S_IFREG | files->mode;
692 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
693 inode->i_fop = files->ops;
694 inode->i_ino = i;
695 d_add(dentry, inode);
696 }
697 s->s_root = root;
698 return 0;
699 out:
700 d_genocide(root);
701 shrink_dcache_parent(root);
702 dput(root);
703 return -ENOMEM;
704 }
705 EXPORT_SYMBOL(simple_fill_super);
706
707 static DEFINE_SPINLOCK(pin_fs_lock);
708
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)709 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
710 {
711 struct vfsmount *mnt = NULL;
712 spin_lock(&pin_fs_lock);
713 if (unlikely(!*mount)) {
714 spin_unlock(&pin_fs_lock);
715 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
716 if (IS_ERR(mnt))
717 return PTR_ERR(mnt);
718 spin_lock(&pin_fs_lock);
719 if (!*mount)
720 *mount = mnt;
721 }
722 mntget(*mount);
723 ++*count;
724 spin_unlock(&pin_fs_lock);
725 mntput(mnt);
726 return 0;
727 }
728 EXPORT_SYMBOL(simple_pin_fs);
729
simple_release_fs(struct vfsmount ** mount,int * count)730 void simple_release_fs(struct vfsmount **mount, int *count)
731 {
732 struct vfsmount *mnt;
733 spin_lock(&pin_fs_lock);
734 mnt = *mount;
735 if (!--*count)
736 *mount = NULL;
737 spin_unlock(&pin_fs_lock);
738 mntput(mnt);
739 }
740 EXPORT_SYMBOL(simple_release_fs);
741
742 /**
743 * simple_read_from_buffer - copy data from the buffer to user space
744 * @to: the user space buffer to read to
745 * @count: the maximum number of bytes to read
746 * @ppos: the current position in the buffer
747 * @from: the buffer to read from
748 * @available: the size of the buffer
749 *
750 * The simple_read_from_buffer() function reads up to @count bytes from the
751 * buffer @from at offset @ppos into the user space address starting at @to.
752 *
753 * On success, the number of bytes read is returned and the offset @ppos is
754 * advanced by this number, or negative value is returned on error.
755 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)756 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
757 const void *from, size_t available)
758 {
759 loff_t pos = *ppos;
760 size_t ret;
761
762 if (pos < 0)
763 return -EINVAL;
764 if (pos >= available || !count)
765 return 0;
766 if (count > available - pos)
767 count = available - pos;
768 ret = copy_to_user(to, from + pos, count);
769 if (ret == count)
770 return -EFAULT;
771 count -= ret;
772 *ppos = pos + count;
773 return count;
774 }
775 EXPORT_SYMBOL(simple_read_from_buffer);
776
777 /**
778 * simple_write_to_buffer - copy data from user space to the buffer
779 * @to: the buffer to write to
780 * @available: the size of the buffer
781 * @ppos: the current position in the buffer
782 * @from: the user space buffer to read from
783 * @count: the maximum number of bytes to read
784 *
785 * The simple_write_to_buffer() function reads up to @count bytes from the user
786 * space address starting at @from into the buffer @to at offset @ppos.
787 *
788 * On success, the number of bytes written is returned and the offset @ppos is
789 * advanced by this number, or negative value is returned on error.
790 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)791 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
792 const void __user *from, size_t count)
793 {
794 loff_t pos = *ppos;
795 size_t res;
796
797 if (pos < 0)
798 return -EINVAL;
799 if (pos >= available || !count)
800 return 0;
801 if (count > available - pos)
802 count = available - pos;
803 res = copy_from_user(to + pos, from, count);
804 if (res == count)
805 return -EFAULT;
806 count -= res;
807 *ppos = pos + count;
808 return count;
809 }
810 EXPORT_SYMBOL(simple_write_to_buffer);
811
812 /**
813 * memory_read_from_buffer - copy data from the buffer
814 * @to: the kernel space buffer to read to
815 * @count: the maximum number of bytes to read
816 * @ppos: the current position in the buffer
817 * @from: the buffer to read from
818 * @available: the size of the buffer
819 *
820 * The memory_read_from_buffer() function reads up to @count bytes from the
821 * buffer @from at offset @ppos into the kernel space address starting at @to.
