1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82
83 #include "datagram.h"
84 #include "sock_destructor.h"
85
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93
94 /**
95 * skb_panic - private function for out-of-line support
96 * @skb: buffer
97 * @sz: size
98 * @addr: address
99 * @msg: skb_over_panic or skb_under_panic
100 *
101 * Out-of-line support for skb_put() and skb_push().
102 * Called via the wrapper skb_over_panic() or skb_under_panic().
103 * Keep out of line to prevent kernel bloat.
104 * __builtin_return_address is not used because it is not always reliable.
105 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
107 const char msg[])
108 {
109 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
110 msg, addr, skb->len, sz, skb->head, skb->data,
111 (unsigned long)skb->tail, (unsigned long)skb->end,
112 skb->dev ? skb->dev->name : "<NULL>");
113 BUG();
114 }
115
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 skb_panic(skb, sz, addr, __func__);
119 }
120
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
122 {
123 skb_panic(skb, sz, addr, __func__);
124 }
125
126 #define NAPI_SKB_CACHE_SIZE 64
127 #define NAPI_SKB_CACHE_BULK 16
128 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
129
130 struct napi_alloc_cache {
131 struct page_frag_cache page;
132 unsigned int skb_count;
133 void *skb_cache[NAPI_SKB_CACHE_SIZE];
134 };
135
136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
138
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
140 {
141 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
142
143 fragsz = SKB_DATA_ALIGN(fragsz);
144
145 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
146 }
147 EXPORT_SYMBOL(__napi_alloc_frag_align);
148
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
150 {
151 void *data;
152
153 fragsz = SKB_DATA_ALIGN(fragsz);
154 if (in_hardirq() || irqs_disabled()) {
155 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
156
157 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
158 } else {
159 struct napi_alloc_cache *nc;
160
161 local_bh_disable();
162 nc = this_cpu_ptr(&napi_alloc_cache);
163 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
164 local_bh_enable();
165 }
166 return data;
167 }
168 EXPORT_SYMBOL(__netdev_alloc_frag_align);
169
napi_skb_cache_get(void)170 static struct sk_buff *napi_skb_cache_get(void)
171 {
172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
173 struct sk_buff *skb;
174
175 if (unlikely(!nc->skb_count))
176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
177 GFP_ATOMIC,
178 NAPI_SKB_CACHE_BULK,
179 nc->skb_cache);
180 if (unlikely(!nc->skb_count))
181 return NULL;
182
183 skb = nc->skb_cache[--nc->skb_count];
184 kasan_unpoison_object_data(skbuff_head_cache, skb);
185
186 return skb;
187 }
188
189 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)190 static void __build_skb_around(struct sk_buff *skb, void *data,
191 unsigned int frag_size)
192 {
193 struct skb_shared_info *shinfo;
194 unsigned int size = frag_size ? : ksize(data);
195
196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
197
198 /* Assumes caller memset cleared SKB */
199 skb->truesize = SKB_TRUESIZE(size);
200 refcount_set(&skb->users, 1);
201 skb->head = data;
202 skb->data = data;
203 skb_reset_tail_pointer(skb);
204 skb->end = skb->tail + size;
205 skb->mac_header = (typeof(skb->mac_header))~0U;
206 skb->transport_header = (typeof(skb->transport_header))~0U;
207
208 /* make sure we initialize shinfo sequentially */
209 shinfo = skb_shinfo(skb);
210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 atomic_set(&shinfo->dataref, 1);
212
213 skb_set_kcov_handle(skb, kcov_common_handle());
214 }
215
216 /**
217 * __build_skb - build a network buffer
218 * @data: data buffer provided by caller
219 * @frag_size: size of data, or 0 if head was kmalloced
220 *
221 * Allocate a new &sk_buff. Caller provides space holding head and
222 * skb_shared_info. @data must have been allocated by kmalloc() only if
223 * @frag_size is 0, otherwise data should come from the page allocator
224 * or vmalloc()
225 * The return is the new skb buffer.
226 * On a failure the return is %NULL, and @data is not freed.
227 * Notes :
228 * Before IO, driver allocates only data buffer where NIC put incoming frame
229 * Driver should add room at head (NET_SKB_PAD) and
230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
232 * before giving packet to stack.
233 * RX rings only contains data buffers, not full skbs.
234 */
__build_skb(void * data,unsigned int frag_size)235 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
236 {
237 struct sk_buff *skb;
238
239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
240 if (unlikely(!skb))
241 return NULL;
242
243 memset(skb, 0, offsetof(struct sk_buff, tail));
244 __build_skb_around(skb, data, frag_size);
245
246 return skb;
247 }
248
249 /* build_skb() is wrapper over __build_skb(), that specifically
250 * takes care of skb->head and skb->pfmemalloc
251 * This means that if @frag_size is not zero, then @data must be backed
252 * by a page fragment, not kmalloc() or vmalloc()
253 */
build_skb(void * data,unsigned int frag_size)254 struct sk_buff *build_skb(void *data, unsigned int frag_size)
255 {
256 struct sk_buff *skb = __build_skb(data, frag_size);
257
258 if (skb && frag_size) {
259 skb->head_frag = 1;
260 if (page_is_pfmemalloc(virt_to_head_page(data)))
261 skb->pfmemalloc = 1;
262 }
263 return skb;
264 }
265 EXPORT_SYMBOL(build_skb);
266
267 /**
268 * build_skb_around - build a network buffer around provided skb
269 * @skb: sk_buff provide by caller, must be memset cleared
270 * @data: data buffer provided by caller
271 * @frag_size: size of data, or 0 if head was kmalloced
272 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)273 struct sk_buff *build_skb_around(struct sk_buff *skb,
274 void *data, unsigned int frag_size)
275 {
276 if (unlikely(!skb))
277 return NULL;
278
279 __build_skb_around(skb, data, frag_size);
280
281 if (frag_size) {
282 skb->head_frag = 1;
283 if (page_is_pfmemalloc(virt_to_head_page(data)))
284 skb->pfmemalloc = 1;
285 }
286 return skb;
287 }
288 EXPORT_SYMBOL(build_skb_around);
289
290 /**
291 * __napi_build_skb - build a network buffer
292 * @data: data buffer provided by caller
293 * @frag_size: size of data, or 0 if head was kmalloced
294 *
295 * Version of __build_skb() that uses NAPI percpu caches to obtain
296 * skbuff_head instead of inplace allocation.
297 *
298 * Returns a new &sk_buff on success, %NULL on allocation failure.
299 */
__napi_build_skb(void * data,unsigned int frag_size)300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
301 {
302 struct sk_buff *skb;
303
304 skb = napi_skb_cache_get();
305 if (unlikely(!skb))
306 return NULL;
307
308 memset(skb, 0, offsetof(struct sk_buff, tail));
309 __build_skb_around(skb, data, frag_size);
310
311 return skb;
312 }
313
314 /**
315 * napi_build_skb - build a network buffer
316 * @data: data buffer provided by caller
317 * @frag_size: size of data, or 0 if head was kmalloced
318 *
319 * Version of __napi_build_skb() that takes care of skb->head_frag
320 * and skb->pfmemalloc when the data is a page or page fragment.
321 *
322 * Returns a new &sk_buff on success, %NULL on allocation failure.
323 */
napi_build_skb(void * data,unsigned int frag_size)324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
325 {
326 struct sk_buff *skb = __napi_build_skb(data, frag_size);
327
328 if (likely(skb) && frag_size) {
329 skb->head_frag = 1;
330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
331 }
332
333 return skb;
334 }
335 EXPORT_SYMBOL(napi_build_skb);
336
337 /*
338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339 * the caller if emergency pfmemalloc reserves are being used. If it is and
340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341 * may be used. Otherwise, the packet data may be discarded until enough
342 * memory is free
343 */
kmalloc_reserve(size_t size,gfp_t flags,int node,bool * pfmemalloc)344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
345 bool *pfmemalloc)
346 {
347 void *obj;
348 bool ret_pfmemalloc = false;
349
350 /*
351 * Try a regular allocation, when that fails and we're not entitled
352 * to the reserves, fail.
353 */
354 obj = kmalloc_node_track_caller(size,
355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
356 node);
357 if (obj || !(gfp_pfmemalloc_allowed(flags)))
358 goto out;
359
360 /* Try again but now we are using pfmemalloc reserves */
361 ret_pfmemalloc = true;
362 obj = kmalloc_node_track_caller(size, flags, node);
363
364 out:
365 if (pfmemalloc)
366 *pfmemalloc = ret_pfmemalloc;
367
368 return obj;
369 }
370
371 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
372 * 'private' fields and also do memory statistics to find all the
373 * [BEEP] leaks.
374 *
375 */
376
377 /**
378 * __alloc_skb - allocate a network buffer
379 * @size: size to allocate
380 * @gfp_mask: allocation mask
381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382 * instead of head cache and allocate a cloned (child) skb.
383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384 * allocations in case the data is required for writeback
385 * @node: numa node to allocate memory on
386 *
387 * Allocate a new &sk_buff. The returned buffer has no headroom and a
388 * tail room of at least size bytes. The object has a reference count
389 * of one. The return is the buffer. On a failure the return is %NULL.
390 *
391 * Buffers may only be allocated from interrupts using a @gfp_mask of
392 * %GFP_ATOMIC.
393 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
395 int flags, int node)
396 {
397 struct kmem_cache *cache;
398 struct sk_buff *skb;
399 unsigned int osize;
400 bool pfmemalloc;
401 u8 *data;
402
403 cache = (flags & SKB_ALLOC_FCLONE)
404 ? skbuff_fclone_cache : skbuff_head_cache;
405
406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 gfp_mask |= __GFP_MEMALLOC;
408
409 /* Get the HEAD */
410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 skb = napi_skb_cache_get();
413 else
414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 if (unlikely(!skb))
416 return NULL;
417 prefetchw(skb);
418
419 /* We do our best to align skb_shared_info on a separate cache
420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 * Both skb->head and skb_shared_info are cache line aligned.
423 */
424 size = SKB_DATA_ALIGN(size);
425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 if (unlikely(!data))
428 goto nodata;
429 /* kmalloc(size) might give us more room than requested.
430 * Put skb_shared_info exactly at the end of allocated zone,
431 * to allow max possible filling before reallocation.
432 */
433 osize = ksize(data);
434 size = SKB_WITH_OVERHEAD(osize);
435 prefetchw(data + size);
436
437 /*
438 * Only clear those fields we need to clear, not those that we will
439 * actually initialise below. Hence, don't put any more fields after
440 * the tail pointer in struct sk_buff!
441 */
442 memset(skb, 0, offsetof(struct sk_buff, tail));
443 __build_skb_around(skb, data, osize);
444 skb->pfmemalloc = pfmemalloc;
445
446 if (flags & SKB_ALLOC_FCLONE) {
447 struct sk_buff_fclones *fclones;
448
449 fclones = container_of(skb, struct sk_buff_fclones, skb1);
450
451 skb->fclone = SKB_FCLONE_ORIG;
452 refcount_set(&fclones->fclone_ref, 1);
453
454 fclones->skb2.fclone = SKB_FCLONE_CLONE;
455 }
456
457 return skb;
458
459 nodata:
460 kmem_cache_free(cache, skb);
461 return NULL;
462 }
463 EXPORT_SYMBOL(__alloc_skb);
464
465 /**
466 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
467 * @dev: network device to receive on
468 * @len: length to allocate
469 * @gfp_mask: get_free_pages mask, passed to alloc_skb
470 *
471 * Allocate a new &sk_buff and assign it a usage count of one. The
472 * buffer has NET_SKB_PAD headroom built in. Users should allocate
473 * the headroom they think they need without accounting for the
474 * built in space. The built in space is used for optimisations.
475 *
476 * %NULL is returned if there is no free memory.
477 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
479 gfp_t gfp_mask)
480 {
481 struct page_frag_cache *nc;
482 struct sk_buff *skb;
483 bool pfmemalloc;
484 void *data;
485
486 len += NET_SKB_PAD;
487
488 /* If requested length is either too small or too big,
489 * we use kmalloc() for skb->head allocation.
490 */
491 if (len <= SKB_WITH_OVERHEAD(1024) ||
492 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
493 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
494 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
495 if (!skb)
496 goto skb_fail;
497 goto skb_success;
498 }
499
500 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 len = SKB_DATA_ALIGN(len);
502
503 if (sk_memalloc_socks())
504 gfp_mask |= __GFP_MEMALLOC;
505
506 if (in_hardirq() || irqs_disabled()) {
507 nc = this_cpu_ptr(&netdev_alloc_cache);
508 data = page_frag_alloc(nc, len, gfp_mask);
509 pfmemalloc = nc->pfmemalloc;
510 } else {
511 local_bh_disable();
512 nc = this_cpu_ptr(&napi_alloc_cache.page);
513 data = page_frag_alloc(nc, len, gfp_mask);
514 pfmemalloc = nc->pfmemalloc;
515 local_bh_enable();
516 }
517
518 if (unlikely(!data))
519 return NULL;
520
521 skb = __build_skb(data, len);
522 if (unlikely(!skb)) {
523 skb_free_frag(data);
524 return NULL;
525 }
526
527 if (pfmemalloc)
528 skb->pfmemalloc = 1;
529 skb->head_frag = 1;
530
531 skb_success:
532 skb_reserve(skb, NET_SKB_PAD);
533 skb->dev = dev;
534
535 skb_fail:
536 return skb;
537 }
538 EXPORT_SYMBOL(__netdev_alloc_skb);
539
540 /**
541 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
542 * @napi: napi instance this buffer was allocated for
543 * @len: length to allocate
544 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
545 *
546 * Allocate a new sk_buff for use in NAPI receive. This buffer will
547 * attempt to allocate the head from a special reserved region used
548 * only for NAPI Rx allocation. By doing this we can save several
549 * CPU cycles by avoiding having to disable and re-enable IRQs.
550 *
551 * %NULL is returned if there is no free memory.
552 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
554 gfp_t gfp_mask)
555 {
556 struct napi_alloc_cache *nc;
557 struct sk_buff *skb;
558 void *data;
559
560 len += NET_SKB_PAD + NET_IP_ALIGN;
561
562 /* If requested length is either too small or too big,
563 * we use kmalloc() for skb->head allocation.
564 */
565 if (len <= SKB_WITH_OVERHEAD(1024) ||
566 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
567 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
568 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
569 NUMA_NO_NODE);
570 if (!skb)
571 goto skb_fail;
572 goto skb_success;
573 }
574
575 nc = this_cpu_ptr(&napi_alloc_cache);
576 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
577 len = SKB_DATA_ALIGN(len);
578
579 if (sk_memalloc_socks())
580 gfp_mask |= __GFP_MEMALLOC;
581
582 data = page_frag_alloc(&nc->page, len, gfp_mask);
583 if (unlikely(!data))
584 return NULL;
585
586 skb = __napi_build_skb(data, len);
587 if (unlikely(!skb)) {
588 skb_free_frag(data);
589 return NULL;
590 }
591
592 if (nc->page.pfmemalloc)
593 skb->pfmemalloc = 1;
594 skb->head_frag = 1;
595
596 skb_success:
597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
598 skb->dev = napi->dev;
599
600 skb_fail:
601 return skb;
602 }
603 EXPORT_SYMBOL(__napi_alloc_skb);
604
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
606 int size, unsigned int truesize)
607 {
608 skb_fill_page_desc(skb, i, page, off, size);
609 skb->len += size;
610 skb->data_len += size;
611 skb->truesize += truesize;
612 }
613 EXPORT_SYMBOL(skb_add_rx_frag);
614
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
616 unsigned int truesize)
617 {
618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619
620 skb_frag_size_add(frag, size);
621 skb->len += size;
622 skb->data_len += size;
623 skb->truesize += truesize;
624 }
625 EXPORT_SYMBOL(skb_coalesce_rx_frag);
626
skb_drop_list(struct sk_buff ** listp)627 static void skb_drop_list(struct sk_buff **listp)
628 {
629 kfree_skb_list(*listp);
630 *listp = NULL;
631 }
632
skb_drop_fraglist(struct sk_buff * skb)633 static inline void skb_drop_fraglist(struct sk_buff *skb)
634 {
635 skb_drop_list(&skb_shinfo(skb)->frag_list);
636 }
637
skb_clone_fraglist(struct sk_buff * skb)638 static void skb_clone_fraglist(struct sk_buff *skb)
639 {
640 struct sk_buff *list;
641
642 skb_walk_frags(skb, list)
643 skb_get(list);
644 }
645
skb_free_head(struct sk_buff * skb)646 static void skb_free_head(struct sk_buff *skb)
647 {
648 unsigned char *head = skb->head;
649
650 if (skb->head_frag) {
651 if (skb_pp_recycle(skb, head))
652 return;
653 skb_free_frag(head);
654 } else {
655 kfree(head);
656 }
657 }
658
skb_release_data(struct sk_buff * skb)659 static void skb_release_data(struct sk_buff *skb)
660 {
661 struct skb_shared_info *shinfo = skb_shinfo(skb);
662 int i;
663
664 if (skb->cloned &&
665 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
666 &shinfo->dataref))
667 goto exit;
668
669 skb_zcopy_clear(skb, true);
670
671 for (i = 0; i < shinfo->nr_frags; i++)
672 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
673
674 if (shinfo->frag_list)
675 kfree_skb_list(shinfo->frag_list);
676
677 skb_free_head(skb);
678 exit:
679 /* When we clone an SKB we copy the reycling bit. The pp_recycle
680 * bit is only set on the head though, so in order to avoid races
681 * while trying to recycle fragments on __skb_frag_unref() we need
682 * to make one SKB responsible for triggering the recycle path.
683 * So disable the recycling bit if an SKB is cloned and we have
684 * additional references to to the fragmented part of the SKB.
685 * Eventually the last SKB will have the recycling bit set and it's
686 * dataref set to 0, which will trigger the recycling
687 */
688 skb->pp_recycle = 0;
689 }
690
691 /*
692 * Free an skbuff by memory without cleaning the state.
693 */
kfree_skbmem(struct sk_buff * skb)694 static void kfree_skbmem(struct sk_buff *skb)
695 {
696 struct sk_buff_fclones *fclones;
697
698 switch (skb->fclone) {
699 case SKB_FCLONE_UNAVAILABLE:
700 kmem_cache_free(skbuff_head_cache, skb);
701 return;
702
703 case SKB_FCLONE_ORIG:
704 fclones = container_of(skb, struct sk_buff_fclones, skb1);
705
706 /* We usually free the clone (TX completion) before original skb
707 * This test would have no chance to be true for the clone,
708 * while here, branch prediction will be good.
709 */
710 if (refcount_read(&fclones->fclone_ref) == 1)
711 goto fastpath;
712 break;
713
714 default: /* SKB_FCLONE_CLONE */
715 fclones = container_of(skb, struct sk_buff_fclones, skb2);
716 break;
717 }
718 if (!refcount_dec_and_test(&fclones->fclone_ref))
719 return;
720 fastpath:
721 kmem_cache_free(skbuff_fclone_cache, fclones);
722 }
723
skb_release_head_state(struct sk_buff * skb)724 void skb_release_head_state(struct sk_buff *skb)
725 {
726 skb_dst_drop(skb);
727 if (skb->destructor) {
728 WARN_ON(in_hardirq());
729 skb->destructor(skb);
730 }
731 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
732 nf_conntrack_put(skb_nfct(skb));
733 #endif
734 skb_ext_put(skb);
735 }
736
737 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)738 static void skb_release_all(struct sk_buff *skb)
739 {
740 skb_release_head_state(skb);
741 if (likely(skb->head))
742 skb_release_data(skb);
743 }
744
745 /**
746 * __kfree_skb - private function
747 * @skb: buffer
748 *
749 * Free an sk_buff. Release anything attached to the buffer.
750 * Clean the state. This is an internal helper function. Users should
751 * always call kfree_skb
752 */
753
__kfree_skb(struct sk_buff * skb)754 void __kfree_skb(struct sk_buff *skb)
755 {
756 skb_release_all(skb);
757 kfree_skbmem(skb);
758 }
759 EXPORT_SYMBOL(__kfree_skb);
760
761 /**
762 * kfree_skb - free an sk_buff
763 * @skb: buffer to free
764 *
765 * Drop a reference to the buffer and free it if the usage count has
766 * hit zero.
767 */
kfree_skb(struct sk_buff * skb)768 void kfree_skb(struct sk_buff *skb)
769 {
770 if (!skb_unref(skb))
771 return;
772
773 trace_kfree_skb(skb, __builtin_return_address(0));
774 __kfree_skb(skb);
775 }
776 EXPORT_SYMBOL(kfree_skb);
777
kfree_skb_list(struct sk_buff * segs)778 void kfree_skb_list(struct sk_buff *segs)
779 {
780 while (segs) {
781 struct sk_buff *next = segs->next;
782
783 kfree_skb(segs);
784 segs = next;
785 }
786 }
787 EXPORT_SYMBOL(kfree_skb_list);
788
789 /* Dump skb information and contents.
790 *
791 * Must only be called from net_ratelimit()-ed paths.
792 *
793 * Dumps whole packets if full_pkt, only headers otherwise.
794 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)795 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
796 {
797 struct skb_shared_info *sh = skb_shinfo(skb);
798 struct net_device *dev = skb->dev;
799 struct sock *sk = skb->sk;
800 struct sk_buff *list_skb;
801 bool has_mac, has_trans;
802 int headroom, tailroom;
803 int i, len, seg_len;
804
805 if (full_pkt)
806 len = skb->len;
807 else
808 len = min_t(int, skb->len, MAX_HEADER + 128);
809
810 headroom = skb_headroom(skb);
811 tailroom = skb_tailroom(skb);
812
813 has_mac = skb_mac_header_was_set(skb);
814 has_trans = skb_transport_header_was_set(skb);
815
816 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
817 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
818 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
819 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
820 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
821 level, skb->len, headroom, skb_headlen(skb), tailroom,
822 has_mac ? skb->mac_header : -1,
823 has_mac ? skb_mac_header_len(skb) : -1,
824 skb->network_header,
825 has_trans ? skb_network_header_len(skb) : -1,
826 has_trans ? skb->transport_header : -1,
827 sh->tx_flags, sh->nr_frags,
828 sh->gso_size, sh->gso_type, sh->gso_segs,
829 skb->csum, skb->ip_summed, skb->csum_complete_sw,
830 skb->csum_valid, skb->csum_level,
831 skb->hash, skb->sw_hash, skb->l4_hash,
832 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
833
834 if (dev)
835 printk("%sdev name=%s feat=%pNF\n",
836 level, dev->name, &dev->features);
837 if (sk)
838 printk("%ssk family=%hu type=%u proto=%u\n",
839 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
840
841 if (full_pkt && headroom)
842 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
843 16, 1, skb->head, headroom, false);
844
845 seg_len = min_t(int, skb_headlen(skb), len);
846 if (seg_len)
847 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
848 16, 1, skb->data, seg_len, false);
849 len -= seg_len;
850
851 if (full_pkt && tailroom)
852 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
853 16, 1, skb_tail_pointer(skb), tailroom, false);
854
855 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
856 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
857 u32 p_off, p_len, copied;
858 struct page *p;
859 u8 *vaddr;
860
861 skb_frag_foreach_page(frag, skb_frag_off(frag),
862 skb_frag_size(frag), p, p_off, p_len,
863 copied) {
864 seg_len = min_t(int, p_len, len);
865 vaddr = kmap_atomic(p);
866 print_hex_dump(level, "skb frag: ",
867 DUMP_PREFIX_OFFSET,
868 16, 1, vaddr + p_off, seg_len, false);
869 kunmap_atomic(vaddr);
870 len -= seg_len;
871 if (!len)
872 break;
873 }
874 }
875
876 if (full_pkt && skb_has_frag_list(skb)) {
877 printk("skb fraglist:\n");
878 skb_walk_frags(skb, list_skb)
879 skb_dump(level, list_skb, true);
880 }
881 }
882 EXPORT_SYMBOL(skb_dump);
883
884 /**
885 * skb_tx_error - report an sk_buff xmit error
886 * @skb: buffer that triggered an error
887 *
888 * Report xmit error if a device callback is tracking this skb.
