1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #include <net/page_pool.h>
41 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
42 #include <linux/netfilter/nf_conntrack_common.h>
43 #endif
44 
45 /* The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * A. IP checksum related features
49  *
50  * Drivers advertise checksum offload capabilities in the features of a device.
51  * From the stack's point of view these are capabilities offered by the driver.
52  * A driver typically only advertises features that it is capable of offloading
53  * to its device.
54  *
55  * The checksum related features are:
56  *
57  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
58  *			  IP (one's complement) checksum for any combination
59  *			  of protocols or protocol layering. The checksum is
60  *			  computed and set in a packet per the CHECKSUM_PARTIAL
61  *			  interface (see below).
62  *
63  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
64  *			  TCP or UDP packets over IPv4. These are specifically
65  *			  unencapsulated packets of the form IPv4|TCP or
66  *			  IPv4|UDP where the Protocol field in the IPv4 header
67  *			  is TCP or UDP. The IPv4 header may contain IP options.
68  *			  This feature cannot be set in features for a device
69  *			  with NETIF_F_HW_CSUM also set. This feature is being
70  *			  DEPRECATED (see below).
71  *
72  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
73  *			  TCP or UDP packets over IPv6. These are specifically
74  *			  unencapsulated packets of the form IPv6|TCP or
75  *			  IPv6|UDP where the Next Header field in the IPv6
76  *			  header is either TCP or UDP. IPv6 extension headers
77  *			  are not supported with this feature. This feature
78  *			  cannot be set in features for a device with
79  *			  NETIF_F_HW_CSUM also set. This feature is being
80  *			  DEPRECATED (see below).
81  *
82  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
83  *			 This flag is only used to disable the RX checksum
84  *			 feature for a device. The stack will accept receive
85  *			 checksum indication in packets received on a device
86  *			 regardless of whether NETIF_F_RXCSUM is set.
87  *
88  * B. Checksumming of received packets by device. Indication of checksum
89  *    verification is set in skb->ip_summed. Possible values are:
90  *
91  * CHECKSUM_NONE:
92  *
93  *   Device did not checksum this packet e.g. due to lack of capabilities.
94  *   The packet contains full (though not verified) checksum in packet but
95  *   not in skb->csum. Thus, skb->csum is undefined in this case.
96  *
97  * CHECKSUM_UNNECESSARY:
98  *
99  *   The hardware you're dealing with doesn't calculate the full checksum
100  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
101  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
102  *   if their checksums are okay. skb->csum is still undefined in this case
103  *   though. A driver or device must never modify the checksum field in the
104  *   packet even if checksum is verified.
105  *
106  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
107  *     TCP: IPv6 and IPv4.
108  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
109  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
110  *       may perform further validation in this case.
111  *     GRE: only if the checksum is present in the header.
112  *     SCTP: indicates the CRC in SCTP header has been validated.
113  *     FCOE: indicates the CRC in FC frame has been validated.
114  *
115  *   skb->csum_level indicates the number of consecutive checksums found in
116  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
117  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
118  *   and a device is able to verify the checksums for UDP (possibly zero),
119  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
120  *   two. If the device were only able to verify the UDP checksum and not
121  *   GRE, either because it doesn't support GRE checksum or because GRE
122  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
123  *   not considered in this case).
124  *
125  * CHECKSUM_COMPLETE:
126  *
127  *   This is the most generic way. The device supplied checksum of the _whole_
128  *   packet as seen by netif_rx() and fills in skb->csum. This means the
129  *   hardware doesn't need to parse L3/L4 headers to implement this.
130  *
131  *   Notes:
132  *   - Even if device supports only some protocols, but is able to produce
133  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
134  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
135  *
136  * CHECKSUM_PARTIAL:
137  *
138  *   A checksum is set up to be offloaded to a device as described in the
139  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
140  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
141  *   on the same host, or it may be set in the input path in GRO or remote
142  *   checksum offload. For the purposes of checksum verification, the checksum
143  *   referred to by skb->csum_start + skb->csum_offset and any preceding
144  *   checksums in the packet are considered verified. Any checksums in the
145  *   packet that are after the checksum being offloaded are not considered to
146  *   be verified.
147  *
148  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
149  *    in the skb->ip_summed for a packet. Values are:
150  *
151  * CHECKSUM_PARTIAL:
152  *
153  *   The driver is required to checksum the packet as seen by hard_start_xmit()
154  *   from skb->csum_start up to the end, and to record/write the checksum at
155  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
156  *   csum_start and csum_offset values are valid values given the length and
157  *   offset of the packet, but it should not attempt to validate that the
158  *   checksum refers to a legitimate transport layer checksum -- it is the
159  *   purview of the stack to validate that csum_start and csum_offset are set
160  *   correctly.
161  *
162  *   When the stack requests checksum offload for a packet, the driver MUST
163  *   ensure that the checksum is set correctly. A driver can either offload the
164  *   checksum calculation to the device, or call skb_checksum_help (in the case
165  *   that the device does not support offload for a particular checksum).
166  *
167  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
168  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
169  *   checksum offload capability.
170  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
171  *   on network device checksumming capabilities: if a packet does not match
172  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
173  *   csum_not_inet, see item D.) is called to resolve the checksum.
174  *
175  * CHECKSUM_NONE:
176  *
177  *   The skb was already checksummed by the protocol, or a checksum is not
178  *   required.
179  *
180  * CHECKSUM_UNNECESSARY:
181  *
182  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
183  *   output.
184  *
185  * CHECKSUM_COMPLETE:
186  *   Not used in checksum output. If a driver observes a packet with this value
187  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
188  *
189  * D. Non-IP checksum (CRC) offloads
190  *
191  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
192  *     offloading the SCTP CRC in a packet. To perform this offload the stack
193  *     will set csum_start and csum_offset accordingly, set ip_summed to
194  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
195  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
196  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
197  *     must verify which offload is configured for a packet by testing the
198  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
199  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200  *
201  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
202  *     offloading the FCOE CRC in a packet. To perform this offload the stack
203  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
204  *     accordingly. Note that there is no indication in the skbuff that the
205  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
206  *     both IP checksum offload and FCOE CRC offload must verify which offload
207  *     is configured for a packet, presumably by inspecting packet headers.
208  *
209  * E. Checksumming on output with GSO.
210  *
211  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
212  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
213  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
214  * part of the GSO operation is implied. If a checksum is being offloaded
215  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
216  * csum_offset are set to refer to the outermost checksum being offloaded
217  * (two offloaded checksums are possible with UDP encapsulation).
218  */
219 
220 /* Don't change this without changing skb_csum_unnecessary! */
221 #define CHECKSUM_NONE		0
222 #define CHECKSUM_UNNECESSARY	1
223 #define CHECKSUM_COMPLETE	2
224 #define CHECKSUM_PARTIAL	3
225 
226 /* Maximum value in skb->csum_level */
227 #define SKB_MAX_CSUM_LEVEL	3
228 
229 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
230 #define SKB_WITH_OVERHEAD(X)	\
231 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
232 #define SKB_MAX_ORDER(X, ORDER) \
233 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
234 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
235 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
236 
237 /* return minimum truesize of one skb containing X bytes of data */
238 #define SKB_TRUESIZE(X) ((X) +						\
239 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
240 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
241 
242 struct ahash_request;
243 struct net_device;
244 struct scatterlist;
245 struct pipe_inode_info;
246 struct iov_iter;
247 struct napi_struct;
248 struct bpf_prog;
249 union bpf_attr;
250 struct skb_ext;
251 
252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
253 struct nf_bridge_info {
254 	enum {
255 		BRNF_PROTO_UNCHANGED,
256 		BRNF_PROTO_8021Q,
257 		BRNF_PROTO_PPPOE
258 	} orig_proto:8;
259 	u8			pkt_otherhost:1;
260 	u8			in_prerouting:1;
261 	u8			bridged_dnat:1;
262 	__u16			frag_max_size;
263 	struct net_device	*physindev;
264 
265 	/* always valid & non-NULL from FORWARD on, for physdev match */
266 	struct net_device	*physoutdev;
267 	union {
268 		/* prerouting: detect dnat in orig/reply direction */
269 		__be32          ipv4_daddr;
270 		struct in6_addr ipv6_daddr;
271 
272 		/* after prerouting + nat detected: store original source
273 		 * mac since neigh resolution overwrites it, only used while
274 		 * skb is out in neigh layer.
275 		 */
276 		char neigh_header[8];
277 	};
278 };
279 #endif
280 
281 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
282 /* Chain in tc_skb_ext will be used to share the tc chain with
283  * ovs recirc_id. It will be set to the current chain by tc
284  * and read by ovs to recirc_id.
285  */
286 struct tc_skb_ext {
287 	__u32 chain;
288 	__u16 mru;
289 	__u16 zone;
290 	bool post_ct;
291 };
292 #endif
293 
294 struct sk_buff_head {
295 	/* These two members must be first. */
296 	struct sk_buff	*next;
297 	struct sk_buff	*prev;
298 
299 	__u32		qlen;
300 	spinlock_t	lock;
301 };
302 
303 struct sk_buff;
304 
305 /* To allow 64K frame to be packed as single skb without frag_list we
306  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
307  * buffers which do not start on a page boundary.
308  *
309  * Since GRO uses frags we allocate at least 16 regardless of page
310  * size.
311  */
312 #if (65536/PAGE_SIZE + 1) < 16
313 #define MAX_SKB_FRAGS 16UL
314 #else
315 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
316 #endif
317 extern int sysctl_max_skb_frags;
318 
319 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
320  * segment using its current segmentation instead.
321  */
322 #define GSO_BY_FRAGS	0xFFFF
323 
324 typedef struct bio_vec skb_frag_t;
325 
326 /**
327  * skb_frag_size() - Returns the size of a skb fragment
328  * @frag: skb fragment
329  */
skb_frag_size(const skb_frag_t * frag)330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331 {
332 	return frag->bv_len;
333 }
334 
335 /**
336  * skb_frag_size_set() - Sets the size of a skb fragment
337  * @frag: skb fragment
338  * @size: size of fragment
339  */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)340 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
341 {
342 	frag->bv_len = size;
343 }
344 
345 /**
346  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
347  * @frag: skb fragment
348  * @delta: value to add
349  */
skb_frag_size_add(skb_frag_t * frag,int delta)350 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
351 {
352 	frag->bv_len += delta;
353 }
354 
355 /**
356  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
357  * @frag: skb fragment
358  * @delta: value to subtract
359  */
skb_frag_size_sub(skb_frag_t * frag,int delta)360 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
361 {
362 	frag->bv_len -= delta;
363 }
364 
365 /**
366  * skb_frag_must_loop - Test if %p is a high memory page
367  * @p: fragment's page
368  */
skb_frag_must_loop(struct page * p)369 static inline bool skb_frag_must_loop(struct page *p)
370 {
371 #if defined(CONFIG_HIGHMEM)
372 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
373 		return true;
374 #endif
375 	return false;
376 }
377 
378 /**
379  *	skb_frag_foreach_page - loop over pages in a fragment
380  *
381  *	@f:		skb frag to operate on
382  *	@f_off:		offset from start of f->bv_page
383  *	@f_len:		length from f_off to loop over
384  *	@p:		(temp var) current page
385  *	@p_off:		(temp var) offset from start of current page,
386  *	                           non-zero only on first page.
387  *	@p_len:		(temp var) length in current page,
388  *				   < PAGE_SIZE only on first and last page.
389  *	@copied:	(temp var) length so far, excluding current p_len.
390  *
391  *	A fragment can hold a compound page, in which case per-page
392  *	operations, notably kmap_atomic, must be called for each
393  *	regular page.
394  */
395 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
396 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
397 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
398 	     p_len = skb_frag_must_loop(p) ?				\
399 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
400 	     copied = 0;						\
401 	     copied < f_len;						\
402 	     copied += p_len, p++, p_off = 0,				\
403 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
404 
405 #define HAVE_HW_TIME_STAMP
406 
407 /**
408  * struct skb_shared_hwtstamps - hardware time stamps
409  * @hwtstamp:	hardware time stamp transformed into duration
410  *		since arbitrary point in time
411  *
412  * Software time stamps generated by ktime_get_real() are stored in
413  * skb->tstamp.
414  *
415  * hwtstamps can only be compared against other hwtstamps from
416  * the same device.
417  *
418  * This structure is attached to packets as part of the
419  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
420  */
421 struct skb_shared_hwtstamps {
422 	ktime_t	hwtstamp;
423 };
424 
425 /* Definitions for tx_flags in struct skb_shared_info */
426 enum {
427 	/* generate hardware time stamp */
428 	SKBTX_HW_TSTAMP = 1 << 0,
429 
430 	/* generate software time stamp when queueing packet to NIC */
431 	SKBTX_SW_TSTAMP = 1 << 1,
432 
433 	/* device driver is going to provide hardware time stamp */
434 	SKBTX_IN_PROGRESS = 1 << 2,
435 
436 	/* generate wifi status information (where possible) */
437 	SKBTX_WIFI_STATUS = 1 << 4,
438 
439 	/* generate software time stamp when entering packet scheduling */
440 	SKBTX_SCHED_TSTAMP = 1 << 6,
441 };
442 
443 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
444 				 SKBTX_SCHED_TSTAMP)
445 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
446 
447 /* Definitions for flags in struct skb_shared_info */
448 enum {
449 	/* use zcopy routines */
450 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
451 
452 	/* This indicates at least one fragment might be overwritten
453 	 * (as in vmsplice(), sendfile() ...)