822 *
823 * On success, the number of bytes read is returned and the offset @ppos is
824 * advanced by this number, or negative value is returned on error.
825 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)826 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
827 const void *from, size_t available)
828 {
829 loff_t pos = *ppos;
830
831 if (pos < 0)
832 return -EINVAL;
833 if (pos >= available)
834 return 0;
835 if (count > available - pos)
836 count = available - pos;
837 memcpy(to, from + pos, count);
838 *ppos = pos + count;
839
840 return count;
841 }
842 EXPORT_SYMBOL(memory_read_from_buffer);
843
844 /*
845 * Transaction based IO.
846 * The file expects a single write which triggers the transaction, and then
847 * possibly a read which collects the result - which is stored in a
848 * file-local buffer.
849 */
850
simple_transaction_set(struct file * file,size_t n)851 void simple_transaction_set(struct file *file, size_t n)
852 {
853 struct simple_transaction_argresp *ar = file->private_data;
854
855 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
856
857 /*
858 * The barrier ensures that ar->size will really remain zero until
859 * ar->data is ready for reading.
860 */
861 smp_mb();
862 ar->size = n;
863 }
864 EXPORT_SYMBOL(simple_transaction_set);
865
simple_transaction_get(struct file * file,const char __user * buf,size_t size)866 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
867 {
868 struct simple_transaction_argresp *ar;
869 static DEFINE_SPINLOCK(simple_transaction_lock);
870
871 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
872 return ERR_PTR(-EFBIG);
873
874 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
875 if (!ar)
876 return ERR_PTR(-ENOMEM);
877
878 spin_lock(&simple_transaction_lock);
879
880 /* only one write allowed per open */
881 if (file->private_data) {
882 spin_unlock(&simple_transaction_lock);
883 free_page((unsigned long)ar);
884 return ERR_PTR(-EBUSY);
885 }
886
887 file->private_data = ar;
888
889 spin_unlock(&simple_transaction_lock);
890
891 if (copy_from_user(ar->data, buf, size))
892 return ERR_PTR(-EFAULT);
893
894 return ar->data;
895 }
896 EXPORT_SYMBOL(simple_transaction_get);
897
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)898 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
899 {
900 struct simple_transaction_argresp *ar = file->private_data;
901
902 if (!ar)
903 return 0;
904 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
905 }
906 EXPORT_SYMBOL(simple_transaction_read);
907
simple_transaction_release(struct inode * inode,struct file * file)908 int simple_transaction_release(struct inode *inode, struct file *file)
909 {
910 free_page((unsigned long)file->private_data);
911 return 0;
912 }
913 EXPORT_SYMBOL(simple_transaction_release);
914
915 /* Simple attribute files */
916
917 struct simple_attr {
918 int (*get)(void *, u64 *);
919 int (*set)(void *, u64);
920 char get_buf[24]; /* enough to store a u64 and "\n\0" */
921 char set_buf[24];
922 void *data;
923 const char *fmt; /* format for read operation */
924 struct mutex mutex; /* protects access to these buffers */
925 };
926
927 /* simple_attr_open is called by an actual attribute open file operation
928 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)929 int simple_attr_open(struct inode *inode, struct file *file,
930 int (*get)(void *, u64 *), int (*set)(void *, u64),
931 const char *fmt)
932 {
933 struct simple_attr *attr;
934
935 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
936 if (!attr)
937 return -ENOMEM;
938
939 attr->get = get;
940 attr->set = set;
941 attr->data = inode->i_private;
942 attr->fmt = fmt;
943 mutex_init(&attr->mutex);
944
945 file->private_data = attr;
946
947 return nonseekable_open(inode, file);
948 }
949 EXPORT_SYMBOL_GPL(simple_attr_open);