889 * skb must be freed afterwards.
890 */
skb_tx_error(struct sk_buff * skb)891 void skb_tx_error(struct sk_buff *skb)
892 {
893 skb_zcopy_clear(skb, true);
894 }
895 EXPORT_SYMBOL(skb_tx_error);
896
897 #ifdef CONFIG_TRACEPOINTS
898 /**
899 * consume_skb - free an skbuff
900 * @skb: buffer to free
901 *
902 * Drop a ref to the buffer and free it if the usage count has hit zero
903 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
904 * is being dropped after a failure and notes that
905 */
consume_skb(struct sk_buff * skb)906 void consume_skb(struct sk_buff *skb)
907 {
908 if (!skb_unref(skb))
909 return;
910
911 trace_consume_skb(skb);
912 __kfree_skb(skb);
913 }
914 EXPORT_SYMBOL(consume_skb);
915 #endif
916
917 /**
918 * __consume_stateless_skb - free an skbuff, assuming it is stateless
919 * @skb: buffer to free
920 *
921 * Alike consume_skb(), but this variant assumes that this is the last
922 * skb reference and all the head states have been already dropped
923 */
__consume_stateless_skb(struct sk_buff * skb)924 void __consume_stateless_skb(struct sk_buff *skb)
925 {
926 trace_consume_skb(skb);
927 skb_release_data(skb);
928 kfree_skbmem(skb);
929 }
930
napi_skb_cache_put(struct sk_buff * skb)931 static void napi_skb_cache_put(struct sk_buff *skb)
932 {
933 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
934 u32 i;
935
936 kasan_poison_object_data(skbuff_head_cache, skb);
937 nc->skb_cache[nc->skb_count++] = skb;
938
939 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
940 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
941 kasan_unpoison_object_data(skbuff_head_cache,
942 nc->skb_cache[i]);
943
944 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
945 nc->skb_cache + NAPI_SKB_CACHE_HALF);
946 nc->skb_count = NAPI_SKB_CACHE_HALF;
947 }
948 }
949
__kfree_skb_defer(struct sk_buff * skb)950 void __kfree_skb_defer(struct sk_buff *skb)
951 {
952 skb_release_all(skb);
953 napi_skb_cache_put(skb);
954 }
955
napi_skb_free_stolen_head(struct sk_buff * skb)956 void napi_skb_free_stolen_head(struct sk_buff *skb)
957 {
958 if (unlikely(skb->slow_gro)) {
959 nf_reset_ct(skb);
960 skb_dst_drop(skb);
961 skb_ext_put(skb);
962 skb_orphan(skb);
963 skb->slow_gro = 0;
964 }
965 napi_skb_cache_put(skb);
966 }
967
napi_consume_skb(struct sk_buff * skb,int budget)968 void napi_consume_skb(struct sk_buff *skb, int budget)
969 {
970 /* Zero budget indicate non-NAPI context called us, like netpoll */
971 if (unlikely(!budget)) {
972 dev_consume_skb_any(skb);
973 return;
974 }
975
976 lockdep_assert_in_softirq();
977
978 if (!skb_unref(skb))
979 return;
980
981 /* if reaching here SKB is ready to free */
982 trace_consume_skb(skb);
983
984 /* if SKB is a clone, don't handle this case */
985 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
986 __kfree_skb(skb);
987 return;
988 }
989
990 skb_release_all(skb);
991 napi_skb_cache_put(skb);
992 }
993 EXPORT_SYMBOL(napi_consume_skb);
994
995 /* Make sure a field is enclosed inside headers_start/headers_end section */
996 #define CHECK_SKB_FIELD(field) \
997 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
998 offsetof(struct sk_buff, headers_start)); \
999 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
1000 offsetof(struct sk_buff, headers_end)); \
1001
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1002 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1003 {
1004 new->tstamp = old->tstamp;
1005 /* We do not copy old->sk */
1006 new->dev = old->dev;
1007 memcpy(new->cb, old->cb, sizeof(old->cb));
1008 skb_dst_copy(new, old);
1009 __skb_ext_copy(new, old);
1010 __nf_copy(new, old, false);
1011
1012 /* Note : this field could be in headers_start/headers_end section
1013 * It is not yet because we do not want to have a 16 bit hole
1014 */
1015 new->queue_mapping = old->queue_mapping;
1016
1017 memcpy(&new->headers_start, &old->headers_start,
1018 offsetof(struct sk_buff, headers_end) -
1019 offsetof(struct sk_buff, headers_start));
1020 CHECK_SKB_FIELD(protocol);
1021 CHECK_SKB_FIELD(csum);
1022 CHECK_SKB_FIELD(hash);
1023 CHECK_SKB_FIELD(priority);
1024 CHECK_SKB_FIELD(skb_iif);
1025 CHECK_SKB_FIELD(vlan_proto);
1026 CHECK_SKB_FIELD(vlan_tci);
1027 CHECK_SKB_FIELD(transport_header);
1028 CHECK_SKB_FIELD(network_header);
1029 CHECK_SKB_FIELD(mac_header);
1030 CHECK_SKB_FIELD(inner_protocol);
1031 CHECK_SKB_FIELD(inner_transport_header);
1032 CHECK_SKB_FIELD(inner_network_header);
1033 CHECK_SKB_FIELD(inner_mac_header);
1034 CHECK_SKB_FIELD(mark);
1035 #ifdef CONFIG_NETWORK_SECMARK
1036 CHECK_SKB_FIELD(secmark);
1037 #endif
1038 #ifdef CONFIG_NET_RX_BUSY_POLL
1039 CHECK_SKB_FIELD(napi_id);
1040 #endif
1041 #ifdef CONFIG_XPS
1042 CHECK_SKB_FIELD(sender_cpu);
1043 #endif
1044 #ifdef CONFIG_NET_SCHED
1045 CHECK_SKB_FIELD(tc_index);
1046 #endif
1047
1048 }
1049
1050 /*
1051 * You should not add any new code to this function. Add it to
1052 * __copy_skb_header above instead.
1053 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1054 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1055 {
1056 #define C(x) n->x = skb->x
1057
1058 n->next = n->prev = NULL;
1059 n->sk = NULL;
1060 __copy_skb_header(n, skb);
1061
1062 C(len);
1063 C(data_len);
1064 C(mac_len);
1065 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1066 n->cloned = 1;
1067 n->nohdr = 0;
1068 n->peeked = 0;
1069 C(pfmemalloc);
1070 C(pp_recycle);
1071 n->destructor = NULL;
1072 C(tail);
1073 C(end);
1074 C(head);
1075 C(head_frag);
1076 C(data);
1077 C(truesize);
1078 refcount_set(&n->users, 1);
1079
1080 atomic_inc(&(skb_shinfo(skb)->dataref));
1081 skb->cloned = 1;
1082
1083 return n;
1084 #undef C
1085 }
1086
1087 /**
1088 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1089 * @first: first sk_buff of the msg
1090 */
alloc_skb_for_msg(struct sk_buff * first)1091 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1092 {
1093 struct sk_buff *n;
1094
1095 n = alloc_skb(0, GFP_ATOMIC);
1096 if (!n)
1097 return NULL;
1098
1099 n->len = first->len;
1100 n->data_len = first->len;
1101 n->truesize = first->truesize;
1102
1103 skb_shinfo(n)->frag_list = first;
1104
1105 __copy_skb_header(n, first);
1106 n->destructor = NULL;
1107
1108 return n;
1109 }
1110 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1111
1112 /**
1113 * skb_morph - morph one skb into another
1114 * @dst: the skb to receive the contents
1115 * @src: the skb to supply the contents
1116 *
1117 * This is identical to skb_clone except that the target skb is
1118 * supplied by the user.
1119 *
1120 * The target skb is returned upon exit.
1121 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1122 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1123 {
1124 skb_release_all(dst);
1125 return __skb_clone(dst, src);
1126 }
1127 EXPORT_SYMBOL_GPL(skb_morph);
1128
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1129 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1130 {
1131 unsigned long max_pg, num_pg, new_pg, old_pg;
1132 struct user_struct *user;
1133
1134 if (capable(CAP_IPC_LOCK) || !size)
1135 return 0;
1136
1137 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1138 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1139 user = mmp->user ? : current_user();
1140
1141 do {
1142 old_pg = atomic_long_read(&user->locked_vm);
1143 new_pg = old_pg + num_pg;
1144 if (new_pg > max_pg)
1145 return -ENOBUFS;
1146 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1147 old_pg);
1148
1149 if (!mmp->user) {
1150 mmp->user = get_uid(user);
1151 mmp->num_pg = num_pg;
1152 } else {
1153 mmp->num_pg += num_pg;
1154 }
1155
1156 return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1159
mm_unaccount_pinned_pages(struct mmpin * mmp)1160 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1161 {
1162 if (mmp->user) {
1163 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1164 free_uid(mmp->user);
1165 }
1166 }
1167 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1168
msg_zerocopy_alloc(struct sock * sk,size_t size)1169 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1170 {
1171 struct ubuf_info *uarg;
1172 struct sk_buff *skb;
1173
1174 WARN_ON_ONCE(!in_task());
1175
1176 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1177 if (!skb)
1178 return NULL;
1179
1180 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1181 uarg = (void *)skb->cb;
1182 uarg->mmp.user = NULL;
1183
1184 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1185 kfree_skb(skb);
1186 return NULL;
1187 }
1188
1189 uarg->callback = msg_zerocopy_callback;
1190 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1191 uarg->len = 1;
1192 uarg->bytelen = size;
1193 uarg->zerocopy = 1;
1194 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1195 refcount_set(&uarg->refcnt, 1);
1196 sock_hold(sk);
1197
1198 return uarg;
1199 }
1200 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1201
skb_from_uarg(struct ubuf_info * uarg)1202 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1203 {
1204 return container_of((void *)uarg, struct sk_buff, cb);
1205 }
1206
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1207 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1208 struct ubuf_info *uarg)
1209 {
1210 if (uarg) {
1211 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1212 u32 bytelen, next;
1213
1214 /* realloc only when socket is locked (TCP, UDP cork),
1215 * so uarg->len and sk_zckey access is serialized
1216 */
1217 if (!sock_owned_by_user(sk)) {
1218 WARN_ON_ONCE(1);
1219 return NULL;
1220 }
1221
1222 bytelen = uarg->bytelen + size;
1223 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1224 /* TCP can create new skb to attach new uarg */
1225 if (sk->sk_type == SOCK_STREAM)
1226 goto new_alloc;
1227 return NULL;
1228 }
1229
1230 next = (u32)atomic_read(&sk->sk_zckey);
1231 if ((u32)(uarg->id + uarg->len) == next) {
1232 if (mm_account_pinned_pages(&uarg->mmp, size))
1233 return NULL;
1234 uarg->len++;
1235 uarg->bytelen = bytelen;
1236 atomic_set(&sk->sk_zckey, ++next);
1237
1238 /* no extra ref when appending to datagram (MSG_MORE) */
1239 if (sk->sk_type == SOCK_STREAM)
1240 net_zcopy_get(uarg);
1241
1242 return uarg;
1243 }
1244 }
1245
1246 new_alloc:
1247 return msg_zerocopy_alloc(sk, size);
1248 }
1249 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1250
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1251 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1252 {
1253 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1254 u32 old_lo, old_hi;
1255 u64 sum_len;
1256
1257 old_lo = serr->ee.ee_info;
1258 old_hi = serr->ee.ee_data;
1259 sum_len = old_hi - old_lo + 1ULL + len;
1260
1261 if (sum_len >= (1ULL << 32))
1262 return false;
1263
1264 if (lo != old_hi + 1)
1265 return false;
1266
1267 serr->ee.ee_data += len;
1268 return true;
1269 }
1270
__msg_zerocopy_callback(struct ubuf_info * uarg)1271 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1272 {
1273 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1274 struct sock_exterr_skb *serr;
1275 struct sock *sk = skb->sk;
1276 struct sk_buff_head *q;
1277 unsigned long flags;
1278 bool is_zerocopy;
1279 u32 lo, hi;
1280 u16 len;
1281
1282 mm_unaccount_pinned_pages(&uarg->mmp);
1283
1284 /* if !len, there was only 1 call, and it was aborted
1285 * so do not queue a completion notification
1286 */
1287 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1288 goto release;
1289
1290 len = uarg->len;
1291 lo = uarg->id;
1292 hi = uarg->id + len - 1;
1293 is_zerocopy = uarg->zerocopy;
1294
1295 serr = SKB_EXT_ERR(skb);
1296 memset(serr, 0, sizeof(*serr));
1297 serr->ee.ee_errno = 0;
1298 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1299 serr->ee.ee_data = hi;
1300 serr->ee.ee_info = lo;
1301 if (!is_zerocopy)
1302 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1303
1304 q = &sk->sk_error_queue;
1305 spin_lock_irqsave(&q->lock, flags);
1306 tail = skb_peek_tail(q);
1307 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1308 !skb_zerocopy_notify_extend(tail, lo, len)) {
1309 __skb_queue_tail(q, skb);
1310 skb = NULL;
1311 }
1312 spin_unlock_irqrestore(&q->lock, flags);
1313
1314 sk_error_report(sk);
1315
1316 release:
1317 consume_skb(skb);
1318 sock_put(sk);
1319 }
1320
msg_zerocopy_callback(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1321 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1322 bool success)
1323 {
1324 uarg->zerocopy = uarg->zerocopy & success;
1325
1326 if (refcount_dec_and_test(&uarg->refcnt))
1327 __msg_zerocopy_callback(uarg);
1328 }
1329 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1330
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1331 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1332 {
1333 struct sock *sk = skb_from_uarg(uarg)->sk;
1334
1335 atomic_dec(&sk->sk_zckey);
1336 uarg->len--;
1337
1338 if (have_uref)
1339 msg_zerocopy_callback(NULL, uarg, true);
1340 }
1341 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1342
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1343 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1344 {
1345 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1346 }
1347 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1348
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1349 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1350 struct msghdr *msg, int len,
1351 struct ubuf_info *uarg)
1352 {
1353 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1354 struct iov_iter orig_iter = msg->msg_iter;
1355 int err, orig_len = skb->len;
1356
1357 /* An skb can only point to one uarg. This edge case happens when
1358 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1359 */
1360 if (orig_uarg && uarg != orig_uarg)
1361 return -EEXIST;
1362
1363 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1364 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1365 struct sock *save_sk = skb->sk;
1366
1367 /* Streams do not free skb on error. Reset to prev state. */
1368 msg->msg_iter = orig_iter;
1369 skb->sk = sk;
1370 ___pskb_trim(skb, orig_len);
1371 skb->sk = save_sk;
1372 return err;
1373 }
1374
1375 skb_zcopy_set(skb, uarg, NULL);
1376 return skb->len - orig_len;
1377 }
1378 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1379
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1380 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1381 gfp_t gfp_mask)
1382 {
1383 if (skb_zcopy(orig)) {
1384 if (skb_zcopy(nskb)) {
1385 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1386 if (!gfp_mask) {
1387 WARN_ON_ONCE(1);
1388 return -ENOMEM;
1389 }
1390 if (skb_uarg(nskb) == skb_uarg(orig))
1391 return 0;
1392 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1393 return -EIO;
1394 }
1395 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1396 }
1397 return 0;
1398 }
1399
1400 /**
1401 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1402 * @skb: the skb to modify
1403 * @gfp_mask: allocation priority
1404 *
1405 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1406 * It will copy all frags into kernel and drop the reference
1407 * to userspace pages.
1408 *
1409 * If this function is called from an interrupt gfp_mask() must be
1410 * %GFP_ATOMIC.
1411 *
1412 * Returns 0 on success or a negative error code on failure
1413 * to allocate kernel memory to copy to.
1414 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1415 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1416 {
1417 int num_frags = skb_shinfo(skb)->nr_frags;
1418 struct page *page, *head = NULL;
1419 int i, new_frags;
1420 u32 d_off;
1421
1422 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1423 return -EINVAL;
1424
1425 if (!num_frags)
1426 goto release;
1427
1428 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1429 for (i = 0; i < new_frags; i++) {
1430 page = alloc_page(gfp_mask);
1431 if (!page) {
1432 while (head) {
1433 struct page *next = (struct page *)page_private(head);
1434 put_page(head);
1435 head = next;
1436 }
1437 return -ENOMEM;
1438 }
1439 set_page_private(page, (unsigned long)head);
1440 head = page;
1441 }
1442
1443 page = head;
1444 d_off = 0;
1445 for (i = 0; i < num_frags; i++) {
1446 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1447 u32 p_off, p_len, copied;
1448 struct page *p;
1449 u8 *vaddr;
1450
1451 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1452 p, p_off, p_len, copied) {
1453 u32 copy, done = 0;
1454 vaddr = kmap_atomic(p);
1455
1456 while (done < p_len) {
1457 if (d_off == PAGE_SIZE) {
1458 d_off = 0;
1459 page = (struct page *)page_private(page);
1460 }
1461 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1462 memcpy(page_address(page) + d_off,
1463 vaddr + p_off + done, copy);
1464 done += copy;
1465 d_off += copy;
1466 }
1467 kunmap_atomic(vaddr);
1468 }
1469 }
1470
1471 /* skb frags release userspace buffers */
1472 for (i = 0; i < num_frags; i++)
1473 skb_frag_unref(skb, i);
1474
1475 /* skb frags point to kernel buffers */
1476 for (i = 0; i < new_frags - 1; i++) {
1477 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1478 head = (struct page *)page_private(head);
1479 }
1480 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1481 skb_shinfo(skb)->nr_frags = new_frags;
1482
1483 release:
1484 skb_zcopy_clear(skb, false);
1485 return 0;
1486 }
1487 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1488
1489 /**
1490 * skb_clone - duplicate an sk_buff
1491 * @skb: buffer to clone
1492 * @gfp_mask: allocation priority
1493 *
1494 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1495 * copies share the same packet data but not structure. The new
1496 * buffer has a reference count of 1. If the allocation fails the
1497 * function returns %NULL otherwise the new buffer is returned.
1498 *
1499 * If this function is called from an interrupt gfp_mask() must be
1500 * %GFP_ATOMIC.
1501 */
1502
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1503 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1504 {
1505 struct sk_buff_fclones *fclones = container_of(skb,
1506 struct sk_buff_fclones,
1507 skb1);
1508 struct sk_buff *n;
1509
1510 if (skb_orphan_frags(skb, gfp_mask))
1511 return NULL;
1512
1513 if (skb->fclone == SKB_FCLONE_ORIG &&
1514 refcount_read(&fclones->fclone_ref) == 1) {
1515 n = &fclones->skb2;
1516 refcount_set(&fclones->fclone_ref, 2);
1517 } else {
1518 if (skb_pfmemalloc(skb))
1519 gfp_mask |= __GFP_MEMALLOC;
1520
1521 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1522 if (!n)
1523 return NULL;
1524
1525 n->fclone = SKB_FCLONE_UNAVAILABLE;
1526 }
1527
1528 return __skb_clone(n, skb);
1529 }
1530 EXPORT_SYMBOL(skb_clone);
1531
skb_headers_offset_update(struct sk_buff * skb,int off)1532 void skb_headers_offset_update(struct sk_buff *skb, int off)
1533 {
1534 /* Only adjust this if it actually is csum_start rather than csum */
1535 if (skb->ip_summed == CHECKSUM_PARTIAL)
1536 skb->csum_start += off;
1537 /* {transport,network,mac}_header and tail are relative to skb->head */
1538 skb->transport_header += off;
1539 skb->network_header += off;
1540 if (skb_mac_header_was_set(skb))
1541 skb->mac_header += off;
1542 skb->inner_transport_header += off;
1543 skb->inner_network_header += off;
1544 skb->inner_mac_header += off;
1545 }
1546 EXPORT_SYMBOL(skb_headers_offset_update);
1547
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1548 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1549 {
1550 __copy_skb_header(new, old);
1551
1552 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1553 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1554 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1555 }
1556 EXPORT_SYMBOL(skb_copy_header);
1557
skb_alloc_rx_flag(const struct sk_buff * skb)1558 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1559 {
1560 if (skb_pfmemalloc(skb))
1561 return SKB_ALLOC_RX;
1562 return 0;
1563 }
1564
1565 /**
1566 * skb_copy - create private copy of an sk_buff
1567 * @skb: buffer to copy
1568 * @gfp_mask: allocation priority
1569 *
1570 * Make a copy of both an &sk_buff and its data. This is used when the
1571 * caller wishes to modify the data and needs a private copy of the
1572 * data to alter. Returns %NULL on failure or the pointer to the buffer
1573 * on success. The returned buffer has a reference count of 1.
1574 *
1575 * As by-product this function converts non-linear &sk_buff to linear
1576 * one, so that &sk_buff becomes completely private and caller is allowed
1577 * to modify all the data of returned buffer. This means that this
1578 * function is not recommended for use in circumstances when only
1579 * header is going to be modified. Use pskb_copy() instead.
1580 */
1581
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1582 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1583 {
1584 int headerlen = skb_headroom(skb);
1585 unsigned int size = skb_end_offset(skb) + skb->data_len;
1586 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1587 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1588
1589 if (!n)
1590 return NULL;
1591
1592 /* Set the data pointer */
1593 skb_reserve(n, headerlen);
1594 /* Set the tail pointer and length */
1595 skb_put(n, skb->len);
1596
1597 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1598
1599 skb_copy_header(n, skb);
1600 return n;
1601 }
1602 EXPORT_SYMBOL(skb_copy);
1603
1604 /**
1605 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1606 * @skb: buffer to copy
1607 * @headroom: headroom of new skb
1608 * @gfp_mask: allocation priority
1609 * @fclone: if true allocate the copy of the skb from the fclone
1610 * cache instead of the head cache; it is recommended to set this
1611 * to true for the cases where the copy will likely be cloned
1612 *
1613 * Make a copy of both an &sk_buff and part of its data, located
1614 * in header. Fragmented data remain shared. This is used when
1615 * the caller wishes to modify only header of &sk_buff and needs
1616 * private copy of the header to alter. Returns %NULL on failure
1617 * or the pointer to the buffer on success.
1618 * The returned buffer has a reference count of 1.
1619 */
1620
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1621 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1622 gfp_t gfp_mask, bool fclone)
1623 {
1624 unsigned int size = skb_headlen(skb) + headroom;
1625 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1626 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1627
1628 if (!n)
1629 goto out;
1630
1631 /* Set the data pointer */
1632 skb_reserve(n, headroom);
1633 /* Set the tail pointer and length */
1634 skb_put(n, skb_headlen(skb));
1635 /* Copy the bytes */
1636 skb_copy_from_linear_data(skb, n->data, n->len);
1637
1638 n->truesize += skb->data_len;
1639 n->data_len = skb->data_len;
1640 n->len = skb->len;
1641
1642 if (skb_shinfo(skb)->nr_frags) {
1643 int i;
1644
1645 if (skb_orphan_frags(skb, gfp_mask) ||
1646 skb_zerocopy_clone(n, skb, gfp_mask)) {
1647 kfree_skb(n);
1648 n = NULL;
1649 goto out;
1650 }
1651 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1652 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1653 skb_frag_ref(skb, i);
1654 }
1655 skb_shinfo(n)->nr_frags = i;
1656 }
1657
1658 if (skb_has_frag_list(skb)) {
1659 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1660 skb_clone_fraglist(n);
1661 }
1662
1663 skb_copy_header(n, skb);
1664 out:
1665 return n;
1666 }
1667 EXPORT_SYMBOL(__pskb_copy_fclone);
1668
1669 /**
1670 * pskb_expand_head - reallocate header of &sk_buff
1671 * @skb: buffer to reallocate
1672 * @nhead: room to add at head
1673 * @ntail: room to add at tail
1674 * @gfp_mask: allocation priority
1675 *
1676 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1677 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1678 * reference count of 1. Returns zero in the case of success or error,
1679 * if expansion failed. In the last case, &sk_buff is not changed.