454 	 * If we need to compute a TX checksum, we'll need to copy
455 	 * all frags to avoid possible bad checksum
456 	 */
457 	SKBFL_SHARED_FRAG = BIT(1),
458 
459 	/* segment contains only zerocopy data and should not be
460 	 * charged to the kernel memory.
461 	 */
462 	SKBFL_PURE_ZEROCOPY = BIT(2),
463 };
464 
465 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
466 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
467 
468 /*
469  * The callback notifies userspace to release buffers when skb DMA is done in
470  * lower device, the skb last reference should be 0 when calling this.
471  * The zerocopy_success argument is true if zero copy transmit occurred,
472  * false on data copy or out of memory error caused by data copy attempt.
473  * The ctx field is used to track device context.
474  * The desc field is used to track userspace buffer index.
475  */
476 struct ubuf_info {
477 	void (*callback)(struct sk_buff *, struct ubuf_info *,
478 			 bool zerocopy_success);
479 	union {
480 		struct {
481 			unsigned long desc;
482 			void *ctx;
483 		};
484 		struct {
485 			u32 id;
486 			u16 len;
487 			u16 zerocopy:1;
488 			u32 bytelen;
489 		};
490 	};
491 	refcount_t refcnt;
492 	u8 flags;
493 
494 	struct mmpin {
495 		struct user_struct *user;
496 		unsigned int num_pg;
497 	} mmp;
498 };
499 
500 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
501 
502 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
503 void mm_unaccount_pinned_pages(struct mmpin *mmp);
504 
505 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
506 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
507 				       struct ubuf_info *uarg);
508 
509 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
510 
511 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
512 			   bool success);
513 
514 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
515 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
516 			     struct msghdr *msg, int len,
517 			     struct ubuf_info *uarg);
518 
519 /* This data is invariant across clones and lives at
520  * the end of the header data, ie. at skb->end.
521  */
522 struct skb_shared_info {
523 	__u8		flags;
524 	__u8		meta_len;
525 	__u8		nr_frags;
526 	__u8		tx_flags;
527 	unsigned short	gso_size;
528 	/* Warning: this field is not always filled in (UFO)! */
529 	unsigned short	gso_segs;
530 	struct sk_buff	*frag_list;
531 	struct skb_shared_hwtstamps hwtstamps;
532 	unsigned int	gso_type;
533 	u32		tskey;
534 
535 	/*
536 	 * Warning : all fields before dataref are cleared in __alloc_skb()
537 	 */
538 	atomic_t	dataref;
539 
540 	/* Intermediate layers must ensure that destructor_arg
541 	 * remains valid until skb destructor */
542 	void *		destructor_arg;
543 
544 	/* must be last field, see pskb_expand_head() */
545 	skb_frag_t	frags[MAX_SKB_FRAGS];
546 };
547 
548 /* We divide dataref into two halves.  The higher 16 bits hold references
549  * to the payload part of skb->data.  The lower 16 bits hold references to
550  * the entire skb->data.  A clone of a headerless skb holds the length of
551  * the header in skb->hdr_len.
552  *
553  * All users must obey the rule that the skb->data reference count must be
554  * greater than or equal to the payload reference count.
555  *
556  * Holding a reference to the payload part means that the user does not
557  * care about modifications to the header part of skb->data.
558  */
559 #define SKB_DATAREF_SHIFT 16
560 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
561 
562 
563 enum {
564 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
565 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
566 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
567 };
568 
569 enum {
570 	SKB_GSO_TCPV4 = 1 << 0,
571 
572 	/* This indicates the skb is from an untrusted source. */
573 	SKB_GSO_DODGY = 1 << 1,
574 
575 	/* This indicates the tcp segment has CWR set. */
576 	SKB_GSO_TCP_ECN = 1 << 2,
577 
578 	SKB_GSO_TCP_FIXEDID = 1 << 3,
579 
580 	SKB_GSO_TCPV6 = 1 << 4,
581 
582 	SKB_GSO_FCOE = 1 << 5,
583 
584 	SKB_GSO_GRE = 1 << 6,
585 
586 	SKB_GSO_GRE_CSUM = 1 << 7,
587 
588 	SKB_GSO_IPXIP4 = 1 << 8,
589 
590 	SKB_GSO_IPXIP6 = 1 << 9,
591 
592 	SKB_GSO_UDP_TUNNEL = 1 << 10,
593 
594 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
595 
596 	SKB_GSO_PARTIAL = 1 << 12,
597 
598 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
599 
600 	SKB_GSO_SCTP = 1 << 14,
601 
602 	SKB_GSO_ESP = 1 << 15,
603 
604 	SKB_GSO_UDP = 1 << 16,
605 
606 	SKB_GSO_UDP_L4 = 1 << 17,
607 
608 	SKB_GSO_FRAGLIST = 1 << 18,
609 };
610 
611 #if BITS_PER_LONG > 32
612 #define NET_SKBUFF_DATA_USES_OFFSET 1
613 #endif
614 
615 #ifdef NET_SKBUFF_DATA_USES_OFFSET
616 typedef unsigned int sk_buff_data_t;
617 #else
618 typedef unsigned char *sk_buff_data_t;
619 #endif
620 
621 /**
622  *	struct sk_buff - socket buffer
623  *	@next: Next buffer in list
624  *	@prev: Previous buffer in list
625  *	@tstamp: Time we arrived/left
626  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
627  *		for retransmit timer
628  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
629  *	@list: queue head
630  *	@sk: Socket we are owned by
631  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
632  *		fragmentation management
633  *	@dev: Device we arrived on/are leaving by
634  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
635  *	@cb: Control buffer. Free for use by every layer. Put private vars here
636  *	@_skb_refdst: destination entry (with norefcount bit)
637  *	@sp: the security path, used for xfrm
638  *	@len: Length of actual data
639  *	@data_len: Data length
640  *	@mac_len: Length of link layer header
641  *	@hdr_len: writable header length of cloned skb
642  *	@csum: Checksum (must include start/offset pair)
643  *	@csum_start: Offset from skb->head where checksumming should start
644  *	@csum_offset: Offset from csum_start where checksum should be stored
645  *	@priority: Packet queueing priority
646  *	@ignore_df: allow local fragmentation
647  *	@cloned: Head may be cloned (check refcnt to be sure)
648  *	@ip_summed: Driver fed us an IP checksum
649  *	@nohdr: Payload reference only, must not modify header
650  *	@pkt_type: Packet class
651  *	@fclone: skbuff clone status
652  *	@ipvs_property: skbuff is owned by ipvs
653  *	@inner_protocol_type: whether the inner protocol is
654  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
655  *	@remcsum_offload: remote checksum offload is enabled
656  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
657  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
658  *	@tc_skip_classify: do not classify packet. set by IFB device
659  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
660  *	@redirected: packet was redirected by packet classifier
661  *	@from_ingress: packet was redirected from the ingress path
662  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
663  *	@peeked: this packet has been seen already, so stats have been
664  *		done for it, don't do them again
665  *	@nf_trace: netfilter packet trace flag
666  *	@protocol: Packet protocol from driver
667  *	@destructor: Destruct function
668  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
669  *	@_sk_redir: socket redirection information for skmsg
670  *	@_nfct: Associated connection, if any (with nfctinfo bits)
671  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
672  *	@skb_iif: ifindex of device we arrived on
673  *	@tc_index: Traffic control index
674  *	@hash: the packet hash
675  *	@queue_mapping: Queue mapping for multiqueue devices
676  *	@head_frag: skb was allocated from page fragments,
677  *		not allocated by kmalloc() or vmalloc().
678  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
679  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
680  *		page_pool support on driver)
681  *	@active_extensions: active extensions (skb_ext_id types)
682  *	@ndisc_nodetype: router type (from link layer)
683  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
684  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
685  *		ports.
686  *	@sw_hash: indicates hash was computed in software stack
687  *	@wifi_acked_valid: wifi_acked was set
688  *	@wifi_acked: whether frame was acked on wifi or not
689  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
690  *	@encapsulation: indicates the inner headers in the skbuff are valid
691  *	@encap_hdr_csum: software checksum is needed
692  *	@csum_valid: checksum is already valid
693  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
694  *	@csum_complete_sw: checksum was completed by software
695  *	@csum_level: indicates the number of consecutive checksums found in
696  *		the packet minus one that have been verified as
697  *		CHECKSUM_UNNECESSARY (max 3)
698  *	@dst_pending_confirm: need to confirm neighbour
699  *	@decrypted: Decrypted SKB
700  *	@slow_gro: state present at GRO time, slower prepare step required
701  *	@napi_id: id of the NAPI struct this skb came from
702  *	@sender_cpu: (aka @napi_id) source CPU in XPS
703  *	@secmark: security marking
704  *	@mark: Generic packet mark
705  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
706  *		at the tail of an sk_buff
707  *	@vlan_present: VLAN tag is present
708  *	@vlan_proto: vlan encapsulation protocol
709  *	@vlan_tci: vlan tag control information
710  *	@inner_protocol: Protocol (encapsulation)
711  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
712  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
713  *	@inner_transport_header: Inner transport layer header (encapsulation)
714  *	@inner_network_header: Network layer header (encapsulation)
715  *	@inner_mac_header: Link layer header (encapsulation)
716  *	@transport_header: Transport layer header
717  *	@network_header: Network layer header
718  *	@mac_header: Link layer header
719  *	@kcov_handle: KCOV remote handle for remote coverage collection
720  *	@tail: Tail pointer
721  *	@end: End pointer
722  *	@head: Head of buffer
723  *	@data: Data head pointer
724  *	@truesize: Buffer size
725  *	@users: User count - see {datagram,tcp}.c
726  *	@extensions: allocated extensions, valid if active_extensions is nonzero
727  */
728 
729 struct sk_buff {
730 	union {
731 		struct {
732 			/* These two members must be first. */
733 			struct sk_buff		*next;
734 			struct sk_buff		*prev;
735 
736 			union {
737 				struct net_device	*dev;
738 				/* Some protocols might use this space to store information,
739 				 * while device pointer would be NULL.
740 				 * UDP receive path is one user.
741 				 */
742 				unsigned long		dev_scratch;
743 			};
744 		};
745 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
746 		struct list_head	list;
747 	};
748 
749 	union {
750 		struct sock		*sk;
751 		int			ip_defrag_offset;
752 	};
753 
754 	union {
755 		ktime_t		tstamp;
756 		u64		skb_mstamp_ns; /* earliest departure time */
757 	};
758 	/*
759 	 * This is the control buffer. It is free to use for every
760 	 * layer. Please put your private variables there. If you
761 	 * want to keep them across layers you have to do a skb_clone()
762 	 * first. This is owned by whoever has the skb queued ATM.
763 	 */
764 	char			cb[48] __aligned(8);
765 
766 	union {
767 		struct {
768 			unsigned long	_skb_refdst;
769 			void		(*destructor)(struct sk_buff *skb);
770 		};
771 		struct list_head	tcp_tsorted_anchor;
772 #ifdef CONFIG_NET_SOCK_MSG
773 		unsigned long		_sk_redir;
774 #endif
775 	};
776 
777 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
778 	unsigned long		 _nfct;
779 #endif
780 	unsigned int		len,
781 				data_len;
782 	__u16			mac_len,
783 				hdr_len;
784 
785 	/* Following fields are _not_ copied in __copy_skb_header()
786 	 * Note that queue_mapping is here mostly to fill a hole.