950
simple_attr_release(struct inode * inode,struct file * file)951 int simple_attr_release(struct inode *inode, struct file *file)
952 {
953 kfree(file->private_data);
954 return 0;
955 }
956 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
957
958 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)959 ssize_t simple_attr_read(struct file *file, char __user *buf,
960 size_t len, loff_t *ppos)
961 {
962 struct simple_attr *attr;
963 size_t size;
964 ssize_t ret;
965
966 attr = file->private_data;
967
968 if (!attr->get)
969 return -EACCES;
970
971 ret = mutex_lock_interruptible(&attr->mutex);
972 if (ret)
973 return ret;
974
975 if (*ppos && attr->get_buf[0]) {
976 /* continued read */
977 size = strlen(attr->get_buf);
978 } else {
979 /* first read */
980 u64 val;
981 ret = attr->get(attr->data, &val);
982 if (ret)
983 goto out;
984
985 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
986 attr->fmt, (unsigned long long)val);
987 }
988
989 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
990 out:
991 mutex_unlock(&attr->mutex);
992 return ret;
993 }
994 EXPORT_SYMBOL_GPL(simple_attr_read);
995
996 /* interpret the buffer as a number to call the set function with */
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)997 ssize_t simple_attr_write(struct file *file, const char __user *buf,
998 size_t len, loff_t *ppos)
999 {
1000 struct simple_attr *attr;
1001 unsigned long long val;
1002 size_t size;
1003 ssize_t ret;
1004
1005 attr = file->private_data;
1006 if (!attr->set)
1007 return -EACCES;
1008
1009 ret = mutex_lock_interruptible(&attr->mutex);
1010 if (ret)
1011 return ret;
1012
1013 ret = -EFAULT;
1014 size = min(sizeof(attr->set_buf) - 1, len);
1015 if (copy_from_user(attr->set_buf, buf, size))
1016 goto out;
1017
1018 attr->set_buf[size] = '\0';
1019 ret = kstrtoull(attr->set_buf, 0, &val);
1020 if (ret)
1021 goto out;
1022 ret = attr->set(attr->data, val);
1023 if (ret == 0)
1024 ret = len; /* on success, claim we got the whole input */
1025 out:
1026 mutex_unlock(&attr->mutex);
1027 return ret;
1028 }
1029 EXPORT_SYMBOL_GPL(simple_attr_write);
1030
1031 /**
1032 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1033 * @sb: filesystem to do the file handle conversion on
1034 * @fid: file handle to convert
1035 * @fh_len: length of the file handle in bytes
1036 * @fh_type: type of file handle
1037 * @get_inode: filesystem callback to retrieve inode
1038 *
1039 * This function decodes @fid as long as it has one of the well-known
1040 * Linux filehandle types and calls @get_inode on it to retrieve the
1041 * inode for the object specified in the file handle.
1042 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1043 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1044 int fh_len, int fh_type, struct inode *(*get_inode)
1045 (struct super_block *sb, u64 ino, u32 gen))
1046 {
1047 struct inode *inode = NULL;
1048
1049 if (fh_len < 2)
1050 return NULL;
1051
1052 switch (fh_type) {
1053 case FILEID_INO32_GEN:
1054 case FILEID_INO32_GEN_PARENT:
1055 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1056 break;
1057 }
1058
1059 return d_obtain_alias(inode);
1060 }
1061 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1062
1063 /**
1064 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1065 * @sb: filesystem to do the file handle conversion on
1066 * @fid: file handle to convert
1067 * @fh_len: length of the file handle in bytes
1068 * @fh_type: type of file handle
1069 * @get_inode: filesystem callback to retrieve inode
1070 *
1071 * This function decodes @fid as long as it has one of the well-known
1072 * Linux filehandle types and calls @get_inode on it to retrieve the
1073 * inode for the _parent_ object specified in the file handle if it
1074 * is specified in the file handle, or NULL otherwise.
