1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 #include <linux/indirect_call_wrapper.h>
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 	 * address on 64bit arches : cf INET_MATCH()
166 	 */
167 	union {
168 		__addrpair	skc_addrpair;
169 		struct {
170 			__be32	skc_daddr;
171 			__be32	skc_rcv_saddr;
172 		};
173 	};
174 	union  {
175 		unsigned int	skc_hash;
176 		__u16		skc_u16hashes[2];
177 	};
178 	/* skc_dport && skc_num must be grouped as well */
179 	union {
180 		__portpair	skc_portpair;
181 		struct {
182 			__be16	skc_dport;
183 			__u16	skc_num;
184 		};
185 	};
186 
187 	unsigned short		skc_family;
188 	volatile unsigned char	skc_state;
189 	unsigned char		skc_reuse:4;
190 	unsigned char		skc_reuseport:1;
191 	unsigned char		skc_ipv6only:1;
192 	unsigned char		skc_net_refcnt:1;
193 	int			skc_bound_dev_if;
194 	union {
195 		struct hlist_node	skc_bind_node;
196 		struct hlist_node	skc_portaddr_node;
197 	};
198 	struct proto		*skc_prot;
199 	possible_net_t		skc_net;
200 
201 #if IS_ENABLED(CONFIG_IPV6)
202 	struct in6_addr		skc_v6_daddr;
203 	struct in6_addr		skc_v6_rcv_saddr;
204 #endif
205 
206 	atomic64_t		skc_cookie;
207 
208 	/* following fields are padding to force
209 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 	 * assuming IPV6 is enabled. We use this padding differently
211 	 * for different kind of 'sockets'
212 	 */
213 	union {
214 		unsigned long	skc_flags;
215 		struct sock	*skc_listener; /* request_sock */
216 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 	};
218 	/*
219 	 * fields between dontcopy_begin/dontcopy_end
220 	 * are not copied in sock_copy()
221 	 */
222 	/* private: */
223 	int			skc_dontcopy_begin[0];
224 	/* public: */
225 	union {
226 		struct hlist_node	skc_node;
227 		struct hlist_nulls_node skc_nulls_node;
228 	};
229 	unsigned short		skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 	unsigned short		skc_rx_queue_mapping;
232 #endif
233 	union {
234 		int		skc_incoming_cpu;
235 		u32		skc_rcv_wnd;
236 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
237 	};
238 
239 	refcount_t		skc_refcnt;
240 	/* private: */
241 	int                     skc_dontcopy_end[0];
242 	union {
243 		u32		skc_rxhash;
244 		u32		skc_window_clamp;
245 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 	};
247 	/* public: */
248 };
249 
250 struct bpf_local_storage;
251 
252 /**
253   *	struct sock - network layer representation of sockets
254   *	@__sk_common: shared layout with inet_timewait_sock
255   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
256   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
257   *	@sk_lock:	synchronizer
258   *	@sk_kern_sock: True if sock is using kernel lock classes
259   *	@sk_rcvbuf: size of receive buffer in bytes
260   *	@sk_wq: sock wait queue and async head
261   *	@sk_rx_dst: receive input route used by early demux
262   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
263   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
264   *	@sk_dst_cache: destination cache
265   *	@sk_dst_pending_confirm: need to confirm neighbour
266   *	@sk_policy: flow policy
267   *	@sk_receive_queue: incoming packets
268   *	@sk_wmem_alloc: transmit queue bytes committed
269   *	@sk_tsq_flags: TCP Small Queues flags
270   *	@sk_write_queue: Packet sending queue
271   *	@sk_omem_alloc: "o" is "option" or "other"
272   *	@sk_wmem_queued: persistent queue size
273   *	@sk_forward_alloc: space allocated forward
274   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
275   *	@sk_napi_id: id of the last napi context to receive data for sk
276   *	@sk_ll_usec: usecs to busypoll when there is no data
277   *	@sk_allocation: allocation mode
278   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
279   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
280   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
281   *	@sk_sndbuf: size of send buffer in bytes
282   *	@__sk_flags_offset: empty field used to determine location of bitfield
283   *	@sk_padding: unused element for alignment
284   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
285   *	@sk_no_check_rx: allow zero checksum in RX packets
286   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
287   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
288   *	@sk_route_forced_caps: static, forced route capabilities
289   *		(set in tcp_init_sock())
290   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
291   *	@sk_gso_max_size: Maximum GSO segment size to build
292   *	@sk_gso_max_segs: Maximum number of GSO segments
293   *	@sk_pacing_shift: scaling factor for TCP Small Queues
294   *	@sk_lingertime: %SO_LINGER l_linger setting
295   *	@sk_backlog: always used with the per-socket spinlock held
296   *	@sk_callback_lock: used with the callbacks in the end of this struct
297   *	@sk_error_queue: rarely used
298   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
299   *			  IPV6_ADDRFORM for instance)
300   *	@sk_err: last error
301   *	@sk_err_soft: errors that don't cause failure but are the cause of a
302   *		      persistent failure not just 'timed out'
303   *	@sk_drops: raw/udp drops counter
304   *	@sk_ack_backlog: current listen backlog
305   *	@sk_max_ack_backlog: listen backlog set in listen()
306   *	@sk_uid: user id of owner
307   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
308   *	@sk_busy_poll_budget: napi processing budget when busypolling
309   *	@sk_priority: %SO_PRIORITY setting
310   *	@sk_type: socket type (%SOCK_STREAM, etc)
311   *	@sk_protocol: which protocol this socket belongs in this network family
312   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
313   *	@sk_peer_pid: &struct pid for this socket's peer
314   *	@sk_peer_cred: %SO_PEERCRED setting
315   *	@sk_rcvlowat: %SO_RCVLOWAT setting
316   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
317   *	@sk_sndtimeo: %SO_SNDTIMEO setting
318   *	@sk_txhash: computed flow hash for use on transmit
319   *	@sk_filter: socket filtering instructions
320   *	@sk_timer: sock cleanup timer
321   *	@sk_stamp: time stamp of last packet received
322   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
323   *	@sk_tsflags: SO_TIMESTAMPING flags
324   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325   *	              for timestamping
326   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
327   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
328   *	@sk_socket: Identd and reporting IO signals
329   *	@sk_user_data: RPC layer private data
330   *	@sk_frag: cached page frag
331   *	@sk_peek_off: current peek_offset value
332   *	@sk_send_head: front of stuff to transmit
333   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334   *	@sk_security: used by security modules
335   *	@sk_mark: generic packet mark
336   *	@sk_cgrp_data: cgroup data for this cgroup
337   *	@sk_memcg: this socket's memory cgroup association
338   *	@sk_write_pending: a write to stream socket waits to start
339   *	@sk_state_change: callback to indicate change in the state of the sock
340   *	@sk_data_ready: callback to indicate there is data to be processed
341   *	@sk_write_space: callback to indicate there is bf sending space available
342   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
343   *	@sk_backlog_rcv: callback to process the backlog
344   *	@sk_validate_xmit_skb: ptr to an optional validate function
345   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
346   *	@sk_reuseport_cb: reuseport group container
347   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
348   *	@sk_rcu: used during RCU grace period
349   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
350   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
351   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
352   *	@sk_txtime_unused: unused txtime flags
353   */
354 struct sock {
355 	/*
356 	 * Now struct inet_timewait_sock also uses sock_common, so please just
357 	 * don't add nothing before this first member (__sk_common) --acme
358 	 */
359 	struct sock_common	__sk_common;
360 #define sk_node			__sk_common.skc_node
361 #define sk_nulls_node		__sk_common.skc_nulls_node
362 #define sk_refcnt		__sk_common.skc_refcnt
363 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
364 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
365 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
366 #endif
367 
368 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
369 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
370 #define sk_hash			__sk_common.skc_hash
371 #define sk_portpair		__sk_common.skc_portpair
372 #define sk_num			__sk_common.skc_num
373 #define sk_dport		__sk_common.skc_dport
374 #define sk_addrpair		__sk_common.skc_addrpair
375 #define sk_daddr		__sk_common.skc_daddr
376 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
377 #define sk_family		__sk_common.skc_family
378 #define sk_state		__sk_common.skc_state
379 #define sk_reuse		__sk_common.skc_reuse
380 #define sk_reuseport		__sk_common.skc_reuseport
381 #define sk_ipv6only		__sk_common.skc_ipv6only
382 #define sk_net_refcnt		__sk_common.skc_net_refcnt
383 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
384 #define sk_bind_node		__sk_common.skc_bind_node
385 #define sk_prot			__sk_common.skc_prot
386 #define sk_net			__sk_common.skc_net
387 #define sk_v6_daddr		__sk_common.skc_v6_daddr
388 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
389 #define sk_cookie		__sk_common.skc_cookie
390 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
391 #define sk_flags		__sk_common.skc_flags
392 #define sk_rxhash		__sk_common.skc_rxhash
393 
394 	socket_lock_t		sk_lock;
395 	atomic_t		sk_drops;
396 	int			sk_rcvlowat;
397 	struct sk_buff_head	sk_error_queue;
398 	struct sk_buff_head	sk_receive_queue;
399 	/*
400 	 * The backlog queue is special, it is always used with
401 	 * the per-socket spinlock held and requires low latency
402 	 * access. Therefore we special case it's implementation.
403 	 * Note : rmem_alloc is in this structure to fill a hole
404 	 * on 64bit arches, not because its logically part of
405 	 * backlog.
406 	 */
407 	struct {
408 		atomic_t	rmem_alloc;
409 		int		len;
410 		struct sk_buff	*head;
411 		struct sk_buff	*tail;
412 	} sk_backlog;
413 #define sk_rmem_alloc sk_backlog.rmem_alloc
414 
415 	int			sk_forward_alloc;
416 	u32			sk_reserved_mem;
417 #ifdef CONFIG_NET_RX_BUSY_POLL
418 	unsigned int		sk_ll_usec;
419 	/* ===== mostly read cache line ===== */
420 	unsigned int		sk_napi_id;
421 #endif
422 	int			sk_rcvbuf;
423 
424 	struct sk_filter __rcu	*sk_filter;
425 	union {
426 		struct socket_wq __rcu	*sk_wq;
427 		/* private: */
428 		struct socket_wq	*sk_wq_raw;
429 		/* public: */
430 	};
431 #ifdef CONFIG_XFRM
432 	struct xfrm_policy __rcu *sk_policy[2];
433 #endif
434 	struct dst_entry __rcu	*sk_rx_dst;
435 	int			sk_rx_dst_ifindex;
436 	u32			sk_rx_dst_cookie;
437 
438 	struct dst_entry __rcu	*sk_dst_cache;
439 	atomic_t		sk_omem_alloc;
440 	int			sk_sndbuf;
441 
442 	/* ===== cache line for TX ===== */
443 	int			sk_wmem_queued;
444 	refcount_t		sk_wmem_alloc;
445 	unsigned long		sk_tsq_flags;
446 	union {
447 		struct sk_buff	*sk_send_head;
448 		struct rb_root	tcp_rtx_queue;
449 	};
450 	struct sk_buff_head	sk_write_queue;
451 	__s32			sk_peek_off;
452 	int			sk_write_pending;
453 	__u32			sk_dst_pending_confirm;
454 	u32			sk_pacing_status; /* see enum sk_pacing */
455 	long			sk_sndtimeo;
456 	struct timer_list	sk_timer;
457 	__u32			sk_priority;
458 	__u32			sk_mark;
459 	unsigned long		sk_pacing_rate; /* bytes per second */
460 	unsigned long		sk_max_pacing_rate;
461 	struct page_frag	sk_frag;
462 	netdev_features_t	sk_route_caps;
463 	netdev_features_t	sk_route_nocaps;
464 	netdev_features_t	sk_route_forced_caps;
465 	int			sk_gso_type;
466 	unsigned int		sk_gso_max_size;
467 	gfp_t			sk_allocation;
468 	__u32			sk_txhash;
469 
470 	/*
471 	 * Because of non atomicity rules, all
472 	 * changes are protected by socket lock.