1680 *
1681 * All the pointers pointing into skb header may change and must be
1682 * reloaded after call to this function.
1683 */
1684
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1685 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1686 gfp_t gfp_mask)
1687 {
1688 int i, osize = skb_end_offset(skb);
1689 int size = osize + nhead + ntail;
1690 long off;
1691 u8 *data;
1692
1693 BUG_ON(nhead < 0);
1694
1695 BUG_ON(skb_shared(skb));
1696
1697 size = SKB_DATA_ALIGN(size);
1698
1699 if (skb_pfmemalloc(skb))
1700 gfp_mask |= __GFP_MEMALLOC;
1701 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1702 gfp_mask, NUMA_NO_NODE, NULL);
1703 if (!data)
1704 goto nodata;
1705 size = SKB_WITH_OVERHEAD(ksize(data));
1706
1707 /* Copy only real data... and, alas, header. This should be
1708 * optimized for the cases when header is void.
1709 */
1710 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1711
1712 memcpy((struct skb_shared_info *)(data + size),
1713 skb_shinfo(skb),
1714 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1715
1716 /*
1717 * if shinfo is shared we must drop the old head gracefully, but if it
1718 * is not we can just drop the old head and let the existing refcount
1719 * be since all we did is relocate the values
1720 */
1721 if (skb_cloned(skb)) {
1722 if (skb_orphan_frags(skb, gfp_mask))
1723 goto nofrags;
1724 if (skb_zcopy(skb))
1725 refcount_inc(&skb_uarg(skb)->refcnt);
1726 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1727 skb_frag_ref(skb, i);
1728
1729 if (skb_has_frag_list(skb))
1730 skb_clone_fraglist(skb);
1731
1732 skb_release_data(skb);
1733 } else {
1734 skb_free_head(skb);
1735 }
1736 off = (data + nhead) - skb->head;
1737
1738 skb->head = data;
1739 skb->head_frag = 0;
1740 skb->data += off;
1741 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1742 skb->end = size;
1743 off = nhead;
1744 #else
1745 skb->end = skb->head + size;
1746 #endif
1747 skb->tail += off;
1748 skb_headers_offset_update(skb, nhead);
1749 skb->cloned = 0;
1750 skb->hdr_len = 0;
1751 skb->nohdr = 0;
1752 atomic_set(&skb_shinfo(skb)->dataref, 1);
1753
1754 skb_metadata_clear(skb);
1755
1756 /* It is not generally safe to change skb->truesize.
1757 * For the moment, we really care of rx path, or
1758 * when skb is orphaned (not attached to a socket).
1759 */
1760 if (!skb->sk || skb->destructor == sock_edemux)
1761 skb->truesize += size - osize;
1762
1763 return 0;
1764
1765 nofrags:
1766 kfree(data);
1767 nodata:
1768 return -ENOMEM;
1769 }
1770 EXPORT_SYMBOL(pskb_expand_head);
1771
1772 /* Make private copy of skb with writable head and some headroom */
1773
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1774 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1775 {
1776 struct sk_buff *skb2;
1777 int delta = headroom - skb_headroom(skb);
1778
1779 if (delta <= 0)
1780 skb2 = pskb_copy(skb, GFP_ATOMIC);
1781 else {
1782 skb2 = skb_clone(skb, GFP_ATOMIC);
1783 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1784 GFP_ATOMIC)) {
1785 kfree_skb(skb2);
1786 skb2 = NULL;
1787 }
1788 }
1789 return skb2;
1790 }
1791 EXPORT_SYMBOL(skb_realloc_headroom);
1792
1793 /**
1794 * skb_expand_head - reallocate header of &sk_buff
1795 * @skb: buffer to reallocate
1796 * @headroom: needed headroom
1797 *
1798 * Unlike skb_realloc_headroom, this one does not allocate a new skb
1799 * if possible; copies skb->sk to new skb as needed
1800 * and frees original skb in case of failures.
1801 *
1802 * It expect increased headroom and generates warning otherwise.
1803 */
1804
skb_expand_head(struct sk_buff * skb,unsigned int headroom)1805 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1806 {
1807 int delta = headroom - skb_headroom(skb);
1808 int osize = skb_end_offset(skb);
1809 struct sock *sk = skb->sk;
1810
1811 if (WARN_ONCE(delta <= 0,
1812 "%s is expecting an increase in the headroom", __func__))
1813 return skb;
1814
1815 delta = SKB_DATA_ALIGN(delta);
1816 /* pskb_expand_head() might crash, if skb is shared. */
1817 if (skb_shared(skb) || !is_skb_wmem(skb)) {
1818 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1819
1820 if (unlikely(!nskb))
1821 goto fail;
1822
1823 if (sk)
1824 skb_set_owner_w(nskb, sk);
1825 consume_skb(skb);
1826 skb = nskb;
1827 }
1828 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1829 goto fail;
1830
1831 if (sk && is_skb_wmem(skb)) {
1832 delta = skb_end_offset(skb) - osize;
1833 refcount_add(delta, &sk->sk_wmem_alloc);
1834 skb->truesize += delta;
1835 }
1836 return skb;
1837
1838 fail:
1839 kfree_skb(skb);
1840 return NULL;
1841 }
1842 EXPORT_SYMBOL(skb_expand_head);
1843
1844 /**
1845 * skb_copy_expand - copy and expand sk_buff
1846 * @skb: buffer to copy
1847 * @newheadroom: new free bytes at head
1848 * @newtailroom: new free bytes at tail
1849 * @gfp_mask: allocation priority
1850 *
1851 * Make a copy of both an &sk_buff and its data and while doing so
1852 * allocate additional space.
1853 *
1854 * This is used when the caller wishes to modify the data and needs a
1855 * private copy of the data to alter as well as more space for new fields.
1856 * Returns %NULL on failure or the pointer to the buffer
1857 * on success. The returned buffer has a reference count of 1.
1858 *
1859 * You must pass %GFP_ATOMIC as the allocation priority if this function
1860 * is called from an interrupt.
1861 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1862 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1863 int newheadroom, int newtailroom,
1864 gfp_t gfp_mask)
1865 {
1866 /*
1867 * Allocate the copy buffer
1868 */
1869 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1870 gfp_mask, skb_alloc_rx_flag(skb),
1871 NUMA_NO_NODE);
1872 int oldheadroom = skb_headroom(skb);
1873 int head_copy_len, head_copy_off;
1874
1875 if (!n)
1876 return NULL;
1877
1878 skb_reserve(n, newheadroom);
1879
1880 /* Set the tail pointer and length */
1881 skb_put(n, skb->len);
1882
1883 head_copy_len = oldheadroom;
1884 head_copy_off = 0;
1885 if (newheadroom <= head_copy_len)
1886 head_copy_len = newheadroom;
1887 else
1888 head_copy_off = newheadroom - head_copy_len;
1889
1890 /* Copy the linear header and data. */
1891 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1892 skb->len + head_copy_len));
1893
1894 skb_copy_header(n, skb);
1895
1896 skb_headers_offset_update(n, newheadroom - oldheadroom);
1897
1898 return n;
1899 }
1900 EXPORT_SYMBOL(skb_copy_expand);
1901
1902 /**
1903 * __skb_pad - zero pad the tail of an skb
1904 * @skb: buffer to pad
1905 * @pad: space to pad
1906 * @free_on_error: free buffer on error
1907 *
1908 * Ensure that a buffer is followed by a padding area that is zero
1909 * filled. Used by network drivers which may DMA or transfer data
1910 * beyond the buffer end onto the wire.
1911 *
1912 * May return error in out of memory cases. The skb is freed on error
1913 * if @free_on_error is true.
1914 */
1915
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1916 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1917 {
1918 int err;
1919 int ntail;
1920
1921 /* If the skbuff is non linear tailroom is always zero.. */
1922 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1923 memset(skb->data+skb->len, 0, pad);
1924 return 0;
1925 }
1926
1927 ntail = skb->data_len + pad - (skb->end - skb->tail);
1928 if (likely(skb_cloned(skb) || ntail > 0)) {
1929 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1930 if (unlikely(err))
1931 goto free_skb;
1932 }
1933
1934 /* FIXME: The use of this function with non-linear skb's really needs
1935 * to be audited.
1936 */
1937 err = skb_linearize(skb);
1938 if (unlikely(err))
1939 goto free_skb;
1940
1941 memset(skb->data + skb->len, 0, pad);
1942 return 0;
1943
1944 free_skb:
1945 if (free_on_error)
1946 kfree_skb(skb);
1947 return err;
1948 }
1949 EXPORT_SYMBOL(__skb_pad);
1950
1951 /**
1952 * pskb_put - add data to the tail of a potentially fragmented buffer
1953 * @skb: start of the buffer to use
1954 * @tail: tail fragment of the buffer to use
1955 * @len: amount of data to add
1956 *
1957 * This function extends the used data area of the potentially
1958 * fragmented buffer. @tail must be the last fragment of @skb -- or
1959 * @skb itself. If this would exceed the total buffer size the kernel
1960 * will panic. A pointer to the first byte of the extra data is
1961 * returned.
1962 */
1963
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1964 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1965 {
1966 if (tail != skb) {
1967 skb->data_len += len;
1968 skb->len += len;
1969 }
1970 return skb_put(tail, len);
1971 }
1972 EXPORT_SYMBOL_GPL(pskb_put);
1973
1974 /**
1975 * skb_put - add data to a buffer
1976 * @skb: buffer to use
1977 * @len: amount of data to add
1978 *
1979 * This function extends the used data area of the buffer. If this would
1980 * exceed the total buffer size the kernel will panic. A pointer to the
1981 * first byte of the extra data is returned.
1982 */
skb_put(struct sk_buff * skb,unsigned int len)1983 void *skb_put(struct sk_buff *skb, unsigned int len)
1984 {
1985 void *tmp = skb_tail_pointer(skb);
1986 SKB_LINEAR_ASSERT(skb);
1987 skb->tail += len;
1988 skb->len += len;
1989 if (unlikely(skb->tail > skb->end))
1990 skb_over_panic(skb, len, __builtin_return_address(0));
1991 return tmp;
1992 }
1993 EXPORT_SYMBOL(skb_put);
1994
1995 /**
1996 * skb_push - add data to the start of a buffer
1997 * @skb: buffer to use
1998 * @len: amount of data to add
1999 *
2000 * This function extends the used data area of the buffer at the buffer
2001 * start. If this would exceed the total buffer headroom the kernel will
2002 * panic. A pointer to the first byte of the extra data is returned.
2003 */
skb_push(struct sk_buff * skb,unsigned int len)2004 void *skb_push(struct sk_buff *skb, unsigned int len)
2005 {
2006 skb->data -= len;
2007 skb->len += len;
2008 if (unlikely(skb->data < skb->head))
2009 skb_under_panic(skb, len, __builtin_return_address(0));
2010 return skb->data;
2011 }
2012 EXPORT_SYMBOL(skb_push);
2013
2014 /**
2015 * skb_pull - remove data from the start of a buffer
2016 * @skb: buffer to use
2017 * @len: amount of data to remove
2018 *
2019 * This function removes data from the start of a buffer, returning
2020 * the memory to the headroom. A pointer to the next data in the buffer
2021 * is returned. Once the data has been pulled future pushes will overwrite
2022 * the old data.
2023 */
skb_pull(struct sk_buff * skb,unsigned int len)2024 void *skb_pull(struct sk_buff *skb, unsigned int len)
2025 {
2026 return skb_pull_inline(skb, len);
2027 }
2028 EXPORT_SYMBOL(skb_pull);
2029
2030 /**
2031 * skb_trim - remove end from a buffer
2032 * @skb: buffer to alter
2033 * @len: new length
2034 *
2035 * Cut the length of a buffer down by removing data from the tail. If
2036 * the buffer is already under the length specified it is not modified.
2037 * The skb must be linear.
2038 */
skb_trim(struct sk_buff * skb,unsigned int len)2039 void skb_trim(struct sk_buff *skb, unsigned int len)
2040 {
2041 if (skb->len > len)
2042 __skb_trim(skb, len);
2043 }
2044 EXPORT_SYMBOL(skb_trim);
2045
2046 /* Trims skb to length len. It can change skb pointers.
2047 */
2048
___pskb_trim(struct sk_buff * skb,unsigned int len)2049 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2050 {
2051 struct sk_buff **fragp;
2052 struct sk_buff *frag;
2053 int offset = skb_headlen(skb);
2054 int nfrags = skb_shinfo(skb)->nr_frags;
2055 int i;
2056 int err;
2057
2058 if (skb_cloned(skb) &&
2059 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2060 return err;
2061
2062 i = 0;
2063 if (offset >= len)
2064 goto drop_pages;
2065
2066 for (; i < nfrags; i++) {
2067 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2068
2069 if (end < len) {
2070 offset = end;
2071 continue;
2072 }
2073
2074 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2075
2076 drop_pages:
2077 skb_shinfo(skb)->nr_frags = i;
2078
2079 for (; i < nfrags; i++)
2080 skb_frag_unref(skb, i);
2081
2082 if (skb_has_frag_list(skb))
2083 skb_drop_fraglist(skb);
2084 goto done;
2085 }
2086
2087 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2088 fragp = &frag->next) {
2089 int end = offset + frag->len;
2090
2091 if (skb_shared(frag)) {
2092 struct sk_buff *nfrag;
2093
2094 nfrag = skb_clone(frag, GFP_ATOMIC);
2095 if (unlikely(!nfrag))
2096 return -ENOMEM;
2097
2098 nfrag->next = frag->next;
2099 consume_skb(frag);
2100 frag = nfrag;
2101 *fragp = frag;
2102 }
2103
2104 if (end < len) {
2105 offset = end;
2106 continue;
2107 }
2108
2109 if (end > len &&
2110 unlikely((err = pskb_trim(frag, len - offset))))
2111 return err;
2112
2113 if (frag->next)
2114 skb_drop_list(&frag->next);
2115 break;
2116 }
2117
2118 done:
2119 if (len > skb_headlen(skb)) {
2120 skb->data_len -= skb->len - len;
2121 skb->len = len;
2122 } else {
2123 skb->len = len;
2124 skb->data_len = 0;
2125 skb_set_tail_pointer(skb, len);
2126 }
2127
2128 if (!skb->sk || skb->destructor == sock_edemux)
2129 skb_condense(skb);
2130 return 0;
2131 }
2132 EXPORT_SYMBOL(___pskb_trim);
2133
2134 /* Note : use pskb_trim_rcsum() instead of calling this directly
2135 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2136 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2137 {
2138 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2139 int delta = skb->len - len;
2140
2141 skb->csum = csum_block_sub(skb->csum,
2142 skb_checksum(skb, len, delta, 0),
2143 len);
2144 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2145 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2146 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2147
2148 if (offset + sizeof(__sum16) > hdlen)
2149 return -EINVAL;
2150 }
2151 return __pskb_trim(skb, len);
2152 }
2153 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2154
2155 /**
2156 * __pskb_pull_tail - advance tail of skb header
2157 * @skb: buffer to reallocate
2158 * @delta: number of bytes to advance tail
2159 *
2160 * The function makes a sense only on a fragmented &sk_buff,
2161 * it expands header moving its tail forward and copying necessary
2162 * data from fragmented part.
2163 *
2164 * &sk_buff MUST have reference count of 1.
2165 *
2166 * Returns %NULL (and &sk_buff does not change) if pull failed
2167 * or value of new tail of skb in the case of success.
2168 *
2169 * All the pointers pointing into skb header may change and must be
2170 * reloaded after call to this function.
2171 */
2172
2173 /* Moves tail of skb head forward, copying data from fragmented part,
2174 * when it is necessary.
2175 * 1. It may fail due to malloc failure.
2176 * 2. It may change skb pointers.
2177 *
2178 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2179 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2180 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2181 {
2182 /* If skb has not enough free space at tail, get new one
2183 * plus 128 bytes for future expansions. If we have enough
2184 * room at tail, reallocate without expansion only if skb is cloned.
2185 */
2186 int i, k, eat = (skb->tail + delta) - skb->end;
2187
2188 if (eat > 0 || skb_cloned(skb)) {
2189 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2190 GFP_ATOMIC))
2191 return NULL;
2192 }
2193
2194 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2195 skb_tail_pointer(skb), delta));
2196
2197 /* Optimization: no fragments, no reasons to preestimate
2198 * size of pulled pages. Superb.
2199 */
2200 if (!skb_has_frag_list(skb))
2201 goto pull_pages;
2202
2203 /* Estimate size of pulled pages. */
2204 eat = delta;
2205 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2206 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2207
2208 if (size >= eat)
2209 goto pull_pages;
2210 eat -= size;
2211 }
2212
2213 /* If we need update frag list, we are in troubles.
2214 * Certainly, it is possible to add an offset to skb data,
2215 * but taking into account that pulling is expected to
2216 * be very rare operation, it is worth to fight against
2217 * further bloating skb head and crucify ourselves here instead.
2218 * Pure masohism, indeed. 8)8)
2219 */
2220 if (eat) {
2221 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2222 struct sk_buff *clone = NULL;
2223 struct sk_buff *insp = NULL;
2224
2225 do {
2226 if (list->len <= eat) {
2227 /* Eaten as whole. */
2228 eat -= list->len;
2229 list = list->next;
2230 insp = list;
2231 } else {
2232 /* Eaten partially. */
2233
2234 if (skb_shared(list)) {
2235 /* Sucks! We need to fork list. :-( */
2236 clone = skb_clone(list, GFP_ATOMIC);
2237 if (!clone)
2238 return NULL;
2239 insp = list->next;
2240 list = clone;
2241 } else {
2242 /* This may be pulled without
2243 * problems. */
2244 insp = list;
2245 }
2246 if (!pskb_pull(list, eat)) {
2247 kfree_skb(clone);
2248 return NULL;
2249 }
2250 break;
2251 }
2252 } while (eat);
2253
2254 /* Free pulled out fragments. */
2255 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2256 skb_shinfo(skb)->frag_list = list->next;
2257 kfree_skb(list);
2258 }
2259 /* And insert new clone at head. */
2260 if (clone) {
2261 clone->next = list;
2262 skb_shinfo(skb)->frag_list = clone;
2263 }
2264 }
2265 /* Success! Now we may commit changes to skb data. */
2266
2267 pull_pages:
2268 eat = delta;
2269 k = 0;
2270 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2271 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2272
2273 if (size <= eat) {
2274 skb_frag_unref(skb, i);
2275 eat -= size;
2276 } else {
2277 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2278
2279 *frag = skb_shinfo(skb)->frags[i];
2280 if (eat) {
2281 skb_frag_off_add(frag, eat);
2282 skb_frag_size_sub(frag, eat);
2283 if (!i)
2284 goto end;
2285 eat = 0;
2286 }
2287 k++;
2288 }
2289 }
2290 skb_shinfo(skb)->nr_frags = k;
2291
2292 end:
2293 skb->tail += delta;
2294 skb->data_len -= delta;
2295
2296 if (!skb->data_len)
2297 skb_zcopy_clear(skb, false);
2298
2299 return skb_tail_pointer(skb);
2300 }
2301 EXPORT_SYMBOL(__pskb_pull_tail);
2302
2303 /**
2304 * skb_copy_bits - copy bits from skb to kernel buffer
2305 * @skb: source skb
2306 * @offset: offset in source
2307 * @to: destination buffer
2308 * @len: number of bytes to copy
2309 *
2310 * Copy the specified number of bytes from the source skb to the
2311 * destination buffer.
2312 *
2313 * CAUTION ! :
2314 * If its prototype is ever changed,
2315 * check arch/{*}/net/{*}.S files,
2316 * since it is called from BPF assembly code.
2317 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2318 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2319 {
2320 int start = skb_headlen(skb);
2321 struct sk_buff *frag_iter;
2322 int i, copy;
2323
2324 if (offset > (int)skb->len - len)
2325 goto fault;
2326
2327 /* Copy header. */
2328 if ((copy = start - offset) > 0) {
2329 if (copy > len)
2330 copy = len;
2331 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2332 if ((len -= copy) == 0)
2333 return 0;
2334 offset += copy;
2335 to += copy;
2336 }
2337
2338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2339 int end;
2340 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2341
2342 WARN_ON(start > offset + len);
2343
2344 end = start + skb_frag_size(f);
2345 if ((copy = end - offset) > 0) {
2346 u32 p_off, p_len, copied;
2347 struct page *p;
2348 u8 *vaddr;
2349
2350 if (copy > len)
2351 copy = len;
2352
2353 skb_frag_foreach_page(f,
2354 skb_frag_off(f) + offset - start,
2355 copy, p, p_off, p_len, copied) {
2356 vaddr = kmap_atomic(p);
2357 memcpy(to + copied, vaddr + p_off, p_len);
2358 kunmap_atomic(vaddr);
2359 }
2360
2361 if ((len -= copy) == 0)
2362 return 0;
2363 offset += copy;
2364 to += copy;
2365 }
2366 start = end;
2367 }
2368
2369 skb_walk_frags(skb, frag_iter) {
2370 int end;
2371
2372 WARN_ON(start > offset + len);
2373
2374 end = start + frag_iter->len;
2375 if ((copy = end - offset) > 0) {
2376 if (copy > len)
2377 copy = len;
2378 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2379 goto fault;
2380 if ((len -= copy) == 0)
2381 return 0;
2382 offset += copy;
2383 to += copy;
2384 }
2385 start = end;
2386 }
2387
2388 if (!len)
2389 return 0;
2390
2391 fault:
2392 return -EFAULT;
2393 }
2394 EXPORT_SYMBOL(skb_copy_bits);
2395
2396 /*
2397 * Callback from splice_to_pipe(), if we need to release some pages
2398 * at the end of the spd in case we error'ed out in filling the pipe.
2399 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2400 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2401 {
2402 put_page(spd->pages[i]);
2403 }
2404
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2405 static struct page *linear_to_page(struct page *page, unsigned int *len,
2406 unsigned int *offset,
2407 struct sock *sk)
2408 {
2409 struct page_frag *pfrag = sk_page_frag(sk);
2410
2411 if (!sk_page_frag_refill(sk, pfrag))
2412 return NULL;
2413
2414 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2415
2416 memcpy(page_address(pfrag->page) + pfrag->offset,
2417 page_address(page) + *offset, *len);
2418 *offset = pfrag->offset;
2419 pfrag->offset += *len;
2420
2421 return pfrag->page;
2422 }
2423
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2424 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2425 struct page *page,
2426 unsigned int offset)
2427 {
2428 return spd->nr_pages &&
2429 spd->pages[spd->nr_pages - 1] == page &&
2430 (spd->partial[spd->nr_pages - 1].offset +
2431 spd->partial[spd->nr_pages - 1].len == offset);
2432 }
2433
2434 /*
2435 * Fill page/offset/length into spd, if it can hold more pages.
2436 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2437 static bool spd_fill_page(struct splice_pipe_desc *spd,
2438 struct pipe_inode_info *pipe, struct page *page,
2439 unsigned int *len, unsigned int offset,
2440 bool linear,
2441 struct sock *sk)
2442 {
2443 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2444 return true;
2445
2446 if (linear) {
2447 page = linear_to_page(page, len, &offset, sk);
2448 if (!page)
2449 return true;
2450 }
2451 if (spd_can_coalesce(spd, page, offset)) {
2452 spd->partial[spd->nr_pages - 1].len += *len;
2453 return false;
2454 }
2455 get_page(page);
2456 spd->pages[spd->nr_pages] = page;
2457 spd->partial[spd->nr_pages].len = *len;
2458 spd->partial[spd->nr_pages].offset = offset;
2459 spd->nr_pages++;
2460
2461 return false;
2462 }
2463
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2464 static bool __splice_segment(struct page *page, unsigned int poff,
2465 unsigned int plen, unsigned int *off,
2466 unsigned int *len,
2467 struct splice_pipe_desc *spd, bool linear,
2468 struct sock *sk,
2469 struct pipe_inode_info *pipe)
2470 {
2471 if (!*len)
2472 return true;
2473
2474 /* skip this segment if already processed */
2475 if (*off >= plen) {
2476 *off -= plen;
2477 return false;
2478 }
2479
2480 /* ignore any bits we already processed */
2481 poff += *off;
2482 plen -= *off;
2483 *off = 0;
2484
2485 do {
2486 unsigned int flen = min(*len, plen);
2487
2488 if (spd_fill_page(spd, pipe, page, &flen, poff,
2489 linear, sk))
2490 return true;
2491 poff += flen;
2492 plen -= flen;
2493 *len -= flen;
2494 } while (*len && plen);
2495
2496 return false;
2497 }
2498
2499 /*
2500 * Map linear and fragment data from the skb to spd. It reports true if the
2501 * pipe is full or if we already spliced the requested length.