1075 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1076 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1077 int fh_len, int fh_type, struct inode *(*get_inode)
1078 (struct super_block *sb, u64 ino, u32 gen))
1079 {
1080 struct inode *inode = NULL;
1081
1082 if (fh_len <= 2)
1083 return NULL;
1084
1085 switch (fh_type) {
1086 case FILEID_INO32_GEN_PARENT:
1087 inode = get_inode(sb, fid->i32.parent_ino,
1088 (fh_len > 3 ? fid->i32.parent_gen : 0));
1089 break;
1090 }
1091
1092 return d_obtain_alias(inode);
1093 }
1094 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1095
1096 /**
1097 * __generic_file_fsync - generic fsync implementation for simple filesystems
1098 *
1099 * @file: file to synchronize
1100 * @start: start offset in bytes
1101 * @end: end offset in bytes (inclusive)
1102 * @datasync: only synchronize essential metadata if true
1103 *
1104 * This is a generic implementation of the fsync method for simple
1105 * filesystems which track all non-inode metadata in the buffers list
1106 * hanging off the address_space structure.
1107 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1108 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1109 int datasync)
1110 {
1111 struct inode *inode = file->f_mapping->host;
1112 int err;
1113 int ret;
1114
1115 err = file_write_and_wait_range(file, start, end);
1116 if (err)
1117 return err;
1118
1119 inode_lock(inode);
1120 ret = sync_mapping_buffers(inode->i_mapping);
1121 if (!(inode->i_state & I_DIRTY_ALL))
1122 goto out;
1123 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1124 goto out;
1125
1126 err = sync_inode_metadata(inode, 1);
1127 if (ret == 0)
1128 ret = err;
1129
1130 out:
1131 inode_unlock(inode);
1132 /* check and advance again to catch errors after syncing out buffers */
1133 err = file_check_and_advance_wb_err(file);
1134 if (ret == 0)
1135 ret = err;
1136 return ret;
1137 }
1138 EXPORT_SYMBOL(__generic_file_fsync);
1139
1140 /**
1141 * generic_file_fsync - generic fsync implementation for simple filesystems
1142 * with flush
1143 * @file: file to synchronize
1144 * @start: start offset in bytes
1145 * @end: end offset in bytes (inclusive)
1146 * @datasync: only synchronize essential metadata if true
1147 *
1148 */
1149
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1150 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1151 int datasync)
1152 {
1153 struct inode *inode = file->f_mapping->host;
1154 int err;
1155
1156 err = __generic_file_fsync(file, start, end, datasync);
1157 if (err)
1158 return err;
1159 return blkdev_issue_flush(inode->i_sb->s_bdev);
1160 }
1161 EXPORT_SYMBOL(generic_file_fsync);
1162
1163 /**
1164 * generic_check_addressable - Check addressability of file system
1165 * @blocksize_bits: log of file system block size
1166 * @num_blocks: number of blocks in file system
1167 *
1168 * Determine whether a file system with @num_blocks blocks (and a
1169 * block size of 2**@blocksize_bits) is addressable by the sector_t
1170 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1171 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1172 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1173 {
1174 u64 last_fs_block = num_blocks - 1;
1175 u64 last_fs_page =
1176 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1177
1178 if (unlikely(num_blocks == 0))
1179 return 0;
1180
1181 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1182 return -EINVAL;
1183
1184 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1185 (last_fs_page > (pgoff_t)(~0ULL))) {
1186 return -EFBIG;
1187 }
1188 return 0;
1189 }
1190 EXPORT_SYMBOL(generic_check_addressable);
1191
1192 /*
1193 * No-op implementation of ->fsync for in-memory filesystems.