473 	 */
474 	u8			sk_padding : 1,
475 				sk_kern_sock : 1,
476 				sk_no_check_tx : 1,
477 				sk_no_check_rx : 1,
478 				sk_userlocks : 4;
479 	u8			sk_pacing_shift;
480 	u16			sk_type;
481 	u16			sk_protocol;
482 	u16			sk_gso_max_segs;
483 	unsigned long	        sk_lingertime;
484 	struct proto		*sk_prot_creator;
485 	rwlock_t		sk_callback_lock;
486 	int			sk_err,
487 				sk_err_soft;
488 	u32			sk_ack_backlog;
489 	u32			sk_max_ack_backlog;
490 	kuid_t			sk_uid;
491 #ifdef CONFIG_NET_RX_BUSY_POLL
492 	u8			sk_prefer_busy_poll;
493 	u16			sk_busy_poll_budget;
494 #endif
495 	spinlock_t		sk_peer_lock;
496 	struct pid		*sk_peer_pid;
497 	const struct cred	*sk_peer_cred;
498 
499 	long			sk_rcvtimeo;
500 	ktime_t			sk_stamp;
501 #if BITS_PER_LONG==32
502 	seqlock_t		sk_stamp_seq;
503 #endif
504 	u16			sk_tsflags;
505 	int			sk_bind_phc;
506 	u8			sk_shutdown;
507 	u32			sk_tskey;
508 	atomic_t		sk_zckey;
509 
510 	u8			sk_clockid;
511 	u8			sk_txtime_deadline_mode : 1,
512 				sk_txtime_report_errors : 1,
513 				sk_txtime_unused : 6;
514 
515 	struct socket		*sk_socket;
516 	void			*sk_user_data;
517 #ifdef CONFIG_SECURITY
518 	void			*sk_security;
519 #endif
520 	struct sock_cgroup_data	sk_cgrp_data;
521 	struct mem_cgroup	*sk_memcg;
522 	void			(*sk_state_change)(struct sock *sk);
523 	void			(*sk_data_ready)(struct sock *sk);
524 	void			(*sk_write_space)(struct sock *sk);
525 	void			(*sk_error_report)(struct sock *sk);
526 	int			(*sk_backlog_rcv)(struct sock *sk,
527 						  struct sk_buff *skb);
528 #ifdef CONFIG_SOCK_VALIDATE_XMIT
529 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
530 							struct net_device *dev,
531 							struct sk_buff *skb);
532 #endif
533 	void                    (*sk_destruct)(struct sock *sk);
534 	struct sock_reuseport __rcu	*sk_reuseport_cb;
535 #ifdef CONFIG_BPF_SYSCALL
536 	struct bpf_local_storage __rcu	*sk_bpf_storage;
537 #endif
538 	struct rcu_head		sk_rcu;
539 };
540 
541 enum sk_pacing {
542 	SK_PACING_NONE		= 0,
543 	SK_PACING_NEEDED	= 1,
544 	SK_PACING_FQ		= 2,
545 };
546 
547 /* Pointer stored in sk_user_data might not be suitable for copying
548  * when cloning the socket. For instance, it can point to a reference
549  * counted object. sk_user_data bottom bit is set if pointer must not
550  * be copied.
551  */
552 #define SK_USER_DATA_NOCOPY	1UL
553 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
554 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
555 
556 /**
557  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
558  * @sk: socket
559  */
sk_user_data_is_nocopy(const struct sock * sk)560 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
561 {
562 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
563 }
564 
565 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
566 
567 #define rcu_dereference_sk_user_data(sk)				\
568 ({									\
569 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
570 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
571 })
572 #define rcu_assign_sk_user_data(sk, ptr)				\
573 ({									\
574 	uintptr_t __tmp = (uintptr_t)(ptr);				\
575 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
576 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
577 })
578 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
579 ({									\
580 	uintptr_t __tmp = (uintptr_t)(ptr);				\
581 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
582 	rcu_assign_pointer(__sk_user_data((sk)),			\
583 			   __tmp | SK_USER_DATA_NOCOPY);		\
584 })
585 
586 /*
587  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
588  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
589  * on a socket means that the socket will reuse everybody else's port
590  * without looking at the other's sk_reuse value.
591  */
592 
593 #define SK_NO_REUSE	0
594 #define SK_CAN_REUSE	1
595 #define SK_FORCE_REUSE	2
596 
597 int sk_set_peek_off(struct sock *sk, int val);
598 
sk_peek_offset(struct sock * sk,int flags)599 static inline int sk_peek_offset(struct sock *sk, int flags)
600 {
601 	if (unlikely(flags & MSG_PEEK)) {
602 		return READ_ONCE(sk->sk_peek_off);
603 	}
604 
605 	return 0;
606 }
607 
sk_peek_offset_bwd(struct sock * sk,int val)608 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
609 {
610 	s32 off = READ_ONCE(sk->sk_peek_off);
611 
612 	if (unlikely(off >= 0)) {
613 		off = max_t(s32, off - val, 0);
614 		WRITE_ONCE(sk->sk_peek_off, off);
615 	}
616 }
617 
sk_peek_offset_fwd(struct sock * sk,int val)618 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
619 {
620 	sk_peek_offset_bwd(sk, -val);
621 }
622 
623 /*
624  * Hashed lists helper routines
625  */
sk_entry(const struct hlist_node * node)626 static inline struct sock *sk_entry(const struct hlist_node *node)
627 {
628 	return hlist_entry(node, struct sock, sk_node);
629 }
630 
__sk_head(const struct hlist_head * head)631 static inline struct sock *__sk_head(const struct hlist_head *head)
632 {
633 	return hlist_entry(head->first, struct sock, sk_node);
634 }
635 
sk_head(const struct hlist_head * head)636 static inline struct sock *sk_head(const struct hlist_head *head)
637 {
638 	return hlist_empty(head) ? NULL : __sk_head(head);
639 }
640 
__sk_nulls_head(const struct hlist_nulls_head * head)641 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
642 {
643 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
644 }
645 
sk_nulls_head(const struct hlist_nulls_head * head)646 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
647 {
648 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
649 }
650 
sk_next(const struct sock * sk)651 static inline struct sock *sk_next(const struct sock *sk)
652 {
653 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
654 }
655 
sk_nulls_next(const struct sock * sk)656 static inline struct sock *sk_nulls_next(const struct sock *sk)
657 {
658 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
659 		hlist_nulls_entry(sk->sk_nulls_node.next,
660 				  struct sock, sk_nulls_node) :
661 		NULL;
662 }
663 
sk_unhashed(const struct sock * sk)664 static inline bool sk_unhashed(const struct sock *sk)
665 {
666 	return hlist_unhashed(&sk->sk_node);
667 }
668 
sk_hashed(const struct sock * sk)669 static inline bool sk_hashed(const struct sock *sk)
670 {
671 	return !sk_unhashed(sk);
672 }
673 
sk_node_init(struct hlist_node * node)674 static inline void sk_node_init(struct hlist_node *node)
675 {
676 	node->pprev = NULL;
677 }
678 
sk_nulls_node_init(struct hlist_nulls_node * node)679 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
680 {
681 	node->pprev = NULL;
682 }
683 
__sk_del_node(struct sock * sk)684 static inline void __sk_del_node(struct sock *sk)
685 {
686 	__hlist_del(&sk->sk_node);
687 }
688 
689 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)690 static inline bool __sk_del_node_init(struct sock *sk)
691 {
692 	if (sk_hashed(sk)) {
693 		__sk_del_node(sk);
694 		sk_node_init(&sk->sk_node);
695 		return true;
696 	}
697 	return false;
698 }
699 
700 /* Grab socket reference count. This operation is valid only
701    when sk is ALREADY grabbed f.e. it is found in hash table
702    or a list and the lookup is made under lock preventing hash table
703    modifications.
704  */
705 
sock_hold(struct sock * sk)706 static __always_inline void sock_hold(struct sock *sk)
707 {
708 	refcount_inc(&sk->sk_refcnt);
709 }
710 
711 /* Ungrab socket in the context, which assumes that socket refcnt
712    cannot hit zero, f.e. it is true in context of any socketcall.