787 	 */
788 	__u16			queue_mapping;
789 
790 /* if you move cloned around you also must adapt those constants */
791 #ifdef __BIG_ENDIAN_BITFIELD
792 #define CLONED_MASK	(1 << 7)
793 #else
794 #define CLONED_MASK	1
795 #endif
796 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
797 
798 	/* private: */
799 	__u8			__cloned_offset[0];
800 	/* public: */
801 	__u8			cloned:1,
802 				nohdr:1,
803 				fclone:2,
804 				peeked:1,
805 				head_frag:1,
806 				pfmemalloc:1,
807 				pp_recycle:1; /* page_pool recycle indicator */
808 #ifdef CONFIG_SKB_EXTENSIONS
809 	__u8			active_extensions;
810 #endif
811 
812 	/* fields enclosed in headers_start/headers_end are copied
813 	 * using a single memcpy() in __copy_skb_header()
814 	 */
815 	/* private: */
816 	__u32			headers_start[0];
817 	/* public: */
818 
819 /* if you move pkt_type around you also must adapt those constants */
820 #ifdef __BIG_ENDIAN_BITFIELD
821 #define PKT_TYPE_MAX	(7 << 5)
822 #else
823 #define PKT_TYPE_MAX	7
824 #endif
825 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
826 
827 	/* private: */
828 	__u8			__pkt_type_offset[0];
829 	/* public: */
830 	__u8			pkt_type:3;
831 	__u8			ignore_df:1;
832 	__u8			nf_trace:1;
833 	__u8			ip_summed:2;
834 	__u8			ooo_okay:1;
835 
836 	__u8			l4_hash:1;
837 	__u8			sw_hash:1;
838 	__u8			wifi_acked_valid:1;
839 	__u8			wifi_acked:1;
840 	__u8			no_fcs:1;
841 	/* Indicates the inner headers are valid in the skbuff. */
842 	__u8			encapsulation:1;
843 	__u8			encap_hdr_csum:1;
844 	__u8			csum_valid:1;
845 
846 #ifdef __BIG_ENDIAN_BITFIELD
847 #define PKT_VLAN_PRESENT_BIT	7
848 #else
849 #define PKT_VLAN_PRESENT_BIT	0
850 #endif
851 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
852 	/* private: */
853 	__u8			__pkt_vlan_present_offset[0];
854 	/* public: */
855 	__u8			vlan_present:1;
856 	__u8			csum_complete_sw:1;
857 	__u8			csum_level:2;
858 	__u8			csum_not_inet:1;
859 	__u8			dst_pending_confirm:1;
860 #ifdef CONFIG_IPV6_NDISC_NODETYPE
861 	__u8			ndisc_nodetype:2;
862 #endif
863 
864 	__u8			ipvs_property:1;
865 	__u8			inner_protocol_type:1;
866 	__u8			remcsum_offload:1;
867 #ifdef CONFIG_NET_SWITCHDEV
868 	__u8			offload_fwd_mark:1;
869 	__u8			offload_l3_fwd_mark:1;
870 #endif
871 #ifdef CONFIG_NET_CLS_ACT
872 	__u8			tc_skip_classify:1;
873 	__u8			tc_at_ingress:1;
874 #endif
875 	__u8			redirected:1;
876 #ifdef CONFIG_NET_REDIRECT
877 	__u8			from_ingress:1;
878 #endif
879 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
880 	__u8			nf_skip_egress:1;
881 #endif
882 #ifdef CONFIG_TLS_DEVICE
883 	__u8			decrypted:1;
884 #endif
885 	__u8			slow_gro:1;
886 
887 #ifdef CONFIG_NET_SCHED
888 	__u16			tc_index;	/* traffic control index */
889 #endif
890 
891 	union {
892 		__wsum		csum;
893 		struct {
894 			__u16	csum_start;
895 			__u16	csum_offset;
896 		};
897 	};
898 	__u32			priority;
899 	int			skb_iif;
900 	__u32			hash;
901 	__be16			vlan_proto;
902 	__u16			vlan_tci;
903 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
904 	union {
905 		unsigned int	napi_id;
906 		unsigned int	sender_cpu;
907 	};
908 #endif
909 #ifdef CONFIG_NETWORK_SECMARK
910 	__u32		secmark;
911 #endif
912 
913 	union {
914 		__u32		mark;
915 		__u32		reserved_tailroom;
916 	};
917 
918 	union {
919 		__be16		inner_protocol;
920 		__u8		inner_ipproto;
921 	};
922 
923 	__u16			inner_transport_header;
924 	__u16			inner_network_header;
925 	__u16			inner_mac_header;
926 
927 	__be16			protocol;
928 	__u16			transport_header;
929 	__u16			network_header;
930 	__u16			mac_header;
931 
932 #ifdef CONFIG_KCOV
933 	u64			kcov_handle;
934 #endif
935 
936 	/* private: */
937 	__u32			headers_end[0];
938 	/* public: */
939 
940 	/* These elements must be at the end, see alloc_skb() for details.  */
941 	sk_buff_data_t		tail;
942 	sk_buff_data_t		end;
943 	unsigned char		*head,
944 				*data;
945 	unsigned int		truesize;
946 	refcount_t		users;
947 
948 #ifdef CONFIG_SKB_EXTENSIONS
949 	/* only useable after checking ->active_extensions != 0 */
950 	struct skb_ext		*extensions;
951 #endif
952 };
953 
954 #ifdef __KERNEL__
955 /*
956  *	Handling routines are only of interest to the kernel
957  */
958 
959 #define SKB_ALLOC_FCLONE	0x01
960 #define SKB_ALLOC_RX		0x02
961 #define SKB_ALLOC_NAPI		0x04
962 
963 /**
964  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
965  * @skb: buffer
966  */
skb_pfmemalloc(const struct sk_buff * skb)967 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
968 {
969 	return unlikely(skb->pfmemalloc);
970 }
971 
972 /*
973  * skb might have a dst pointer attached, refcounted or not.
974  * _skb_refdst low order bit is set if refcount was _not_ taken
975  */
976 #define SKB_DST_NOREF	1UL
977 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
978 
979 /**
980  * skb_dst - returns skb dst_entry
981  * @skb: buffer
982  *
983  * Returns skb dst_entry, regardless of reference taken or not.
984  */
skb_dst(const struct sk_buff * skb)985 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
986 {
987 	/* If refdst was not refcounted, check we still are in a
988 	 * rcu_read_lock section
989 	 */
990 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
991 		!rcu_read_lock_held() &&
992 		!rcu_read_lock_bh_held());
993 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
994 }
995 
996 /**
997  * skb_dst_set - sets skb dst
998  * @skb: buffer
999  * @dst: dst entry
1000  *
1001  * Sets skb dst, assuming a reference was taken on dst and should
1002  * be released by skb_dst_drop()
1003  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1004 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1005 {
1006 	skb->slow_gro |= !!dst;
1007 	skb->_skb_refdst = (unsigned long)dst;
1008 }
1009 
1010 /**
1011  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1012  * @skb: buffer
1013  * @dst: dst entry
1014  *
1015  * Sets skb dst, assuming a reference was not taken on dst.
1016  * If dst entry is cached, we do not take reference and dst_release
1017  * will be avoided by refdst_drop. If dst entry is not cached, we take
1018  * reference, so that last dst_release can destroy the dst immediately.
1019  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1020 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1021 {
1022 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1023 	skb->slow_gro |= !!dst;
1024 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1025 }
1026 
1027 /**
1028  * skb_dst_is_noref - Test if skb dst isn't refcounted
1029  * @skb: buffer
1030  */
skb_dst_is_noref(const struct sk_buff * skb)1031 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1032 {
1033 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1034 }
1035 
1036 /**
1037  * skb_rtable - Returns the skb &rtable
1038  * @skb: buffer
1039  */
skb_rtable(const struct sk_buff * skb)1040 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1041 {
1042 	return (struct rtable *)skb_dst(skb);
1043 }
1044 
1045 /* For mangling skb->pkt_type from user space side from applications
1046  * such as nft, tc, etc, we only allow a conservative subset of
1047  * possible pkt_types to be set.
1048 */
skb_pkt_type_ok(u32 ptype)1049 static inline bool skb_pkt_type_ok(u32 ptype)
1050 {
1051 	return ptype <= PACKET_OTHERHOST;
1052 }
1053 
1054 /**
1055  * skb_napi_id - Returns the skb's NAPI id
1056  * @skb: buffer
1057  */
skb_napi_id(const struct sk_buff * skb)1058 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1059 {
1060 #ifdef CONFIG_NET_RX_BUSY_POLL
1061 	return skb->napi_id;
1062 #else
1063 	return 0;
1064 #endif
1065 }
1066 
1067 /**
1068  * skb_unref - decrement the skb's reference count
1069  * @skb: buffer
1070  *
1071  * Returns true if we can free the skb.
1072  */
skb_unref(struct sk_buff * skb)1073 static inline bool skb_unref(struct sk_buff *skb)
1074 {
1075 	if (unlikely(!skb))
1076 		return false;
1077 	if (likely(refcount_read(&skb->users) == 1))
1078 		smp_rmb();
1079 	else if (likely(!refcount_dec_and_test(&skb->users)))
1080 		return false;
1081 
1082 	return true;
1083 }
1084 
1085 void skb_release_head_state(struct sk_buff *skb);
1086 void kfree_skb(struct sk_buff *skb);
1087 void kfree_skb_list(struct sk_buff *segs);
1088 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1089 void skb_tx_error(struct sk_buff *skb);
1090 
1091 #ifdef CONFIG_TRACEPOINTS
1092 void consume_skb(struct sk_buff *skb);
1093 #else
consume_skb(struct sk_buff * skb)1094 static inline void consume_skb(struct sk_buff *skb)
1095 {
1096 	return kfree_skb(skb);
1097 }
1098 #endif
1099 
1100 void __consume_stateless_skb(struct sk_buff *skb);
1101 void  __kfree_skb(struct sk_buff *skb);
1102 extern struct kmem_cache *skbuff_head_cache;
1103 
1104 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1105 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1106 		      bool *fragstolen, int *delta_truesize);
1107 
1108 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1109 			    int node);
1110 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1111 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1112 struct sk_buff *build_skb_around(struct sk_buff *skb,
1113 				 void *data, unsigned int frag_size);
1114 
1115 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1116 
1117 /**
1118  * alloc_skb - allocate a network buffer
1119  * @size: size to allocate
1120  * @priority: allocation mask
1121  *
1122  * This function is a convenient wrapper around __alloc_skb().
1123  */
alloc_skb(unsigned int size,gfp_t priority)1124 static inline struct sk_buff *alloc_skb(unsigned int size,
1125 					gfp_t priority)
1126 {
1127 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1128 }
1129 
1130 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1131 				     unsigned long data_len,
1132 				     int max_page_order,
1133 				     int *errcode,
1134 				     gfp_t gfp_mask);
1135 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1136 
1137 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1138 struct sk_buff_fclones {
1139 	struct sk_buff	skb1;
1140 
1141 	struct sk_buff	skb2;
1142 
1143 	refcount_t	fclone_ref;
1144 };
1145 
1146 /**
1147  *	skb_fclone_busy - check if fclone is busy
1148  *	@sk: socket
1149  *	@skb: buffer
1150  *
1151  * Returns true if skb is a fast clone, and its clone is not freed.
1152  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1153  * so we also check that this didnt happen.
1154  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1155 static inline bool skb_fclone_busy(const struct sock *sk,
1156 				   const struct sk_buff *skb)
1157 {
1158 	const struct sk_buff_fclones *fclones;
1159 
1160 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1161 
1162 	return skb->fclone == SKB_FCLONE_ORIG &&
1163 	       refcount_read(&fclones->fclone_ref) > 1 &&
1164 	       READ_ONCE(fclones->skb2.sk) == sk;
1165 }
1166 
1167 /**
1168  * alloc_skb_fclone - allocate a network buffer from fclone cache
1169  * @size: size to allocate
1170  * @priority: allocation mask
1171  *
1172  * This function is a convenient wrapper around __alloc_skb().
1173  */
alloc_skb_fclone(unsigned int size,gfp_t priority)1174 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1175 					       gfp_t priority)
1176 {
1177 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1178 }
1179 
1180 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1181 void skb_headers_offset_update(struct sk_buff *skb, int off);
1182 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1183 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1184 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1185 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1186 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1187 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1188 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1189 					  gfp_t gfp_mask)
1190 {
1191 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1192 }
1193 
1194 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1195 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1196 				     unsigned int headroom);
1197 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1198 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1199 				int newtailroom, gfp_t priority);
1200 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1201 				     int offset, int len);
1202 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1203 			      int offset, int len);
1204 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1205 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1206 
1207 /**
1208  *	skb_pad			-	zero pad the tail of an skb
1209  *	@skb: buffer to pad
1210  *	@pad: space to pad
1211  *
1212  *	Ensure that a buffer is followed by a padding area that is zero
1213  *	filled. Used by network drivers which may DMA or transfer data
1214  *	beyond the buffer end onto the wire.
1215  *
1216  *	May return error in out of memory cases. The skb is freed on error.
1217  */
skb_pad(struct sk_buff * skb,int pad)1218 static inline int skb_pad(struct sk_buff *skb, int pad)
1219 {
1220 	return __skb_pad(skb, pad, true);
1221 }
1222 #define dev_kfree_skb(a)	consume_skb(a)
1223 
1224 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1225 			 int offset, size_t size);
1226 
1227 struct skb_seq_state {
1228 	__u32		lower_offset;
1229 	__u32		upper_offset;
1230 	__u32		frag_idx;
1231 	__u32		stepped_offset;
1232 	struct sk_buff	*root_skb;
1233 	struct sk_buff	*cur_skb;
1234 	__u8		*frag_data;
1235 	__u32		frag_off;
1236 };
1237 
1238 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1239 			  unsigned int to, struct skb_seq_state *st);
1240 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1241 			  struct skb_seq_state *st);
1242 void skb_abort_seq_read(struct skb_seq_state *st);
1243 
1244 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1245 			   unsigned int to, struct ts_config *config);
1246 
1247 /*
1248  * Packet hash types specify the type of hash in skb_set_hash.
1249  *
1250  * Hash types refer to the protocol layer addresses which are used to
1251  * construct a packet's hash. The hashes are used to differentiate or identify
1252  * flows of the protocol layer for the hash type. Hash types are either
1253  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1254  *
1255  * Properties of hashes:
1256  *
1257  * 1) Two packets in different flows have different hash values
1258  * 2) Two packets in the same flow should have the same hash value
1259  *
1260  * A hash at a higher layer is considered to be more specific. A driver should
1261  * set the most specific hash possible.
1262  *
1263  * A driver cannot indicate a more specific hash than the layer at which a hash
1264  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1265  *
1266  * A driver may indicate a hash level which is less specific than the
1267  * actual layer the hash was computed on. For instance, a hash computed
1268  * at L4 may be considered an L3 hash. This should only be done if the
1269  * driver can't unambiguously determine that the HW computed the hash at
1270  * the higher layer. Note that the "should" in the second property above
1271  * permits this.