1194 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1195 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1196 {
1197 return 0;
1198 }
1199 EXPORT_SYMBOL(noop_fsync);
1200
noop_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1201 void noop_invalidatepage(struct page *page, unsigned int offset,
1202 unsigned int length)
1203 {
1204 /*
1205 * There is no page cache to invalidate in the dax case, however
1206 * we need this callback defined to prevent falling back to
1207 * block_invalidatepage() in do_invalidatepage().
1208 */
1209 }
1210 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1211
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1212 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1213 {
1214 /*
1215 * iomap based filesystems support direct I/O without need for
1216 * this callback. However, it still needs to be set in
1217 * inode->a_ops so that open/fcntl know that direct I/O is
1218 * generally supported.
1219 */
1220 return -EINVAL;
1221 }
1222 EXPORT_SYMBOL_GPL(noop_direct_IO);
1223
1224 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1225 void kfree_link(void *p)
1226 {
1227 kfree(p);
1228 }
1229 EXPORT_SYMBOL(kfree_link);
1230
alloc_anon_inode(struct super_block * s)1231 struct inode *alloc_anon_inode(struct super_block *s)
1232 {
1233 static const struct address_space_operations anon_aops = {
1234 .set_page_dirty = __set_page_dirty_no_writeback,
1235 };
1236 struct inode *inode = new_inode_pseudo(s);
1237
1238 if (!inode)
1239 return ERR_PTR(-ENOMEM);
1240
1241 inode->i_ino = get_next_ino();
1242 inode->i_mapping->a_ops = &anon_aops;
1243
1244 /*
1245 * Mark the inode dirty from the very beginning,
1246 * that way it will never be moved to the dirty
1247 * list because mark_inode_dirty() will think
1248 * that it already _is_ on the dirty list.
1249 */
1250 inode->i_state = I_DIRTY;
1251 inode->i_mode = S_IRUSR | S_IWUSR;
1252 inode->i_uid = current_fsuid();
1253 inode->i_gid = current_fsgid();
1254 inode->i_flags |= S_PRIVATE;
1255 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1256 return inode;
1257 }
1258 EXPORT_SYMBOL(alloc_anon_inode);
1259
1260 /**
1261 * simple_nosetlease - generic helper for prohibiting leases
1262 * @filp: file pointer
1263 * @arg: type of lease to obtain
1264 * @flp: new lease supplied for insertion
1265 * @priv: private data for lm_setup operation
1266 *
1267 * Generic helper for filesystems that do not wish to allow leases to be set.
1268 * All arguments are ignored and it just returns -EINVAL.
1269 */
1270 int
simple_nosetlease(struct file * filp,long arg,struct file_lock ** flp,void ** priv)1271 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1272 void **priv)
1273 {
1274 return -EINVAL;
1275 }
1276 EXPORT_SYMBOL(simple_nosetlease);
1277
1278 /**
1279 * simple_get_link - generic helper to get the target of "fast" symlinks
1280 * @dentry: not used here
1281 * @inode: the symlink inode
1282 * @done: not used here
1283 *
1284 * Generic helper for filesystems to use for symlink inodes where a pointer to
1285 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1286 * since as an optimization the path lookup code uses any non-NULL ->i_link
1287 * directly, without calling ->get_link(). But ->get_link() still must be set,
1288 * to mark the inode_operations as being for a symlink.
1289 *
1290 * Return: the symlink target
1291 */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1292 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1293 struct delayed_call *done)
1294 {
1295 return inode->i_link;
1296 }
1297 EXPORT_SYMBOL(simple_get_link);
1298
1299 const struct inode_operations simple_symlink_inode_operations = {
1300 .get_link = simple_get_link,
1301 };
1302 EXPORT_SYMBOL(simple_symlink_inode_operations);
1303
1304 /*
1305 * Operations for a permanently empty directory.