713  */
__sock_put(struct sock * sk)714 static __always_inline void __sock_put(struct sock *sk)
715 {
716 	refcount_dec(&sk->sk_refcnt);
717 }
718 
sk_del_node_init(struct sock * sk)719 static inline bool sk_del_node_init(struct sock *sk)
720 {
721 	bool rc = __sk_del_node_init(sk);
722 
723 	if (rc) {
724 		/* paranoid for a while -acme */
725 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
726 		__sock_put(sk);
727 	}
728 	return rc;
729 }
730 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
731 
__sk_nulls_del_node_init_rcu(struct sock * sk)732 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
733 {
734 	if (sk_hashed(sk)) {
735 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
736 		return true;
737 	}
738 	return false;
739 }
740 
sk_nulls_del_node_init_rcu(struct sock * sk)741 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
742 {
743 	bool rc = __sk_nulls_del_node_init_rcu(sk);
744 
745 	if (rc) {
746 		/* paranoid for a while -acme */
747 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
748 		__sock_put(sk);
749 	}
750 	return rc;
751 }
752 
__sk_add_node(struct sock * sk,struct hlist_head * list)753 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
754 {
755 	hlist_add_head(&sk->sk_node, list);
756 }
757 
sk_add_node(struct sock * sk,struct hlist_head * list)758 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
759 {
760 	sock_hold(sk);
761 	__sk_add_node(sk, list);
762 }
763 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)764 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
765 {
766 	sock_hold(sk);
767 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
768 	    sk->sk_family == AF_INET6)
769 		hlist_add_tail_rcu(&sk->sk_node, list);
770 	else
771 		hlist_add_head_rcu(&sk->sk_node, list);
772 }
773 
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)774 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
775 {
776 	sock_hold(sk);
777 	hlist_add_tail_rcu(&sk->sk_node, list);
778 }
779 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)780 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
781 {
782 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
783 }
784 
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)785 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
786 {
787 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
788 }
789 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)790 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
791 {
792 	sock_hold(sk);
793 	__sk_nulls_add_node_rcu(sk, list);
794 }
795 
__sk_del_bind_node(struct sock * sk)796 static inline void __sk_del_bind_node(struct sock *sk)
797 {
798 	__hlist_del(&sk->sk_bind_node);
799 }
800 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)801 static inline void sk_add_bind_node(struct sock *sk,
802 					struct hlist_head *list)
803 {
804 	hlist_add_head(&sk->sk_bind_node, list);
805 }
806 
807 #define sk_for_each(__sk, list) \
808 	hlist_for_each_entry(__sk, list, sk_node)
809 #define sk_for_each_rcu(__sk, list) \
810 	hlist_for_each_entry_rcu(__sk, list, sk_node)
811 #define sk_nulls_for_each(__sk, node, list) \
812 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
813 #define sk_nulls_for_each_rcu(__sk, node, list) \
814 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
815 #define sk_for_each_from(__sk) \
816 	hlist_for_each_entry_from(__sk, sk_node)
817 #define sk_nulls_for_each_from(__sk, node) \
818 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
819 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
820 #define sk_for_each_safe(__sk, tmp, list) \
821 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
822 #define sk_for_each_bound(__sk, list) \
823 	hlist_for_each_entry(__sk, list, sk_bind_node)
824 
825 /**
826  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
827  * @tpos:	the type * to use as a loop cursor.
828  * @pos:	the &struct hlist_node to use as a loop cursor.
829  * @head:	the head for your list.
830  * @offset:	offset of hlist_node within the struct.
831  *
832  */
833 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
834 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
835 	     pos != NULL &&						       \
836 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
837 	     pos = rcu_dereference(hlist_next_rcu(pos)))
838 
sk_user_ns(struct sock * sk)839 static inline struct user_namespace *sk_user_ns(struct sock *sk)
840 {
841 	/* Careful only use this in a context where these parameters
842 	 * can not change and must all be valid, such as recvmsg from
843 	 * userspace.
844 	 */
845 	return sk->sk_socket->file->f_cred->user_ns;
846 }
847 
848 /* Sock flags */
849 enum sock_flags {
850 	SOCK_DEAD,
851 	SOCK_DONE,
852 	SOCK_URGINLINE,
853 	SOCK_KEEPOPEN,
854 	SOCK_LINGER,
855 	SOCK_DESTROY,
856 	SOCK_BROADCAST,
857 	SOCK_TIMESTAMP,
858 	SOCK_ZAPPED,
859 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
860 	SOCK_DBG, /* %SO_DEBUG setting */
861 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
862 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
863 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
864 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
865 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
866 	SOCK_FASYNC, /* fasync() active */
867 	SOCK_RXQ_OVFL,
868 	SOCK_ZEROCOPY, /* buffers from userspace */
869 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
870 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
871 		     * Will use last 4 bytes of packet sent from
872 		     * user-space instead.
873 		     */
874 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
875 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
876 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
877 	SOCK_TXTIME,
878 	SOCK_XDP, /* XDP is attached */
879 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
880 };
881 
882 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
883 
sock_copy_flags(struct sock * nsk,struct sock * osk)884 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
885 {
886 	nsk->sk_flags = osk->sk_flags;
887 }
888 
sock_set_flag(struct sock * sk,enum sock_flags flag)889 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
890 {
891 	__set_bit(flag, &sk->sk_flags);
892 }
893 
sock_reset_flag(struct sock * sk,enum sock_flags flag)894 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
895 {
896 	__clear_bit(flag, &sk->sk_flags);
897 }
898 
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)899 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
900 				     int valbool)
901 {
902 	if (valbool)
903 		sock_set_flag(sk, bit);
904 	else
905 		sock_reset_flag(sk, bit);
906 }
907 
sock_flag(const struct sock * sk,enum sock_flags flag)908 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
909 {
910 	return test_bit(flag, &sk->sk_flags);
911 }
912 
913 #ifdef CONFIG_NET
914 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)915 static inline int sk_memalloc_socks(void)
916 {
917 	return static_branch_unlikely(&memalloc_socks_key);
918 }
919 
920 void __receive_sock(struct file *file);
921 #else
922 
sk_memalloc_socks(void)923 static inline int sk_memalloc_socks(void)
924 {
925 	return 0;
926 }
927 
__receive_sock(struct file * file)928 static inline void __receive_sock(struct file *file)
929 { }
930 #endif
931 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)932 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
933 {
934 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
935 }
936 
sk_acceptq_removed(struct sock * sk)937 static inline void sk_acceptq_removed(struct sock *sk)
938 {
939 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
940 }
941 
sk_acceptq_added(struct sock * sk)942 static inline void sk_acceptq_added(struct sock *sk)
943 {
944 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
945 }
946 
947 /* Note: If you think the test should be:
948  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
949  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
950  */
sk_acceptq_is_full(const struct sock * sk)951 static inline bool sk_acceptq_is_full(const struct sock *sk)
952 {
953 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
954 }
955 
956 /*
957  * Compute minimal free write space needed to queue new packets.
958  */
sk_stream_min_wspace(const struct sock * sk)959 static inline int sk_stream_min_wspace(const struct sock *sk)
960 {
961 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
962 }
963 
sk_stream_wspace(const struct sock * sk)964 static inline int sk_stream_wspace(const struct sock *sk)
965 {
966 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
967 }
968 
sk_wmem_queued_add(struct sock * sk,int val)969 static inline void sk_wmem_queued_add(struct sock *sk, int val)
970 {
971 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
972 }
973 
974 void sk_stream_write_space(struct sock *sk);
975 
976 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)977 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
978 {
979 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
980 	skb_dst_force(skb);
981 
982 	if (!sk->sk_backlog.tail)
983 		WRITE_ONCE(sk->sk_backlog.head, skb);
984 	else
985 		sk->sk_backlog.tail->next = skb;
986 
987 	WRITE_ONCE(sk->sk_backlog.tail, skb);
988 	skb->next = NULL;
989 }
990 
991 /*
992  * Take into account size of receive queue and backlog queue
993  * Do not take into account this skb truesize,
994  * to allow even a single big packet to come.
995  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)996 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
997 {
998 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
999 
1000 	return qsize > limit;
1001 }
1002 
1003 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1004 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1005 					      unsigned int limit)
1006 {
1007 	if (sk_rcvqueues_full(sk, limit))
1008 		return -ENOBUFS;
1009 
1010 	/*
1011 	 * If the skb was allocated from pfmemalloc reserves, only
1012 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1013 	 * helping free memory
1014 	 */
1015 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1016 		return -ENOMEM;
1017 
1018 	__sk_add_backlog(sk, skb);
1019 	sk->sk_backlog.len += skb->truesize;
1020 	return 0;
1021 }
1022 
1023 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1024 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1025 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1026 {
1027 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1028 		return __sk_backlog_rcv(sk, skb);
1029 
1030 	return sk->sk_backlog_rcv(sk, skb);
1031 }
1032 
sk_incoming_cpu_update(struct sock * sk)1033 static inline void sk_incoming_cpu_update(struct sock *sk)
1034 {
1035 	int cpu = raw_smp_processor_id();
1036 
1037 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1038 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1039 }
1040 
sock_rps_record_flow_hash(__u32 hash)1041 static inline void sock_rps_record_flow_hash(__u32 hash)
1042 {
1043 #ifdef CONFIG_RPS
1044 	struct rps_sock_flow_table *sock_flow_table;
1045 
1046 	rcu_read_lock();
1047 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1048 	rps_record_sock_flow(sock_flow_table, hash);
1049 	rcu_read_unlock();
1050 #endif
1051 }
1052 
sock_rps_record_flow(const struct sock * sk)1053 static inline void sock_rps_record_flow(const struct sock *sk)
1054 {
1055 #ifdef CONFIG_RPS
1056 	if (static_branch_unlikely(&rfs_needed)) {
1057 		/* Reading sk->sk_rxhash might incur an expensive cache line
1058 		 * miss.
1059 		 *
1060 		 * TCP_ESTABLISHED does cover almost all states where RFS
1061 		 * might be useful, and is cheaper [1] than testing :
1062 		 *	IPv4: inet_sk(sk)->inet_daddr
1063 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1064 		 * OR	an additional socket flag
1065 		 * [1] : sk_state and sk_prot are in the same cache line.
1066 		 */
1067 		if (sk->sk_state == TCP_ESTABLISHED)
1068 			sock_rps_record_flow_hash(sk->sk_rxhash);
1069 	}
1070 #endif
1071 }
1072 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1073 static inline void sock_rps_save_rxhash(struct sock *sk,
1074 					const struct sk_buff *skb)
1075 {
1076 #ifdef CONFIG_RPS
1077 	if (unlikely(sk->sk_rxhash != skb->hash))
1078 		sk->sk_rxhash = skb->hash;
1079 #endif
1080 }
1081 
sock_rps_reset_rxhash(struct sock * sk)1082 static inline void sock_rps_reset_rxhash(struct sock *sk)
1083 {
1084 #ifdef CONFIG_RPS
1085 	sk->sk_rxhash = 0;
1086 #endif
1087 }
1088 
1089 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1090 	({	int __rc;						\
1091 		release_sock(__sk);					\
1092 		__rc = __condition;					\
1093 		if (!__rc) {						\
1094 			*(__timeo) = wait_woken(__wait,			\
1095 						TASK_INTERRUPTIBLE,	\
1096 						*(__timeo));		\
1097 		}							\
1098 		sched_annotate_sleep();					\
1099 		lock_sock(__sk);					\
1100 		__rc = __condition;					\
1101 		__rc;							\
1102 	})
1103 
1104 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1105 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1106 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1107 int sk_stream_error(struct sock *sk, int flags, int err);
1108 void sk_stream_kill_queues(struct sock *sk);
1109 void sk_set_memalloc(struct sock *sk);
1110 void sk_clear_memalloc(struct sock *sk);
1111 
1112 void __sk_flush_backlog(struct sock *sk);
1113 
sk_flush_backlog(struct sock * sk)1114 static inline bool sk_flush_backlog(struct sock *sk)
1115 {
1116 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1117 		__sk_flush_backlog(sk);
1118 		return true;
1119 	}
1120 	return false;
1121 }
1122 
1123 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1124 
1125 struct request_sock_ops;
1126 struct timewait_sock_ops;
1127 struct inet_hashinfo;
1128 struct raw_hashinfo;
1129 struct smc_hashinfo;
1130 struct module;
1131 struct sk_psock;
1132 
1133 /*
1134  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1135  * un-modified. Special care is taken when initializing object to zero.