1272  */
1273 enum pkt_hash_types {
1274 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1275 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1276 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1277 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1278 };
1279 
skb_clear_hash(struct sk_buff * skb)1280 static inline void skb_clear_hash(struct sk_buff *skb)
1281 {
1282 	skb->hash = 0;
1283 	skb->sw_hash = 0;
1284 	skb->l4_hash = 0;
1285 }
1286 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1287 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1288 {
1289 	if (!skb->l4_hash)
1290 		skb_clear_hash(skb);
1291 }
1292 
1293 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1294 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1295 {
1296 	skb->l4_hash = is_l4;
1297 	skb->sw_hash = is_sw;
1298 	skb->hash = hash;
1299 }
1300 
1301 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1302 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1303 {
1304 	/* Used by drivers to set hash from HW */
1305 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1306 }
1307 
1308 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1309 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1310 {
1311 	__skb_set_hash(skb, hash, true, is_l4);
1312 }
1313 
1314 void __skb_get_hash(struct sk_buff *skb);
1315 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1316 u32 skb_get_poff(const struct sk_buff *skb);
1317 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1318 		   const struct flow_keys_basic *keys, int hlen);
1319 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1320 			    const void *data, int hlen_proto);
1321 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1322 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1323 					int thoff, u8 ip_proto)
1324 {
1325 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1326 }
1327 
1328 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1329 			     const struct flow_dissector_key *key,
1330 			     unsigned int key_count);
1331 
1332 struct bpf_flow_dissector;
1333 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1334 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1335 
1336 bool __skb_flow_dissect(const struct net *net,
1337 			const struct sk_buff *skb,
1338 			struct flow_dissector *flow_dissector,
1339 			void *target_container, const void *data,
1340 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1341 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1342 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1343 				    struct flow_dissector *flow_dissector,
1344 				    void *target_container, unsigned int flags)
1345 {
1346 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1347 				  target_container, NULL, 0, 0, 0, flags);
1348 }
1349 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1350 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1351 					      struct flow_keys *flow,
1352 					      unsigned int flags)
1353 {
1354 	memset(flow, 0, sizeof(*flow));
1355 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1356 				  flow, NULL, 0, 0, 0, flags);
1357 }
1358 
1359 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1360 skb_flow_dissect_flow_keys_basic(const struct net *net,
1361 				 const struct sk_buff *skb,
1362 				 struct flow_keys_basic *flow,
1363 				 const void *data, __be16 proto,
1364 				 int nhoff, int hlen, unsigned int flags)
1365 {
1366 	memset(flow, 0, sizeof(*flow));
1367 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1368 				  data, proto, nhoff, hlen, flags);
1369 }
1370 
1371 void skb_flow_dissect_meta(const struct sk_buff *skb,
1372 			   struct flow_dissector *flow_dissector,
1373 			   void *target_container);
1374 
1375 /* Gets a skb connection tracking info, ctinfo map should be a
1376  * map of mapsize to translate enum ip_conntrack_info states
1377  * to user states.
1378  */
1379 void
1380 skb_flow_dissect_ct(const struct sk_buff *skb,
1381 		    struct flow_dissector *flow_dissector,
1382 		    void *target_container,
1383 		    u16 *ctinfo_map, size_t mapsize,
1384 		    bool post_ct, u16 zone);
1385 void
1386 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1387 			     struct flow_dissector *flow_dissector,
1388 			     void *target_container);
1389 
1390 void skb_flow_dissect_hash(const struct sk_buff *skb,
1391 			   struct flow_dissector *flow_dissector,
1392 			   void *target_container);
1393 
skb_get_hash(struct sk_buff * skb)1394 static inline __u32 skb_get_hash(struct sk_buff *skb)
1395 {
1396 	if (!skb->l4_hash && !skb->sw_hash)
1397 		__skb_get_hash(skb);
1398 
1399 	return skb->hash;
1400 }
1401 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1402 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1403 {
1404 	if (!skb->l4_hash && !skb->sw_hash) {
1405 		struct flow_keys keys;
1406 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1407 
1408 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1409 	}
1410 
1411 	return skb->hash;
1412 }
1413 
1414 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1415 			   const siphash_key_t *perturb);
1416 
skb_get_hash_raw(const struct sk_buff * skb)1417 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1418 {
1419 	return skb->hash;
1420 }
1421 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1422 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1423 {
1424 	to->hash = from->hash;
1425 	to->sw_hash = from->sw_hash;
1426 	to->l4_hash = from->l4_hash;
1427 };
1428 
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1429 static inline void skb_copy_decrypted(struct sk_buff *to,
1430 				      const struct sk_buff *from)
1431 {
1432 #ifdef CONFIG_TLS_DEVICE
1433 	to->decrypted = from->decrypted;
1434 #endif
1435 }
1436 
1437 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1438 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1439 {
1440 	return skb->head + skb->end;
1441 }
1442 
skb_end_offset(const struct sk_buff * skb)1443 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1444 {
1445 	return skb->end;
1446 }
1447 #else
skb_end_pointer(const struct sk_buff * skb)1448 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1449 {
1450 	return skb->end;
1451 }
1452 
skb_end_offset(const struct sk_buff * skb)1453 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1454 {
1455 	return skb->end - skb->head;
1456 }
1457 #endif
1458 
1459 /* Internal */
1460 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1461 
skb_hwtstamps(struct sk_buff * skb)1462 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1463 {
1464 	return &skb_shinfo(skb)->hwtstamps;
1465 }
1466 
skb_zcopy(struct sk_buff * skb)1467 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1468 {
1469 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1470 
1471 	return is_zcopy ? skb_uarg(skb) : NULL;
1472 }
1473 
skb_zcopy_pure(const struct sk_buff * skb)1474 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1475 {
1476 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1477 }
1478 
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1479 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1480 				       const struct sk_buff *skb2)
1481 {
1482 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1483 }
1484 
net_zcopy_get(struct ubuf_info * uarg)1485 static inline void net_zcopy_get(struct ubuf_info *uarg)
1486 {
1487 	refcount_inc(&uarg->refcnt);
1488 }
1489 
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1490 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1491 {
1492 	skb_shinfo(skb)->destructor_arg = uarg;
1493 	skb_shinfo(skb)->flags |= uarg->flags;
1494 }
1495 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1496 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1497 				 bool *have_ref)
1498 {
1499 	if (skb && uarg && !skb_zcopy(skb)) {
1500 		if (unlikely(have_ref && *have_ref))
1501 			*have_ref = false;
1502 		else
1503 			net_zcopy_get(uarg);
1504 		skb_zcopy_init(skb, uarg);
1505 	}
1506 }
1507 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1508 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1509 {
1510 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1511 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1512 }
1513 
skb_zcopy_is_nouarg(struct sk_buff * skb)1514 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1515 {
1516 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1517 }
1518 
skb_zcopy_get_nouarg(struct sk_buff * skb)1519 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1520 {
1521 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1522 }
1523 
net_zcopy_put(struct ubuf_info * uarg)1524 static inline void net_zcopy_put(struct ubuf_info *uarg)
1525 {
1526 	if (uarg)
1527 		uarg->callback(NULL, uarg, true);
1528 }
1529 
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1530 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1531 {
1532 	if (uarg) {
1533 		if (uarg->callback == msg_zerocopy_callback)
1534 			msg_zerocopy_put_abort(uarg, have_uref);
1535 		else if (have_uref)
1536 			net_zcopy_put(uarg);
1537 	}
1538 }
1539 
1540 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1541 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1542 {
1543 	struct ubuf_info *uarg = skb_zcopy(skb);
1544 
1545 	if (uarg) {
1546 		if (!skb_zcopy_is_nouarg(skb))
1547 			uarg->callback(skb, uarg, zerocopy_success);
1548 
1549 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1550 	}
1551 }
1552 
skb_mark_not_on_list(struct sk_buff * skb)1553 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1554 {
1555 	skb->next = NULL;
1556 }
1557 
1558 /* Iterate through singly-linked GSO fragments of an skb. */
1559 #define skb_list_walk_safe(first, skb, next_skb)                               \
1560 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1561 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1562 
skb_list_del_init(struct sk_buff * skb)1563 static inline void skb_list_del_init(struct sk_buff *skb)
1564 {
1565 	__list_del_entry(&skb->list);
1566 	skb_mark_not_on_list(skb);
1567 }
1568 
1569 /**
1570  *	skb_queue_empty - check if a queue is empty
1571  *	@list: queue head
1572  *
1573  *	Returns true if the queue is empty, false otherwise.
1574  */
skb_queue_empty(const struct sk_buff_head * list)1575 static inline int skb_queue_empty(const struct sk_buff_head *list)
1576 {
1577 	return list->next == (const struct sk_buff *) list;
1578 }
1579 
1580 /**
1581  *	skb_queue_empty_lockless - check if a queue is empty
1582  *	@list: queue head
1583  *
1584  *	Returns true if the queue is empty, false otherwise.
1585  *	This variant can be used in lockless contexts.
1586  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1587 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1588 {
1589 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1590 }
1591 
1592 
1593 /**
1594  *	skb_queue_is_last - check if skb is the last entry in the queue
1595  *	@list: queue head
1596  *	@skb: buffer
1597  *
1598  *	Returns true if @skb is the last buffer on the list.
1599  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1600 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1601 				     const struct sk_buff *skb)
1602 {
1603 	return skb->next == (const struct sk_buff *) list;
1604 }
1605 
1606 /**
1607  *	skb_queue_is_first - check if skb is the first entry in the queue
1608  *	@list: queue head
1609  *	@skb: buffer
1610  *
1611  *	Returns true if @skb is the first buffer on the list.
1612  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1613 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1614 				      const struct sk_buff *skb)
1615 {
1616 	return skb->prev == (const struct sk_buff *) list;
1617 }
1618 
1619 /**
1620  *	skb_queue_next - return the next packet in the queue
1621  *	@list: queue head
1622  *	@skb: current buffer
1623  *
1624  *	Return the next packet in @list after @skb.  It is only valid to
1625  *	call this if skb_queue_is_last() evaluates to false.
1626  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1627 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1628 					     const struct sk_buff *skb)
1629 {
1630 	/* This BUG_ON may seem severe, but if we just return then we
1631 	 * are going to dereference garbage.
1632 	 */
1633 	BUG_ON(skb_queue_is_last(list, skb));
1634 	return skb->next;
1635 }
1636 
1637 /**
1638  *	skb_queue_prev - return the prev packet in the queue
1639  *	@list: queue head
1640  *	@skb: current buffer
1641  *
1642  *	Return the prev packet in @list before @skb.  It is only valid to
1643  *	call this if skb_queue_is_first() evaluates to false.
1644  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1645 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1646 					     const struct sk_buff *skb)
1647 {
1648 	/* This BUG_ON may seem severe, but if we just return then we
1649 	 * are going to dereference garbage.
1650 	 */
1651 	BUG_ON(skb_queue_is_first(list, skb));
1652 	return skb->prev;
1653 }
1654 
1655 /**
1656  *	skb_get - reference buffer
1657  *	@skb: buffer to reference
1658  *
1659  *	Makes another reference to a socket buffer and returns a pointer
1660  *	to the buffer.
1661  */
skb_get(struct sk_buff * skb)1662 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1663 {
1664 	refcount_inc(&skb->users);
1665 	return skb;
1666 }
1667 
1668 /*
1669  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1670  */
1671 
1672 /**
1673  *	skb_cloned - is the buffer a clone
1674  *	@skb: buffer to check
1675  *
1676  *	Returns true if the buffer was generated with skb_clone() and is
1677  *	one of multiple shared copies of the buffer. Cloned buffers are
1678  *	shared data so must not be written to under normal circumstances.
1679  */
skb_cloned(const struct sk_buff * skb)1680 static inline int skb_cloned(const struct sk_buff *skb)
1681 {
1682 	return skb->cloned &&
1683 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1684 }
1685 
skb_unclone(struct sk_buff * skb,gfp_t pri)1686 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1687 {
1688 	might_sleep_if(gfpflags_allow_blocking(pri));
1689 
1690 	if (skb_cloned(skb))
1691 		return pskb_expand_head(skb, 0, 0, pri);
1692 
1693 	return 0;
1694 }
1695 
1696 /* This variant of skb_unclone() makes sure skb->truesize is not changed */
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1697 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1698 {
1699 	might_sleep_if(gfpflags_allow_blocking(pri));
1700 
1701 	if (skb_cloned(skb)) {
1702 		unsigned int save = skb->truesize;
1703 		int res;
1704 
1705 		res = pskb_expand_head(skb, 0, 0, pri);
1706 		skb->truesize = save;
1707 		return res;
1708 	}
1709 	return 0;
1710 }
1711 
1712 /**
1713  *	skb_header_cloned - is the header a clone
1714  *	@skb: buffer to check
1715  *
1716  *	Returns true if modifying the header part of the buffer requires
1717  *	the data to be copied.
1718  */
skb_header_cloned(const struct sk_buff * skb)1719 static inline int skb_header_cloned(const struct sk_buff *skb)
1720 {
1721 	int dataref;
1722 
1723 	if (!skb->cloned)
1724 		return 0;
1725 
1726 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1727 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1728 	return dataref != 1;
1729 }
1730 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1731 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1732 {
1733 	might_sleep_if(gfpflags_allow_blocking(pri));
1734 
1735 	if (skb_header_cloned(skb))
1736 		return pskb_expand_head(skb, 0, 0, pri);
1737 
1738 	return 0;
1739 }
1740 
1741 /**
1742  *	__skb_header_release - release reference to header
1743  *	@skb: buffer to operate on
1744  */
__skb_header_release(struct sk_buff * skb)1745 static inline void __skb_header_release(struct sk_buff *skb)
1746 {
1747 	skb->nohdr = 1;
1748 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1749 }
1750 
1751 
1752 /**
1753  *	skb_shared - is the buffer shared
1754  *	@skb: buffer to check
1755  *
1756  *	Returns true if more than one person has a reference to this
1757  *	buffer.
1758  */
skb_shared(const struct sk_buff * skb)1759 static inline int skb_shared(const struct sk_buff *skb)
1760 {
1761 	return refcount_read(&skb->users) != 1;
1762 }
1763 
1764 /**
1765  *	skb_share_check - check if buffer is shared and if so clone it
1766  *	@skb: buffer to check
1767  *	@pri: priority for memory allocation
1768  *
1769  *	If the buffer is shared the buffer is cloned and the old copy
1770  *	drops a reference. A new clone with a single reference is returned.