2502 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2503 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2504 unsigned int *offset, unsigned int *len,
2505 struct splice_pipe_desc *spd, struct sock *sk)
2506 {
2507 int seg;
2508 struct sk_buff *iter;
2509
2510 /* map the linear part :
2511 * If skb->head_frag is set, this 'linear' part is backed by a
2512 * fragment, and if the head is not shared with any clones then
2513 * we can avoid a copy since we own the head portion of this page.
2514 */
2515 if (__splice_segment(virt_to_page(skb->data),
2516 (unsigned long) skb->data & (PAGE_SIZE - 1),
2517 skb_headlen(skb),
2518 offset, len, spd,
2519 skb_head_is_locked(skb),
2520 sk, pipe))
2521 return true;
2522
2523 /*
2524 * then map the fragments
2525 */
2526 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2527 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2528
2529 if (__splice_segment(skb_frag_page(f),
2530 skb_frag_off(f), skb_frag_size(f),
2531 offset, len, spd, false, sk, pipe))
2532 return true;
2533 }
2534
2535 skb_walk_frags(skb, iter) {
2536 if (*offset >= iter->len) {
2537 *offset -= iter->len;
2538 continue;
2539 }
2540 /* __skb_splice_bits() only fails if the output has no room
2541 * left, so no point in going over the frag_list for the error
2542 * case.
2543 */
2544 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2545 return true;
2546 }
2547
2548 return false;
2549 }
2550
2551 /*
2552 * Map data from the skb to a pipe. Should handle both the linear part,
2553 * the fragments, and the frag list.
2554 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2555 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2556 struct pipe_inode_info *pipe, unsigned int tlen,
2557 unsigned int flags)
2558 {
2559 struct partial_page partial[MAX_SKB_FRAGS];
2560 struct page *pages[MAX_SKB_FRAGS];
2561 struct splice_pipe_desc spd = {
2562 .pages = pages,
2563 .partial = partial,
2564 .nr_pages_max = MAX_SKB_FRAGS,
2565 .ops = &nosteal_pipe_buf_ops,
2566 .spd_release = sock_spd_release,
2567 };
2568 int ret = 0;
2569
2570 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2571
2572 if (spd.nr_pages)
2573 ret = splice_to_pipe(pipe, &spd);
2574
2575 return ret;
2576 }
2577 EXPORT_SYMBOL_GPL(skb_splice_bits);
2578
sendmsg_unlocked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)2579 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2580 struct kvec *vec, size_t num, size_t size)
2581 {
2582 struct socket *sock = sk->sk_socket;
2583
2584 if (!sock)
2585 return -EINVAL;
2586 return kernel_sendmsg(sock, msg, vec, num, size);
2587 }
2588
sendpage_unlocked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2589 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2590 size_t size, int flags)
2591 {
2592 struct socket *sock = sk->sk_socket;
2593
2594 if (!sock)
2595 return -EINVAL;
2596 return kernel_sendpage(sock, page, offset, size, flags);
2597 }
2598
2599 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2600 struct kvec *vec, size_t num, size_t size);
2601 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2602 size_t size, int flags);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,sendpage_func sendpage)2603 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2604 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2605 {
2606 unsigned int orig_len = len;
2607 struct sk_buff *head = skb;
2608 unsigned short fragidx;
2609 int slen, ret;
2610
2611 do_frag_list:
2612
2613 /* Deal with head data */
2614 while (offset < skb_headlen(skb) && len) {
2615 struct kvec kv;
2616 struct msghdr msg;
2617
2618 slen = min_t(int, len, skb_headlen(skb) - offset);
2619 kv.iov_base = skb->data + offset;
2620 kv.iov_len = slen;
2621 memset(&msg, 0, sizeof(msg));
2622 msg.msg_flags = MSG_DONTWAIT;
2623
2624 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2625 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2626 if (ret <= 0)
2627 goto error;
2628
2629 offset += ret;
2630 len -= ret;
2631 }
2632
2633 /* All the data was skb head? */
2634 if (!len)
2635 goto out;
2636
2637 /* Make offset relative to start of frags */
2638 offset -= skb_headlen(skb);
2639
2640 /* Find where we are in frag list */
2641 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2642 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2643
2644 if (offset < skb_frag_size(frag))
2645 break;
2646
2647 offset -= skb_frag_size(frag);
2648 }
2649
2650 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2651 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2652
2653 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2654
2655 while (slen) {
2656 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2657 sendpage_unlocked, sk,
2658 skb_frag_page(frag),
2659 skb_frag_off(frag) + offset,
2660 slen, MSG_DONTWAIT);
2661 if (ret <= 0)
2662 goto error;
2663
2664 len -= ret;
2665 offset += ret;
2666 slen -= ret;
2667 }
2668
2669 offset = 0;
2670 }
2671
2672 if (len) {
2673 /* Process any frag lists */
2674
2675 if (skb == head) {
2676 if (skb_has_frag_list(skb)) {
2677 skb = skb_shinfo(skb)->frag_list;
2678 goto do_frag_list;
2679 }
2680 } else if (skb->next) {
2681 skb = skb->next;
2682 goto do_frag_list;
2683 }
2684 }
2685
2686 out:
2687 return orig_len - len;
2688
2689 error:
2690 return orig_len == len ? ret : orig_len - len;
2691 }
2692
2693 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2694 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2695 int len)
2696 {
2697 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2698 kernel_sendpage_locked);
2699 }
2700 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2701
2702 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)2703 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2704 {
2705 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2706 sendpage_unlocked);
2707 }
2708
2709 /**
2710 * skb_store_bits - store bits from kernel buffer to skb
2711 * @skb: destination buffer
2712 * @offset: offset in destination
2713 * @from: source buffer
2714 * @len: number of bytes to copy
2715 *
2716 * Copy the specified number of bytes from the source buffer to the
2717 * destination skb. This function handles all the messy bits of
2718 * traversing fragment lists and such.
2719 */
2720
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2721 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2722 {
2723 int start = skb_headlen(skb);
2724 struct sk_buff *frag_iter;
2725 int i, copy;
2726
2727 if (offset > (int)skb->len - len)
2728 goto fault;
2729
2730 if ((copy = start - offset) > 0) {
2731 if (copy > len)
2732 copy = len;
2733 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2734 if ((len -= copy) == 0)
2735 return 0;
2736 offset += copy;
2737 from += copy;
2738 }
2739
2740 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2741 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2742 int end;
2743
2744 WARN_ON(start > offset + len);
2745
2746 end = start + skb_frag_size(frag);
2747 if ((copy = end - offset) > 0) {
2748 u32 p_off, p_len, copied;
2749 struct page *p;
2750 u8 *vaddr;
2751
2752 if (copy > len)
2753 copy = len;
2754
2755 skb_frag_foreach_page(frag,
2756 skb_frag_off(frag) + offset - start,
2757 copy, p, p_off, p_len, copied) {
2758 vaddr = kmap_atomic(p);
2759 memcpy(vaddr + p_off, from + copied, p_len);
2760 kunmap_atomic(vaddr);
2761 }
2762
2763 if ((len -= copy) == 0)
2764 return 0;
2765 offset += copy;
2766 from += copy;
2767 }
2768 start = end;
2769 }
2770
2771 skb_walk_frags(skb, frag_iter) {
2772 int end;
2773
2774 WARN_ON(start > offset + len);
2775
2776 end = start + frag_iter->len;
2777 if ((copy = end - offset) > 0) {
2778 if (copy > len)
2779 copy = len;
2780 if (skb_store_bits(frag_iter, offset - start,
2781 from, copy))
2782 goto fault;
2783 if ((len -= copy) == 0)
2784 return 0;
2785 offset += copy;
2786 from += copy;
2787 }
2788 start = end;
2789 }
2790 if (!len)
2791 return 0;
2792
2793 fault:
2794 return -EFAULT;
2795 }
2796 EXPORT_SYMBOL(skb_store_bits);
2797
2798 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2799 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2800 __wsum csum, const struct skb_checksum_ops *ops)
2801 {
2802 int start = skb_headlen(skb);
2803 int i, copy = start - offset;
2804 struct sk_buff *frag_iter;
2805 int pos = 0;
2806
2807 /* Checksum header. */
2808 if (copy > 0) {
2809 if (copy > len)
2810 copy = len;
2811 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2812 skb->data + offset, copy, csum);
2813 if ((len -= copy) == 0)
2814 return csum;
2815 offset += copy;
2816 pos = copy;
2817 }
2818
2819 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2820 int end;
2821 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2822
2823 WARN_ON(start > offset + len);
2824
2825 end = start + skb_frag_size(frag);
2826 if ((copy = end - offset) > 0) {
2827 u32 p_off, p_len, copied;
2828 struct page *p;
2829 __wsum csum2;
2830 u8 *vaddr;
2831
2832 if (copy > len)
2833 copy = len;
2834
2835 skb_frag_foreach_page(frag,
2836 skb_frag_off(frag) + offset - start,
2837 copy, p, p_off, p_len, copied) {
2838 vaddr = kmap_atomic(p);
2839 csum2 = INDIRECT_CALL_1(ops->update,
2840 csum_partial_ext,
2841 vaddr + p_off, p_len, 0);
2842 kunmap_atomic(vaddr);
2843 csum = INDIRECT_CALL_1(ops->combine,
2844 csum_block_add_ext, csum,
2845 csum2, pos, p_len);
2846 pos += p_len;
2847 }
2848
2849 if (!(len -= copy))
2850 return csum;
2851 offset += copy;
2852 }
2853 start = end;
2854 }
2855
2856 skb_walk_frags(skb, frag_iter) {
2857 int end;
2858
2859 WARN_ON(start > offset + len);
2860
2861 end = start + frag_iter->len;
2862 if ((copy = end - offset) > 0) {
2863 __wsum csum2;
2864 if (copy > len)
2865 copy = len;
2866 csum2 = __skb_checksum(frag_iter, offset - start,
2867 copy, 0, ops);
2868 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2869 csum, csum2, pos, copy);
2870 if ((len -= copy) == 0)
2871 return csum;
2872 offset += copy;
2873 pos += copy;
2874 }
2875 start = end;
2876 }
2877 BUG_ON(len);
2878
2879 return csum;
2880 }
2881 EXPORT_SYMBOL(__skb_checksum);
2882
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2883 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2884 int len, __wsum csum)
2885 {
2886 const struct skb_checksum_ops ops = {
2887 .update = csum_partial_ext,
2888 .combine = csum_block_add_ext,
2889 };
2890
2891 return __skb_checksum(skb, offset, len, csum, &ops);
2892 }
2893 EXPORT_SYMBOL(skb_checksum);
2894
2895 /* Both of above in one bottle. */
2896
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2897 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2898 u8 *to, int len)
2899 {
2900 int start = skb_headlen(skb);
2901 int i, copy = start - offset;
2902 struct sk_buff *frag_iter;
2903 int pos = 0;
2904 __wsum csum = 0;
2905
2906 /* Copy header. */
2907 if (copy > 0) {
2908 if (copy > len)
2909 copy = len;
2910 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2911 copy);
2912 if ((len -= copy) == 0)
2913 return csum;
2914 offset += copy;
2915 to += copy;
2916 pos = copy;
2917 }
2918
2919 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2920 int end;
2921
2922 WARN_ON(start > offset + len);
2923
2924 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2925 if ((copy = end - offset) > 0) {
2926 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2927 u32 p_off, p_len, copied;
2928 struct page *p;
2929 __wsum csum2;
2930 u8 *vaddr;
2931
2932 if (copy > len)
2933 copy = len;
2934
2935 skb_frag_foreach_page(frag,
2936 skb_frag_off(frag) + offset - start,
2937 copy, p, p_off, p_len, copied) {
2938 vaddr = kmap_atomic(p);
2939 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2940 to + copied,
2941 p_len);
2942 kunmap_atomic(vaddr);
2943 csum = csum_block_add(csum, csum2, pos);
2944 pos += p_len;
2945 }
2946
2947 if (!(len -= copy))
2948 return csum;
2949 offset += copy;
2950 to += copy;
2951 }
2952 start = end;
2953 }
2954
2955 skb_walk_frags(skb, frag_iter) {
2956 __wsum csum2;
2957 int end;
2958
2959 WARN_ON(start > offset + len);
2960
2961 end = start + frag_iter->len;
2962 if ((copy = end - offset) > 0) {
2963 if (copy > len)
2964 copy = len;
2965 csum2 = skb_copy_and_csum_bits(frag_iter,
2966 offset - start,
2967 to, copy);
2968 csum = csum_block_add(csum, csum2, pos);
2969 if ((len -= copy) == 0)
2970 return csum;
2971 offset += copy;
2972 to += copy;
2973 pos += copy;
2974 }
2975 start = end;
2976 }
2977 BUG_ON(len);
2978 return csum;
2979 }
2980 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2981
__skb_checksum_complete_head(struct sk_buff * skb,int len)2982 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2983 {
2984 __sum16 sum;
2985
2986 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2987 /* See comments in __skb_checksum_complete(). */
2988 if (likely(!sum)) {
2989 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2990 !skb->csum_complete_sw)
2991 netdev_rx_csum_fault(skb->dev, skb);
2992 }
2993 if (!skb_shared(skb))
2994 skb->csum_valid = !sum;
2995 return sum;
2996 }
2997 EXPORT_SYMBOL(__skb_checksum_complete_head);
2998
2999 /* This function assumes skb->csum already holds pseudo header's checksum,
3000 * which has been changed from the hardware checksum, for example, by
3001 * __skb_checksum_validate_complete(). And, the original skb->csum must
3002 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3003 *
3004 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3005 * zero. The new checksum is stored back into skb->csum unless the skb is
3006 * shared.
3007 */
__skb_checksum_complete(struct sk_buff * skb)3008 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3009 {
3010 __wsum csum;
3011 __sum16 sum;
3012
3013 csum = skb_checksum(skb, 0, skb->len, 0);
3014
3015 sum = csum_fold(csum_add(skb->csum, csum));
3016 /* This check is inverted, because we already knew the hardware
3017 * checksum is invalid before calling this function. So, if the
3018 * re-computed checksum is valid instead, then we have a mismatch
3019 * between the original skb->csum and skb_checksum(). This means either
3020 * the original hardware checksum is incorrect or we screw up skb->csum
3021 * when moving skb->data around.
3022 */
3023 if (likely(!sum)) {
3024 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3025 !skb->csum_complete_sw)
3026 netdev_rx_csum_fault(skb->dev, skb);
3027 }
3028
3029 if (!skb_shared(skb)) {
3030 /* Save full packet checksum */
3031 skb->csum = csum;
3032 skb->ip_summed = CHECKSUM_COMPLETE;
3033 skb->csum_complete_sw = 1;
3034 skb->csum_valid = !sum;
3035 }
3036
3037 return sum;
3038 }
3039 EXPORT_SYMBOL(__skb_checksum_complete);
3040
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3041 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3042 {
3043 net_warn_ratelimited(
3044 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3045 __func__);
3046 return 0;
3047 }
3048
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3049 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3050 int offset, int len)
3051 {
3052 net_warn_ratelimited(
3053 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3054 __func__);
3055 return 0;
3056 }
3057
3058 static const struct skb_checksum_ops default_crc32c_ops = {
3059 .update = warn_crc32c_csum_update,
3060 .combine = warn_crc32c_csum_combine,
3061 };
3062
3063 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3064 &default_crc32c_ops;
3065 EXPORT_SYMBOL(crc32c_csum_stub);
3066
3067 /**
3068 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3069 * @from: source buffer
3070 *
3071 * Calculates the amount of linear headroom needed in the 'to' skb passed
3072 * into skb_zerocopy().
3073 */
3074 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3075 skb_zerocopy_headlen(const struct sk_buff *from)
3076 {
3077 unsigned int hlen = 0;
3078
3079 if (!from->head_frag ||
3080 skb_headlen(from) < L1_CACHE_BYTES ||
3081 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3082 hlen = skb_headlen(from);
3083 if (!hlen)
3084 hlen = from->len;
3085 }
3086
3087 if (skb_has_frag_list(from))
3088 hlen = from->len;
3089
3090 return hlen;
3091 }
3092 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3093
3094 /**
3095 * skb_zerocopy - Zero copy skb to skb
3096 * @to: destination buffer
3097 * @from: source buffer
3098 * @len: number of bytes to copy from source buffer
3099 * @hlen: size of linear headroom in destination buffer
3100 *
3101 * Copies up to `len` bytes from `from` to `to` by creating references
3102 * to the frags in the source buffer.
3103 *
3104 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3105 * headroom in the `to` buffer.
3106 *
3107 * Return value:
3108 * 0: everything is OK
3109 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3110 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3111 */
3112 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3113 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3114 {
3115 int i, j = 0;
3116 int plen = 0; /* length of skb->head fragment */
3117 int ret;
3118 struct page *page;
3119 unsigned int offset;
3120
3121 BUG_ON(!from->head_frag && !hlen);
3122
3123 /* dont bother with small payloads */
3124 if (len <= skb_tailroom(to))
3125 return skb_copy_bits(from, 0, skb_put(to, len), len);
3126
3127 if (hlen) {
3128 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3129 if (unlikely(ret))
3130 return ret;
3131 len -= hlen;
3132 } else {
3133 plen = min_t(int, skb_headlen(from), len);
3134 if (plen) {
3135 page = virt_to_head_page(from->head);
3136 offset = from->data - (unsigned char *)page_address(page);
3137 __skb_fill_page_desc(to, 0, page, offset, plen);
3138 get_page(page);
3139 j = 1;
3140 len -= plen;
3141 }
3142 }
3143
3144 to->truesize += len + plen;
3145 to->len += len + plen;
3146 to->data_len += len + plen;
3147
3148 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3149 skb_tx_error(from);
3150 return -ENOMEM;
3151 }
3152 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3153
3154 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3155 int size;
3156
3157 if (!len)
3158 break;
3159 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3160 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3161 len);
3162 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3163 len -= size;
3164 skb_frag_ref(to, j);
3165 j++;
3166 }
3167 skb_shinfo(to)->nr_frags = j;
3168
3169 return 0;
3170 }
3171 EXPORT_SYMBOL_GPL(skb_zerocopy);
3172
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3173 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3174 {
3175 __wsum csum;
3176 long csstart;
3177
3178 if (skb->ip_summed == CHECKSUM_PARTIAL)
3179 csstart = skb_checksum_start_offset(skb);
3180 else
3181 csstart = skb_headlen(skb);
3182
3183 BUG_ON(csstart > skb_headlen(skb));
3184
3185 skb_copy_from_linear_data(skb, to, csstart);
3186
3187 csum = 0;
3188 if (csstart != skb->len)
3189 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3190 skb->len - csstart);
3191
3192 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3193 long csstuff = csstart + skb->csum_offset;
3194
3195 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3196 }
3197 }
3198 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3199
3200 /**
3201 * skb_dequeue - remove from the head of the queue
3202 * @list: list to dequeue from
3203 *
3204 * Remove the head of the list. The list lock is taken so the function
3205 * may be used safely with other locking list functions. The head item is
3206 * returned or %NULL if the list is empty.
3207 */
3208
skb_dequeue(struct sk_buff_head * list)3209 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3210 {
3211 unsigned long flags;
3212 struct sk_buff *result;
3213
3214 spin_lock_irqsave(&list->lock, flags);
3215 result = __skb_dequeue(list);
3216 spin_unlock_irqrestore(&list->lock, flags);
3217 return result;
3218 }
3219 EXPORT_SYMBOL(skb_dequeue);
3220
3221 /**
3222 * skb_dequeue_tail - remove from the tail of the queue
3223 * @list: list to dequeue from
3224 *
3225 * Remove the tail of the list. The list lock is taken so the function
3226 * may be used safely with other locking list functions. The tail item is
3227 * returned or %NULL if the list is empty.
3228 */
skb_dequeue_tail(struct sk_buff_head * list)3229 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3230 {
3231 unsigned long flags;
3232 struct sk_buff *result;
3233
3234 spin_lock_irqsave(&list->lock, flags);
3235 result = __skb_dequeue_tail(list);
3236 spin_unlock_irqrestore(&list->lock, flags);
3237 return result;
3238 }
3239 EXPORT_SYMBOL(skb_dequeue_tail);
3240
3241 /**
3242 * skb_queue_purge - empty a list
3243 * @list: list to empty
3244 *
3245 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3246 * the list and one reference dropped. This function takes the list
3247 * lock and is atomic with respect to other list locking functions.
3248 */
skb_queue_purge(struct sk_buff_head * list)3249 void skb_queue_purge(struct sk_buff_head *list)
3250 {
3251 struct sk_buff *skb;
3252 while ((skb = skb_dequeue(list)) != NULL)
3253 kfree_skb(skb);
3254 }
3255 EXPORT_SYMBOL(skb_queue_purge);
3256
3257 /**
3258 * skb_rbtree_purge - empty a skb rbtree
3259 * @root: root of the rbtree to empty
3260 * Return value: the sum of truesizes of all purged skbs.
3261 *
3262 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3263 * the list and one reference dropped. This function does not take
3264 * any lock. Synchronization should be handled by the caller (e.g., TCP
3265 * out-of-order queue is protected by the socket lock).
3266 */
skb_rbtree_purge(struct rb_root * root)3267 unsigned int skb_rbtree_purge(struct rb_root *root)
3268 {
3269 struct rb_node *p = rb_first(root);
3270 unsigned int sum = 0;
3271
3272 while (p) {
3273 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3274
3275 p = rb_next(p);
3276 rb_erase(&skb->rbnode, root);
3277 sum += skb->truesize;
3278 kfree_skb(skb);
3279 }
3280 return sum;
3281 }
3282
3283 /**
3284 * skb_queue_head - queue a buffer at the list head
3285 * @list: list to use
3286 * @newsk: buffer to queue
3287 *
3288 * Queue a buffer at the start of the list. This function takes the
3289 * list lock and can be used safely with other locking &sk_buff functions
3290 * safely.
3291 *
3292 * A buffer cannot be placed on two lists at the same time.
3293 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3294 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3295 {
3296 unsigned long flags;
3297
3298 spin_lock_irqsave(&list->lock, flags);
3299 __skb_queue_head(list, newsk);
3300 spin_unlock_irqrestore(&list->lock, flags);
3301 }
3302 EXPORT_SYMBOL(skb_queue_head);
3303
3304 /**
3305 * skb_queue_tail - queue a buffer at the list tail
3306 * @list: list to use
3307 * @newsk: buffer to queue
3308 *
3309 * Queue a buffer at the tail of the list. This function takes the
3310 * list lock and can be used safely with other locking &sk_buff functions
3311 * safely.
3312 *
3313 * A buffer cannot be placed on two lists at the same time.
3314 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3315 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3316 {
3317 unsigned long flags;
3318
3319 spin_lock_irqsave(&list->lock, flags);
3320 __skb_queue_tail(list, newsk);
3321 spin_unlock_irqrestore(&list->lock, flags);
3322 }
3323 EXPORT_SYMBOL(skb_queue_tail);
3324
3325 /**
3326 * skb_unlink - remove a buffer from a list
3327 * @skb: buffer to remove
3328 * @list: list to use
3329 *
3330 * Remove a packet from a list. The list locks are taken and this
3331 * function is atomic with respect to other list locked calls
3332 *
3333 * You must know what list the SKB is on.