1136  */
sk_prot_clear_nulls(struct sock * sk,int size)1137 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1138 {
1139 	if (offsetof(struct sock, sk_node.next) != 0)
1140 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1141 	memset(&sk->sk_node.pprev, 0,
1142 	       size - offsetof(struct sock, sk_node.pprev));
1143 }
1144 
1145 /* Networking protocol blocks we attach to sockets.
1146  * socket layer -> transport layer interface
1147  */
1148 struct proto {
1149 	void			(*close)(struct sock *sk,
1150 					long timeout);
1151 	int			(*pre_connect)(struct sock *sk,
1152 					struct sockaddr *uaddr,
1153 					int addr_len);
1154 	int			(*connect)(struct sock *sk,
1155 					struct sockaddr *uaddr,
1156 					int addr_len);
1157 	int			(*disconnect)(struct sock *sk, int flags);
1158 
1159 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1160 					  bool kern);
1161 
1162 	int			(*ioctl)(struct sock *sk, int cmd,
1163 					 unsigned long arg);
1164 	int			(*init)(struct sock *sk);
1165 	void			(*destroy)(struct sock *sk);
1166 	void			(*shutdown)(struct sock *sk, int how);
1167 	int			(*setsockopt)(struct sock *sk, int level,
1168 					int optname, sockptr_t optval,
1169 					unsigned int optlen);
1170 	int			(*getsockopt)(struct sock *sk, int level,
1171 					int optname, char __user *optval,
1172 					int __user *option);
1173 	void			(*keepalive)(struct sock *sk, int valbool);
1174 #ifdef CONFIG_COMPAT
1175 	int			(*compat_ioctl)(struct sock *sk,
1176 					unsigned int cmd, unsigned long arg);
1177 #endif
1178 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1179 					   size_t len);
1180 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1181 					   size_t len, int noblock, int flags,
1182 					   int *addr_len);
1183 	int			(*sendpage)(struct sock *sk, struct page *page,
1184 					int offset, size_t size, int flags);
1185 	int			(*bind)(struct sock *sk,
1186 					struct sockaddr *addr, int addr_len);
1187 	int			(*bind_add)(struct sock *sk,
1188 					struct sockaddr *addr, int addr_len);
1189 
1190 	int			(*backlog_rcv) (struct sock *sk,
1191 						struct sk_buff *skb);
1192 	bool			(*bpf_bypass_getsockopt)(int level,
1193 							 int optname);
1194 
1195 	void		(*release_cb)(struct sock *sk);
1196 
1197 	/* Keeping track of sk's, looking them up, and port selection methods. */
1198 	int			(*hash)(struct sock *sk);
1199 	void			(*unhash)(struct sock *sk);
1200 	void			(*rehash)(struct sock *sk);
1201 	int			(*get_port)(struct sock *sk, unsigned short snum);
1202 #ifdef CONFIG_BPF_SYSCALL
1203 	int			(*psock_update_sk_prot)(struct sock *sk,
1204 							struct sk_psock *psock,
1205 							bool restore);
1206 #endif
1207 
1208 	/* Keeping track of sockets in use */
1209 #ifdef CONFIG_PROC_FS
1210 	unsigned int		inuse_idx;
1211 #endif
1212 
1213 	int			(*forward_alloc_get)(const struct sock *sk);
1214 
1215 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1216 	bool			(*sock_is_readable)(struct sock *sk);
1217 	/* Memory pressure */
1218 	void			(*enter_memory_pressure)(struct sock *sk);
1219 	void			(*leave_memory_pressure)(struct sock *sk);
1220 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1221 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1222 
1223 	/*
1224 	 * Pressure flag: try to collapse.
1225 	 * Technical note: it is used by multiple contexts non atomically.
1226 	 * All the __sk_mem_schedule() is of this nature: accounting
1227 	 * is strict, actions are advisory and have some latency.
1228 	 */
1229 	unsigned long		*memory_pressure;
1230 	long			*sysctl_mem;
1231 
1232 	int			*sysctl_wmem;
1233 	int			*sysctl_rmem;
1234 	u32			sysctl_wmem_offset;
1235 	u32			sysctl_rmem_offset;
1236 
1237 	int			max_header;
1238 	bool			no_autobind;
1239 
1240 	struct kmem_cache	*slab;
1241 	unsigned int		obj_size;
1242 	slab_flags_t		slab_flags;
1243 	unsigned int		useroffset;	/* Usercopy region offset */
1244 	unsigned int		usersize;	/* Usercopy region size */
1245 
1246 	unsigned int __percpu	*orphan_count;
1247 
1248 	struct request_sock_ops	*rsk_prot;
1249 	struct timewait_sock_ops *twsk_prot;
1250 
1251 	union {
1252 		struct inet_hashinfo	*hashinfo;
1253 		struct udp_table	*udp_table;
1254 		struct raw_hashinfo	*raw_hash;
1255 		struct smc_hashinfo	*smc_hash;
1256 	} h;
1257 
1258 	struct module		*owner;
1259 
1260 	char			name[32];
1261 
1262 	struct list_head	node;
1263 #ifdef SOCK_REFCNT_DEBUG
1264 	atomic_t		socks;
1265 #endif
1266 	int			(*diag_destroy)(struct sock *sk, int err);
1267 } __randomize_layout;
1268 
1269 int proto_register(struct proto *prot, int alloc_slab);
1270 void proto_unregister(struct proto *prot);
1271 int sock_load_diag_module(int family, int protocol);
1272 
1273 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1274 static inline void sk_refcnt_debug_inc(struct sock *sk)
1275 {
1276 	atomic_inc(&sk->sk_prot->socks);
1277 }
1278 
sk_refcnt_debug_dec(struct sock * sk)1279 static inline void sk_refcnt_debug_dec(struct sock *sk)
1280 {
1281 	atomic_dec(&sk->sk_prot->socks);
1282 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1283 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1284 }
1285 
sk_refcnt_debug_release(const struct sock * sk)1286 static inline void sk_refcnt_debug_release(const struct sock *sk)
1287 {
1288 	if (refcount_read(&sk->sk_refcnt) != 1)
1289 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1290 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1291 }
1292 #else /* SOCK_REFCNT_DEBUG */
1293 #define sk_refcnt_debug_inc(sk) do { } while (0)
1294 #define sk_refcnt_debug_dec(sk) do { } while (0)
1295 #define sk_refcnt_debug_release(sk) do { } while (0)
1296 #endif /* SOCK_REFCNT_DEBUG */
1297 
1298 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1299 
sk_forward_alloc_get(const struct sock * sk)1300 static inline int sk_forward_alloc_get(const struct sock *sk)
1301 {
1302 	if (!sk->sk_prot->forward_alloc_get)
1303 		return sk->sk_forward_alloc;
1304 
1305 	return sk->sk_prot->forward_alloc_get(sk);
1306 }
1307 
__sk_stream_memory_free(const struct sock * sk,int wake)1308 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1309 {
1310 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1311 		return false;
1312 
1313 	return sk->sk_prot->stream_memory_free ?
1314 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1315 				     tcp_stream_memory_free, sk, wake) : true;
1316 }
1317 
sk_stream_memory_free(const struct sock * sk)1318 static inline bool sk_stream_memory_free(const struct sock *sk)
1319 {
1320 	return __sk_stream_memory_free(sk, 0);
1321 }
1322 
__sk_stream_is_writeable(const struct sock * sk,int wake)1323 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1324 {
1325 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1326 	       __sk_stream_memory_free(sk, wake);
1327 }
1328 
sk_stream_is_writeable(const struct sock * sk)1329 static inline bool sk_stream_is_writeable(const struct sock *sk)
1330 {
1331 	return __sk_stream_is_writeable(sk, 0);
1332 }
1333 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1334 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1335 					    struct cgroup *ancestor)
1336 {
1337 #ifdef CONFIG_SOCK_CGROUP_DATA
1338 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1339 				    ancestor);
1340 #else
1341 	return -ENOTSUPP;
1342 #endif
1343 }
1344 
sk_has_memory_pressure(const struct sock * sk)1345 static inline bool sk_has_memory_pressure(const struct sock *sk)
1346 {
1347 	return sk->sk_prot->memory_pressure != NULL;
1348 }
1349 
sk_under_memory_pressure(const struct sock * sk)1350 static inline bool sk_under_memory_pressure(const struct sock *sk)
1351 {
1352 	if (!sk->sk_prot->memory_pressure)
1353 		return false;
1354 
1355 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1356 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1357 		return true;
1358 
1359 	return !!*sk->sk_prot->memory_pressure;
1360 }
1361 
1362 static inline long
sk_memory_allocated(const struct sock * sk)1363 sk_memory_allocated(const struct sock *sk)
1364 {
1365 	return atomic_long_read(sk->sk_prot->memory_allocated);
1366 }
1367 
1368 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1369 sk_memory_allocated_add(struct sock *sk, int amt)
1370 {
1371 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1372 }
1373 
1374 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1375 sk_memory_allocated_sub(struct sock *sk, int amt)
1376 {
1377 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1378 }
1379 
1380 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1381 
sk_sockets_allocated_dec(struct sock * sk)1382 static inline void sk_sockets_allocated_dec(struct sock *sk)
1383 {
1384 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1385 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1386 }
1387 
sk_sockets_allocated_inc(struct sock * sk)1388 static inline void sk_sockets_allocated_inc(struct sock *sk)
1389 {
1390 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1391 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1392 }
1393 
1394 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1395 sk_sockets_allocated_read_positive(struct sock *sk)
1396 {
1397 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1398 }
1399 
1400 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1401 proto_sockets_allocated_sum_positive(struct proto *prot)
1402 {
1403 	return percpu_counter_sum_positive(prot->sockets_allocated);
1404 }
1405 
1406 static inline long
proto_memory_allocated(struct proto * prot)1407 proto_memory_allocated(struct proto *prot)
1408 {
1409 	return atomic_long_read(prot->memory_allocated);
1410 }
1411 
1412 static inline bool
proto_memory_pressure(struct proto * prot)1413 proto_memory_pressure(struct proto *prot)
1414 {
1415 	if (!prot->memory_pressure)
1416 		return false;
1417 	return !!*prot->memory_pressure;
1418 }
1419 
1420 
1421 #ifdef CONFIG_PROC_FS
1422 /* Called with local bh disabled */
1423 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1424 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1425 int sock_inuse_get(struct net *net);
1426 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1427 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1428 		int inc)
1429 {
1430 }
1431 #endif
1432 
1433 
1434 /* With per-bucket locks this operation is not-atomic, so that
1435  * this version is not worse.