1771  *	If the buffer is not shared the original buffer is returned. When
1772  *	being called from interrupt status or with spinlocks held pri must
1773  *	be GFP_ATOMIC.
1774  *
1775  *	NULL is returned on a memory allocation failure.
1776  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1777 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1778 {
1779 	might_sleep_if(gfpflags_allow_blocking(pri));
1780 	if (skb_shared(skb)) {
1781 		struct sk_buff *nskb = skb_clone(skb, pri);
1782 
1783 		if (likely(nskb))
1784 			consume_skb(skb);
1785 		else
1786 			kfree_skb(skb);
1787 		skb = nskb;
1788 	}
1789 	return skb;
1790 }
1791 
1792 /*
1793  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1794  *	packets to handle cases where we have a local reader and forward
1795  *	and a couple of other messy ones. The normal one is tcpdumping
1796  *	a packet thats being forwarded.
1797  */
1798 
1799 /**
1800  *	skb_unshare - make a copy of a shared buffer
1801  *	@skb: buffer to check
1802  *	@pri: priority for memory allocation
1803  *
1804  *	If the socket buffer is a clone then this function creates a new
1805  *	copy of the data, drops a reference count on the old copy and returns
1806  *	the new copy with the reference count at 1. If the buffer is not a clone
1807  *	the original buffer is returned. When called with a spinlock held or
1808  *	from interrupt state @pri must be %GFP_ATOMIC
1809  *
1810  *	%NULL is returned on a memory allocation failure.
1811  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1812 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1813 					  gfp_t pri)
1814 {
1815 	might_sleep_if(gfpflags_allow_blocking(pri));
1816 	if (skb_cloned(skb)) {
1817 		struct sk_buff *nskb = skb_copy(skb, pri);
1818 
1819 		/* Free our shared copy */
1820 		if (likely(nskb))
1821 			consume_skb(skb);
1822 		else
1823 			kfree_skb(skb);
1824 		skb = nskb;
1825 	}
1826 	return skb;
1827 }
1828 
1829 /**
1830  *	skb_peek - peek at the head of an &sk_buff_head
1831  *	@list_: list to peek at
1832  *
1833  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1834  *	be careful with this one. A peek leaves the buffer on the
1835  *	list and someone else may run off with it. You must hold
1836  *	the appropriate locks or have a private queue to do this.
1837  *
1838  *	Returns %NULL for an empty list or a pointer to the head element.
1839  *	The reference count is not incremented and the reference is therefore
1840  *	volatile. Use with caution.
1841  */
skb_peek(const struct sk_buff_head * list_)1842 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1843 {
1844 	struct sk_buff *skb = list_->next;
1845 
1846 	if (skb == (struct sk_buff *)list_)
1847 		skb = NULL;
1848 	return skb;
1849 }
1850 
1851 /**
1852  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1853  *	@list_: list to peek at
1854  *
1855  *	Like skb_peek(), but the caller knows that the list is not empty.
1856  */
__skb_peek(const struct sk_buff_head * list_)1857 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1858 {
1859 	return list_->next;
1860 }
1861 
1862 /**
1863  *	skb_peek_next - peek skb following the given one from a queue
1864  *	@skb: skb to start from
1865  *	@list_: list to peek at
1866  *
1867  *	Returns %NULL when the end of the list is met or a pointer to the
1868  *	next element. The reference count is not incremented and the
1869  *	reference is therefore volatile. Use with caution.
1870  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1871 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1872 		const struct sk_buff_head *list_)
1873 {
1874 	struct sk_buff *next = skb->next;
1875 
1876 	if (next == (struct sk_buff *)list_)
1877 		next = NULL;
1878 	return next;
1879 }
1880 
1881 /**
1882  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1883  *	@list_: list to peek at
1884  *
1885  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1886  *	be careful with this one. A peek leaves the buffer on the
1887  *	list and someone else may run off with it. You must hold
1888  *	the appropriate locks or have a private queue to do this.
1889  *
1890  *	Returns %NULL for an empty list or a pointer to the tail element.
1891  *	The reference count is not incremented and the reference is therefore
1892  *	volatile. Use with caution.
1893  */
skb_peek_tail(const struct sk_buff_head * list_)1894 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1895 {
1896 	struct sk_buff *skb = READ_ONCE(list_->prev);
1897 
1898 	if (skb == (struct sk_buff *)list_)
1899 		skb = NULL;
1900 	return skb;
1901 
1902 }
1903 
1904 /**
1905  *	skb_queue_len	- get queue length
1906  *	@list_: list to measure
1907  *
1908  *	Return the length of an &sk_buff queue.
1909  */
skb_queue_len(const struct sk_buff_head * list_)1910 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1911 {
1912 	return list_->qlen;
1913 }
1914 
1915 /**
1916  *	skb_queue_len_lockless	- get queue length
1917  *	@list_: list to measure
1918  *
1919  *	Return the length of an &sk_buff queue.
1920  *	This variant can be used in lockless contexts.
1921  */
skb_queue_len_lockless(const struct sk_buff_head * list_)1922 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1923 {
1924 	return READ_ONCE(list_->qlen);
1925 }
1926 
1927 /**
1928  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1929  *	@list: queue to initialize
1930  *
1931  *	This initializes only the list and queue length aspects of
1932  *	an sk_buff_head object.  This allows to initialize the list
1933  *	aspects of an sk_buff_head without reinitializing things like
1934  *	the spinlock.  It can also be used for on-stack sk_buff_head
1935  *	objects where the spinlock is known to not be used.
1936  */
__skb_queue_head_init(struct sk_buff_head * list)1937 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1938 {
1939 	list->prev = list->next = (struct sk_buff *)list;
1940 	list->qlen = 0;
1941 }
1942 
1943 /*
1944  * This function creates a split out lock class for each invocation;
1945  * this is needed for now since a whole lot of users of the skb-queue
1946  * infrastructure in drivers have different locking usage (in hardirq)
1947  * than the networking core (in softirq only). In the long run either the
1948  * network layer or drivers should need annotation to consolidate the
1949  * main types of usage into 3 classes.
1950  */
skb_queue_head_init(struct sk_buff_head * list)1951 static inline void skb_queue_head_init(struct sk_buff_head *list)
1952 {
1953 	spin_lock_init(&list->lock);
1954 	__skb_queue_head_init(list);
1955 }
1956 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1957 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1958 		struct lock_class_key *class)
1959 {
1960 	skb_queue_head_init(list);
1961 	lockdep_set_class(&list->lock, class);
1962 }
1963 
1964 /*
1965  *	Insert an sk_buff on a list.
1966  *
1967  *	The "__skb_xxxx()" functions are the non-atomic ones that
1968  *	can only be called with interrupts disabled.
1969  */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1970 static inline void __skb_insert(struct sk_buff *newsk,
1971 				struct sk_buff *prev, struct sk_buff *next,
1972 				struct sk_buff_head *list)
1973 {
1974 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1975 	 * for the opposite READ_ONCE()
1976 	 */
1977 	WRITE_ONCE(newsk->next, next);
1978 	WRITE_ONCE(newsk->prev, prev);
1979 	WRITE_ONCE(next->prev, newsk);
1980 	WRITE_ONCE(prev->next, newsk);
1981 	WRITE_ONCE(list->qlen, list->qlen + 1);
1982 }
1983 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1984 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1985 				      struct sk_buff *prev,
1986 				      struct sk_buff *next)
1987 {
1988 	struct sk_buff *first = list->next;
1989 	struct sk_buff *last = list->prev;
1990 
1991 	WRITE_ONCE(first->prev, prev);
1992 	WRITE_ONCE(prev->next, first);
1993 
1994 	WRITE_ONCE(last->next, next);
1995 	WRITE_ONCE(next->prev, last);
1996 }
1997 
1998 /**
1999  *	skb_queue_splice - join two skb lists, this is designed for stacks
2000  *	@list: the new list to add
2001  *	@head: the place to add it in the first list
2002  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2003 static inline void skb_queue_splice(const struct sk_buff_head *list,
2004 				    struct sk_buff_head *head)
2005 {
2006 	if (!skb_queue_empty(list)) {
2007 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2008 		head->qlen += list->qlen;
2009 	}
2010 }
2011 
2012 /**
2013  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2014  *	@list: the new list to add
2015  *	@head: the place to add it in the first list
2016  *
2017  *	The list at @list is reinitialised
2018  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2019 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2020 					 struct sk_buff_head *head)
2021 {
2022 	if (!skb_queue_empty(list)) {
2023 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2024 		head->qlen += list->qlen;
2025 		__skb_queue_head_init(list);
2026 	}
2027 }
2028 
2029 /**
2030  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2031  *	@list: the new list to add
2032  *	@head: the place to add it in the first list
2033  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2034 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2035 					 struct sk_buff_head *head)
2036 {
2037 	if (!skb_queue_empty(list)) {
2038 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2039 		head->qlen += list->qlen;
2040 	}
2041 }
2042 
2043 /**
2044  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2045  *	@list: the new list to add
2046  *	@head: the place to add it in the first list
2047  *
2048  *	Each of the lists is a queue.
2049  *	The list at @list is reinitialised
2050  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2051 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2052 					      struct sk_buff_head *head)
2053 {
2054 	if (!skb_queue_empty(list)) {
2055 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2056 		head->qlen += list->qlen;
2057 		__skb_queue_head_init(list);
2058 	}
2059 }
2060 
2061 /**
2062  *	__skb_queue_after - queue a buffer at the list head
2063  *	@list: list to use
2064  *	@prev: place after this buffer
2065  *	@newsk: buffer to queue
2066  *
2067  *	Queue a buffer int the middle of a list. This function takes no locks
2068  *	and you must therefore hold required locks before calling it.
2069  *
2070  *	A buffer cannot be placed on two lists at the same time.
2071  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2072 static inline void __skb_queue_after(struct sk_buff_head *list,
2073 				     struct sk_buff *prev,
2074 				     struct sk_buff *newsk)
2075 {
2076 	__skb_insert(newsk, prev, prev->next, list);
2077 }
2078 
2079 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2080 		struct sk_buff_head *list);
2081 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2082 static inline void __skb_queue_before(struct sk_buff_head *list,
2083 				      struct sk_buff *next,
2084 				      struct sk_buff *newsk)
2085 {
2086 	__skb_insert(newsk, next->prev, next, list);
2087 }
2088 
2089 /**
2090  *	__skb_queue_head - queue a buffer at the list head
2091  *	@list: list to use
2092  *	@newsk: buffer to queue
2093  *
2094  *	Queue a buffer at the start of a list. This function takes no locks
2095  *	and you must therefore hold required locks before calling it.
2096  *
2097  *	A buffer cannot be placed on two lists at the same time.
2098  */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2099 static inline void __skb_queue_head(struct sk_buff_head *list,
2100 				    struct sk_buff *newsk)
2101 {
2102 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2103 }
2104 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2105 
2106 /**
2107  *	__skb_queue_tail - queue a buffer at the list tail
2108  *	@list: list to use
2109  *	@newsk: buffer to queue
2110  *
2111  *	Queue a buffer at the end of a list. This function takes no locks
2112  *	and you must therefore hold required locks before calling it.
2113  *
2114  *	A buffer cannot be placed on two lists at the same time.
2115  */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2116 static inline void __skb_queue_tail(struct sk_buff_head *list,
2117 				   struct sk_buff *newsk)
2118 {
2119 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2120 }
2121 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2122 
2123 /*
2124  * remove sk_buff from list. _Must_ be called atomically, and with
2125  * the list known..
2126  */
2127 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2128 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2129 {
2130 	struct sk_buff *next, *prev;
2131 
2132 	WRITE_ONCE(list->qlen, list->qlen - 1);
2133 	next	   = skb->next;
2134 	prev	   = skb->prev;
2135 	skb->next  = skb->prev = NULL;
2136 	WRITE_ONCE(next->prev, prev);
2137 	WRITE_ONCE(prev->next, next);
2138 }
2139 
2140 /**
2141  *	__skb_dequeue - remove from the head of the queue
2142  *	@list: list to dequeue from
2143  *
2144  *	Remove the head of the list. This function does not take any locks
2145  *	so must be used with appropriate locks held only. The head item is
2146  *	returned or %NULL if the list is empty.
2147  */
__skb_dequeue(struct sk_buff_head * list)2148 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2149 {
2150 	struct sk_buff *skb = skb_peek(list);
2151 	if (skb)
2152 		__skb_unlink(skb, list);
2153 	return skb;
2154 }
2155 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2156 
2157 /**
2158  *	__skb_dequeue_tail - remove from the tail of the queue
2159  *	@list: list to dequeue from
2160  *
2161  *	Remove the tail of the list. This function does not take any locks
2162  *	so must be used with appropriate locks held only. The tail item is
2163  *	returned or %NULL if the list is empty.
2164  */
__skb_dequeue_tail(struct sk_buff_head * list)2165 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2166 {
2167 	struct sk_buff *skb = skb_peek_tail(list);
2168 	if (skb)
2169 		__skb_unlink(skb, list);
2170 	return skb;
2171 }
2172 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2173 
2174 
skb_is_nonlinear(const struct sk_buff * skb)2175 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2176 {
2177 	return skb->data_len;
2178 }
2179 
skb_headlen(const struct sk_buff * skb)2180 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2181 {
2182 	return skb->len - skb->data_len;
2183 }
2184 
__skb_pagelen(const struct sk_buff * skb)2185 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2186 {
2187 	unsigned int i, len = 0;
2188 
2189 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2190 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2191 	return len;
2192 }
2193 
skb_pagelen(const struct sk_buff * skb)2194 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2195 {
2196 	return skb_headlen(skb) + __skb_pagelen(skb);
2197 }
2198 
2199 /**
2200  * __skb_fill_page_desc - initialise a paged fragment in an skb
2201  * @skb: buffer containing fragment to be initialised
2202  * @i: paged fragment index to initialise
2203  * @page: the page to use for this fragment
2204  * @off: the offset to the data with @page
2205  * @size: the length of the data
2206  *
2207  * Initialises the @i'th fragment of @skb to point to &size bytes at
2208  * offset @off within @page.