3334 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3335 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3336 {
3337 unsigned long flags;
3338
3339 spin_lock_irqsave(&list->lock, flags);
3340 __skb_unlink(skb, list);
3341 spin_unlock_irqrestore(&list->lock, flags);
3342 }
3343 EXPORT_SYMBOL(skb_unlink);
3344
3345 /**
3346 * skb_append - append a buffer
3347 * @old: buffer to insert after
3348 * @newsk: buffer to insert
3349 * @list: list to use
3350 *
3351 * Place a packet after a given packet in a list. The list locks are taken
3352 * and this function is atomic with respect to other list locked calls.
3353 * A buffer cannot be placed on two lists at the same time.
3354 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3355 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3356 {
3357 unsigned long flags;
3358
3359 spin_lock_irqsave(&list->lock, flags);
3360 __skb_queue_after(list, old, newsk);
3361 spin_unlock_irqrestore(&list->lock, flags);
3362 }
3363 EXPORT_SYMBOL(skb_append);
3364
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3365 static inline void skb_split_inside_header(struct sk_buff *skb,
3366 struct sk_buff* skb1,
3367 const u32 len, const int pos)
3368 {
3369 int i;
3370
3371 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3372 pos - len);
3373 /* And move data appendix as is. */
3374 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3375 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3376
3377 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3378 skb_shinfo(skb)->nr_frags = 0;
3379 skb1->data_len = skb->data_len;
3380 skb1->len += skb1->data_len;
3381 skb->data_len = 0;
3382 skb->len = len;
3383 skb_set_tail_pointer(skb, len);
3384 }
3385
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3386 static inline void skb_split_no_header(struct sk_buff *skb,
3387 struct sk_buff* skb1,
3388 const u32 len, int pos)
3389 {
3390 int i, k = 0;
3391 const int nfrags = skb_shinfo(skb)->nr_frags;
3392
3393 skb_shinfo(skb)->nr_frags = 0;
3394 skb1->len = skb1->data_len = skb->len - len;
3395 skb->len = len;
3396 skb->data_len = len - pos;
3397
3398 for (i = 0; i < nfrags; i++) {
3399 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3400
3401 if (pos + size > len) {
3402 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3403
3404 if (pos < len) {
3405 /* Split frag.
3406 * We have two variants in this case:
3407 * 1. Move all the frag to the second
3408 * part, if it is possible. F.e.
3409 * this approach is mandatory for TUX,
3410 * where splitting is expensive.
3411 * 2. Split is accurately. We make this.
3412 */
3413 skb_frag_ref(skb, i);
3414 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3415 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3416 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3417 skb_shinfo(skb)->nr_frags++;
3418 }
3419 k++;
3420 } else
3421 skb_shinfo(skb)->nr_frags++;
3422 pos += size;
3423 }
3424 skb_shinfo(skb1)->nr_frags = k;
3425 }
3426
3427 /**
3428 * skb_split - Split fragmented skb to two parts at length len.
3429 * @skb: the buffer to split
3430 * @skb1: the buffer to receive the second part
3431 * @len: new length for skb
3432 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3433 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3434 {
3435 int pos = skb_headlen(skb);
3436 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3437
3438 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3439 skb_zerocopy_clone(skb1, skb, 0);
3440 if (len < pos) /* Split line is inside header. */
3441 skb_split_inside_header(skb, skb1, len, pos);
3442 else /* Second chunk has no header, nothing to copy. */
3443 skb_split_no_header(skb, skb1, len, pos);
3444 }
3445 EXPORT_SYMBOL(skb_split);
3446
3447 /* Shifting from/to a cloned skb is a no-go.
3448 *
3449 * Caller cannot keep skb_shinfo related pointers past calling here!
3450 */
skb_prepare_for_shift(struct sk_buff * skb)3451 static int skb_prepare_for_shift(struct sk_buff *skb)
3452 {
3453 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3454 }
3455
3456 /**
3457 * skb_shift - Shifts paged data partially from skb to another
3458 * @tgt: buffer into which tail data gets added
3459 * @skb: buffer from which the paged data comes from
3460 * @shiftlen: shift up to this many bytes
3461 *
3462 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3463 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3464 * It's up to caller to free skb if everything was shifted.
3465 *
3466 * If @tgt runs out of frags, the whole operation is aborted.
3467 *
3468 * Skb cannot include anything else but paged data while tgt is allowed
3469 * to have non-paged data as well.
3470 *
3471 * TODO: full sized shift could be optimized but that would need
3472 * specialized skb free'er to handle frags without up-to-date nr_frags.
3473 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3474 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3475 {
3476 int from, to, merge, todo;
3477 skb_frag_t *fragfrom, *fragto;
3478
3479 BUG_ON(shiftlen > skb->len);
3480
3481 if (skb_headlen(skb))
3482 return 0;
3483 if (skb_zcopy(tgt) || skb_zcopy(skb))
3484 return 0;
3485
3486 todo = shiftlen;
3487 from = 0;
3488 to = skb_shinfo(tgt)->nr_frags;
3489 fragfrom = &skb_shinfo(skb)->frags[from];
3490
3491 /* Actual merge is delayed until the point when we know we can
3492 * commit all, so that we don't have to undo partial changes
3493 */
3494 if (!to ||
3495 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3496 skb_frag_off(fragfrom))) {
3497 merge = -1;
3498 } else {
3499 merge = to - 1;
3500
3501 todo -= skb_frag_size(fragfrom);
3502 if (todo < 0) {
3503 if (skb_prepare_for_shift(skb) ||
3504 skb_prepare_for_shift(tgt))
3505 return 0;
3506
3507 /* All previous frag pointers might be stale! */
3508 fragfrom = &skb_shinfo(skb)->frags[from];
3509 fragto = &skb_shinfo(tgt)->frags[merge];
3510
3511 skb_frag_size_add(fragto, shiftlen);
3512 skb_frag_size_sub(fragfrom, shiftlen);
3513 skb_frag_off_add(fragfrom, shiftlen);
3514
3515 goto onlymerged;
3516 }
3517
3518 from++;
3519 }
3520
3521 /* Skip full, not-fitting skb to avoid expensive operations */
3522 if ((shiftlen == skb->len) &&
3523 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3524 return 0;
3525
3526 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3527 return 0;
3528
3529 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3530 if (to == MAX_SKB_FRAGS)
3531 return 0;
3532
3533 fragfrom = &skb_shinfo(skb)->frags[from];
3534 fragto = &skb_shinfo(tgt)->frags[to];
3535
3536 if (todo >= skb_frag_size(fragfrom)) {
3537 *fragto = *fragfrom;
3538 todo -= skb_frag_size(fragfrom);
3539 from++;
3540 to++;
3541
3542 } else {
3543 __skb_frag_ref(fragfrom);
3544 skb_frag_page_copy(fragto, fragfrom);
3545 skb_frag_off_copy(fragto, fragfrom);
3546 skb_frag_size_set(fragto, todo);
3547
3548 skb_frag_off_add(fragfrom, todo);
3549 skb_frag_size_sub(fragfrom, todo);
3550 todo = 0;
3551
3552 to++;
3553 break;
3554 }
3555 }
3556
3557 /* Ready to "commit" this state change to tgt */
3558 skb_shinfo(tgt)->nr_frags = to;
3559
3560 if (merge >= 0) {
3561 fragfrom = &skb_shinfo(skb)->frags[0];
3562 fragto = &skb_shinfo(tgt)->frags[merge];
3563
3564 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3565 __skb_frag_unref(fragfrom, skb->pp_recycle);
3566 }
3567
3568 /* Reposition in the original skb */
3569 to = 0;
3570 while (from < skb_shinfo(skb)->nr_frags)
3571 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3572 skb_shinfo(skb)->nr_frags = to;
3573
3574 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3575
3576 onlymerged:
3577 /* Most likely the tgt won't ever need its checksum anymore, skb on
3578 * the other hand might need it if it needs to be resent
3579 */
3580 tgt->ip_summed = CHECKSUM_PARTIAL;
3581 skb->ip_summed = CHECKSUM_PARTIAL;
3582
3583 /* Yak, is it really working this way? Some helper please? */
3584 skb->len -= shiftlen;
3585 skb->data_len -= shiftlen;
3586 skb->truesize -= shiftlen;
3587 tgt->len += shiftlen;
3588 tgt->data_len += shiftlen;
3589 tgt->truesize += shiftlen;
3590
3591 return shiftlen;
3592 }
3593
3594 /**
3595 * skb_prepare_seq_read - Prepare a sequential read of skb data
3596 * @skb: the buffer to read
3597 * @from: lower offset of data to be read
3598 * @to: upper offset of data to be read
3599 * @st: state variable
3600 *
3601 * Initializes the specified state variable. Must be called before
3602 * invoking skb_seq_read() for the first time.
3603 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3604 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3605 unsigned int to, struct skb_seq_state *st)
3606 {
3607 st->lower_offset = from;
3608 st->upper_offset = to;
3609 st->root_skb = st->cur_skb = skb;
3610 st->frag_idx = st->stepped_offset = 0;
3611 st->frag_data = NULL;
3612 st->frag_off = 0;
3613 }
3614 EXPORT_SYMBOL(skb_prepare_seq_read);
3615
3616 /**
3617 * skb_seq_read - Sequentially read skb data
3618 * @consumed: number of bytes consumed by the caller so far
3619 * @data: destination pointer for data to be returned
3620 * @st: state variable
3621 *
3622 * Reads a block of skb data at @consumed relative to the
3623 * lower offset specified to skb_prepare_seq_read(). Assigns
3624 * the head of the data block to @data and returns the length
3625 * of the block or 0 if the end of the skb data or the upper
3626 * offset has been reached.
3627 *
3628 * The caller is not required to consume all of the data
3629 * returned, i.e. @consumed is typically set to the number
3630 * of bytes already consumed and the next call to
3631 * skb_seq_read() will return the remaining part of the block.
3632 *
3633 * Note 1: The size of each block of data returned can be arbitrary,
3634 * this limitation is the cost for zerocopy sequential
3635 * reads of potentially non linear data.
3636 *
3637 * Note 2: Fragment lists within fragments are not implemented
3638 * at the moment, state->root_skb could be replaced with
3639 * a stack for this purpose.
3640 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3641 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3642 struct skb_seq_state *st)
3643 {
3644 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3645 skb_frag_t *frag;
3646
3647 if (unlikely(abs_offset >= st->upper_offset)) {
3648 if (st->frag_data) {
3649 kunmap_atomic(st->frag_data);
3650 st->frag_data = NULL;
3651 }
3652 return 0;
3653 }
3654
3655 next_skb:
3656 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3657
3658 if (abs_offset < block_limit && !st->frag_data) {
3659 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3660 return block_limit - abs_offset;
3661 }
3662
3663 if (st->frag_idx == 0 && !st->frag_data)
3664 st->stepped_offset += skb_headlen(st->cur_skb);
3665
3666 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3667 unsigned int pg_idx, pg_off, pg_sz;
3668
3669 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3670
3671 pg_idx = 0;
3672 pg_off = skb_frag_off(frag);
3673 pg_sz = skb_frag_size(frag);
3674
3675 if (skb_frag_must_loop(skb_frag_page(frag))) {
3676 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3677 pg_off = offset_in_page(pg_off + st->frag_off);
3678 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3679 PAGE_SIZE - pg_off);
3680 }
3681
3682 block_limit = pg_sz + st->stepped_offset;
3683 if (abs_offset < block_limit) {
3684 if (!st->frag_data)
3685 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3686
3687 *data = (u8 *)st->frag_data + pg_off +
3688 (abs_offset - st->stepped_offset);
3689
3690 return block_limit - abs_offset;
3691 }
3692
3693 if (st->frag_data) {
3694 kunmap_atomic(st->frag_data);
3695 st->frag_data = NULL;
3696 }
3697
3698 st->stepped_offset += pg_sz;
3699 st->frag_off += pg_sz;
3700 if (st->frag_off == skb_frag_size(frag)) {
3701 st->frag_off = 0;
3702 st->frag_idx++;
3703 }
3704 }
3705
3706 if (st->frag_data) {
3707 kunmap_atomic(st->frag_data);
3708 st->frag_data = NULL;
3709 }
3710
3711 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3712 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3713 st->frag_idx = 0;
3714 goto next_skb;
3715 } else if (st->cur_skb->next) {
3716 st->cur_skb = st->cur_skb->next;
3717 st->frag_idx = 0;
3718 goto next_skb;
3719 }
3720
3721 return 0;
3722 }
3723 EXPORT_SYMBOL(skb_seq_read);
3724
3725 /**
3726 * skb_abort_seq_read - Abort a sequential read of skb data
3727 * @st: state variable
3728 *
3729 * Must be called if skb_seq_read() was not called until it
3730 * returned 0.
3731 */
skb_abort_seq_read(struct skb_seq_state * st)3732 void skb_abort_seq_read(struct skb_seq_state *st)
3733 {
3734 if (st->frag_data)
3735 kunmap_atomic(st->frag_data);
3736 }
3737 EXPORT_SYMBOL(skb_abort_seq_read);
3738
3739 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3740
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3741 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3742 struct ts_config *conf,
3743 struct ts_state *state)
3744 {
3745 return skb_seq_read(offset, text, TS_SKB_CB(state));
3746 }
3747
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3748 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3749 {
3750 skb_abort_seq_read(TS_SKB_CB(state));
3751 }
3752
3753 /**
3754 * skb_find_text - Find a text pattern in skb data
3755 * @skb: the buffer to look in
3756 * @from: search offset
3757 * @to: search limit
3758 * @config: textsearch configuration
3759 *
3760 * Finds a pattern in the skb data according to the specified
3761 * textsearch configuration. Use textsearch_next() to retrieve
3762 * subsequent occurrences of the pattern. Returns the offset
3763 * to the first occurrence or UINT_MAX if no match was found.
3764 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3765 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3766 unsigned int to, struct ts_config *config)
3767 {
3768 struct ts_state state;
3769 unsigned int ret;
3770
3771 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3772
3773 config->get_next_block = skb_ts_get_next_block;
3774 config->finish = skb_ts_finish;
3775
3776 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3777
3778 ret = textsearch_find(config, &state);
3779 return (ret <= to - from ? ret : UINT_MAX);
3780 }
3781 EXPORT_SYMBOL(skb_find_text);
3782
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3783 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3784 int offset, size_t size)
3785 {
3786 int i = skb_shinfo(skb)->nr_frags;
3787
3788 if (skb_can_coalesce(skb, i, page, offset)) {
3789 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3790 } else if (i < MAX_SKB_FRAGS) {
3791 get_page(page);
3792 skb_fill_page_desc(skb, i, page, offset, size);
3793 } else {
3794 return -EMSGSIZE;
3795 }
3796
3797 return 0;
3798 }
3799 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3800
3801 /**
3802 * skb_pull_rcsum - pull skb and update receive checksum
3803 * @skb: buffer to update
3804 * @len: length of data pulled
3805 *
3806 * This function performs an skb_pull on the packet and updates
3807 * the CHECKSUM_COMPLETE checksum. It should be used on
3808 * receive path processing instead of skb_pull unless you know
3809 * that the checksum difference is zero (e.g., a valid IP header)
3810 * or you are setting ip_summed to CHECKSUM_NONE.
3811 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3812 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3813 {
3814 unsigned char *data = skb->data;
3815
3816 BUG_ON(len > skb->len);
3817 __skb_pull(skb, len);
3818 skb_postpull_rcsum(skb, data, len);
3819 return skb->data;
3820 }
3821 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3822
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3823 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3824 {
3825 skb_frag_t head_frag;
3826 struct page *page;
3827
3828 page = virt_to_head_page(frag_skb->head);
3829 __skb_frag_set_page(&head_frag, page);
3830 skb_frag_off_set(&head_frag, frag_skb->data -
3831 (unsigned char *)page_address(page));
3832 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3833 return head_frag;
3834 }
3835
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3836 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3837 netdev_features_t features,
3838 unsigned int offset)
3839 {
3840 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3841 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3842 unsigned int delta_truesize = 0;
3843 unsigned int delta_len = 0;
3844 struct sk_buff *tail = NULL;
3845 struct sk_buff *nskb, *tmp;
3846 int err;
3847
3848 skb_push(skb, -skb_network_offset(skb) + offset);
3849
3850 skb_shinfo(skb)->frag_list = NULL;
3851
3852 do {
3853 nskb = list_skb;
3854 list_skb = list_skb->next;
3855
3856 err = 0;
3857 if (skb_shared(nskb)) {
3858 tmp = skb_clone(nskb, GFP_ATOMIC);
3859 if (tmp) {
3860 consume_skb(nskb);
3861 nskb = tmp;
3862 err = skb_unclone(nskb, GFP_ATOMIC);
3863 } else {
3864 err = -ENOMEM;
3865 }
3866 }
3867
3868 if (!tail)
3869 skb->next = nskb;
3870 else
3871 tail->next = nskb;
3872
3873 if (unlikely(err)) {
3874 nskb->next = list_skb;
3875 goto err_linearize;
3876 }
3877
3878 tail = nskb;
3879
3880 delta_len += nskb->len;
3881 delta_truesize += nskb->truesize;
3882
3883 skb_push(nskb, -skb_network_offset(nskb) + offset);
3884
3885 skb_release_head_state(nskb);
3886 __copy_skb_header(nskb, skb);
3887
3888 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3889 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3890 nskb->data - tnl_hlen,
3891 offset + tnl_hlen);
3892
3893 if (skb_needs_linearize(nskb, features) &&
3894 __skb_linearize(nskb))
3895 goto err_linearize;
3896
3897 } while (list_skb);
3898
3899 skb->truesize = skb->truesize - delta_truesize;
3900 skb->data_len = skb->data_len - delta_len;
3901 skb->len = skb->len - delta_len;
3902
3903 skb_gso_reset(skb);
3904
3905 skb->prev = tail;
3906
3907 if (skb_needs_linearize(skb, features) &&
3908 __skb_linearize(skb))
3909 goto err_linearize;
3910
3911 skb_get(skb);
3912
3913 return skb;
3914
3915 err_linearize:
3916 kfree_skb_list(skb->next);
3917 skb->next = NULL;
3918 return ERR_PTR(-ENOMEM);
3919 }
3920 EXPORT_SYMBOL_GPL(skb_segment_list);
3921
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3922 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3923 {
3924 if (unlikely(p->len + skb->len >= 65536))
3925 return -E2BIG;
3926
3927 if (NAPI_GRO_CB(p)->last == p)
3928 skb_shinfo(p)->frag_list = skb;
3929 else
3930 NAPI_GRO_CB(p)->last->next = skb;
3931
3932 skb_pull(skb, skb_gro_offset(skb));
3933
3934 NAPI_GRO_CB(p)->last = skb;
3935 NAPI_GRO_CB(p)->count++;
3936 p->data_len += skb->len;
3937
3938 /* sk owenrship - if any - completely transferred to the aggregated packet */
3939 skb->destructor = NULL;
3940 p->truesize += skb->truesize;
3941 p->len += skb->len;
3942
3943 NAPI_GRO_CB(skb)->same_flow = 1;
3944
3945 return 0;
3946 }
3947
3948 /**
3949 * skb_segment - Perform protocol segmentation on skb.
3950 * @head_skb: buffer to segment
3951 * @features: features for the output path (see dev->features)
3952 *
3953 * This function performs segmentation on the given skb. It returns
3954 * a pointer to the first in a list of new skbs for the segments.
3955 * In case of error it returns ERR_PTR(err).
3956 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3957 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3958 netdev_features_t features)
3959 {
3960 struct sk_buff *segs = NULL;
3961 struct sk_buff *tail = NULL;
3962 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3963 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3964 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3965 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3966 struct sk_buff *frag_skb = head_skb;
3967 unsigned int offset = doffset;
3968 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3969 unsigned int partial_segs = 0;
3970 unsigned int headroom;
3971 unsigned int len = head_skb->len;
3972 __be16 proto;
3973 bool csum, sg;
3974 int nfrags = skb_shinfo(head_skb)->nr_frags;
3975 int err = -ENOMEM;
3976 int i = 0;
3977 int pos;
3978
3979 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3980 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3981 /* gso_size is untrusted, and we have a frag_list with a linear
3982 * non head_frag head.
3983 *
3984 * (we assume checking the first list_skb member suffices;
3985 * i.e if either of the list_skb members have non head_frag
3986 * head, then the first one has too).
3987 *
3988 * If head_skb's headlen does not fit requested gso_size, it
3989 * means that the frag_list members do NOT terminate on exact
3990 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3991 * sharing. Therefore we must fallback to copying the frag_list
3992 * skbs; we do so by disabling SG.
3993 */
3994 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3995 features &= ~NETIF_F_SG;
3996 }
3997
3998 __skb_push(head_skb, doffset);
3999 proto = skb_network_protocol(head_skb, NULL);
4000 if (unlikely(!proto))
4001 return ERR_PTR(-EINVAL);
4002
4003 sg = !!(features & NETIF_F_SG);
4004 csum = !!can_checksum_protocol(features, proto);
4005
4006 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4007 if (!(features & NETIF_F_GSO_PARTIAL)) {
4008 struct sk_buff *iter;
4009 unsigned int frag_len;
4010
4011 if (!list_skb ||
4012 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4013 goto normal;
4014
4015 /* If we get here then all the required
4016 * GSO features except frag_list are supported.
4017 * Try to split the SKB to multiple GSO SKBs
4018 * with no frag_list.
4019 * Currently we can do that only when the buffers don't
4020 * have a linear part and all the buffers except
4021 * the last are of the same length.
4022 */
4023 frag_len = list_skb->len;
4024 skb_walk_frags(head_skb, iter) {
4025 if (frag_len != iter->len && iter->next)
4026 goto normal;
4027 if (skb_headlen(iter) && !iter->head_frag)
4028 goto normal;
4029
4030 len -= iter->len;
4031 }
4032
4033 if (len != frag_len)
4034 goto normal;
4035 }
4036
4037 /* GSO partial only requires that we trim off any excess that
4038 * doesn't fit into an MSS sized block, so take care of that
4039 * now.