1436  */
__sk_prot_rehash(struct sock * sk)1437 static inline int __sk_prot_rehash(struct sock *sk)
1438 {
1439 	sk->sk_prot->unhash(sk);
1440 	return sk->sk_prot->hash(sk);
1441 }
1442 
1443 /* About 10 seconds */
1444 #define SOCK_DESTROY_TIME (10*HZ)
1445 
1446 /* Sockets 0-1023 can't be bound to unless you are superuser */
1447 #define PROT_SOCK	1024
1448 
1449 #define SHUTDOWN_MASK	3
1450 #define RCV_SHUTDOWN	1
1451 #define SEND_SHUTDOWN	2
1452 
1453 #define SOCK_BINDADDR_LOCK	4
1454 #define SOCK_BINDPORT_LOCK	8
1455 
1456 struct socket_alloc {
1457 	struct socket socket;
1458 	struct inode vfs_inode;
1459 };
1460 
SOCKET_I(struct inode * inode)1461 static inline struct socket *SOCKET_I(struct inode *inode)
1462 {
1463 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1464 }
1465 
SOCK_INODE(struct socket * socket)1466 static inline struct inode *SOCK_INODE(struct socket *socket)
1467 {
1468 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1469 }
1470 
1471 /*
1472  * Functions for memory accounting
1473  */
1474 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1475 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1476 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1477 void __sk_mem_reclaim(struct sock *sk, int amount);
1478 
1479 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1480  * do not necessarily have 16x time more memory than 4KB ones.
1481  */
1482 #define SK_MEM_QUANTUM 4096
1483 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1484 #define SK_MEM_SEND	0
1485 #define SK_MEM_RECV	1
1486 
1487 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1488 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1489 {
1490 	long val = sk->sk_prot->sysctl_mem[index];
1491 
1492 #if PAGE_SIZE > SK_MEM_QUANTUM
1493 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1494 #elif PAGE_SIZE < SK_MEM_QUANTUM
1495 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1496 #endif
1497 	return val;
1498 }
1499 
sk_mem_pages(int amt)1500 static inline int sk_mem_pages(int amt)
1501 {
1502 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1503 }
1504 
sk_has_account(struct sock * sk)1505 static inline bool sk_has_account(struct sock *sk)
1506 {
1507 	/* return true if protocol supports memory accounting */
1508 	return !!sk->sk_prot->memory_allocated;
1509 }
1510 
sk_wmem_schedule(struct sock * sk,int size)1511 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1512 {
1513 	if (!sk_has_account(sk))
1514 		return true;
1515 	return size <= sk->sk_forward_alloc ||
1516 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1517 }
1518 
1519 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1520 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1521 {
1522 	if (!sk_has_account(sk))
1523 		return true;
1524 	return size <= sk->sk_forward_alloc ||
1525 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1526 		skb_pfmemalloc(skb);
1527 }
1528 
sk_unused_reserved_mem(const struct sock * sk)1529 static inline int sk_unused_reserved_mem(const struct sock *sk)
1530 {
1531 	int unused_mem;
1532 
1533 	if (likely(!sk->sk_reserved_mem))
1534 		return 0;
1535 
1536 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1537 			atomic_read(&sk->sk_rmem_alloc);
1538 
1539 	return unused_mem > 0 ? unused_mem : 0;
1540 }
1541 
sk_mem_reclaim(struct sock * sk)1542 static inline void sk_mem_reclaim(struct sock *sk)
1543 {
1544 	int reclaimable;
1545 
1546 	if (!sk_has_account(sk))
1547 		return;
1548 
1549 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1550 
1551 	if (reclaimable >= SK_MEM_QUANTUM)
1552 		__sk_mem_reclaim(sk, reclaimable);
1553 }
1554 
sk_mem_reclaim_final(struct sock * sk)1555 static inline void sk_mem_reclaim_final(struct sock *sk)
1556 {
1557 	sk->sk_reserved_mem = 0;
1558 	sk_mem_reclaim(sk);
1559 }
1560 
sk_mem_reclaim_partial(struct sock * sk)1561 static inline void sk_mem_reclaim_partial(struct sock *sk)
1562 {
1563 	int reclaimable;
1564 
1565 	if (!sk_has_account(sk))
1566 		return;
1567 
1568 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1569 
1570 	if (reclaimable > SK_MEM_QUANTUM)
1571 		__sk_mem_reclaim(sk, reclaimable - 1);
1572 }
1573 
sk_mem_charge(struct sock * sk,int size)1574 static inline void sk_mem_charge(struct sock *sk, int size)
1575 {
1576 	if (!sk_has_account(sk))
1577 		return;
1578 	sk->sk_forward_alloc -= size;
1579 }
1580 
1581 /* the following macros control memory reclaiming in sk_mem_uncharge()
1582  */
1583 #define SK_RECLAIM_THRESHOLD	(1 << 21)
1584 #define SK_RECLAIM_CHUNK	(1 << 20)
1585 
sk_mem_uncharge(struct sock * sk,int size)1586 static inline void sk_mem_uncharge(struct sock *sk, int size)
1587 {
1588 	int reclaimable;
1589 
1590 	if (!sk_has_account(sk))
1591 		return;
1592 	sk->sk_forward_alloc += size;
1593 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1594 
1595 	/* Avoid a possible overflow.
1596 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1597 	 * is not called and more than 2 GBytes are released at once.
1598 	 *
1599 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1600 	 * no need to hold that much forward allocation anyway.
1601 	 */
1602 	if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1603 		__sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1604 }
1605 
sock_release_ownership(struct sock * sk)1606 static inline void sock_release_ownership(struct sock *sk)
1607 {
1608 	if (sk->sk_lock.owned) {
1609 		sk->sk_lock.owned = 0;
1610 
1611 		/* The sk_lock has mutex_unlock() semantics: */
1612 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1613 	}
1614 }
1615 
1616 /*
1617  * Macro so as to not evaluate some arguments when
1618  * lockdep is not enabled.
1619  *
1620  * Mark both the sk_lock and the sk_lock.slock as a
1621  * per-address-family lock class.
1622  */
1623 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1624 do {									\
1625 	sk->sk_lock.owned = 0;						\
1626 	init_waitqueue_head(&sk->sk_lock.wq);				\
1627 	spin_lock_init(&(sk)->sk_lock.slock);				\
1628 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1629 			sizeof((sk)->sk_lock));				\
1630 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1631 				(skey), (sname));				\
1632 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1633 } while (0)
1634 
lockdep_sock_is_held(const struct sock * sk)1635 static inline bool lockdep_sock_is_held(const struct sock *sk)
1636 {
1637 	return lockdep_is_held(&sk->sk_lock) ||
1638 	       lockdep_is_held(&sk->sk_lock.slock);
1639 }
1640 
1641 void lock_sock_nested(struct sock *sk, int subclass);
1642 
lock_sock(struct sock * sk)1643 static inline void lock_sock(struct sock *sk)
1644 {
1645 	lock_sock_nested(sk, 0);
1646 }
1647 
1648 void __lock_sock(struct sock *sk);
1649 void __release_sock(struct sock *sk);
1650 void release_sock(struct sock *sk);
1651 
1652 /* BH context may only use the following locking interface. */
1653 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1654 #define bh_lock_sock_nested(__sk) \
1655 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1656 				SINGLE_DEPTH_NESTING)
1657 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1658 
1659 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1660 
1661 /**
1662  * lock_sock_fast - fast version of lock_sock
1663  * @sk: socket
1664  *
1665  * This version should be used for very small section, where process wont block
1666  * return false if fast path is taken:
1667  *
1668  *   sk_lock.slock locked, owned = 0, BH disabled
1669  *
1670  * return true if slow path is taken:
1671  *
1672  *   sk_lock.slock unlocked, owned = 1, BH enabled
1673  */
lock_sock_fast(struct sock * sk)1674 static inline bool lock_sock_fast(struct sock *sk)
1675 {
1676 	/* The sk_lock has mutex_lock() semantics here. */
1677 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1678 
1679 	return __lock_sock_fast(sk);
1680 }
1681 
1682 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1683 static inline bool lock_sock_fast_nested(struct sock *sk)
1684 {
1685 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1686 
1687 	return __lock_sock_fast(sk);
1688 }
1689 
1690 /**
1691  * unlock_sock_fast - complement of lock_sock_fast
1692  * @sk: socket
1693  * @slow: slow mode
1694  *
1695  * fast unlock socket for user context.
1696  * If slow mode is on, we call regular release_sock()
1697  */
unlock_sock_fast(struct sock * sk,bool slow)1698 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1699 	__releases(&sk->sk_lock.slock)
1700 {
1701 	if (slow) {
1702 		release_sock(sk);
1703 		__release(&sk->sk_lock.slock);
1704 	} else {
1705 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1706 		spin_unlock_bh(&sk->sk_lock.slock);
1707 	}
1708 }
1709 
1710 /* Used by processes to "lock" a socket state, so that
1711  * interrupts and bottom half handlers won't change it
1712  * from under us. It essentially blocks any incoming
1713  * packets, so that we won't get any new data or any
1714  * packets that change the state of the socket.
1715  *
1716  * While locked, BH processing will add new packets to
1717  * the backlog queue.  This queue is processed by the
1718  * owner of the socket lock right before it is released.
1719  *
1720  * Since ~2.3.5 it is also exclusive sleep lock serializing
1721  * accesses from user process context.
1722  */
1723 
sock_owned_by_me(const struct sock * sk)1724 static inline void sock_owned_by_me(const struct sock *sk)
1725 {
1726 #ifdef CONFIG_LOCKDEP
1727 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1728 #endif
1729 }
1730 
sock_owned_by_user(const struct sock * sk)1731 static inline bool sock_owned_by_user(const struct sock *sk)
1732 {
1733 	sock_owned_by_me(sk);
1734 	return sk->sk_lock.owned;
1735 }
1736 
sock_owned_by_user_nocheck(const struct sock * sk)1737 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1738 {
1739 	return sk->sk_lock.owned;
1740 }
1741 
1742 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1743 static inline bool sock_allow_reclassification(const struct sock *csk)
1744 {
1745 	struct sock *sk = (struct sock *)csk;
1746 
1747 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1748 }
1749 
1750 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1751 		      struct proto *prot, int kern);
1752 void sk_free(struct sock *sk);
1753 void sk_destruct(struct sock *sk);
1754 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1755 void sk_free_unlock_clone(struct sock *sk);
1756 
1757 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1758 			     gfp_t priority);
1759 void __sock_wfree(struct sk_buff *skb);
1760 void sock_wfree(struct sk_buff *skb);
1761 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1762 			     gfp_t priority);
1763 void skb_orphan_partial(struct sk_buff *skb);
1764 void sock_rfree(struct sk_buff *skb);
1765 void sock_efree(struct sk_buff *skb);
1766 #ifdef CONFIG_INET
1767 void sock_edemux(struct sk_buff *skb);
1768 void sock_pfree(struct sk_buff *skb);
1769 #else
1770 #define sock_edemux sock_efree
1771 #endif
1772 
1773 int sock_setsockopt(struct socket *sock, int level, int op,
1774 		    sockptr_t optval, unsigned int optlen);
1775 
1776 int sock_getsockopt(struct socket *sock, int level, int op,
1777 		    char __user *optval, int __user *optlen);
1778 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1779 		   bool timeval, bool time32);
1780 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1781 				    int noblock, int *errcode);
1782 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1783 				     unsigned long data_len, int noblock,
1784 				     int *errcode, int max_page_order);
1785 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1786 void sock_kfree_s(struct sock *sk, void *mem, int size);
1787 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1788 void sk_send_sigurg(struct sock *sk);
1789 
1790 struct sockcm_cookie {
1791 	u64 transmit_time;
1792 	u32 mark;
1793 	u16 tsflags;
1794 };
1795 
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1796 static inline void sockcm_init(struct sockcm_cookie *sockc,
1797 			       const struct sock *sk)
1798 {
1799 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1800 }
1801 
1802 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1803 		     struct sockcm_cookie *sockc);
1804 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1805 		   struct sockcm_cookie *sockc);
1806 
1807 /*
1808  * Functions to fill in entries in struct proto_ops when a protocol
1809  * does not implement a particular function.