2209  *
2210  * Does not take any additional reference on the fragment.
2211  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2212 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2213 					struct page *page, int off, int size)
2214 {
2215 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2216 
2217 	/*
2218 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2219 	 * that not all callers have unique ownership of the page but rely
2220 	 * on page_is_pfmemalloc doing the right thing(tm).
2221 	 */
2222 	frag->bv_page		  = page;
2223 	frag->bv_offset		  = off;
2224 	skb_frag_size_set(frag, size);
2225 
2226 	page = compound_head(page);
2227 	if (page_is_pfmemalloc(page))
2228 		skb->pfmemalloc	= true;
2229 }
2230 
2231 /**
2232  * skb_fill_page_desc - initialise a paged fragment in an skb
2233  * @skb: buffer containing fragment to be initialised
2234  * @i: paged fragment index to initialise
2235  * @page: the page to use for this fragment
2236  * @off: the offset to the data with @page
2237  * @size: the length of the data
2238  *
2239  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2240  * @skb to point to @size bytes at offset @off within @page. In
2241  * addition updates @skb such that @i is the last fragment.
2242  *
2243  * Does not take any additional reference on the fragment.
2244  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2245 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2246 				      struct page *page, int off, int size)
2247 {
2248 	__skb_fill_page_desc(skb, i, page, off, size);
2249 	skb_shinfo(skb)->nr_frags = i + 1;
2250 }
2251 
2252 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2253 		     int size, unsigned int truesize);
2254 
2255 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2256 			  unsigned int truesize);
2257 
2258 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2259 
2260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2261 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2262 {
2263 	return skb->head + skb->tail;
2264 }
2265 
skb_reset_tail_pointer(struct sk_buff * skb)2266 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2267 {
2268 	skb->tail = skb->data - skb->head;
2269 }
2270 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2271 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2272 {
2273 	skb_reset_tail_pointer(skb);
2274 	skb->tail += offset;
2275 }
2276 
2277 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2278 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2279 {
2280 	return skb->tail;
2281 }
2282 
skb_reset_tail_pointer(struct sk_buff * skb)2283 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2284 {
2285 	skb->tail = skb->data;
2286 }
2287 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2288 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2289 {
2290 	skb->tail = skb->data + offset;
2291 }
2292 
2293 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2294 
2295 /*
2296  *	Add data to an sk_buff
2297  */
2298 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2299 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2300 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2301 {
2302 	void *tmp = skb_tail_pointer(skb);
2303 	SKB_LINEAR_ASSERT(skb);
2304 	skb->tail += len;
2305 	skb->len  += len;
2306 	return tmp;
2307 }
2308 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2309 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2310 {
2311 	void *tmp = __skb_put(skb, len);
2312 
2313 	memset(tmp, 0, len);
2314 	return tmp;
2315 }
2316 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2317 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2318 				   unsigned int len)
2319 {
2320 	void *tmp = __skb_put(skb, len);
2321 
2322 	memcpy(tmp, data, len);
2323 	return tmp;
2324 }
2325 
__skb_put_u8(struct sk_buff * skb,u8 val)2326 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2327 {
2328 	*(u8 *)__skb_put(skb, 1) = val;
2329 }
2330 
skb_put_zero(struct sk_buff * skb,unsigned int len)2331 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2332 {
2333 	void *tmp = skb_put(skb, len);
2334 
2335 	memset(tmp, 0, len);
2336 
2337 	return tmp;
2338 }
2339 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2340 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2341 				 unsigned int len)
2342 {
2343 	void *tmp = skb_put(skb, len);
2344 
2345 	memcpy(tmp, data, len);
2346 
2347 	return tmp;
2348 }
2349 
skb_put_u8(struct sk_buff * skb,u8 val)2350 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2351 {
2352 	*(u8 *)skb_put(skb, 1) = val;
2353 }
2354 
2355 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2356 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2357 {
2358 	skb->data -= len;
2359 	skb->len  += len;
2360 	return skb->data;
2361 }
2362 
2363 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2364 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2365 {
2366 	skb->len -= len;
2367 	BUG_ON(skb->len < skb->data_len);
2368 	return skb->data += len;
2369 }
2370 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2371 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2372 {
2373 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2374 }
2375 
2376 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2377 
__pskb_pull(struct sk_buff * skb,unsigned int len)2378 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2379 {
2380 	if (len > skb_headlen(skb) &&
2381 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2382 		return NULL;
2383 	skb->len -= len;
2384 	return skb->data += len;
2385 }
2386 
pskb_pull(struct sk_buff * skb,unsigned int len)2387 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2388 {
2389 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2390 }
2391 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2392 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2393 {
2394 	if (likely(len <= skb_headlen(skb)))
2395 		return true;
2396 	if (unlikely(len > skb->len))
2397 		return false;
2398 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2399 }
2400 
2401 void skb_condense(struct sk_buff *skb);
2402 
2403 /**
2404  *	skb_headroom - bytes at buffer head
2405  *	@skb: buffer to check
2406  *
2407  *	Return the number of bytes of free space at the head of an &sk_buff.
2408  */
skb_headroom(const struct sk_buff * skb)2409 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2410 {
2411 	return skb->data - skb->head;
2412 }
2413 
2414 /**
2415  *	skb_tailroom - bytes at buffer end
2416  *	@skb: buffer to check
2417  *
2418  *	Return the number of bytes of free space at the tail of an sk_buff
2419  */
skb_tailroom(const struct sk_buff * skb)2420 static inline int skb_tailroom(const struct sk_buff *skb)
2421 {
2422 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2423 }
2424 
2425 /**
2426  *	skb_availroom - bytes at buffer end
2427  *	@skb: buffer to check
2428  *
2429  *	Return the number of bytes of free space at the tail of an sk_buff
2430  *	allocated by sk_stream_alloc()
2431  */
skb_availroom(const struct sk_buff * skb)2432 static inline int skb_availroom(const struct sk_buff *skb)
2433 {
2434 	if (skb_is_nonlinear(skb))
2435 		return 0;
2436 
2437 	return skb->end - skb->tail - skb->reserved_tailroom;
2438 }
2439 
2440 /**
2441  *	skb_reserve - adjust headroom
2442  *	@skb: buffer to alter
2443  *	@len: bytes to move
2444  *
2445  *	Increase the headroom of an empty &sk_buff by reducing the tail
2446  *	room. This is only allowed for an empty buffer.
2447  */
skb_reserve(struct sk_buff * skb,int len)2448 static inline void skb_reserve(struct sk_buff *skb, int len)
2449 {
2450 	skb->data += len;
2451 	skb->tail += len;
2452 }
2453 
2454 /**
2455  *	skb_tailroom_reserve - adjust reserved_tailroom
2456  *	@skb: buffer to alter
2457  *	@mtu: maximum amount of headlen permitted
2458  *	@needed_tailroom: minimum amount of reserved_tailroom
2459  *
2460  *	Set reserved_tailroom so that headlen can be as large as possible but
2461  *	not larger than mtu and tailroom cannot be smaller than
2462  *	needed_tailroom.
2463  *	The required headroom should already have been reserved before using
2464  *	this function.
2465  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2466 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2467 					unsigned int needed_tailroom)
2468 {
2469 	SKB_LINEAR_ASSERT(skb);
2470 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2471 		/* use at most mtu */
2472 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2473 	else
2474 		/* use up to all available space */
2475 		skb->reserved_tailroom = needed_tailroom;
2476 }
2477 
2478 #define ENCAP_TYPE_ETHER	0
2479 #define ENCAP_TYPE_IPPROTO	1
2480 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2481 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2482 					  __be16 protocol)
2483 {
2484 	skb->inner_protocol = protocol;
2485 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2486 }
2487 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2488 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2489 					 __u8 ipproto)
2490 {
2491 	skb->inner_ipproto = ipproto;
2492 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2493 }
2494 
skb_reset_inner_headers(struct sk_buff * skb)2495 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2496 {
2497 	skb->inner_mac_header = skb->mac_header;
2498 	skb->inner_network_header = skb->network_header;
2499 	skb->inner_transport_header = skb->transport_header;
2500 }
2501 
skb_reset_mac_len(struct sk_buff * skb)2502 static inline void skb_reset_mac_len(struct sk_buff *skb)
2503 {
2504 	skb->mac_len = skb->network_header - skb->mac_header;
2505 }
2506 
skb_inner_transport_header(const struct sk_buff * skb)2507 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2508 							*skb)
2509 {
2510 	return skb->head + skb->inner_transport_header;
2511 }
2512 
skb_inner_transport_offset(const struct sk_buff * skb)2513 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2514 {
2515 	return skb_inner_transport_header(skb) - skb->data;
2516 }
2517 
skb_reset_inner_transport_header(struct sk_buff * skb)2518 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2519 {
2520 	skb->inner_transport_header = skb->data - skb->head;
2521 }
2522 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2523 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2524 						   const int offset)
2525 {
2526 	skb_reset_inner_transport_header(skb);
2527 	skb->inner_transport_header += offset;
2528 }
2529 
skb_inner_network_header(const struct sk_buff * skb)2530 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2531 {
2532 	return skb->head + skb->inner_network_header;
2533 }
2534 
skb_reset_inner_network_header(struct sk_buff * skb)2535 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2536 {
2537 	skb->inner_network_header = skb->data - skb->head;
2538 }
2539 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2540 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2541 						const int offset)
2542 {
2543 	skb_reset_inner_network_header(skb);
2544 	skb->inner_network_header += offset;
2545 }
2546 
skb_inner_mac_header(const struct sk_buff * skb)2547 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2548 {
2549 	return skb->head + skb->inner_mac_header;
2550 }
2551 
skb_reset_inner_mac_header(struct sk_buff * skb)2552 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2553 {
2554 	skb->inner_mac_header = skb->data - skb->head;
2555 }
2556 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2557 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2558 					    const int offset)
2559 {
2560 	skb_reset_inner_mac_header(skb);
2561 	skb->inner_mac_header += offset;
2562 }
skb_transport_header_was_set(const struct sk_buff * skb)2563 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2564 {
2565 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2566 }
2567 
skb_transport_header(const struct sk_buff * skb)2568 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2569 {
2570 	return skb->head + skb->transport_header;
2571 }
2572 
skb_reset_transport_header(struct sk_buff * skb)2573 static inline void skb_reset_transport_header(struct sk_buff *skb)
2574 {
2575 	skb->transport_header = skb->data - skb->head;
2576 }
2577 
skb_set_transport_header(struct sk_buff * skb,const int offset)2578 static inline void skb_set_transport_header(struct sk_buff *skb,
2579 					    const int offset)
2580 {
2581 	skb_reset_transport_header(skb);
2582 	skb->transport_header += offset;
2583 }
2584 
skb_network_header(const struct sk_buff * skb)2585 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2586 {
2587 	return skb->head + skb->network_header;
2588 }
2589 
skb_reset_network_header(struct sk_buff * skb)2590 static inline void skb_reset_network_header(struct sk_buff *skb)
2591 {
2592 	skb->network_header = skb->data - skb->head;
2593 }
2594 
skb_set_network_header(struct sk_buff * skb,const int offset)2595 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2596 {
2597 	skb_reset_network_header(skb);
2598 	skb->network_header += offset;
2599 }
2600 
skb_mac_header(const struct sk_buff * skb)2601 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2602 {
2603 	return skb->head + skb->mac_header;
2604 }
2605 
skb_mac_offset(const struct sk_buff * skb)2606 static inline int skb_mac_offset(const struct sk_buff *skb)
2607 {
2608 	return skb_mac_header(skb) - skb->data;
2609 }
2610 
skb_mac_header_len(const struct sk_buff * skb)2611 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2612 {
2613 	return skb->network_header - skb->mac_header;
2614 }
2615 
skb_mac_header_was_set(const struct sk_buff * skb)2616 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2617 {
2618 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2619 }
2620 
skb_unset_mac_header(struct sk_buff * skb)2621 static inline void skb_unset_mac_header(struct sk_buff *skb)
2622 {
2623 	skb->mac_header = (typeof(skb->mac_header))~0U;
2624 }
2625 
skb_reset_mac_header(struct sk_buff * skb)2626 static inline void skb_reset_mac_header(struct sk_buff *skb)
2627 {
2628 	skb->mac_header = skb->data - skb->head;
2629 }
2630 
skb_set_mac_header(struct sk_buff * skb,const int offset)2631 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2632 {
2633 	skb_reset_mac_header(skb);
2634 	skb->mac_header += offset;
2635 }
2636 
skb_pop_mac_header(struct sk_buff * skb)2637 static inline void skb_pop_mac_header(struct sk_buff *skb)
2638 {
2639 	skb->mac_header = skb->network_header;
2640 }
2641 
skb_probe_transport_header(struct sk_buff * skb)2642 static inline void skb_probe_transport_header(struct sk_buff *skb)
2643 {
2644 	struct flow_keys_basic keys;
2645 
2646 	if (skb_transport_header_was_set(skb))
2647 		return;
2648 
2649 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2650 					     NULL, 0, 0, 0, 0))
2651 		skb_set_transport_header(skb, keys.control.thoff);
2652 }
2653 
skb_mac_header_rebuild(struct sk_buff * skb)2654 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2655 {
2656 	if (skb_mac_header_was_set(skb)) {
2657 		const unsigned char *old_mac = skb_mac_header(skb);
2658 
2659 		skb_set_mac_header(skb, -skb->mac_len);
2660 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2661 	}
2662 }
2663 
skb_checksum_start_offset(const struct sk_buff * skb)2664 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2665 {
2666 	return skb->csum_start - skb_headroom(skb);
2667 }
2668 
skb_checksum_start(const struct sk_buff * skb)2669 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2670 {
2671 	return skb->head + skb->csum_start;
2672 }
2673 
skb_transport_offset(const struct sk_buff * skb)2674 static inline int skb_transport_offset(const struct sk_buff *skb)
2675 {
2676 	return skb_transport_header(skb) - skb->data;
2677 }
2678 
skb_network_header_len(const struct sk_buff * skb)2679 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2680 {
2681 	return skb->transport_header - skb->network_header;
2682 }
2683 
skb_inner_network_header_len(const struct sk_buff * skb)2684 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2685 {
2686 	return skb->inner_transport_header - skb->inner_network_header;
2687 }
2688 
skb_network_offset(const struct sk_buff * skb)2689 static inline int skb_network_offset(const struct sk_buff *skb)
2690 {
2691 	return skb_network_header(skb) - skb->data;
2692 }
2693 
skb_inner_network_offset(const struct sk_buff * skb)2694 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2695 {
2696 	return skb_inner_network_header(skb) - skb->data;
2697 }
2698 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2699 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2700 {
2701 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2702 }
2703 
2704 /*
2705  * CPUs often take a performance hit when accessing unaligned memory
2706  * locations. The actual performance hit varies, it can be small if the
2707  * hardware handles it or large if we have to take an exception and fix it
2708  * in software.