4040 */
4041 partial_segs = len / mss;
4042 if (partial_segs > 1)
4043 mss *= partial_segs;
4044 else
4045 partial_segs = 0;
4046 }
4047
4048 normal:
4049 headroom = skb_headroom(head_skb);
4050 pos = skb_headlen(head_skb);
4051
4052 do {
4053 struct sk_buff *nskb;
4054 skb_frag_t *nskb_frag;
4055 int hsize;
4056 int size;
4057
4058 if (unlikely(mss == GSO_BY_FRAGS)) {
4059 len = list_skb->len;
4060 } else {
4061 len = head_skb->len - offset;
4062 if (len > mss)
4063 len = mss;
4064 }
4065
4066 hsize = skb_headlen(head_skb) - offset;
4067
4068 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4069 (skb_headlen(list_skb) == len || sg)) {
4070 BUG_ON(skb_headlen(list_skb) > len);
4071
4072 i = 0;
4073 nfrags = skb_shinfo(list_skb)->nr_frags;
4074 frag = skb_shinfo(list_skb)->frags;
4075 frag_skb = list_skb;
4076 pos += skb_headlen(list_skb);
4077
4078 while (pos < offset + len) {
4079 BUG_ON(i >= nfrags);
4080
4081 size = skb_frag_size(frag);
4082 if (pos + size > offset + len)
4083 break;
4084
4085 i++;
4086 pos += size;
4087 frag++;
4088 }
4089
4090 nskb = skb_clone(list_skb, GFP_ATOMIC);
4091 list_skb = list_skb->next;
4092
4093 if (unlikely(!nskb))
4094 goto err;
4095
4096 if (unlikely(pskb_trim(nskb, len))) {
4097 kfree_skb(nskb);
4098 goto err;
4099 }
4100
4101 hsize = skb_end_offset(nskb);
4102 if (skb_cow_head(nskb, doffset + headroom)) {
4103 kfree_skb(nskb);
4104 goto err;
4105 }
4106
4107 nskb->truesize += skb_end_offset(nskb) - hsize;
4108 skb_release_head_state(nskb);
4109 __skb_push(nskb, doffset);
4110 } else {
4111 if (hsize < 0)
4112 hsize = 0;
4113 if (hsize > len || !sg)
4114 hsize = len;
4115
4116 nskb = __alloc_skb(hsize + doffset + headroom,
4117 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4118 NUMA_NO_NODE);
4119
4120 if (unlikely(!nskb))
4121 goto err;
4122
4123 skb_reserve(nskb, headroom);
4124 __skb_put(nskb, doffset);
4125 }
4126
4127 if (segs)
4128 tail->next = nskb;
4129 else
4130 segs = nskb;
4131 tail = nskb;
4132
4133 __copy_skb_header(nskb, head_skb);
4134
4135 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4136 skb_reset_mac_len(nskb);
4137
4138 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4139 nskb->data - tnl_hlen,
4140 doffset + tnl_hlen);
4141
4142 if (nskb->len == len + doffset)
4143 goto perform_csum_check;
4144
4145 if (!sg) {
4146 if (!csum) {
4147 if (!nskb->remcsum_offload)
4148 nskb->ip_summed = CHECKSUM_NONE;
4149 SKB_GSO_CB(nskb)->csum =
4150 skb_copy_and_csum_bits(head_skb, offset,
4151 skb_put(nskb,
4152 len),
4153 len);
4154 SKB_GSO_CB(nskb)->csum_start =
4155 skb_headroom(nskb) + doffset;
4156 } else {
4157 skb_copy_bits(head_skb, offset,
4158 skb_put(nskb, len),
4159 len);
4160 }
4161 continue;
4162 }
4163
4164 nskb_frag = skb_shinfo(nskb)->frags;
4165
4166 skb_copy_from_linear_data_offset(head_skb, offset,
4167 skb_put(nskb, hsize), hsize);
4168
4169 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4170 SKBFL_SHARED_FRAG;
4171
4172 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4173 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4174 goto err;
4175
4176 while (pos < offset + len) {
4177 if (i >= nfrags) {
4178 i = 0;
4179 nfrags = skb_shinfo(list_skb)->nr_frags;
4180 frag = skb_shinfo(list_skb)->frags;
4181 frag_skb = list_skb;
4182 if (!skb_headlen(list_skb)) {
4183 BUG_ON(!nfrags);
4184 } else {
4185 BUG_ON(!list_skb->head_frag);
4186
4187 /* to make room for head_frag. */
4188 i--;
4189 frag--;
4190 }
4191 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4192 skb_zerocopy_clone(nskb, frag_skb,
4193 GFP_ATOMIC))
4194 goto err;
4195
4196 list_skb = list_skb->next;
4197 }
4198
4199 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4200 MAX_SKB_FRAGS)) {
4201 net_warn_ratelimited(
4202 "skb_segment: too many frags: %u %u\n",
4203 pos, mss);
4204 err = -EINVAL;
4205 goto err;
4206 }
4207
4208 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4209 __skb_frag_ref(nskb_frag);
4210 size = skb_frag_size(nskb_frag);
4211
4212 if (pos < offset) {
4213 skb_frag_off_add(nskb_frag, offset - pos);
4214 skb_frag_size_sub(nskb_frag, offset - pos);
4215 }
4216
4217 skb_shinfo(nskb)->nr_frags++;
4218
4219 if (pos + size <= offset + len) {
4220 i++;
4221 frag++;
4222 pos += size;
4223 } else {
4224 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4225 goto skip_fraglist;
4226 }
4227
4228 nskb_frag++;
4229 }
4230
4231 skip_fraglist:
4232 nskb->data_len = len - hsize;
4233 nskb->len += nskb->data_len;
4234 nskb->truesize += nskb->data_len;
4235
4236 perform_csum_check:
4237 if (!csum) {
4238 if (skb_has_shared_frag(nskb) &&
4239 __skb_linearize(nskb))
4240 goto err;
4241
4242 if (!nskb->remcsum_offload)
4243 nskb->ip_summed = CHECKSUM_NONE;
4244 SKB_GSO_CB(nskb)->csum =
4245 skb_checksum(nskb, doffset,
4246 nskb->len - doffset, 0);
4247 SKB_GSO_CB(nskb)->csum_start =
4248 skb_headroom(nskb) + doffset;
4249 }
4250 } while ((offset += len) < head_skb->len);
4251
4252 /* Some callers want to get the end of the list.
4253 * Put it in segs->prev to avoid walking the list.
4254 * (see validate_xmit_skb_list() for example)
4255 */
4256 segs->prev = tail;
4257
4258 if (partial_segs) {
4259 struct sk_buff *iter;
4260 int type = skb_shinfo(head_skb)->gso_type;
4261 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4262
4263 /* Update type to add partial and then remove dodgy if set */
4264 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4265 type &= ~SKB_GSO_DODGY;
4266
4267 /* Update GSO info and prepare to start updating headers on
4268 * our way back down the stack of protocols.
4269 */
4270 for (iter = segs; iter; iter = iter->next) {
4271 skb_shinfo(iter)->gso_size = gso_size;
4272 skb_shinfo(iter)->gso_segs = partial_segs;
4273 skb_shinfo(iter)->gso_type = type;
4274 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4275 }
4276
4277 if (tail->len - doffset <= gso_size)
4278 skb_shinfo(tail)->gso_size = 0;
4279 else if (tail != segs)
4280 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4281 }
4282
4283 /* Following permits correct backpressure, for protocols
4284 * using skb_set_owner_w().
4285 * Idea is to tranfert ownership from head_skb to last segment.
4286 */
4287 if (head_skb->destructor == sock_wfree) {
4288 swap(tail->truesize, head_skb->truesize);
4289 swap(tail->destructor, head_skb->destructor);
4290 swap(tail->sk, head_skb->sk);
4291 }
4292 return segs;
4293
4294 err:
4295 kfree_skb_list(segs);
4296 return ERR_PTR(err);
4297 }
4298 EXPORT_SYMBOL_GPL(skb_segment);
4299
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4300 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4301 {
4302 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4303 unsigned int offset = skb_gro_offset(skb);
4304 unsigned int headlen = skb_headlen(skb);
4305 unsigned int len = skb_gro_len(skb);
4306 unsigned int delta_truesize;
4307 unsigned int new_truesize;
4308 struct sk_buff *lp;
4309
4310 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4311 return -E2BIG;
4312
4313 lp = NAPI_GRO_CB(p)->last;
4314 pinfo = skb_shinfo(lp);
4315
4316 if (headlen <= offset) {
4317 skb_frag_t *frag;
4318 skb_frag_t *frag2;
4319 int i = skbinfo->nr_frags;
4320 int nr_frags = pinfo->nr_frags + i;
4321
4322 if (nr_frags > MAX_SKB_FRAGS)
4323 goto merge;
4324
4325 offset -= headlen;
4326 pinfo->nr_frags = nr_frags;
4327 skbinfo->nr_frags = 0;
4328
4329 frag = pinfo->frags + nr_frags;
4330 frag2 = skbinfo->frags + i;
4331 do {
4332 *--frag = *--frag2;
4333 } while (--i);
4334
4335 skb_frag_off_add(frag, offset);
4336 skb_frag_size_sub(frag, offset);
4337
4338 /* all fragments truesize : remove (head size + sk_buff) */
4339 new_truesize = SKB_TRUESIZE(skb_end_offset(skb));
4340 delta_truesize = skb->truesize - new_truesize;
4341
4342 skb->truesize = new_truesize;
4343 skb->len -= skb->data_len;
4344 skb->data_len = 0;
4345
4346 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4347 goto done;
4348 } else if (skb->head_frag) {
4349 int nr_frags = pinfo->nr_frags;
4350 skb_frag_t *frag = pinfo->frags + nr_frags;
4351 struct page *page = virt_to_head_page(skb->head);
4352 unsigned int first_size = headlen - offset;
4353 unsigned int first_offset;
4354
4355 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4356 goto merge;
4357
4358 first_offset = skb->data -
4359 (unsigned char *)page_address(page) +
4360 offset;
4361
4362 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4363
4364 __skb_frag_set_page(frag, page);
4365 skb_frag_off_set(frag, first_offset);
4366 skb_frag_size_set(frag, first_size);
4367
4368 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4369 /* We dont need to clear skbinfo->nr_frags here */
4370
4371 new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff));
4372 delta_truesize = skb->truesize - new_truesize;
4373 skb->truesize = new_truesize;
4374 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4375 goto done;
4376 }
4377
4378 merge:
4379 /* sk owenrship - if any - completely transferred to the aggregated packet */
4380 skb->destructor = NULL;
4381 delta_truesize = skb->truesize;
4382 if (offset > headlen) {
4383 unsigned int eat = offset - headlen;
4384
4385 skb_frag_off_add(&skbinfo->frags[0], eat);
4386 skb_frag_size_sub(&skbinfo->frags[0], eat);
4387 skb->data_len -= eat;
4388 skb->len -= eat;
4389 offset = headlen;
4390 }
4391
4392 __skb_pull(skb, offset);
4393
4394 if (NAPI_GRO_CB(p)->last == p)
4395 skb_shinfo(p)->frag_list = skb;
4396 else
4397 NAPI_GRO_CB(p)->last->next = skb;
4398 NAPI_GRO_CB(p)->last = skb;
4399 __skb_header_release(skb);
4400 lp = p;
4401
4402 done:
4403 NAPI_GRO_CB(p)->count++;
4404 p->data_len += len;
4405 p->truesize += delta_truesize;
4406 p->len += len;
4407 if (lp != p) {
4408 lp->data_len += len;
4409 lp->truesize += delta_truesize;
4410 lp->len += len;
4411 }
4412 NAPI_GRO_CB(skb)->same_flow = 1;
4413 return 0;
4414 }
4415
4416 #ifdef CONFIG_SKB_EXTENSIONS
4417 #define SKB_EXT_ALIGN_VALUE 8
4418 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4419
4420 static const u8 skb_ext_type_len[] = {
4421 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4422 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4423 #endif
4424 #ifdef CONFIG_XFRM
4425 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4426 #endif
4427 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4428 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4429 #endif
4430 #if IS_ENABLED(CONFIG_MPTCP)
4431 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4432 #endif
4433 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4434 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4435 #endif
4436 };
4437
skb_ext_total_length(void)4438 static __always_inline unsigned int skb_ext_total_length(void)
4439 {
4440 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4441 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4442 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4443 #endif
4444 #ifdef CONFIG_XFRM
4445 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4446 #endif
4447 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4448 skb_ext_type_len[TC_SKB_EXT] +
4449 #endif
4450 #if IS_ENABLED(CONFIG_MPTCP)
4451 skb_ext_type_len[SKB_EXT_MPTCP] +
4452 #endif
4453 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4454 skb_ext_type_len[SKB_EXT_MCTP] +
4455 #endif
4456 0;
4457 }
4458
skb_extensions_init(void)4459 static void skb_extensions_init(void)
4460 {
4461 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4462 BUILD_BUG_ON(skb_ext_total_length() > 255);
4463
4464 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4465 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4466 0,
4467 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4468 NULL);
4469 }
4470 #else
skb_extensions_init(void)4471 static void skb_extensions_init(void) {}
4472 #endif
4473
skb_init(void)4474 void __init skb_init(void)
4475 {
4476 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4477 sizeof(struct sk_buff),
4478 0,
4479 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4480 offsetof(struct sk_buff, cb),
4481 sizeof_field(struct sk_buff, cb),
4482 NULL);
4483 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4484 sizeof(struct sk_buff_fclones),
4485 0,
4486 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4487 NULL);
4488 skb_extensions_init();
4489 }
4490
4491 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4492 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4493 unsigned int recursion_level)
4494 {
4495 int start = skb_headlen(skb);
4496 int i, copy = start - offset;
4497 struct sk_buff *frag_iter;
4498 int elt = 0;
4499
4500 if (unlikely(recursion_level >= 24))
4501 return -EMSGSIZE;
4502
4503 if (copy > 0) {
4504 if (copy > len)
4505 copy = len;
4506 sg_set_buf(sg, skb->data + offset, copy);
4507 elt++;
4508 if ((len -= copy) == 0)
4509 return elt;
4510 offset += copy;
4511 }
4512
4513 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4514 int end;
4515
4516 WARN_ON(start > offset + len);
4517
4518 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4519 if ((copy = end - offset) > 0) {
4520 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4521 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4522 return -EMSGSIZE;
4523
4524 if (copy > len)
4525 copy = len;
4526 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4527 skb_frag_off(frag) + offset - start);
4528 elt++;
4529 if (!(len -= copy))
4530 return elt;
4531 offset += copy;
4532 }
4533 start = end;
4534 }
4535
4536 skb_walk_frags(skb, frag_iter) {
4537 int end, ret;
4538
4539 WARN_ON(start > offset + len);
4540
4541 end = start + frag_iter->len;
4542 if ((copy = end - offset) > 0) {
4543 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4544 return -EMSGSIZE;
4545
4546 if (copy > len)
4547 copy = len;
4548 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4549 copy, recursion_level + 1);
4550 if (unlikely(ret < 0))
4551 return ret;
4552 elt += ret;
4553 if ((len -= copy) == 0)
4554 return elt;
4555 offset += copy;
4556 }
4557 start = end;
4558 }
4559 BUG_ON(len);
4560 return elt;
4561 }
4562
4563 /**
4564 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4565 * @skb: Socket buffer containing the buffers to be mapped
4566 * @sg: The scatter-gather list to map into
4567 * @offset: The offset into the buffer's contents to start mapping
4568 * @len: Length of buffer space to be mapped
4569 *
4570 * Fill the specified scatter-gather list with mappings/pointers into a
4571 * region of the buffer space attached to a socket buffer. Returns either
4572 * the number of scatterlist items used, or -EMSGSIZE if the contents
4573 * could not fit.
4574 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4575 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4576 {
4577 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4578
4579 if (nsg <= 0)
4580 return nsg;
4581
4582 sg_mark_end(&sg[nsg - 1]);
4583
4584 return nsg;
4585 }
4586 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4587
4588 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4589 * sglist without mark the sg which contain last skb data as the end.
4590 * So the caller can mannipulate sg list as will when padding new data after
4591 * the first call without calling sg_unmark_end to expend sg list.
4592 *
4593 * Scenario to use skb_to_sgvec_nomark:
4594 * 1. sg_init_table
4595 * 2. skb_to_sgvec_nomark(payload1)
4596 * 3. skb_to_sgvec_nomark(payload2)
4597 *
4598 * This is equivalent to:
4599 * 1. sg_init_table
4600 * 2. skb_to_sgvec(payload1)
4601 * 3. sg_unmark_end
4602 * 4. skb_to_sgvec(payload2)
4603 *
4604 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4605 * is more preferable.
4606 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4607 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4608 int offset, int len)
4609 {
4610 return __skb_to_sgvec(skb, sg, offset, len, 0);
4611 }
4612 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4613
4614
4615
4616 /**
4617 * skb_cow_data - Check that a socket buffer's data buffers are writable
4618 * @skb: The socket buffer to check.
4619 * @tailbits: Amount of trailing space to be added
4620 * @trailer: Returned pointer to the skb where the @tailbits space begins
4621 *
4622 * Make sure that the data buffers attached to a socket buffer are
4623 * writable. If they are not, private copies are made of the data buffers
4624 * and the socket buffer is set to use these instead.
4625 *
4626 * If @tailbits is given, make sure that there is space to write @tailbits
4627 * bytes of data beyond current end of socket buffer. @trailer will be
4628 * set to point to the skb in which this space begins.
4629 *
4630 * The number of scatterlist elements required to completely map the
4631 * COW'd and extended socket buffer will be returned.
4632 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4633 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4634 {
4635 int copyflag;
4636 int elt;
4637 struct sk_buff *skb1, **skb_p;
4638
4639 /* If skb is cloned or its head is paged, reallocate
4640 * head pulling out all the pages (pages are considered not writable
4641 * at the moment even if they are anonymous).
4642 */
4643 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4644 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4645 return -ENOMEM;
4646
4647 /* Easy case. Most of packets will go this way. */
4648 if (!skb_has_frag_list(skb)) {
4649 /* A little of trouble, not enough of space for trailer.
4650 * This should not happen, when stack is tuned to generate
4651 * good frames. OK, on miss we reallocate and reserve even more
4652 * space, 128 bytes is fair. */
4653
4654 if (skb_tailroom(skb) < tailbits &&
4655 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4656 return -ENOMEM;
4657
4658 /* Voila! */
4659 *trailer = skb;
4660 return 1;
4661 }
4662
4663 /* Misery. We are in troubles, going to mincer fragments... */
4664
4665 elt = 1;
4666 skb_p = &skb_shinfo(skb)->frag_list;
4667 copyflag = 0;
4668
4669 while ((skb1 = *skb_p) != NULL) {
4670 int ntail = 0;
4671
4672 /* The fragment is partially pulled by someone,
4673 * this can happen on input. Copy it and everything
4674 * after it. */
4675
4676 if (skb_shared(skb1))
4677 copyflag = 1;
4678
4679 /* If the skb is the last, worry about trailer. */
4680
4681 if (skb1->next == NULL && tailbits) {
4682 if (skb_shinfo(skb1)->nr_frags ||
4683 skb_has_frag_list(skb1) ||
4684 skb_tailroom(skb1) < tailbits)
4685 ntail = tailbits + 128;
4686 }
4687
4688 if (copyflag ||
4689 skb_cloned(skb1) ||
4690 ntail ||
4691 skb_shinfo(skb1)->nr_frags ||
4692 skb_has_frag_list(skb1)) {
4693 struct sk_buff *skb2;
4694
4695 /* Fuck, we are miserable poor guys... */
4696 if (ntail == 0)
4697 skb2 = skb_copy(skb1, GFP_ATOMIC);
4698 else
4699 skb2 = skb_copy_expand(skb1,
4700 skb_headroom(skb1),
4701 ntail,
4702 GFP_ATOMIC);
4703 if (unlikely(skb2 == NULL))
4704 return -ENOMEM;
4705
4706 if (skb1->sk)
4707 skb_set_owner_w(skb2, skb1->sk);
4708
4709 /* Looking around. Are we still alive?
4710 * OK, link new skb, drop old one */
4711
4712 skb2->next = skb1->next;
4713 *skb_p = skb2;
4714 kfree_skb(skb1);
4715 skb1 = skb2;
4716 }
4717 elt++;
4718 *trailer = skb1;
4719 skb_p = &skb1->next;
4720 }
4721
4722 return elt;
4723 }
4724 EXPORT_SYMBOL_GPL(skb_cow_data);
4725
sock_rmem_free(struct sk_buff * skb)4726 static void sock_rmem_free(struct sk_buff *skb)
4727 {
4728 struct sock *sk = skb->sk;
4729
4730 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4731 }
4732
skb_set_err_queue(struct sk_buff * skb)4733 static void skb_set_err_queue(struct sk_buff *skb)
4734 {
4735 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4736 * So, it is safe to (mis)use it to mark skbs on the error queue.
4737 */
4738 skb->pkt_type = PACKET_OUTGOING;
4739 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4740 }
4741
4742 /*
4743 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4744 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4745 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4746 {
4747 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4748 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4749 return -ENOMEM;
4750
4751 skb_orphan(skb);
4752 skb->sk = sk;
4753 skb->destructor = sock_rmem_free;
4754 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4755 skb_set_err_queue(skb);
4756
4757 /* before exiting rcu section, make sure dst is refcounted */
4758 skb_dst_force(skb);
4759
4760 skb_queue_tail(&sk->sk_error_queue, skb);
4761 if (!sock_flag(sk, SOCK_DEAD))
4762 sk_error_report(sk);
4763 return 0;
4764 }
4765 EXPORT_SYMBOL(sock_queue_err_skb);
4766
is_icmp_err_skb(const struct sk_buff * skb)4767 static bool is_icmp_err_skb(const struct sk_buff *skb)
4768 {
4769 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4770 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4771 }
4772
sock_dequeue_err_skb(struct sock * sk)4773 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4774 {
4775 struct sk_buff_head *q = &sk->sk_error_queue;
4776 struct sk_buff *skb, *skb_next = NULL;
4777 bool icmp_next = false;
4778 unsigned long flags;
4779
4780 spin_lock_irqsave(&q->lock, flags);
4781 skb = __skb_dequeue(q);
4782 if (skb && (skb_next = skb_peek(q))) {
4783 icmp_next = is_icmp_err_skb(skb_next);
4784 if (icmp_next)
4785 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4786 }
4787 spin_unlock_irqrestore(&q->lock, flags);
4788
4789 if (is_icmp_err_skb(skb) && !icmp_next)
4790 sk->sk_err = 0;
4791
4792 if (skb_next)
4793 sk_error_report(sk);
4794
4795 return skb;
4796 }
4797 EXPORT_SYMBOL(sock_dequeue_err_skb);
4798
4799 /**
4800 * skb_clone_sk - create clone of skb, and take reference to socket
4801 * @skb: the skb to clone
4802 *
4803 * This function creates a clone of a buffer that holds a reference on
4804 * sk_refcnt. Buffers created via this function are meant to be
4805 * returned using sock_queue_err_skb, or free via kfree_skb.
4806 *
4807 * When passing buffers allocated with this function to sock_queue_err_skb
4808 * it is necessary to wrap the call with sock_hold/sock_put in order to
4809 * prevent the socket from being released prior to being enqueued on
4810 * the sk_error_queue.
4811 */
skb_clone_sk(struct sk_buff * skb)4812 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4813 {
4814 struct sock *sk = skb->sk;
4815 struct sk_buff *clone;
4816
4817 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4818 return NULL;
4819
4820 clone = skb_clone(skb, GFP_ATOMIC);
4821 if (!clone) {
4822 sock_put(sk);
4823 return NULL;
4824 }
4825
4826 clone->sk = sk;
4827 clone->destructor = sock_efree;
4828
4829 return clone;
4830 }
4831 EXPORT_SYMBOL(skb_clone_sk);
4832
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4833 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4834 struct sock *sk,
4835 int tstype,
4836 bool opt_stats)
4837 {
4838 struct sock_exterr_skb *serr;
4839 int err;
4840
4841 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4842
4843 serr = SKB_EXT_ERR(skb);
4844 memset(serr, 0, sizeof(*serr));
4845 serr->ee.ee_errno = ENOMSG;
4846 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4847 serr->ee.ee_info = tstype;
4848 serr->opt_stats = opt_stats;
4849 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4850 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4851 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4852 if (sk->sk_protocol == IPPROTO_TCP &&
4853 sk->sk_type == SOCK_STREAM)
4854 serr->ee.ee_data -= sk->sk_tskey;
4855 }
4856
4857 err = sock_queue_err_skb(sk, skb);
4858
4859 if (err)
4860 kfree_skb(skb);
4861 }
4862
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4863 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4864 {
4865 bool ret;
4866
4867 if (likely(sysctl_tstamp_allow_data || tsonly))
4868 return true;
4869
4870 read_lock_bh(&sk->sk_callback_lock);
4871 ret = sk->sk_socket && sk->sk_socket->file &&
4872 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4873 read_unlock_bh(&sk->sk_callback_lock);
4874 return ret;
4875 }
4876
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4877 void skb_complete_tx_timestamp(struct sk_buff *skb,
4878 struct skb_shared_hwtstamps *hwtstamps)
4879 {
4880 struct sock *sk = skb->sk;
4881
4882 if (!skb_may_tx_timestamp(sk, false))
4883 goto err;
4884
4885 /* Take a reference to prevent skb_orphan() from freeing the socket,
4886 * but only if the socket refcount is not zero.