1810  */
1811 int sock_no_bind(struct socket *, struct sockaddr *, int);
1812 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1813 int sock_no_socketpair(struct socket *, struct socket *);
1814 int sock_no_accept(struct socket *, struct socket *, int, bool);
1815 int sock_no_getname(struct socket *, struct sockaddr *, int);
1816 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1817 int sock_no_listen(struct socket *, int);
1818 int sock_no_shutdown(struct socket *, int);
1819 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1820 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1821 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1822 int sock_no_mmap(struct file *file, struct socket *sock,
1823 		 struct vm_area_struct *vma);
1824 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1825 			 size_t size, int flags);
1826 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1827 				int offset, size_t size, int flags);
1828 
1829 /*
1830  * Functions to fill in entries in struct proto_ops when a protocol
1831  * uses the inet style.
1832  */
1833 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1834 				  char __user *optval, int __user *optlen);
1835 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1836 			int flags);
1837 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1838 			   sockptr_t optval, unsigned int optlen);
1839 
1840 void sk_common_release(struct sock *sk);
1841 
1842 /*
1843  *	Default socket callbacks and setup code
1844  */
1845 
1846 /* Initialise core socket variables */
1847 void sock_init_data(struct socket *sock, struct sock *sk);
1848 
1849 /*
1850  * Socket reference counting postulates.
1851  *
1852  * * Each user of socket SHOULD hold a reference count.
1853  * * Each access point to socket (an hash table bucket, reference from a list,
1854  *   running timer, skb in flight MUST hold a reference count.
1855  * * When reference count hits 0, it means it will never increase back.
1856  * * When reference count hits 0, it means that no references from
1857  *   outside exist to this socket and current process on current CPU
1858  *   is last user and may/should destroy this socket.
1859  * * sk_free is called from any context: process, BH, IRQ. When
1860  *   it is called, socket has no references from outside -> sk_free
1861  *   may release descendant resources allocated by the socket, but
1862  *   to the time when it is called, socket is NOT referenced by any
1863  *   hash tables, lists etc.
1864  * * Packets, delivered from outside (from network or from another process)
1865  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1866  *   when they sit in queue. Otherwise, packets will leak to hole, when
1867  *   socket is looked up by one cpu and unhasing is made by another CPU.
1868  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1869  *   (leak to backlog). Packet socket does all the processing inside
1870  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1871  *   use separate SMP lock, so that they are prone too.
1872  */
1873 
1874 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1875 static inline void sock_put(struct sock *sk)
1876 {
1877 	if (refcount_dec_and_test(&sk->sk_refcnt))
1878 		sk_free(sk);
1879 }
1880 /* Generic version of sock_put(), dealing with all sockets
1881  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1882  */
1883 void sock_gen_put(struct sock *sk);
1884 
1885 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1886 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1887 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1888 				 const int nested)
1889 {
1890 	return __sk_receive_skb(sk, skb, nested, 1, true);
1891 }
1892 
sk_tx_queue_set(struct sock * sk,int tx_queue)1893 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1894 {
1895 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1896 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1897 		return;
1898 	sk->sk_tx_queue_mapping = tx_queue;
1899 }
1900 
1901 #define NO_QUEUE_MAPPING	USHRT_MAX
1902 
sk_tx_queue_clear(struct sock * sk)1903 static inline void sk_tx_queue_clear(struct sock *sk)
1904 {
1905 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1906 }
1907 
sk_tx_queue_get(const struct sock * sk)1908 static inline int sk_tx_queue_get(const struct sock *sk)
1909 {
1910 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1911 		return sk->sk_tx_queue_mapping;
1912 
1913 	return -1;
1914 }
1915 
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)1916 static inline void __sk_rx_queue_set(struct sock *sk,
1917 				     const struct sk_buff *skb,
1918 				     bool force_set)
1919 {
1920 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1921 	if (skb_rx_queue_recorded(skb)) {
1922 		u16 rx_queue = skb_get_rx_queue(skb);
1923 
1924 		if (force_set ||
1925 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1926 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1927 	}
1928 #endif
1929 }
1930 
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1931 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1932 {
1933 	__sk_rx_queue_set(sk, skb, true);
1934 }
1935 
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)1936 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1937 {
1938 	__sk_rx_queue_set(sk, skb, false);
1939 }
1940 
sk_rx_queue_clear(struct sock * sk)1941 static inline void sk_rx_queue_clear(struct sock *sk)
1942 {
1943 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1944 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1945 #endif
1946 }
1947 
sk_rx_queue_get(const struct sock * sk)1948 static inline int sk_rx_queue_get(const struct sock *sk)
1949 {
1950 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1951 	if (sk) {
1952 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
1953 
1954 		if (res != NO_QUEUE_MAPPING)
1955 			return res;
1956 	}
1957 #endif
1958 
1959 	return -1;
1960 }
1961 
sk_set_socket(struct sock * sk,struct socket * sock)1962 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1963 {
1964 	sk->sk_socket = sock;
1965 }
1966 
sk_sleep(struct sock * sk)1967 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1968 {
1969 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1970 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1971 }
1972 /* Detach socket from process context.
1973  * Announce socket dead, detach it from wait queue and inode.
1974  * Note that parent inode held reference count on this struct sock,
1975  * we do not release it in this function, because protocol
1976  * probably wants some additional cleanups or even continuing
1977  * to work with this socket (TCP).
1978  */
sock_orphan(struct sock * sk)1979 static inline void sock_orphan(struct sock *sk)
1980 {
1981 	write_lock_bh(&sk->sk_callback_lock);
1982 	sock_set_flag(sk, SOCK_DEAD);
1983 	sk_set_socket(sk, NULL);
1984 	sk->sk_wq  = NULL;
1985 	write_unlock_bh(&sk->sk_callback_lock);
1986 }
1987 
sock_graft(struct sock * sk,struct socket * parent)1988 static inline void sock_graft(struct sock *sk, struct socket *parent)
1989 {
1990 	WARN_ON(parent->sk);
1991 	write_lock_bh(&sk->sk_callback_lock);
1992 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1993 	parent->sk = sk;
1994 	sk_set_socket(sk, parent);
1995 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1996 	security_sock_graft(sk, parent);
1997 	write_unlock_bh(&sk->sk_callback_lock);
1998 }
1999 
2000 kuid_t sock_i_uid(struct sock *sk);
2001 unsigned long sock_i_ino(struct sock *sk);
2002 
sock_net_uid(const struct net * net,const struct sock * sk)2003 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2004 {
2005 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2006 }
2007 
net_tx_rndhash(void)2008 static inline u32 net_tx_rndhash(void)
2009 {
2010 	u32 v = prandom_u32();
2011 
2012 	return v ?: 1;
2013 }
2014 
sk_set_txhash(struct sock * sk)2015 static inline void sk_set_txhash(struct sock *sk)
2016 {
2017 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2018 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2019 }
2020 
sk_rethink_txhash(struct sock * sk)2021 static inline bool sk_rethink_txhash(struct sock *sk)
2022 {
2023 	if (sk->sk_txhash) {
2024 		sk_set_txhash(sk);
2025 		return true;
2026 	}
2027 	return false;
2028 }
2029 
2030 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)2031 __sk_dst_get(struct sock *sk)
2032 {
2033 	return rcu_dereference_check(sk->sk_dst_cache,
2034 				     lockdep_sock_is_held(sk));
2035 }
2036 
2037 static inline struct dst_entry *
sk_dst_get(struct sock * sk)2038 sk_dst_get(struct sock *sk)
2039 {
2040 	struct dst_entry *dst;
2041 
2042 	rcu_read_lock();
2043 	dst = rcu_dereference(sk->sk_dst_cache);
2044 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2045 		dst = NULL;
2046 	rcu_read_unlock();
2047 	return dst;
2048 }
2049 
__dst_negative_advice(struct sock * sk)2050 static inline void __dst_negative_advice(struct sock *sk)
2051 {
2052 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2053 
2054 	if (dst && dst->ops->negative_advice) {
2055 		ndst = dst->ops->negative_advice(dst);
2056 
2057 		if (ndst != dst) {
2058 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2059 			sk_tx_queue_clear(sk);
2060 			sk->sk_dst_pending_confirm = 0;
2061 		}
2062 	}
2063 }
2064 
dst_negative_advice(struct sock * sk)2065 static inline void dst_negative_advice(struct sock *sk)
2066 {
2067 	sk_rethink_txhash(sk);
2068 	__dst_negative_advice(sk);
2069 }
2070 
2071 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2072 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2073 {
2074 	struct dst_entry *old_dst;
2075 
2076 	sk_tx_queue_clear(sk);
2077 	sk->sk_dst_pending_confirm = 0;
2078 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2079 					    lockdep_sock_is_held(sk));
2080 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2081 	dst_release(old_dst);
2082 }
2083 
2084 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2085 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2086 {
2087 	struct dst_entry *old_dst;
2088 
2089 	sk_tx_queue_clear(sk);
2090 	sk->sk_dst_pending_confirm = 0;
2091 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2092 	dst_release(old_dst);
2093 }
2094 
2095 static inline void
__sk_dst_reset(struct sock * sk)2096 __sk_dst_reset(struct sock *sk)
2097 {
2098 	__sk_dst_set(sk, NULL);
2099 }
2100 
2101 static inline void
sk_dst_reset(struct sock * sk)2102 sk_dst_reset(struct sock *sk)
2103 {
2104 	sk_dst_set(sk, NULL);
2105 }
2106 
2107 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2108 
2109 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2110 
sk_dst_confirm(struct sock * sk)2111 static inline void sk_dst_confirm(struct sock *sk)
2112 {
2113 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2114 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2115 }
2116 
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2117 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2118 {
2119 	if (skb_get_dst_pending_confirm(skb)) {
2120 		struct sock *sk = skb->sk;
2121 		unsigned long now = jiffies;
2122 
2123 		/* avoid dirtying neighbour */
2124 		if (READ_ONCE(n->confirmed) != now)
2125 			WRITE_ONCE(n->confirmed, now);
2126 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2127 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2128 	}
2129 }
2130 
2131 bool sk_mc_loop(struct sock *sk);
2132 
sk_can_gso(const struct sock * sk)2133 static inline bool sk_can_gso(const struct sock *sk)
2134 {
2135 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2136 }
2137 
2138 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2139 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)2140 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2141 {
2142 	sk->sk_route_nocaps |= flags;