1306 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1307 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1308 {
1309 return ERR_PTR(-ENOENT);
1310 }
1311
empty_dir_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1312 static int empty_dir_getattr(struct user_namespace *mnt_userns,
1313 const struct path *path, struct kstat *stat,
1314 u32 request_mask, unsigned int query_flags)
1315 {
1316 struct inode *inode = d_inode(path->dentry);
1317 generic_fillattr(&init_user_ns, inode, stat);
1318 return 0;
1319 }
1320
empty_dir_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)1321 static int empty_dir_setattr(struct user_namespace *mnt_userns,
1322 struct dentry *dentry, struct iattr *attr)
1323 {
1324 return -EPERM;
1325 }
1326
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1327 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1328 {
1329 return -EOPNOTSUPP;
1330 }
1331
1332 static const struct inode_operations empty_dir_inode_operations = {
1333 .lookup = empty_dir_lookup,
1334 .permission = generic_permission,
1335 .setattr = empty_dir_setattr,
1336 .getattr = empty_dir_getattr,
1337 .listxattr = empty_dir_listxattr,
1338 };
1339
empty_dir_llseek(struct file * file,loff_t offset,int whence)1340 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1341 {
1342 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1343 return generic_file_llseek_size(file, offset, whence, 2, 2);
1344 }
1345
empty_dir_readdir(struct file * file,struct dir_context * ctx)1346 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1347 {
1348 dir_emit_dots(file, ctx);
1349 return 0;
1350 }
1351
1352 static const struct file_operations empty_dir_operations = {
1353 .llseek = empty_dir_llseek,
1354 .read = generic_read_dir,
1355 .iterate_shared = empty_dir_readdir,
1356 .fsync = noop_fsync,
1357 };
1358
1359
make_empty_dir_inode(struct inode * inode)1360 void make_empty_dir_inode(struct inode *inode)
1361 {
1362 set_nlink(inode, 2);
1363 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1364 inode->i_uid = GLOBAL_ROOT_UID;
1365 inode->i_gid = GLOBAL_ROOT_GID;
1366 inode->i_rdev = 0;
1367 inode->i_size = 0;
1368 inode->i_blkbits = PAGE_SHIFT;
1369 inode->i_blocks = 0;
1370
1371 inode->i_op = &empty_dir_inode_operations;
1372 inode->i_opflags &= ~IOP_XATTR;
1373 inode->i_fop = &empty_dir_operations;
1374 }
1375
is_empty_dir_inode(struct inode * inode)1376 bool is_empty_dir_inode(struct inode *inode)
1377 {
1378 return (inode->i_fop == &empty_dir_operations) &&
1379 (inode->i_op == &empty_dir_inode_operations);
1380 }
1381
1382 #ifdef CONFIG_UNICODE
1383 /*
1384 * Determine if the name of a dentry should be casefolded.
1385 *
1386 * Return: if names will need casefolding
1387 */
needs_casefold(const struct inode * dir)1388 static bool needs_casefold(const struct inode *dir)
1389 {
1390 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1391 }
1392
1393 /**
1394 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1395 * @dentry: dentry whose name we are checking against
1396 * @len: len of name of dentry
1397 * @str: str pointer to name of dentry
1398 * @name: Name to compare against
1399 *
1400 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1401 */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1402 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1403 const char *str, const struct qstr *name)
1404 {
1405 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1406 const struct inode *dir = READ_ONCE(parent->d_inode);
1407 const struct super_block *sb = dentry->d_sb;
1408 const struct unicode_map *um = sb->s_encoding;
1409 struct qstr qstr = QSTR_INIT(str, len);
1410 char strbuf[DNAME_INLINE_LEN];
1411 int ret;
1412
1413 if (!dir || !needs_casefold(dir))
1414 goto fallback;
1415 /*
1416 * If the dentry name is stored in-line, then it may be concurrently
1417 * modified by a rename. If this happens, the VFS will eventually retry
1418 * the lookup, so it doesn't matter what ->d_compare() returns.
1419 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1420 * string. Therefore, we have to copy the name into a temporary buffer.