4887 */
4888 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4889 *skb_hwtstamps(skb) = *hwtstamps;
4890 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4891 sock_put(sk);
4892 return;
4893 }
4894
4895 err:
4896 kfree_skb(skb);
4897 }
4898 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4899
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4900 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4901 const struct sk_buff *ack_skb,
4902 struct skb_shared_hwtstamps *hwtstamps,
4903 struct sock *sk, int tstype)
4904 {
4905 struct sk_buff *skb;
4906 bool tsonly, opt_stats = false;
4907
4908 if (!sk)
4909 return;
4910
4911 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4912 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4913 return;
4914
4915 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4916 if (!skb_may_tx_timestamp(sk, tsonly))
4917 return;
4918
4919 if (tsonly) {
4920 #ifdef CONFIG_INET
4921 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4922 sk->sk_protocol == IPPROTO_TCP &&
4923 sk->sk_type == SOCK_STREAM) {
4924 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4925 ack_skb);
4926 opt_stats = true;
4927 } else
4928 #endif
4929 skb = alloc_skb(0, GFP_ATOMIC);
4930 } else {
4931 skb = skb_clone(orig_skb, GFP_ATOMIC);
4932 }
4933 if (!skb)
4934 return;
4935
4936 if (tsonly) {
4937 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4938 SKBTX_ANY_TSTAMP;
4939 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4940 }
4941
4942 if (hwtstamps)
4943 *skb_hwtstamps(skb) = *hwtstamps;
4944 else
4945 skb->tstamp = ktime_get_real();
4946
4947 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4948 }
4949 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4950
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4951 void skb_tstamp_tx(struct sk_buff *orig_skb,
4952 struct skb_shared_hwtstamps *hwtstamps)
4953 {
4954 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4955 SCM_TSTAMP_SND);
4956 }
4957 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4958
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4959 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4960 {
4961 struct sock *sk = skb->sk;
4962 struct sock_exterr_skb *serr;
4963 int err = 1;
4964
4965 skb->wifi_acked_valid = 1;
4966 skb->wifi_acked = acked;
4967
4968 serr = SKB_EXT_ERR(skb);
4969 memset(serr, 0, sizeof(*serr));
4970 serr->ee.ee_errno = ENOMSG;
4971 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4972
4973 /* Take a reference to prevent skb_orphan() from freeing the socket,
4974 * but only if the socket refcount is not zero.
4975 */
4976 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4977 err = sock_queue_err_skb(sk, skb);
4978 sock_put(sk);
4979 }
4980 if (err)
4981 kfree_skb(skb);
4982 }
4983 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4984
4985 /**
4986 * skb_partial_csum_set - set up and verify partial csum values for packet
4987 * @skb: the skb to set
4988 * @start: the number of bytes after skb->data to start checksumming.
4989 * @off: the offset from start to place the checksum.
4990 *
4991 * For untrusted partially-checksummed packets, we need to make sure the values
4992 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4993 *
4994 * This function checks and sets those values and skb->ip_summed: if this
4995 * returns false you should drop the packet.
4996 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4997 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4998 {
4999 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5000 u32 csum_start = skb_headroom(skb) + (u32)start;
5001
5002 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5003 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5004 start, off, skb_headroom(skb), skb_headlen(skb));
5005 return false;
5006 }
5007 skb->ip_summed = CHECKSUM_PARTIAL;
5008 skb->csum_start = csum_start;
5009 skb->csum_offset = off;
5010 skb_set_transport_header(skb, start);
5011 return true;
5012 }
5013 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5014
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5015 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5016 unsigned int max)
5017 {
5018 if (skb_headlen(skb) >= len)
5019 return 0;
5020
5021 /* If we need to pullup then pullup to the max, so we
5022 * won't need to do it again.
5023 */
5024 if (max > skb->len)
5025 max = skb->len;
5026
5027 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5028 return -ENOMEM;
5029
5030 if (skb_headlen(skb) < len)
5031 return -EPROTO;
5032
5033 return 0;
5034 }
5035
5036 #define MAX_TCP_HDR_LEN (15 * 4)
5037
skb_checksum_setup_ip(struct sk_buff * skb,typeof (IPPROTO_IP)proto,unsigned int off)5038 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5039 typeof(IPPROTO_IP) proto,
5040 unsigned int off)
5041 {
5042 int err;
5043
5044 switch (proto) {
5045 case IPPROTO_TCP:
5046 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5047 off + MAX_TCP_HDR_LEN);
5048 if (!err && !skb_partial_csum_set(skb, off,
5049 offsetof(struct tcphdr,
5050 check)))
5051 err = -EPROTO;
5052 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5053
5054 case IPPROTO_UDP:
5055 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5056 off + sizeof(struct udphdr));
5057 if (!err && !skb_partial_csum_set(skb, off,
5058 offsetof(struct udphdr,
5059 check)))
5060 err = -EPROTO;
5061 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5062 }
5063
5064 return ERR_PTR(-EPROTO);
5065 }
5066
5067 /* This value should be large enough to cover a tagged ethernet header plus
5068 * maximally sized IP and TCP or UDP headers.
5069 */
5070 #define MAX_IP_HDR_LEN 128
5071
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5072 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5073 {
5074 unsigned int off;
5075 bool fragment;
5076 __sum16 *csum;
5077 int err;
5078
5079 fragment = false;
5080
5081 err = skb_maybe_pull_tail(skb,
5082 sizeof(struct iphdr),
5083 MAX_IP_HDR_LEN);
5084 if (err < 0)
5085 goto out;
5086
5087 if (ip_is_fragment(ip_hdr(skb)))
5088 fragment = true;
5089
5090 off = ip_hdrlen(skb);
5091
5092 err = -EPROTO;
5093
5094 if (fragment)
5095 goto out;
5096
5097 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5098 if (IS_ERR(csum))
5099 return PTR_ERR(csum);
5100
5101 if (recalculate)
5102 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5103 ip_hdr(skb)->daddr,
5104 skb->len - off,
5105 ip_hdr(skb)->protocol, 0);
5106 err = 0;
5107
5108 out:
5109 return err;
5110 }
5111
5112 /* This value should be large enough to cover a tagged ethernet header plus
5113 * an IPv6 header, all options, and a maximal TCP or UDP header.
5114 */
5115 #define MAX_IPV6_HDR_LEN 256
5116
5117 #define OPT_HDR(type, skb, off) \
5118 (type *)(skb_network_header(skb) + (off))
5119
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5120 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5121 {
5122 int err;
5123 u8 nexthdr;
5124 unsigned int off;
5125 unsigned int len;
5126 bool fragment;
5127 bool done;
5128 __sum16 *csum;
5129
5130 fragment = false;
5131 done = false;
5132
5133 off = sizeof(struct ipv6hdr);
5134
5135 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5136 if (err < 0)
5137 goto out;
5138
5139 nexthdr = ipv6_hdr(skb)->nexthdr;
5140
5141 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5142 while (off <= len && !done) {
5143 switch (nexthdr) {
5144 case IPPROTO_DSTOPTS:
5145 case IPPROTO_HOPOPTS:
5146 case IPPROTO_ROUTING: {
5147 struct ipv6_opt_hdr *hp;
5148
5149 err = skb_maybe_pull_tail(skb,
5150 off +
5151 sizeof(struct ipv6_opt_hdr),
5152 MAX_IPV6_HDR_LEN);
5153 if (err < 0)
5154 goto out;
5155
5156 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5157 nexthdr = hp->nexthdr;
5158 off += ipv6_optlen(hp);
5159 break;
5160 }
5161 case IPPROTO_AH: {
5162 struct ip_auth_hdr *hp;
5163
5164 err = skb_maybe_pull_tail(skb,
5165 off +
5166 sizeof(struct ip_auth_hdr),
5167 MAX_IPV6_HDR_LEN);
5168 if (err < 0)
5169 goto out;
5170
5171 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5172 nexthdr = hp->nexthdr;
5173 off += ipv6_authlen(hp);
5174 break;
5175 }
5176 case IPPROTO_FRAGMENT: {
5177 struct frag_hdr *hp;
5178
5179 err = skb_maybe_pull_tail(skb,
5180 off +
5181 sizeof(struct frag_hdr),
5182 MAX_IPV6_HDR_LEN);
5183 if (err < 0)
5184 goto out;
5185
5186 hp = OPT_HDR(struct frag_hdr, skb, off);
5187
5188 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5189 fragment = true;
5190
5191 nexthdr = hp->nexthdr;
5192 off += sizeof(struct frag_hdr);
5193 break;
5194 }
5195 default:
5196 done = true;
5197 break;
5198 }
5199 }
5200
5201 err = -EPROTO;
5202
5203 if (!done || fragment)
5204 goto out;
5205
5206 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5207 if (IS_ERR(csum))
5208 return PTR_ERR(csum);
5209
5210 if (recalculate)
5211 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5212 &ipv6_hdr(skb)->daddr,
5213 skb->len - off, nexthdr, 0);
5214 err = 0;
5215
5216 out:
5217 return err;
5218 }
5219
5220 /**
5221 * skb_checksum_setup - set up partial checksum offset
5222 * @skb: the skb to set up
5223 * @recalculate: if true the pseudo-header checksum will be recalculated
5224 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5225 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5226 {
5227 int err;
5228
5229 switch (skb->protocol) {
5230 case htons(ETH_P_IP):
5231 err = skb_checksum_setup_ipv4(skb, recalculate);
5232 break;
5233
5234 case htons(ETH_P_IPV6):
5235 err = skb_checksum_setup_ipv6(skb, recalculate);
5236 break;
5237
5238 default:
5239 err = -EPROTO;
5240 break;
5241 }
5242
5243 return err;
5244 }
5245 EXPORT_SYMBOL(skb_checksum_setup);
5246
5247 /**
5248 * skb_checksum_maybe_trim - maybe trims the given skb
5249 * @skb: the skb to check
5250 * @transport_len: the data length beyond the network header
5251 *
5252 * Checks whether the given skb has data beyond the given transport length.
5253 * If so, returns a cloned skb trimmed to this transport length.
5254 * Otherwise returns the provided skb. Returns NULL in error cases
5255 * (e.g. transport_len exceeds skb length or out-of-memory).
5256 *
5257 * Caller needs to set the skb transport header and free any returned skb if it
5258 * differs from the provided skb.
5259 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5260 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5261 unsigned int transport_len)
5262 {
5263 struct sk_buff *skb_chk;
5264 unsigned int len = skb_transport_offset(skb) + transport_len;
5265 int ret;
5266
5267 if (skb->len < len)
5268 return NULL;
5269 else if (skb->len == len)
5270 return skb;
5271
5272 skb_chk = skb_clone(skb, GFP_ATOMIC);
5273 if (!skb_chk)
5274 return NULL;
5275
5276 ret = pskb_trim_rcsum(skb_chk, len);
5277 if (ret) {
5278 kfree_skb(skb_chk);
5279 return NULL;
5280 }
5281
5282 return skb_chk;
5283 }
5284
5285 /**
5286 * skb_checksum_trimmed - validate checksum of an skb
5287 * @skb: the skb to check
5288 * @transport_len: the data length beyond the network header
5289 * @skb_chkf: checksum function to use
5290 *
5291 * Applies the given checksum function skb_chkf to the provided skb.
5292 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5293 *
5294 * If the skb has data beyond the given transport length, then a
5295 * trimmed & cloned skb is checked and returned.
5296 *
5297 * Caller needs to set the skb transport header and free any returned skb if it
5298 * differs from the provided skb.
5299 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5300 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5301 unsigned int transport_len,
5302 __sum16(*skb_chkf)(struct sk_buff *skb))
5303 {
5304 struct sk_buff *skb_chk;
5305 unsigned int offset = skb_transport_offset(skb);
5306 __sum16 ret;
5307
5308 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5309 if (!skb_chk)
5310 goto err;
5311
5312 if (!pskb_may_pull(skb_chk, offset))
5313 goto err;
5314
5315 skb_pull_rcsum(skb_chk, offset);
5316 ret = skb_chkf(skb_chk);
5317 skb_push_rcsum(skb_chk, offset);
5318
5319 if (ret)
5320 goto err;
5321
5322 return skb_chk;
5323
5324 err:
5325 if (skb_chk && skb_chk != skb)
5326 kfree_skb(skb_chk);
5327
5328 return NULL;
5329
5330 }
5331 EXPORT_SYMBOL(skb_checksum_trimmed);
5332
__skb_warn_lro_forwarding(const struct sk_buff * skb)5333 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5334 {
5335 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5336 skb->dev->name);
5337 }
5338 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5339
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5340 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5341 {
5342 if (head_stolen) {
5343 skb_release_head_state(skb);
5344 kmem_cache_free(skbuff_head_cache, skb);
5345 } else {
5346 __kfree_skb(skb);
5347 }
5348 }
5349 EXPORT_SYMBOL(kfree_skb_partial);
5350
5351 /**
5352 * skb_try_coalesce - try to merge skb to prior one
5353 * @to: prior buffer
5354 * @from: buffer to add
5355 * @fragstolen: pointer to boolean
5356 * @delta_truesize: how much more was allocated than was requested
5357 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5358 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5359 bool *fragstolen, int *delta_truesize)
5360 {
5361 struct skb_shared_info *to_shinfo, *from_shinfo;
5362 int i, delta, len = from->len;
5363
5364 *fragstolen = false;
5365
5366 if (skb_cloned(to))
5367 return false;
5368
5369 /* The page pool signature of struct page will eventually figure out
5370 * which pages can be recycled or not but for now let's prohibit slab
5371 * allocated and page_pool allocated SKBs from being coalesced.
5372 */
5373 if (to->pp_recycle != from->pp_recycle)
5374 return false;
5375
5376 if (len <= skb_tailroom(to)) {
5377 if (len)
5378 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5379 *delta_truesize = 0;
5380 return true;
5381 }
5382
5383 to_shinfo = skb_shinfo(to);
5384 from_shinfo = skb_shinfo(from);
5385 if (to_shinfo->frag_list || from_shinfo->frag_list)
5386 return false;
5387 if (skb_zcopy(to) || skb_zcopy(from))
5388 return false;
5389
5390 if (skb_headlen(from) != 0) {
5391 struct page *page;
5392 unsigned int offset;
5393
5394 if (to_shinfo->nr_frags +
5395 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5396 return false;
5397
5398 if (skb_head_is_locked(from))
5399 return false;
5400
5401 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5402
5403 page = virt_to_head_page(from->head);
5404 offset = from->data - (unsigned char *)page_address(page);
5405
5406 skb_fill_page_desc(to, to_shinfo->nr_frags,
5407 page, offset, skb_headlen(from));
5408 *fragstolen = true;
5409 } else {
5410 if (to_shinfo->nr_frags +
5411 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5412 return false;
5413
5414 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5415 }
5416
5417 WARN_ON_ONCE(delta < len);
5418
5419 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5420 from_shinfo->frags,
5421 from_shinfo->nr_frags * sizeof(skb_frag_t));
5422 to_shinfo->nr_frags += from_shinfo->nr_frags;
5423
5424 if (!skb_cloned(from))
5425 from_shinfo->nr_frags = 0;
5426
5427 /* if the skb is not cloned this does nothing
5428 * since we set nr_frags to 0.
5429 */
5430 for (i = 0; i < from_shinfo->nr_frags; i++)
5431 __skb_frag_ref(&from_shinfo->frags[i]);
5432
5433 to->truesize += delta;
5434 to->len += len;
5435 to->data_len += len;
5436
5437 *delta_truesize = delta;
5438 return true;
5439 }
5440 EXPORT_SYMBOL(skb_try_coalesce);
5441
5442 /**
5443 * skb_scrub_packet - scrub an skb
5444 *
5445 * @skb: buffer to clean
5446 * @xnet: packet is crossing netns
5447 *
5448 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5449 * into/from a tunnel. Some information have to be cleared during these
5450 * operations.
5451 * skb_scrub_packet can also be used to clean a skb before injecting it in
5452 * another namespace (@xnet == true). We have to clear all information in the
5453 * skb that could impact namespace isolation.
5454 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5455 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5456 {
5457 skb->pkt_type = PACKET_HOST;
5458 skb->skb_iif = 0;
5459 skb->ignore_df = 0;
5460 skb_dst_drop(skb);
5461 skb_ext_reset(skb);
5462 nf_reset_ct(skb);
5463 nf_reset_trace(skb);
5464
5465 #ifdef CONFIG_NET_SWITCHDEV
5466 skb->offload_fwd_mark = 0;
5467 skb->offload_l3_fwd_mark = 0;
5468 #endif
5469
5470 if (!xnet)
5471 return;
5472
5473 ipvs_reset(skb);
5474 skb->mark = 0;
5475 skb->tstamp = 0;
5476 }
5477 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5478
5479 /**
5480 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5481 *
5482 * @skb: GSO skb
5483 *
5484 * skb_gso_transport_seglen is used to determine the real size of the
5485 * individual segments, including Layer4 headers (TCP/UDP).
5486 *
5487 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5488 */
skb_gso_transport_seglen(const struct sk_buff * skb)5489 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5490 {
5491 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5492 unsigned int thlen = 0;
5493
5494 if (skb->encapsulation) {
5495 thlen = skb_inner_transport_header(skb) -
5496 skb_transport_header(skb);
5497
5498 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5499 thlen += inner_tcp_hdrlen(skb);
5500 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5501 thlen = tcp_hdrlen(skb);
5502 } else if (unlikely(skb_is_gso_sctp(skb))) {
5503 thlen = sizeof(struct sctphdr);
5504 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5505 thlen = sizeof(struct udphdr);
5506 }
5507 /* UFO sets gso_size to the size of the fragmentation
5508 * payload, i.e. the size of the L4 (UDP) header is already
5509 * accounted for.
5510 */
5511 return thlen + shinfo->gso_size;
5512 }
5513
5514 /**
5515 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5516 *
5517 * @skb: GSO skb
5518 *
5519 * skb_gso_network_seglen is used to determine the real size of the
5520 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5521 *
5522 * The MAC/L2 header is not accounted for.
5523 */
skb_gso_network_seglen(const struct sk_buff * skb)5524 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5525 {
5526 unsigned int hdr_len = skb_transport_header(skb) -
5527 skb_network_header(skb);
5528
5529 return hdr_len + skb_gso_transport_seglen(skb);
5530 }
5531
5532 /**
5533 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5534 *
5535 * @skb: GSO skb
5536 *
5537 * skb_gso_mac_seglen is used to determine the real size of the
5538 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5539 * headers (TCP/UDP).
5540 */
skb_gso_mac_seglen(const struct sk_buff * skb)5541 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5542 {
5543 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5544
5545 return hdr_len + skb_gso_transport_seglen(skb);
5546 }
5547
5548 /**
5549 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5550 *
5551 * There are a couple of instances where we have a GSO skb, and we
5552 * want to determine what size it would be after it is segmented.
5553 *
5554 * We might want to check:
5555 * - L3+L4+payload size (e.g. IP forwarding)
5556 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5557 *
5558 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5559 *
5560 * @skb: GSO skb
5561 *
5562 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5563 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5564 *
5565 * @max_len: The maximum permissible length.
5566 *
5567 * Returns true if the segmented length <= max length.
5568 */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5569 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5570 unsigned int seg_len,
5571 unsigned int max_len) {
5572 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5573 const struct sk_buff *iter;
5574
5575 if (shinfo->gso_size != GSO_BY_FRAGS)
5576 return seg_len <= max_len;
5577
5578 /* Undo this so we can re-use header sizes */
5579 seg_len -= GSO_BY_FRAGS;
5580
5581 skb_walk_frags(skb, iter) {
5582 if (seg_len + skb_headlen(iter) > max_len)
5583 return false;
5584 }
5585
5586 return true;
5587 }
5588
5589 /**
5590 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5591 *
5592 * @skb: GSO skb
5593 * @mtu: MTU to validate against
5594 *
5595 * skb_gso_validate_network_len validates if a given skb will fit a
5596 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5597 * payload.
5598 */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5599 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5600 {
5601 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5602 }
5603 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5604
5605 /**
5606 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5607 *
5608 * @skb: GSO skb
5609 * @len: length to validate against
5610 *
5611 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5612 * length once split, including L2, L3 and L4 headers and the payload.
5613 */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5614 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5615 {
5616 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5617 }
5618 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5619
skb_reorder_vlan_header(struct sk_buff * skb)5620 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5621 {
5622 int mac_len, meta_len;
5623 void *meta;
5624
5625 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5626 kfree_skb(skb);
5627 return NULL;
5628 }
5629
5630 mac_len = skb->data - skb_mac_header(skb);
5631 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5632 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5633 mac_len - VLAN_HLEN - ETH_TLEN);
5634 }
5635
5636 meta_len = skb_metadata_len(skb);
5637 if (meta_len) {
5638 meta = skb_metadata_end(skb) - meta_len;
5639 memmove(meta + VLAN_HLEN, meta, meta_len);
5640 }
5641
5642 skb->mac_header += VLAN_HLEN;
5643 return skb;
5644 }
5645
skb_vlan_untag(struct sk_buff * skb)5646 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5647 {
5648 struct vlan_hdr *vhdr;
5649 u16 vlan_tci;
5650
5651 if (unlikely(skb_vlan_tag_present(skb))) {
5652 /* vlan_tci is already set-up so leave this for another time */
5653 return skb;
5654 }
5655
5656 skb = skb_share_check(skb, GFP_ATOMIC);
5657 if (unlikely(!skb))
5658 goto err_free;
5659 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5660 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5661 goto err_free;
5662
5663 vhdr = (struct vlan_hdr *)skb->data;
5664 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5665 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5666
5667 skb_pull_rcsum(skb, VLAN_HLEN);
5668 vlan_set_encap_proto(skb, vhdr);
5669
5670 skb = skb_reorder_vlan_header(skb);
5671 if (unlikely(!skb))
5672 goto err_free;
5673
5674 skb_reset_network_header(skb);
5675 if (!skb_transport_header_was_set(skb))
5676 skb_reset_transport_header(skb);
5677 skb_reset_mac_len(skb);
5678
5679 return skb;
5680
5681 err_free:
5682 kfree_skb(skb);
5683 return NULL;
5684 }
5685 EXPORT_SYMBOL(skb_vlan_untag);
5686
skb_ensure_writable(struct sk_buff * skb,int write_len)5687 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5688 {
5689 if (!pskb_may_pull(skb, write_len))
5690 return -ENOMEM;
5691
5692 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5693 return 0;
5694
5695 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5696 }
5697 EXPORT_SYMBOL(skb_ensure_writable);
5698
5699 /* remove VLAN header from packet and update csum accordingly.
5700 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5701 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5702 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5703 {
5704 struct vlan_hdr *vhdr;
5705 int offset = skb->data - skb_mac_header(skb);
5706 int err;
5707
5708 if (WARN_ONCE(offset,
5709 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5710 offset)) {
5711 return -EINVAL;
5712 }
5713
5714 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5715 if (unlikely(err))
5716 return err;
5717
5718 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5719
5720 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5721 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5722
5723 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5724 __skb_pull(skb, VLAN_HLEN);
5725
5726 vlan_set_encap_proto(skb, vhdr);
5727 skb->mac_header += VLAN_HLEN;
5728
5729 if (skb_network_offset(skb) < ETH_HLEN)
5730 skb_set_network_header(skb, ETH_HLEN);
5731
5732 skb_reset_mac_len(skb);
5733
5734 return err;
5735 }
5736 EXPORT_SYMBOL(__skb_vlan_pop);
5737
5738 /* Pop a vlan tag either from hwaccel or from payload.
5739 * Expects skb->data at mac header.