2143 	sk->sk_route_caps &= ~flags;
2144 }
2145 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2146 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2147 					   struct iov_iter *from, char *to,
2148 					   int copy, int offset)
2149 {
2150 	if (skb->ip_summed == CHECKSUM_NONE) {
2151 		__wsum csum = 0;
2152 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2153 			return -EFAULT;
2154 		skb->csum = csum_block_add(skb->csum, csum, offset);
2155 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2156 		if (!copy_from_iter_full_nocache(to, copy, from))
2157 			return -EFAULT;
2158 	} else if (!copy_from_iter_full(to, copy, from))
2159 		return -EFAULT;
2160 
2161 	return 0;
2162 }
2163 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2164 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2165 				       struct iov_iter *from, int copy)
2166 {
2167 	int err, offset = skb->len;
2168 
2169 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2170 				       copy, offset);
2171 	if (err)
2172 		__skb_trim(skb, offset);
2173 
2174 	return err;
2175 }
2176 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2177 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2178 					   struct sk_buff *skb,
2179 					   struct page *page,
2180 					   int off, int copy)
2181 {
2182 	int err;
2183 
2184 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2185 				       copy, skb->len);
2186 	if (err)
2187 		return err;
2188 
2189 	skb->len	     += copy;
2190 	skb->data_len	     += copy;
2191 	skb->truesize	     += copy;
2192 	sk_wmem_queued_add(sk, copy);
2193 	sk_mem_charge(sk, copy);
2194 	return 0;
2195 }
2196 
2197 /**
2198  * sk_wmem_alloc_get - returns write allocations
2199  * @sk: socket
2200  *
2201  * Return: sk_wmem_alloc minus initial offset of one
2202  */
sk_wmem_alloc_get(const struct sock * sk)2203 static inline int sk_wmem_alloc_get(const struct sock *sk)
2204 {
2205 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2206 }
2207 
2208 /**
2209  * sk_rmem_alloc_get - returns read allocations
2210  * @sk: socket
2211  *
2212  * Return: sk_rmem_alloc
2213  */
sk_rmem_alloc_get(const struct sock * sk)2214 static inline int sk_rmem_alloc_get(const struct sock *sk)
2215 {
2216 	return atomic_read(&sk->sk_rmem_alloc);
2217 }
2218 
2219 /**
2220  * sk_has_allocations - check if allocations are outstanding
2221  * @sk: socket
2222  *
2223  * Return: true if socket has write or read allocations
2224  */
sk_has_allocations(const struct sock * sk)2225 static inline bool sk_has_allocations(const struct sock *sk)
2226 {
2227 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2228 }
2229 
2230 /**
2231  * skwq_has_sleeper - check if there are any waiting processes
2232  * @wq: struct socket_wq
2233  *
2234  * Return: true if socket_wq has waiting processes
2235  *
2236  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2237  * barrier call. They were added due to the race found within the tcp code.
2238  *
2239  * Consider following tcp code paths::
2240  *
2241  *   CPU1                CPU2
2242  *   sys_select          receive packet
2243  *   ...                 ...
2244  *   __add_wait_queue    update tp->rcv_nxt
2245  *   ...                 ...
2246  *   tp->rcv_nxt check   sock_def_readable
2247  *   ...                 {
2248  *   schedule               rcu_read_lock();
2249  *                          wq = rcu_dereference(sk->sk_wq);
2250  *                          if (wq && waitqueue_active(&wq->wait))
2251  *                              wake_up_interruptible(&wq->wait)
2252  *                          ...
2253  *                       }
2254  *
2255  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2256  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2257  * could then endup calling schedule and sleep forever if there are no more
2258  * data on the socket.
2259  *
2260  */
skwq_has_sleeper(struct socket_wq * wq)2261 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2262 {
2263 	return wq && wq_has_sleeper(&wq->wait);
2264 }
2265 
2266 /**
2267  * sock_poll_wait - place memory barrier behind the poll_wait call.
2268  * @filp:           file
2269  * @sock:           socket to wait on
2270  * @p:              poll_table
2271  *
2272  * See the comments in the wq_has_sleeper function.
2273  */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2274 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2275 				  poll_table *p)
2276 {
2277 	if (!poll_does_not_wait(p)) {
2278 		poll_wait(filp, &sock->wq.wait, p);
2279 		/* We need to be sure we are in sync with the
2280 		 * socket flags modification.
2281 		 *
2282 		 * This memory barrier is paired in the wq_has_sleeper.
2283 		 */
2284 		smp_mb();
2285 	}
2286 }
2287 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2288 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2289 {
2290 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2291 	u32 txhash = READ_ONCE(sk->sk_txhash);
2292 
2293 	if (txhash) {
2294 		skb->l4_hash = 1;
2295 		skb->hash = txhash;
2296 	}
2297 }
2298 
2299 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2300 
2301 /*
2302  *	Queue a received datagram if it will fit. Stream and sequenced
2303  *	protocols can't normally use this as they need to fit buffers in
2304  *	and play with them.
2305  *
2306  *	Inlined as it's very short and called for pretty much every
2307  *	packet ever received.
2308  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2309 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2310 {
2311 	skb_orphan(skb);
2312 	skb->sk = sk;
2313 	skb->destructor = sock_rfree;
2314 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2315 	sk_mem_charge(sk, skb->truesize);
2316 }
2317 
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2318 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2319 {
2320 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2321 		skb_orphan(skb);
2322 		skb->destructor = sock_efree;
2323 		skb->sk = sk;
2324 		return true;
2325 	}
2326 	return false;
2327 }
2328 
skb_prepare_for_gro(struct sk_buff * skb)2329 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2330 {
2331 	if (skb->destructor != sock_wfree) {
2332 		skb_orphan(skb);
2333 		return;
2334 	}
2335 	skb->slow_gro = 1;
2336 }
2337 
2338 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2339 		    unsigned long expires);
2340 
2341 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2342 
2343 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2344 
2345 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2346 			struct sk_buff *skb, unsigned int flags,
2347 			void (*destructor)(struct sock *sk,
2348 					   struct sk_buff *skb));
2349 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2350 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2351 
2352 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2353 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2354 
2355 /*
2356  *	Recover an error report and clear atomically
2357  */
2358 
sock_error(struct sock * sk)2359 static inline int sock_error(struct sock *sk)
2360 {
2361 	int err;
2362 
2363 	/* Avoid an atomic operation for the common case.
2364 	 * This is racy since another cpu/thread can change sk_err under us.
2365 	 */
2366 	if (likely(data_race(!sk->sk_err)))
2367 		return 0;
2368 
2369 	err = xchg(&sk->sk_err, 0);
2370 	return -err;
2371 }
2372 
2373 void sk_error_report(struct sock *sk);
2374 
sock_wspace(struct sock * sk)2375 static inline unsigned long sock_wspace(struct sock *sk)
2376 {
2377 	int amt = 0;
2378 
2379 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2380 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2381 		if (amt < 0)
2382 			amt = 0;
2383 	}
2384 	return amt;
2385 }
2386 
2387 /* Note:
2388  *  We use sk->sk_wq_raw, from contexts knowing this
2389  *  pointer is not NULL and cannot disappear/change.
2390  */
sk_set_bit(int nr,struct sock * sk)2391 static inline void sk_set_bit(int nr, struct sock *sk)
2392 {
2393 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2394 	    !sock_flag(sk, SOCK_FASYNC))
2395 		return;
2396 
2397 	set_bit(nr, &sk->sk_wq_raw->flags);
2398 }
2399 
sk_clear_bit(int nr,struct sock * sk)2400 static inline void sk_clear_bit(int nr, struct sock *sk)
2401 {
2402 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2403 	    !sock_flag(sk, SOCK_FASYNC))
2404 		return;
2405 
2406 	clear_bit(nr, &sk->sk_wq_raw->flags);
2407 }
2408 
sk_wake_async(const struct sock * sk,int how,int band)2409 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2410 {
2411 	if (sock_flag(sk, SOCK_FASYNC)) {
2412 		rcu_read_lock();
2413 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2414 		rcu_read_unlock();
2415 	}
2416 }
2417 
2418 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2419  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2420  * Note: for send buffers, TCP works better if we can build two skbs at
2421  * minimum.
2422  */
2423 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2424 
2425 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2426 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2427 
sk_stream_moderate_sndbuf(struct sock * sk)2428 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2429 {
2430 	u32 val;
2431 
2432 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2433 		return;
2434 
2435 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2436 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2437 
2438 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2439 }
2440 
2441 /**
2442  * sk_page_frag - return an appropriate page_frag
2443  * @sk: socket
2444  *
2445  * Use the per task page_frag instead of the per socket one for
2446  * optimization when we know that we're in process context and own
2447  * everything that's associated with %current.
2448  *
2449  * Both direct reclaim and page faults can nest inside other
2450  * socket operations and end up recursing into sk_page_frag()
2451  * while it's already in use: explicitly avoid task page_frag
2452  * usage if the caller is potentially doing any of them.
2453  * This assumes that page fault handlers use the GFP_NOFS flags.
2454  *
2455  * Return: a per task page_frag if context allows that,
2456  * otherwise a per socket one.
2457  */
sk_page_frag(struct sock * sk)2458 static inline struct page_frag *sk_page_frag(struct sock *sk)
2459 {
2460 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2461 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2462 		return &current->task_frag;
2463 
2464 	return &sk->sk_frag;
2465 }
2466 
2467 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2468 
2469 /*
2470  *	Default write policy as shown to user space via poll/select/SIGIO
2471  */
sock_writeable(const struct sock * sk)2472 static inline bool sock_writeable(const struct sock *sk)
2473 {
2474 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2475 }
2476 
gfp_any(void)2477 static inline gfp_t gfp_any(void)
2478 {
2479 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2480 }
2481 
gfp_memcg_charge(void)2482 static inline gfp_t gfp_memcg_charge(void)
2483 {
2484 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2485 }
2486 
sock_rcvtimeo(const struct sock * sk,bool noblock)2487 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2488 {
2489 	return noblock ? 0 : sk->sk_rcvtimeo;
2490 }
2491 
sock_sndtimeo(const struct sock * sk,bool noblock)2492 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2493 {
2494 	return noblock ? 0 : sk->sk_sndtimeo;
2495 }
2496 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2497 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2498 {
2499 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2500 
2501 	return v ?: 1;
2502 }
2503 
2504 /* Alas, with timeout socket operations are not restartable.