2709  *
2710  * Since an ethernet header is 14 bytes network drivers often end up with
2711  * the IP header at an unaligned offset. The IP header can be aligned by
2712  * shifting the start of the packet by 2 bytes. Drivers should do this
2713  * with:
2714  *
2715  * skb_reserve(skb, NET_IP_ALIGN);
2716  *
2717  * The downside to this alignment of the IP header is that the DMA is now
2718  * unaligned. On some architectures the cost of an unaligned DMA is high
2719  * and this cost outweighs the gains made by aligning the IP header.
2720  *
2721  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2722  * to be overridden.
2723  */
2724 #ifndef NET_IP_ALIGN
2725 #define NET_IP_ALIGN	2
2726 #endif
2727 
2728 /*
2729  * The networking layer reserves some headroom in skb data (via
2730  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2731  * the header has to grow. In the default case, if the header has to grow
2732  * 32 bytes or less we avoid the reallocation.
2733  *
2734  * Unfortunately this headroom changes the DMA alignment of the resulting
2735  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2736  * on some architectures. An architecture can override this value,
2737  * perhaps setting it to a cacheline in size (since that will maintain
2738  * cacheline alignment of the DMA). It must be a power of 2.
2739  *
2740  * Various parts of the networking layer expect at least 32 bytes of
2741  * headroom, you should not reduce this.
2742  *
2743  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2744  * to reduce average number of cache lines per packet.
2745  * get_rps_cpu() for example only access one 64 bytes aligned block :
2746  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2747  */
2748 #ifndef NET_SKB_PAD
2749 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2750 #endif
2751 
2752 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2753 
__skb_set_length(struct sk_buff * skb,unsigned int len)2754 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2755 {
2756 	if (WARN_ON(skb_is_nonlinear(skb)))
2757 		return;
2758 	skb->len = len;
2759 	skb_set_tail_pointer(skb, len);
2760 }
2761 
__skb_trim(struct sk_buff * skb,unsigned int len)2762 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2763 {
2764 	__skb_set_length(skb, len);
2765 }
2766 
2767 void skb_trim(struct sk_buff *skb, unsigned int len);
2768 
__pskb_trim(struct sk_buff * skb,unsigned int len)2769 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2770 {
2771 	if (skb->data_len)
2772 		return ___pskb_trim(skb, len);
2773 	__skb_trim(skb, len);
2774 	return 0;
2775 }
2776 
pskb_trim(struct sk_buff * skb,unsigned int len)2777 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2778 {
2779 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2780 }
2781 
2782 /**
2783  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2784  *	@skb: buffer to alter
2785  *	@len: new length
2786  *
2787  *	This is identical to pskb_trim except that the caller knows that
2788  *	the skb is not cloned so we should never get an error due to out-
2789  *	of-memory.
2790  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2791 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2792 {
2793 	int err = pskb_trim(skb, len);
2794 	BUG_ON(err);
2795 }
2796 
__skb_grow(struct sk_buff * skb,unsigned int len)2797 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2798 {
2799 	unsigned int diff = len - skb->len;
2800 
2801 	if (skb_tailroom(skb) < diff) {
2802 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2803 					   GFP_ATOMIC);
2804 		if (ret)
2805 			return ret;
2806 	}
2807 	__skb_set_length(skb, len);
2808 	return 0;
2809 }
2810 
2811 /**
2812  *	skb_orphan - orphan a buffer
2813  *	@skb: buffer to orphan
2814  *
2815  *	If a buffer currently has an owner then we call the owner's
2816  *	destructor function and make the @skb unowned. The buffer continues
2817  *	to exist but is no longer charged to its former owner.
2818  */
skb_orphan(struct sk_buff * skb)2819 static inline void skb_orphan(struct sk_buff *skb)
2820 {
2821 	if (skb->destructor) {
2822 		skb->destructor(skb);
2823 		skb->destructor = NULL;
2824 		skb->sk		= NULL;
2825 	} else {
2826 		BUG_ON(skb->sk);
2827 	}
2828 }
2829 
2830 /**
2831  *	skb_orphan_frags - orphan the frags contained in a buffer
2832  *	@skb: buffer to orphan frags from
2833  *	@gfp_mask: allocation mask for replacement pages
2834  *
2835  *	For each frag in the SKB which needs a destructor (i.e. has an
2836  *	owner) create a copy of that frag and release the original
2837  *	page by calling the destructor.
2838  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2839 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2840 {
2841 	if (likely(!skb_zcopy(skb)))
2842 		return 0;
2843 	if (!skb_zcopy_is_nouarg(skb) &&
2844 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2845 		return 0;
2846 	return skb_copy_ubufs(skb, gfp_mask);
2847 }
2848 
2849 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2850 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2851 {
2852 	if (likely(!skb_zcopy(skb)))
2853 		return 0;
2854 	return skb_copy_ubufs(skb, gfp_mask);
2855 }
2856 
2857 /**
2858  *	__skb_queue_purge - empty a list
2859  *	@list: list to empty
2860  *
2861  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2862  *	the list and one reference dropped. This function does not take the
2863  *	list lock and the caller must hold the relevant locks to use it.
2864  */
__skb_queue_purge(struct sk_buff_head * list)2865 static inline void __skb_queue_purge(struct sk_buff_head *list)
2866 {
2867 	struct sk_buff *skb;
2868 	while ((skb = __skb_dequeue(list)) != NULL)
2869 		kfree_skb(skb);
2870 }
2871 void skb_queue_purge(struct sk_buff_head *list);
2872 
2873 unsigned int skb_rbtree_purge(struct rb_root *root);
2874 
2875 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2876 
2877 /**
2878  * netdev_alloc_frag - allocate a page fragment
2879  * @fragsz: fragment size
2880  *
2881  * Allocates a frag from a page for receive buffer.
2882  * Uses GFP_ATOMIC allocations.
2883  */
netdev_alloc_frag(unsigned int fragsz)2884 static inline void *netdev_alloc_frag(unsigned int fragsz)
2885 {
2886 	return __netdev_alloc_frag_align(fragsz, ~0u);
2887 }
2888 
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)2889 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2890 					    unsigned int align)
2891 {
2892 	WARN_ON_ONCE(!is_power_of_2(align));
2893 	return __netdev_alloc_frag_align(fragsz, -align);
2894 }
2895 
2896 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2897 				   gfp_t gfp_mask);
2898 
2899 /**
2900  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2901  *	@dev: network device to receive on
2902  *	@length: length to allocate
2903  *
2904  *	Allocate a new &sk_buff and assign it a usage count of one. The
2905  *	buffer has unspecified headroom built in. Users should allocate
2906  *	the headroom they think they need without accounting for the
2907  *	built in space. The built in space is used for optimisations.
2908  *
2909  *	%NULL is returned if there is no free memory. Although this function
2910  *	allocates memory it can be called from an interrupt.
2911  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2912 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2913 					       unsigned int length)
2914 {
2915 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2916 }
2917 
2918 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2919 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2920 					      gfp_t gfp_mask)
2921 {
2922 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2923 }
2924 
2925 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2926 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2927 {
2928 	return netdev_alloc_skb(NULL, length);
2929 }
2930 
2931 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2932 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2933 		unsigned int length, gfp_t gfp)
2934 {
2935 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2936 
2937 	if (NET_IP_ALIGN && skb)
2938 		skb_reserve(skb, NET_IP_ALIGN);
2939 	return skb;
2940 }
2941 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2942 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2943 		unsigned int length)
2944 {
2945 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2946 }
2947 
skb_free_frag(void * addr)2948 static inline void skb_free_frag(void *addr)
2949 {
2950 	page_frag_free(addr);
2951 }
2952 
2953 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2954 
napi_alloc_frag(unsigned int fragsz)2955 static inline void *napi_alloc_frag(unsigned int fragsz)
2956 {
2957 	return __napi_alloc_frag_align(fragsz, ~0u);
2958 }
2959 
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)2960 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2961 					  unsigned int align)
2962 {
2963 	WARN_ON_ONCE(!is_power_of_2(align));
2964 	return __napi_alloc_frag_align(fragsz, -align);
2965 }
2966 
2967 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2968 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2969 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2970 					     unsigned int length)
2971 {
2972 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2973 }
2974 void napi_consume_skb(struct sk_buff *skb, int budget);
2975 
2976 void napi_skb_free_stolen_head(struct sk_buff *skb);
2977 void __kfree_skb_defer(struct sk_buff *skb);
2978 
2979 /**
2980  * __dev_alloc_pages - allocate page for network Rx
2981  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2982  * @order: size of the allocation
2983  *
2984  * Allocate a new page.
2985  *
2986  * %NULL is returned if there is no free memory.
2987 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2988 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2989 					     unsigned int order)
2990 {
2991 	/* This piece of code contains several assumptions.
2992 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2993 	 * 2.  The expectation is the user wants a compound page.
2994 	 * 3.  If requesting a order 0 page it will not be compound
2995 	 *     due to the check to see if order has a value in prep_new_page
2996 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2997 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2998 	 */
2999 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3000 
3001 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3002 }
3003 
dev_alloc_pages(unsigned int order)3004 static inline struct page *dev_alloc_pages(unsigned int order)
3005 {
3006 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3007 }
3008 
3009 /**
3010  * __dev_alloc_page - allocate a page for network Rx
3011  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3012  *
3013  * Allocate a new page.
3014  *
3015  * %NULL is returned if there is no free memory.
3016  */
__dev_alloc_page(gfp_t gfp_mask)3017 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3018 {
3019 	return __dev_alloc_pages(gfp_mask, 0);
3020 }
3021 
dev_alloc_page(void)3022 static inline struct page *dev_alloc_page(void)
3023 {
3024 	return dev_alloc_pages(0);
3025 }
3026 
3027 /**
3028  * dev_page_is_reusable - check whether a page can be reused for network Rx
3029  * @page: the page to test
3030  *
3031  * A page shouldn't be considered for reusing/recycling if it was allocated
3032  * under memory pressure or at a distant memory node.
3033  *
3034  * Returns false if this page should be returned to page allocator, true
3035  * otherwise.
3036  */
dev_page_is_reusable(const struct page * page)3037 static inline bool dev_page_is_reusable(const struct page *page)
3038 {
3039 	return likely(page_to_nid(page) == numa_mem_id() &&
3040 		      !page_is_pfmemalloc(page));
3041 }
3042 
3043 /**
3044  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3045  *	@page: The page that was allocated from skb_alloc_page
3046  *	@skb: The skb that may need pfmemalloc set
3047  */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3048 static inline void skb_propagate_pfmemalloc(const struct page *page,
3049 					    struct sk_buff *skb)
3050 {
3051 	if (page_is_pfmemalloc(page))
3052 		skb->pfmemalloc = true;
3053 }
3054 
3055 /**
3056  * skb_frag_off() - Returns the offset of a skb fragment
3057  * @frag: the paged fragment
3058  */
skb_frag_off(const skb_frag_t * frag)3059 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3060 {
3061 	return frag->bv_offset;
3062 }
3063 
3064 /**
3065  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3066  * @frag: skb fragment
3067  * @delta: value to add
3068  */
skb_frag_off_add(skb_frag_t * frag,int delta)3069 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3070 {
3071 	frag->bv_offset += delta;
3072 }
3073 
3074 /**
3075  * skb_frag_off_set() - Sets the offset of a skb fragment
3076  * @frag: skb fragment
3077  * @offset: offset of fragment
3078  */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3079 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3080 {
3081 	frag->bv_offset = offset;
3082 }
3083 
3084 /**
3085  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3086  * @fragto: skb fragment where offset is set
3087  * @fragfrom: skb fragment offset is copied from
3088  */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3089 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3090 				     const skb_frag_t *fragfrom)
3091 {
3092 	fragto->bv_offset = fragfrom->bv_offset;
3093 }
3094 
3095 /**
3096  * skb_frag_page - retrieve the page referred to by a paged fragment
3097  * @frag: the paged fragment
3098  *
3099  * Returns the &struct page associated with @frag.