1421 */
1422 if (len <= DNAME_INLINE_LEN - 1) {
1423 memcpy(strbuf, str, len);
1424 strbuf[len] = 0;
1425 qstr.name = strbuf;
1426 /* prevent compiler from optimizing out the temporary buffer */
1427 barrier();
1428 }
1429 ret = utf8_strncasecmp(um, name, &qstr);
1430 if (ret >= 0)
1431 return ret;
1432
1433 if (sb_has_strict_encoding(sb))
1434 return -EINVAL;
1435 fallback:
1436 if (len != name->len)
1437 return 1;
1438 return !!memcmp(str, name->name, len);
1439 }
1440
1441 /**
1442 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1443 * @dentry: dentry of the parent directory
1444 * @str: qstr of name whose hash we should fill in
1445 *
1446 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1447 */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1448 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1449 {
1450 const struct inode *dir = READ_ONCE(dentry->d_inode);
1451 struct super_block *sb = dentry->d_sb;
1452 const struct unicode_map *um = sb->s_encoding;
1453 int ret = 0;
1454
1455 if (!dir || !needs_casefold(dir))
1456 return 0;
1457
1458 ret = utf8_casefold_hash(um, dentry, str);
1459 if (ret < 0 && sb_has_strict_encoding(sb))
1460 return -EINVAL;
1461 return 0;
1462 }
1463
1464 static const struct dentry_operations generic_ci_dentry_ops = {
1465 .d_hash = generic_ci_d_hash,
1466 .d_compare = generic_ci_d_compare,
1467 };
1468 #endif
1469
1470 #ifdef CONFIG_FS_ENCRYPTION
1471 static const struct dentry_operations generic_encrypted_dentry_ops = {
1472 .d_revalidate = fscrypt_d_revalidate,
1473 };
1474 #endif
1475
1476 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1477 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1478 .d_hash = generic_ci_d_hash,
1479 .d_compare = generic_ci_d_compare,
1480 .d_revalidate = fscrypt_d_revalidate,
1481 };
1482 #endif
1483
1484 /**
1485 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1486 * @dentry: dentry to set ops on
1487 *
1488 * Casefolded directories need d_hash and d_compare set, so that the dentries
1489 * contained in them are handled case-insensitively. Note that these operations
1490 * are needed on the parent directory rather than on the dentries in it, and
1491 * while the casefolding flag can be toggled on and off on an empty directory,
1492 * dentry_operations can't be changed later. As a result, if the filesystem has
1493 * casefolding support enabled at all, we have to give all dentries the
1494 * casefolding operations even if their inode doesn't have the casefolding flag
1495 * currently (and thus the casefolding ops would be no-ops for now).
1496 *
1497 * Encryption works differently in that the only dentry operation it needs is
1498 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1499 * The no-key flag can't be set "later", so we don't have to worry about that.
1500 *
1501 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1502 * with certain dentry operations) and to avoid taking an unnecessary
1503 * performance hit, we use custom dentry_operations for each possible
1504 * combination rather than always installing all operations.
1505 */
generic_set_encrypted_ci_d_ops(struct dentry * dentry)1506 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1507 {
1508 #ifdef CONFIG_FS_ENCRYPTION
1509 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1510 #endif
1511 #ifdef CONFIG_UNICODE
1512 bool needs_ci_ops = dentry->d_sb->s_encoding;
1513 #endif
1514 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1515 if (needs_encrypt_ops && needs_ci_ops) {
1516 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1517 return;
1518 }
1519 #endif
1520 #ifdef CONFIG_FS_ENCRYPTION
1521 if (needs_encrypt_ops) {
1522 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1523 return;
1524 }
1525 #endif
1526 #ifdef CONFIG_UNICODE
1527 if (needs_ci_ops) {
1528 d_set_d_op(dentry, &generic_ci_dentry_ops);
1529 return;
1530 }
1531 #endif
1532 }
1533 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1534