2505  * Compare this to poll().
2506  */
sock_intr_errno(long timeo)2507 static inline int sock_intr_errno(long timeo)
2508 {
2509 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2510 }
2511 
2512 struct sock_skb_cb {
2513 	u32 dropcount;
2514 };
2515 
2516 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2517  * using skb->cb[] would keep using it directly and utilize its
2518  * alignement guarantee.
2519  */
2520 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2521 			    sizeof(struct sock_skb_cb)))
2522 
2523 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2524 			    SOCK_SKB_CB_OFFSET))
2525 
2526 #define sock_skb_cb_check_size(size) \
2527 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2528 
2529 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2530 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2531 {
2532 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2533 						atomic_read(&sk->sk_drops) : 0;
2534 }
2535 
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2536 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2537 {
2538 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2539 
2540 	atomic_add(segs, &sk->sk_drops);
2541 }
2542 
sock_read_timestamp(struct sock * sk)2543 static inline ktime_t sock_read_timestamp(struct sock *sk)
2544 {
2545 #if BITS_PER_LONG==32
2546 	unsigned int seq;
2547 	ktime_t kt;
2548 
2549 	do {
2550 		seq = read_seqbegin(&sk->sk_stamp_seq);
2551 		kt = sk->sk_stamp;
2552 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2553 
2554 	return kt;
2555 #else
2556 	return READ_ONCE(sk->sk_stamp);
2557 #endif
2558 }
2559 
sock_write_timestamp(struct sock * sk,ktime_t kt)2560 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2561 {
2562 #if BITS_PER_LONG==32
2563 	write_seqlock(&sk->sk_stamp_seq);
2564 	sk->sk_stamp = kt;
2565 	write_sequnlock(&sk->sk_stamp_seq);
2566 #else
2567 	WRITE_ONCE(sk->sk_stamp, kt);
2568 #endif
2569 }
2570 
2571 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2572 			   struct sk_buff *skb);
2573 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2574 			     struct sk_buff *skb);
2575 
2576 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2577 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2578 {
2579 	ktime_t kt = skb->tstamp;
2580 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2581 
2582 	/*
2583 	 * generate control messages if
2584 	 * - receive time stamping in software requested
2585 	 * - software time stamp available and wanted
2586 	 * - hardware time stamps available and wanted
2587 	 */
2588 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2589 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2590 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2591 	    (hwtstamps->hwtstamp &&
2592 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2593 		__sock_recv_timestamp(msg, sk, skb);
2594 	else
2595 		sock_write_timestamp(sk, kt);
2596 
2597 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2598 		__sock_recv_wifi_status(msg, sk, skb);
2599 }
2600 
2601 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2602 			      struct sk_buff *skb);
2603 
2604 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2605 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2606 					  struct sk_buff *skb)
2607 {
2608 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2609 			   (1UL << SOCK_RCVTSTAMP))
2610 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2611 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2612 
2613 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2614 		__sock_recv_ts_and_drops(msg, sk, skb);
2615 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2616 		sock_write_timestamp(sk, skb->tstamp);
2617 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2618 		sock_write_timestamp(sk, 0);
2619 }
2620 
2621 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2622 
2623 /**
2624  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2625  * @sk:		socket sending this packet
2626  * @tsflags:	timestamping flags to use
2627  * @tx_flags:	completed with instructions for time stamping
2628  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2629  *
2630  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2631  */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2632 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2633 				      __u8 *tx_flags, __u32 *tskey)
2634 {
2635 	if (unlikely(tsflags)) {
2636 		__sock_tx_timestamp(tsflags, tx_flags);
2637 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2638 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2639 			*tskey = sk->sk_tskey++;
2640 	}
2641 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2642 		*tx_flags |= SKBTX_WIFI_STATUS;
2643 }
2644 
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2645 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2646 				     __u8 *tx_flags)
2647 {
2648 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2649 }
2650 
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2651 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2652 {
2653 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2654 			   &skb_shinfo(skb)->tskey);
2655 }
2656 
2657 /**
2658  * sk_eat_skb - Release a skb if it is no longer needed
2659  * @sk: socket to eat this skb from
2660  * @skb: socket buffer to eat
2661  *
2662  * This routine must be called with interrupts disabled or with the socket
2663  * locked so that the sk_buff queue operation is ok.
2664 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2665 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2666 {
2667 	__skb_unlink(skb, &sk->sk_receive_queue);
2668 	__kfree_skb(skb);
2669 }
2670 
2671 static inline
sock_net(const struct sock * sk)2672 struct net *sock_net(const struct sock *sk)
2673 {
2674 	return read_pnet(&sk->sk_net);
2675 }
2676 
2677 static inline
sock_net_set(struct sock * sk,struct net * net)2678 void sock_net_set(struct sock *sk, struct net *net)
2679 {
2680 	write_pnet(&sk->sk_net, net);
2681 }
2682 
2683 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2684 skb_sk_is_prefetched(struct sk_buff *skb)
2685 {
2686 #ifdef CONFIG_INET
2687 	return skb->destructor == sock_pfree;
2688 #else
2689 	return false;
2690 #endif /* CONFIG_INET */
2691 }
2692 
2693 /* This helper checks if a socket is a full socket,
2694  * ie _not_ a timewait or request socket.
2695  */
sk_fullsock(const struct sock * sk)2696 static inline bool sk_fullsock(const struct sock *sk)
2697 {
2698 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2699 }
2700 
2701 static inline bool
sk_is_refcounted(struct sock * sk)2702 sk_is_refcounted(struct sock *sk)
2703 {
2704 	/* Only full sockets have sk->sk_flags. */
2705 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2706 }
2707 
2708 /**
2709  * skb_steal_sock - steal a socket from an sk_buff
2710  * @skb: sk_buff to steal the socket from
2711  * @refcounted: is set to true if the socket is reference-counted
2712  */
2713 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2714 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2715 {
2716 	if (skb->sk) {
2717 		struct sock *sk = skb->sk;
2718 
2719 		*refcounted = true;
2720 		if (skb_sk_is_prefetched(skb))
2721 			*refcounted = sk_is_refcounted(sk);
2722 		skb->destructor = NULL;
2723 		skb->sk = NULL;
2724 		return sk;
2725 	}
2726 	*refcounted = false;
2727 	return NULL;
2728 }
2729 
2730 /* Checks if this SKB belongs to an HW offloaded socket
2731  * and whether any SW fallbacks are required based on dev.
2732  * Check decrypted mark in case skb_orphan() cleared socket.
2733  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2734 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2735 						   struct net_device *dev)
2736 {
2737 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2738 	struct sock *sk = skb->sk;
2739 
2740 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2741 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2742 #ifdef CONFIG_TLS_DEVICE
2743 	} else if (unlikely(skb->decrypted)) {
2744 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2745 		kfree_skb(skb);
2746 		skb = NULL;
2747 #endif
2748 	}
2749 #endif
2750 
2751 	return skb;
2752 }
2753 
2754 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2755  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2756  */
sk_listener(const struct sock * sk)2757 static inline bool sk_listener(const struct sock *sk)
2758 {
2759 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2760 }
2761 
2762 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2763 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2764 		       int type);
2765 
2766 bool sk_ns_capable(const struct sock *sk,
2767 		   struct user_namespace *user_ns, int cap);
2768 bool sk_capable(const struct sock *sk, int cap);
2769 bool sk_net_capable(const struct sock *sk, int cap);
2770 
2771 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2772 
2773 /* Take into consideration the size of the struct sk_buff overhead in the
2774  * determination of these values, since that is non-constant across
2775  * platforms.  This makes socket queueing behavior and performance
2776  * not depend upon such differences.
2777  */
2778 #define _SK_MEM_PACKETS		256
2779 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2780 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2781 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2782 
2783 extern __u32 sysctl_wmem_max;
2784 extern __u32 sysctl_rmem_max;
2785 
2786 extern int sysctl_tstamp_allow_data;
2787 extern int sysctl_optmem_max;
2788 
2789 extern __u32 sysctl_wmem_default;
2790 extern __u32 sysctl_rmem_default;
2791 
2792 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2793 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2794 
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2795 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2796 {
2797 	/* Does this proto have per netns sysctl_wmem ? */
2798 	if (proto->sysctl_wmem_offset)
2799 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2800 
2801 	return *proto->sysctl_wmem;
2802 }
2803 
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2804 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2805 {
2806 	/* Does this proto have per netns sysctl_rmem ? */
2807 	if (proto->sysctl_rmem_offset)
2808 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2809 
2810 	return *proto->sysctl_rmem;
2811 }
2812 
2813 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2814  * Some wifi drivers need to tweak it to get more chunks.
2815  * They can use this helper from their ndo_start_xmit()
2816  */
sk_pacing_shift_update(struct sock * sk,int val)2817 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2818 {
2819 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2820 		return;
2821 	WRITE_ONCE(sk->sk_pacing_shift, val);
2822 }
2823 
2824 /* if a socket is bound to a device, check that the given device
2825  * index is either the same or that the socket is bound to an L3
2826  * master device and the given device index is also enslaved to
2827  * that L3 master
2828  */
sk_dev_equal_l3scope(struct sock * sk,int dif)2829 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2830 {
2831 	int mdif;
2832 
2833 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2834 		return true;
2835 
2836 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2837 	if (mdif && mdif == sk->sk_bound_dev_if)
2838 		return true;
2839 
2840 	return false;
2841 }
2842 
2843 void sock_def_readable(struct sock *sk);
2844 
2845 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2846 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2847 int sock_set_timestamping(struct sock *sk, int optname,
2848 			  struct so_timestamping timestamping);
2849 
2850 void sock_enable_timestamps(struct sock *sk);
2851 void sock_no_linger(struct sock *sk);
2852 void sock_set_keepalive(struct sock *sk);
2853 void sock_set_priority(struct sock *sk, u32 priority);
2854 void sock_set_rcvbuf(struct sock *sk, int val);
2855 void sock_set_mark(struct sock *sk, u32 val);
2856 void sock_set_reuseaddr(struct sock *sk);
2857 void sock_set_reuseport(struct sock *sk);
2858 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2859 
2860 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2861 
2862 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2863 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2864 			   sockptr_t optval, int optlen, bool old_timeval);
2865 
sk_is_readable(struct sock * sk)2866 static inline bool sk_is_readable(struct sock *sk)
2867 {
2868 	if (sk->sk_prot->sock_is_readable)
2869 		return sk->sk_prot->sock_is_readable(sk);
2870 	return false;
2871 }
2872 #endif	/* _SOCK_H */
2873