5740 */
skb_vlan_pop(struct sk_buff * skb)5741 int skb_vlan_pop(struct sk_buff *skb)
5742 {
5743 u16 vlan_tci;
5744 __be16 vlan_proto;
5745 int err;
5746
5747 if (likely(skb_vlan_tag_present(skb))) {
5748 __vlan_hwaccel_clear_tag(skb);
5749 } else {
5750 if (unlikely(!eth_type_vlan(skb->protocol)))
5751 return 0;
5752
5753 err = __skb_vlan_pop(skb, &vlan_tci);
5754 if (err)
5755 return err;
5756 }
5757 /* move next vlan tag to hw accel tag */
5758 if (likely(!eth_type_vlan(skb->protocol)))
5759 return 0;
5760
5761 vlan_proto = skb->protocol;
5762 err = __skb_vlan_pop(skb, &vlan_tci);
5763 if (unlikely(err))
5764 return err;
5765
5766 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5767 return 0;
5768 }
5769 EXPORT_SYMBOL(skb_vlan_pop);
5770
5771 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5772 * Expects skb->data at mac header.
5773 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5774 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5775 {
5776 if (skb_vlan_tag_present(skb)) {
5777 int offset = skb->data - skb_mac_header(skb);
5778 int err;
5779
5780 if (WARN_ONCE(offset,
5781 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5782 offset)) {
5783 return -EINVAL;
5784 }
5785
5786 err = __vlan_insert_tag(skb, skb->vlan_proto,
5787 skb_vlan_tag_get(skb));
5788 if (err)
5789 return err;
5790
5791 skb->protocol = skb->vlan_proto;
5792 skb->mac_len += VLAN_HLEN;
5793
5794 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5795 }
5796 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5797 return 0;
5798 }
5799 EXPORT_SYMBOL(skb_vlan_push);
5800
5801 /**
5802 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5803 *
5804 * @skb: Socket buffer to modify
5805 *
5806 * Drop the Ethernet header of @skb.
5807 *
5808 * Expects that skb->data points to the mac header and that no VLAN tags are
5809 * present.
5810 *
5811 * Returns 0 on success, -errno otherwise.
5812 */
skb_eth_pop(struct sk_buff * skb)5813 int skb_eth_pop(struct sk_buff *skb)
5814 {
5815 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5816 skb_network_offset(skb) < ETH_HLEN)
5817 return -EPROTO;
5818
5819 skb_pull_rcsum(skb, ETH_HLEN);
5820 skb_reset_mac_header(skb);
5821 skb_reset_mac_len(skb);
5822
5823 return 0;
5824 }
5825 EXPORT_SYMBOL(skb_eth_pop);
5826
5827 /**
5828 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5829 *
5830 * @skb: Socket buffer to modify
5831 * @dst: Destination MAC address of the new header
5832 * @src: Source MAC address of the new header
5833 *
5834 * Prepend @skb with a new Ethernet header.
5835 *
5836 * Expects that skb->data points to the mac header, which must be empty.
5837 *
5838 * Returns 0 on success, -errno otherwise.
5839 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5840 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5841 const unsigned char *src)
5842 {
5843 struct ethhdr *eth;
5844 int err;
5845
5846 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5847 return -EPROTO;
5848
5849 err = skb_cow_head(skb, sizeof(*eth));
5850 if (err < 0)
5851 return err;
5852
5853 skb_push(skb, sizeof(*eth));
5854 skb_reset_mac_header(skb);
5855 skb_reset_mac_len(skb);
5856
5857 eth = eth_hdr(skb);
5858 ether_addr_copy(eth->h_dest, dst);
5859 ether_addr_copy(eth->h_source, src);
5860 eth->h_proto = skb->protocol;
5861
5862 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5863
5864 return 0;
5865 }
5866 EXPORT_SYMBOL(skb_eth_push);
5867
5868 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5869 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5870 __be16 ethertype)
5871 {
5872 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5873 __be16 diff[] = { ~hdr->h_proto, ethertype };
5874
5875 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5876 }
5877
5878 hdr->h_proto = ethertype;
5879 }
5880
5881 /**
5882 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5883 * the packet
5884 *
5885 * @skb: buffer
5886 * @mpls_lse: MPLS label stack entry to push
5887 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5888 * @mac_len: length of the MAC header
5889 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5890 * ethernet
5891 *
5892 * Expects skb->data at mac header.
5893 *
5894 * Returns 0 on success, -errno otherwise.
5895 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5896 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5897 int mac_len, bool ethernet)
5898 {
5899 struct mpls_shim_hdr *lse;
5900 int err;
5901
5902 if (unlikely(!eth_p_mpls(mpls_proto)))
5903 return -EINVAL;
5904
5905 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5906 if (skb->encapsulation)
5907 return -EINVAL;
5908
5909 err = skb_cow_head(skb, MPLS_HLEN);
5910 if (unlikely(err))
5911 return err;
5912
5913 if (!skb->inner_protocol) {
5914 skb_set_inner_network_header(skb, skb_network_offset(skb));
5915 skb_set_inner_protocol(skb, skb->protocol);
5916 }
5917
5918 skb_push(skb, MPLS_HLEN);
5919 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5920 mac_len);
5921 skb_reset_mac_header(skb);
5922 skb_set_network_header(skb, mac_len);
5923 skb_reset_mac_len(skb);
5924
5925 lse = mpls_hdr(skb);
5926 lse->label_stack_entry = mpls_lse;
5927 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5928
5929 if (ethernet && mac_len >= ETH_HLEN)
5930 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5931 skb->protocol = mpls_proto;
5932
5933 return 0;
5934 }
5935 EXPORT_SYMBOL_GPL(skb_mpls_push);
5936
5937 /**
5938 * skb_mpls_pop() - pop the outermost MPLS header
5939 *
5940 * @skb: buffer
5941 * @next_proto: ethertype of header after popped MPLS header
5942 * @mac_len: length of the MAC header
5943 * @ethernet: flag to indicate if the packet is ethernet
5944 *
5945 * Expects skb->data at mac header.
5946 *
5947 * Returns 0 on success, -errno otherwise.
5948 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5949 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5950 bool ethernet)
5951 {
5952 int err;
5953
5954 if (unlikely(!eth_p_mpls(skb->protocol)))
5955 return 0;
5956
5957 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5958 if (unlikely(err))
5959 return err;
5960
5961 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5962 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5963 mac_len);
5964
5965 __skb_pull(skb, MPLS_HLEN);
5966 skb_reset_mac_header(skb);
5967 skb_set_network_header(skb, mac_len);
5968
5969 if (ethernet && mac_len >= ETH_HLEN) {
5970 struct ethhdr *hdr;
5971
5972 /* use mpls_hdr() to get ethertype to account for VLANs. */
5973 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5974 skb_mod_eth_type(skb, hdr, next_proto);
5975 }
5976 skb->protocol = next_proto;
5977
5978 return 0;
5979 }
5980 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5981
5982 /**
5983 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5984 *
5985 * @skb: buffer
5986 * @mpls_lse: new MPLS label stack entry to update to
5987 *
5988 * Expects skb->data at mac header.
5989 *
5990 * Returns 0 on success, -errno otherwise.
5991 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5992 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5993 {
5994 int err;
5995
5996 if (unlikely(!eth_p_mpls(skb->protocol)))
5997 return -EINVAL;
5998
5999 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6000 if (unlikely(err))
6001 return err;
6002
6003 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6004 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6005
6006 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6007 }
6008
6009 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6010
6011 return 0;
6012 }
6013 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6014
6015 /**
6016 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6017 *
6018 * @skb: buffer
6019 *
6020 * Expects skb->data at mac header.
6021 *
6022 * Returns 0 on success, -errno otherwise.
6023 */
skb_mpls_dec_ttl(struct sk_buff * skb)6024 int skb_mpls_dec_ttl(struct sk_buff *skb)
6025 {
6026 u32 lse;
6027 u8 ttl;
6028
6029 if (unlikely(!eth_p_mpls(skb->protocol)))
6030 return -EINVAL;
6031
6032 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6033 return -ENOMEM;
6034
6035 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6036 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6037 if (!--ttl)
6038 return -EINVAL;
6039
6040 lse &= ~MPLS_LS_TTL_MASK;
6041 lse |= ttl << MPLS_LS_TTL_SHIFT;
6042
6043 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6044 }
6045 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6046
6047 /**
6048 * alloc_skb_with_frags - allocate skb with page frags
6049 *
6050 * @header_len: size of linear part
6051 * @data_len: needed length in frags
6052 * @max_page_order: max page order desired.
6053 * @errcode: pointer to error code if any
6054 * @gfp_mask: allocation mask
6055 *
6056 * This can be used to allocate a paged skb, given a maximal order for frags.
6057 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)6058 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6059 unsigned long data_len,
6060 int max_page_order,
6061 int *errcode,
6062 gfp_t gfp_mask)
6063 {
6064 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6065 unsigned long chunk;
6066 struct sk_buff *skb;
6067 struct page *page;
6068 int i;
6069
6070 *errcode = -EMSGSIZE;
6071 /* Note this test could be relaxed, if we succeed to allocate
6072 * high order pages...
6073 */
6074 if (npages > MAX_SKB_FRAGS)
6075 return NULL;
6076
6077 *errcode = -ENOBUFS;
6078 skb = alloc_skb(header_len, gfp_mask);
6079 if (!skb)
6080 return NULL;
6081
6082 skb->truesize += npages << PAGE_SHIFT;
6083
6084 for (i = 0; npages > 0; i++) {
6085 int order = max_page_order;
6086
6087 while (order) {
6088 if (npages >= 1 << order) {
6089 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6090 __GFP_COMP |
6091 __GFP_NOWARN,
6092 order);
6093 if (page)
6094 goto fill_page;
6095 /* Do not retry other high order allocations */
6096 order = 1;
6097 max_page_order = 0;
6098 }
6099 order--;
6100 }
6101 page = alloc_page(gfp_mask);
6102 if (!page)
6103 goto failure;
6104 fill_page:
6105 chunk = min_t(unsigned long, data_len,
6106 PAGE_SIZE << order);
6107 skb_fill_page_desc(skb, i, page, 0, chunk);
6108 data_len -= chunk;
6109 npages -= 1 << order;
6110 }
6111 return skb;
6112
6113 failure:
6114 kfree_skb(skb);
6115 return NULL;
6116 }
6117 EXPORT_SYMBOL(alloc_skb_with_frags);
6118
6119 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6120 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6121 const int headlen, gfp_t gfp_mask)
6122 {
6123 int i;
6124 int size = skb_end_offset(skb);
6125 int new_hlen = headlen - off;
6126 u8 *data;
6127
6128 size = SKB_DATA_ALIGN(size);
6129
6130 if (skb_pfmemalloc(skb))
6131 gfp_mask |= __GFP_MEMALLOC;
6132 data = kmalloc_reserve(size +
6133 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6134 gfp_mask, NUMA_NO_NODE, NULL);
6135 if (!data)
6136 return -ENOMEM;
6137
6138 size = SKB_WITH_OVERHEAD(ksize(data));
6139
6140 /* Copy real data, and all frags */
6141 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6142 skb->len -= off;
6143
6144 memcpy((struct skb_shared_info *)(data + size),
6145 skb_shinfo(skb),
6146 offsetof(struct skb_shared_info,
6147 frags[skb_shinfo(skb)->nr_frags]));
6148 if (skb_cloned(skb)) {
6149 /* drop the old head gracefully */
6150 if (skb_orphan_frags(skb, gfp_mask)) {
6151 kfree(data);
6152 return -ENOMEM;
6153 }
6154 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6155 skb_frag_ref(skb, i);
6156 if (skb_has_frag_list(skb))
6157 skb_clone_fraglist(skb);
6158 skb_release_data(skb);
6159 } else {
6160 /* we can reuse existing recount- all we did was
6161 * relocate values
6162 */
6163 skb_free_head(skb);
6164 }
6165
6166 skb->head = data;
6167 skb->data = data;
6168 skb->head_frag = 0;
6169 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6170 skb->end = size;
6171 #else
6172 skb->end = skb->head + size;
6173 #endif
6174 skb_set_tail_pointer(skb, skb_headlen(skb));
6175 skb_headers_offset_update(skb, 0);
6176 skb->cloned = 0;
6177 skb->hdr_len = 0;
6178 skb->nohdr = 0;
6179 atomic_set(&skb_shinfo(skb)->dataref, 1);
6180
6181 return 0;
6182 }
6183
6184 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6185
6186 /* carve out the first eat bytes from skb's frag_list. May recurse into
6187 * pskb_carve()
6188 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6189 static int pskb_carve_frag_list(struct sk_buff *skb,
6190 struct skb_shared_info *shinfo, int eat,
6191 gfp_t gfp_mask)
6192 {
6193 struct sk_buff *list = shinfo->frag_list;
6194 struct sk_buff *clone = NULL;
6195 struct sk_buff *insp = NULL;
6196
6197 do {
6198 if (!list) {
6199 pr_err("Not enough bytes to eat. Want %d\n", eat);
6200 return -EFAULT;
6201 }
6202 if (list->len <= eat) {
6203 /* Eaten as whole. */
6204 eat -= list->len;
6205 list = list->next;
6206 insp = list;
6207 } else {
6208 /* Eaten partially. */
6209 if (skb_shared(list)) {
6210 clone = skb_clone(list, gfp_mask);
6211 if (!clone)
6212 return -ENOMEM;
6213 insp = list->next;
6214 list = clone;
6215 } else {
6216 /* This may be pulled without problems. */
6217 insp = list;
6218 }
6219 if (pskb_carve(list, eat, gfp_mask) < 0) {
6220 kfree_skb(clone);
6221 return -ENOMEM;
6222 }
6223 break;
6224 }
6225 } while (eat);
6226
6227 /* Free pulled out fragments. */
6228 while ((list = shinfo->frag_list) != insp) {
6229 shinfo->frag_list = list->next;
6230 kfree_skb(list);
6231 }
6232 /* And insert new clone at head. */
6233 if (clone) {
6234 clone->next = list;
6235 shinfo->frag_list = clone;
6236 }
6237 return 0;
6238 }
6239
6240 /* carve off first len bytes from skb. Split line (off) is in the
6241 * non-linear part of skb
6242 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6243 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6244 int pos, gfp_t gfp_mask)
6245 {
6246 int i, k = 0;
6247 int size = skb_end_offset(skb);
6248 u8 *data;
6249 const int nfrags = skb_shinfo(skb)->nr_frags;
6250 struct skb_shared_info *shinfo;
6251
6252 size = SKB_DATA_ALIGN(size);
6253
6254 if (skb_pfmemalloc(skb))
6255 gfp_mask |= __GFP_MEMALLOC;
6256 data = kmalloc_reserve(size +
6257 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6258 gfp_mask, NUMA_NO_NODE, NULL);
6259 if (!data)
6260 return -ENOMEM;
6261
6262 size = SKB_WITH_OVERHEAD(ksize(data));
6263
6264 memcpy((struct skb_shared_info *)(data + size),
6265 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6266 if (skb_orphan_frags(skb, gfp_mask)) {
6267 kfree(data);
6268 return -ENOMEM;
6269 }
6270 shinfo = (struct skb_shared_info *)(data + size);
6271 for (i = 0; i < nfrags; i++) {
6272 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6273
6274 if (pos + fsize > off) {
6275 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6276
6277 if (pos < off) {
6278 /* Split frag.
6279 * We have two variants in this case:
6280 * 1. Move all the frag to the second
6281 * part, if it is possible. F.e.
6282 * this approach is mandatory for TUX,
6283 * where splitting is expensive.
6284 * 2. Split is accurately. We make this.
6285 */
6286 skb_frag_off_add(&shinfo->frags[0], off - pos);
6287 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6288 }
6289 skb_frag_ref(skb, i);
6290 k++;
6291 }
6292 pos += fsize;
6293 }
6294 shinfo->nr_frags = k;
6295 if (skb_has_frag_list(skb))
6296 skb_clone_fraglist(skb);
6297
6298 /* split line is in frag list */
6299 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6300 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6301 if (skb_has_frag_list(skb))
6302 kfree_skb_list(skb_shinfo(skb)->frag_list);
6303 kfree(data);
6304 return -ENOMEM;
6305 }
6306 skb_release_data(skb);
6307
6308 skb->head = data;
6309 skb->head_frag = 0;
6310 skb->data = data;
6311 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6312 skb->end = size;
6313 #else
6314 skb->end = skb->head + size;
6315 #endif
6316 skb_reset_tail_pointer(skb);
6317 skb_headers_offset_update(skb, 0);
6318 skb->cloned = 0;
6319 skb->hdr_len = 0;
6320 skb->nohdr = 0;
6321 skb->len -= off;
6322 skb->data_len = skb->len;
6323 atomic_set(&skb_shinfo(skb)->dataref, 1);
6324 return 0;
6325 }
6326
6327 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6328 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6329 {
6330 int headlen = skb_headlen(skb);
6331
6332 if (len < headlen)
6333 return pskb_carve_inside_header(skb, len, headlen, gfp);
6334 else
6335 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6336 }
6337
6338 /* Extract to_copy bytes starting at off from skb, and return this in
6339 * a new skb
6340 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6341 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6342 int to_copy, gfp_t gfp)
6343 {
6344 struct sk_buff *clone = skb_clone(skb, gfp);
6345
6346 if (!clone)
6347 return NULL;
6348
6349 if (pskb_carve(clone, off, gfp) < 0 ||
6350 pskb_trim(clone, to_copy)) {
6351 kfree_skb(clone);
6352 return NULL;
6353 }
6354 return clone;
6355 }
6356 EXPORT_SYMBOL(pskb_extract);
6357
6358 /**
6359 * skb_condense - try to get rid of fragments/frag_list if possible
6360 * @skb: buffer
6361 *
6362 * Can be used to save memory before skb is added to a busy queue.
6363 * If packet has bytes in frags and enough tail room in skb->head,
6364 * pull all of them, so that we can free the frags right now and adjust
6365 * truesize.
6366 * Notes:
6367 * We do not reallocate skb->head thus can not fail.
6368 * Caller must re-evaluate skb->truesize if needed.
6369 */
skb_condense(struct sk_buff * skb)6370 void skb_condense(struct sk_buff *skb)
6371 {
6372 if (skb->data_len) {
6373 if (skb->data_len > skb->end - skb->tail ||
6374 skb_cloned(skb))
6375 return;
6376
6377 /* Nice, we can free page frag(s) right now */
6378 __pskb_pull_tail(skb, skb->data_len);
6379 }
6380 /* At this point, skb->truesize might be over estimated,
6381 * because skb had a fragment, and fragments do not tell
6382 * their truesize.
6383 * When we pulled its content into skb->head, fragment
6384 * was freed, but __pskb_pull_tail() could not possibly
6385 * adjust skb->truesize, not knowing the frag truesize.
6386 */
6387 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6388 }
6389
6390 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6391 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6392 {
6393 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6394 }
6395
6396 /**
6397 * __skb_ext_alloc - allocate a new skb extensions storage
6398 *
6399 * @flags: See kmalloc().
6400 *
6401 * Returns the newly allocated pointer. The pointer can later attached to a
6402 * skb via __skb_ext_set().
6403 * Note: caller must handle the skb_ext as an opaque data.
6404 */
__skb_ext_alloc(gfp_t flags)6405 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6406 {
6407 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6408
6409 if (new) {
6410 memset(new->offset, 0, sizeof(new->offset));
6411 refcount_set(&new->refcnt, 1);
6412 }
6413
6414 return new;
6415 }
6416
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6417 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6418 unsigned int old_active)
6419 {
6420 struct skb_ext *new;
6421
6422 if (refcount_read(&old->refcnt) == 1)
6423 return old;
6424
6425 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6426 if (!new)
6427 return NULL;
6428
6429 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6430 refcount_set(&new->refcnt, 1);
6431
6432 #ifdef CONFIG_XFRM
6433 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6434 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6435 unsigned int i;
6436
6437 for (i = 0; i < sp->len; i++)
6438 xfrm_state_hold(sp->xvec[i]);
6439 }
6440 #endif
6441 __skb_ext_put(old);
6442 return new;
6443 }
6444
6445 /**
6446 * __skb_ext_set - attach the specified extension storage to this skb
6447 * @skb: buffer
6448 * @id: extension id
6449 * @ext: extension storage previously allocated via __skb_ext_alloc()
6450 *
6451 * Existing extensions, if any, are cleared.
6452 *
6453 * Returns the pointer to the extension.
6454 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6455 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6456 struct skb_ext *ext)
6457 {
6458 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6459
6460 skb_ext_put(skb);
6461 newlen = newoff + skb_ext_type_len[id];
6462 ext->chunks = newlen;
6463 ext->offset[id] = newoff;
6464 skb->extensions = ext;
6465 skb->active_extensions = 1 << id;
6466 return skb_ext_get_ptr(ext, id);
6467 }
6468
6469 /**
6470 * skb_ext_add - allocate space for given extension, COW if needed
6471 * @skb: buffer
6472 * @id: extension to allocate space for
6473 *
6474 * Allocates enough space for the given extension.
6475 * If the extension is already present, a pointer to that extension
6476 * is returned.
6477 *
6478 * If the skb was cloned, COW applies and the returned memory can be
6479 * modified without changing the extension space of clones buffers.
6480 *
6481 * Returns pointer to the extension or NULL on allocation failure.
6482 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6483 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6484 {
6485 struct skb_ext *new, *old = NULL;
6486 unsigned int newlen, newoff;
6487
6488 if (skb->active_extensions) {
6489 old = skb->extensions;
6490
6491 new = skb_ext_maybe_cow(old, skb->active_extensions);
6492 if (!new)
6493 return NULL;
6494
6495 if (__skb_ext_exist(new, id))
6496 goto set_active;
6497
6498 newoff = new->chunks;
6499 } else {
6500 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6501
6502 new = __skb_ext_alloc(GFP_ATOMIC);
6503 if (!new)
6504 return NULL;
6505 }
6506
6507 newlen = newoff + skb_ext_type_len[id];
6508 new->chunks = newlen;
6509 new->offset[id] = newoff;
6510 set_active:
6511 skb->slow_gro = 1;
6512 skb->extensions = new;
6513 skb->active_extensions |= 1 << id;
6514 return skb_ext_get_ptr(new, id);
6515 }
6516 EXPORT_SYMBOL(skb_ext_add);
6517
6518 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6519 static void skb_ext_put_sp(struct sec_path *sp)
6520 {
6521 unsigned int i;
6522
6523 for (i = 0; i < sp->len; i++)
6524 xfrm_state_put(sp->xvec[i]);
6525 }
6526 #endif
6527
6528 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)6529 static void skb_ext_put_mctp(struct mctp_flow *flow)
6530 {
6531 if (flow->key)
6532 mctp_key_unref(flow->key);
6533 }
6534 #endif
6535
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6536 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6537 {
6538 struct skb_ext *ext = skb->extensions;
6539
6540 skb->active_extensions &= ~(1 << id);
6541 if (skb->active_extensions == 0) {
6542 skb->extensions = NULL;
6543 __skb_ext_put(ext);
6544 #ifdef CONFIG_XFRM
6545 } else if (id == SKB_EXT_SEC_PATH &&
6546 refcount_read(&ext->refcnt) == 1) {
6547 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6548
6549 skb_ext_put_sp(sp);
6550 sp->len = 0;
6551 #endif
6552 }
6553 }
6554 EXPORT_SYMBOL(__skb_ext_del);
6555
__skb_ext_put(struct skb_ext * ext)6556 void __skb_ext_put(struct skb_ext *ext)
6557 {
6558 /* If this is last clone, nothing can increment
6559 * it after check passes. Avoids one atomic op.
6560 */
6561 if (refcount_read(&ext->refcnt) == 1)
6562 goto free_now;
6563
6564 if (!refcount_dec_and_test(&ext->refcnt))
6565 return;
6566 free_now:
6567 #ifdef CONFIG_XFRM
6568 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6569 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6570 #endif
6571 #ifdef CONFIG_MCTP_FLOWS
6572 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6573 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6574 #endif
6575
6576 kmem_cache_free(skbuff_ext_cache, ext);
6577 }
6578 EXPORT_SYMBOL(__skb_ext_put);
6579 #endif /* CONFIG_SKB_EXTENSIONS */
6580