3100  */
skb_frag_page(const skb_frag_t * frag)3101 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3102 {
3103 	return frag->bv_page;
3104 }
3105 
3106 /**
3107  * __skb_frag_ref - take an addition reference on a paged fragment.
3108  * @frag: the paged fragment
3109  *
3110  * Takes an additional reference on the paged fragment @frag.
3111  */
__skb_frag_ref(skb_frag_t * frag)3112 static inline void __skb_frag_ref(skb_frag_t *frag)
3113 {
3114 	get_page(skb_frag_page(frag));
3115 }
3116 
3117 /**
3118  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3119  * @skb: the buffer
3120  * @f: the fragment offset.
3121  *
3122  * Takes an additional reference on the @f'th paged fragment of @skb.
3123  */
skb_frag_ref(struct sk_buff * skb,int f)3124 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3125 {
3126 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3127 }
3128 
3129 /**
3130  * __skb_frag_unref - release a reference on a paged fragment.
3131  * @frag: the paged fragment
3132  * @recycle: recycle the page if allocated via page_pool
3133  *
3134  * Releases a reference on the paged fragment @frag
3135  * or recycles the page via the page_pool API.
3136  */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3137 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3138 {
3139 	struct page *page = skb_frag_page(frag);
3140 
3141 #ifdef CONFIG_PAGE_POOL
3142 	if (recycle && page_pool_return_skb_page(page))
3143 		return;
3144 #endif
3145 	put_page(page);
3146 }
3147 
3148 /**
3149  * skb_frag_unref - release a reference on a paged fragment of an skb.
3150  * @skb: the buffer
3151  * @f: the fragment offset
3152  *
3153  * Releases a reference on the @f'th paged fragment of @skb.
3154  */
skb_frag_unref(struct sk_buff * skb,int f)3155 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3156 {
3157 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3158 }
3159 
3160 /**
3161  * skb_frag_address - gets the address of the data contained in a paged fragment
3162  * @frag: the paged fragment buffer
3163  *
3164  * Returns the address of the data within @frag. The page must already
3165  * be mapped.
3166  */
skb_frag_address(const skb_frag_t * frag)3167 static inline void *skb_frag_address(const skb_frag_t *frag)
3168 {
3169 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3170 }
3171 
3172 /**
3173  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3174  * @frag: the paged fragment buffer
3175  *
3176  * Returns the address of the data within @frag. Checks that the page
3177  * is mapped and returns %NULL otherwise.
3178  */
skb_frag_address_safe(const skb_frag_t * frag)3179 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3180 {
3181 	void *ptr = page_address(skb_frag_page(frag));
3182 	if (unlikely(!ptr))
3183 		return NULL;
3184 
3185 	return ptr + skb_frag_off(frag);
3186 }
3187 
3188 /**
3189  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3190  * @fragto: skb fragment where page is set
3191  * @fragfrom: skb fragment page is copied from
3192  */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3193 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3194 				      const skb_frag_t *fragfrom)
3195 {
3196 	fragto->bv_page = fragfrom->bv_page;
3197 }
3198 
3199 /**
3200  * __skb_frag_set_page - sets the page contained in a paged fragment
3201  * @frag: the paged fragment
3202  * @page: the page to set
3203  *
3204  * Sets the fragment @frag to contain @page.
3205  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3206 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3207 {
3208 	frag->bv_page = page;
3209 }
3210 
3211 /**
3212  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3213  * @skb: the buffer
3214  * @f: the fragment offset
3215  * @page: the page to set
3216  *
3217  * Sets the @f'th fragment of @skb to contain @page.
3218  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3219 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3220 				     struct page *page)
3221 {
3222 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3223 }
3224 
3225 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3226 
3227 /**
3228  * skb_frag_dma_map - maps a paged fragment via the DMA API
3229  * @dev: the device to map the fragment to
3230  * @frag: the paged fragment to map
3231  * @offset: the offset within the fragment (starting at the
3232  *          fragment's own offset)
3233  * @size: the number of bytes to map
3234  * @dir: the direction of the mapping (``PCI_DMA_*``)
3235  *
3236  * Maps the page associated with @frag to @device.
3237  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3238 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3239 					  const skb_frag_t *frag,
3240 					  size_t offset, size_t size,
3241 					  enum dma_data_direction dir)
3242 {
3243 	return dma_map_page(dev, skb_frag_page(frag),
3244 			    skb_frag_off(frag) + offset, size, dir);
3245 }
3246 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3247 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3248 					gfp_t gfp_mask)
3249 {
3250 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3251 }
3252 
3253 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3254 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3255 						  gfp_t gfp_mask)
3256 {
3257 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3258 }
3259 
3260 
3261 /**
3262  *	skb_clone_writable - is the header of a clone writable
3263  *	@skb: buffer to check
3264  *	@len: length up to which to write
3265  *
3266  *	Returns true if modifying the header part of the cloned buffer
3267  *	does not requires the data to be copied.
3268  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3269 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3270 {
3271 	return !skb_header_cloned(skb) &&
3272 	       skb_headroom(skb) + len <= skb->hdr_len;
3273 }
3274 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3275 static inline int skb_try_make_writable(struct sk_buff *skb,
3276 					unsigned int write_len)
3277 {
3278 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3279 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3280 }
3281 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3282 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3283 			    int cloned)
3284 {
3285 	int delta = 0;
3286 
3287 	if (headroom > skb_headroom(skb))
3288 		delta = headroom - skb_headroom(skb);
3289 
3290 	if (delta || cloned)
3291 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3292 					GFP_ATOMIC);
3293 	return 0;
3294 }
3295 
3296 /**
3297  *	skb_cow - copy header of skb when it is required
3298  *	@skb: buffer to cow
3299  *	@headroom: needed headroom
3300  *
3301  *	If the skb passed lacks sufficient headroom or its data part
3302  *	is shared, data is reallocated. If reallocation fails, an error
3303  *	is returned and original skb is not changed.
3304  *
3305  *	The result is skb with writable area skb->head...skb->tail
3306  *	and at least @headroom of space at head.
3307  */
skb_cow(struct sk_buff * skb,unsigned int headroom)3308 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3309 {
3310 	return __skb_cow(skb, headroom, skb_cloned(skb));
3311 }
3312 
3313 /**
3314  *	skb_cow_head - skb_cow but only making the head writable
3315  *	@skb: buffer to cow
3316  *	@headroom: needed headroom
3317  *
3318  *	This function is identical to skb_cow except that we replace the
3319  *	skb_cloned check by skb_header_cloned.  It should be used when
3320  *	you only need to push on some header and do not need to modify
3321  *	the data.
3322  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3323 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3324 {
3325 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3326 }
3327 
3328 /**
3329  *	skb_padto	- pad an skbuff up to a minimal size
3330  *	@skb: buffer to pad
3331  *	@len: minimal length
3332  *
3333  *	Pads up a buffer to ensure the trailing bytes exist and are
3334  *	blanked. If the buffer already contains sufficient data it
3335  *	is untouched. Otherwise it is extended. Returns zero on
3336  *	success. The skb is freed on error.
3337  */
skb_padto(struct sk_buff * skb,unsigned int len)3338 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3339 {
3340 	unsigned int size = skb->len;
3341 	if (likely(size >= len))
3342 		return 0;
3343 	return skb_pad(skb, len - size);
3344 }
3345 
3346 /**
3347  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3348  *	@skb: buffer to pad
3349  *	@len: minimal length
3350  *	@free_on_error: free buffer on error
3351  *
3352  *	Pads up a buffer to ensure the trailing bytes exist and are
3353  *	blanked. If the buffer already contains sufficient data it
3354  *	is untouched. Otherwise it is extended. Returns zero on
3355  *	success. The skb is freed on error if @free_on_error is true.
3356  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3357 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3358 					       unsigned int len,
3359 					       bool free_on_error)
3360 {
3361 	unsigned int size = skb->len;
3362 
3363 	if (unlikely(size < len)) {
3364 		len -= size;
3365 		if (__skb_pad(skb, len, free_on_error))
3366 			return -ENOMEM;
3367 		__skb_put(skb, len);
3368 	}
3369 	return 0;
3370 }
3371 
3372 /**
3373  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3374  *	@skb: buffer to pad
3375  *	@len: minimal length
3376  *
3377  *	Pads up a buffer to ensure the trailing bytes exist and are
3378  *	blanked. If the buffer already contains sufficient data it
3379  *	is untouched. Otherwise it is extended. Returns zero on
3380  *	success. The skb is freed on error.
3381  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3382 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3383 {
3384 	return __skb_put_padto(skb, len, true);
3385 }
3386 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3387 static inline int skb_add_data(struct sk_buff *skb,
3388 			       struct iov_iter *from, int copy)
3389 {
3390 	const int off = skb->len;
3391 
3392 	if (skb->ip_summed == CHECKSUM_NONE) {
3393 		__wsum csum = 0;
3394 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3395 					         &csum, from)) {
3396 			skb->csum = csum_block_add(skb->csum, csum, off);
3397 			return 0;
3398 		}
3399 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3400 		return 0;
3401 
3402 	__skb_trim(skb, off);
3403 	return -EFAULT;
3404 }
3405 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3406 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3407 				    const struct page *page, int off)
3408 {
3409 	if (skb_zcopy(skb))
3410 		return false;
3411 	if (i) {
3412 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3413 
3414 		return page == skb_frag_page(frag) &&
3415 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3416 	}
3417 	return false;
3418 }
3419 
__skb_linearize(struct sk_buff * skb)3420 static inline int __skb_linearize(struct sk_buff *skb)
3421 {
3422 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3423 }
3424 
3425 /**
3426  *	skb_linearize - convert paged skb to linear one
3427  *	@skb: buffer to linarize
3428  *
3429  *	If there is no free memory -ENOMEM is returned, otherwise zero
3430  *	is returned and the old skb data released.
3431  */
skb_linearize(struct sk_buff * skb)3432 static inline int skb_linearize(struct sk_buff *skb)
3433 {
3434 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3435 }
3436 
3437 /**
3438  * skb_has_shared_frag - can any frag be overwritten
3439  * @skb: buffer to test
3440  *
3441  * Return true if the skb has at least one frag that might be modified
3442  * by an external entity (as in vmsplice()/sendfile())
3443  */
skb_has_shared_frag(const struct sk_buff * skb)3444 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3445 {
3446 	return skb_is_nonlinear(skb) &&
3447 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3448 }
3449 
3450 /**
3451  *	skb_linearize_cow - make sure skb is linear and writable
3452  *	@skb: buffer to process
3453  *
3454  *	If there is no free memory -ENOMEM is returned, otherwise zero
3455  *	is returned and the old skb data released.
3456  */
skb_linearize_cow(struct sk_buff * skb)3457 static inline int skb_linearize_cow(struct sk_buff *skb)
3458 {
3459 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3460 	       __skb_linearize(skb) : 0;
3461 }
3462 
3463 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3464 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3465 		     unsigned int off)
3466 {
3467 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3468 		skb->csum = csum_block_sub(skb->csum,
3469 					   csum_partial(start, len, 0), off);
3470 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3471 		 skb_checksum_start_offset(skb) < 0)
3472 		skb->ip_summed = CHECKSUM_NONE;
3473 }
3474 
3475 /**
3476  *	skb_postpull_rcsum - update checksum for received skb after pull
3477  *	@skb: buffer to update
3478  *	@start: start of data before pull
3479  *	@len: length of data pulled
3480  *
3481  *	After doing a pull on a received packet, you need to call this to
3482  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3483  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3484  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3485 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3486 				      const void *start, unsigned int len)
3487 {
3488 	__skb_postpull_rcsum(skb, start, len, 0);
3489 }
3490 
3491 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3492 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3493 		     unsigned int off)
3494 {
3495 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3496 		skb->csum = csum_block_add(skb->csum,
3497 					   csum_partial(start, len, 0), off);
3498 }
3499 
3500 /**
3501  *	skb_postpush_rcsum - update checksum for received skb after push
3502  *	@skb: buffer to update
3503  *	@start: start of data after push
3504  *	@len: length of data pushed
3505  *
3506  *	After doing a push on a received packet, you need to call this to
3507  *	update the CHECKSUM_COMPLETE checksum.
3508  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3509 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3510 				      const void *start, unsigned int len)
3511 {
3512 	__skb_postpush_rcsum(skb, start, len, 0);
3513 }
3514 
3515 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3516 
3517 /**
3518  *	skb_push_rcsum - push skb and update receive checksum
3519  *	@skb: buffer to update
3520  *	@len: length of data pulled
3521  *
3522  *	This function performs an skb_push on the packet and updates
3523  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3524  *	receive path processing instead of skb_push unless you know
3525  *	that the checksum difference is zero (e.g., a valid IP header)
3526  *	or you are setting ip_summed to CHECKSUM_NONE.
3527  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3528 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3529 {
3530 	skb_push(skb, len);
3531 	skb_postpush_rcsum(skb, skb->data, len);
3532 	return skb->data;
3533 }
3534 
3535 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3536 /**
3537  *	pskb_trim_rcsum - trim received skb and update checksum
3538  *	@skb: buffer to trim
3539  *	@len: new length
3540  *
3541  *	This is exactly the same as pskb_trim except that it ensures the
3542  *	checksum of received packets are still valid after the operation.
3543  *	It can change skb pointers.
3544  */
3545 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3546 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3547 {
3548 	if (likely(len >= skb->len))
3549 		return 0;
3550 	return pskb_trim_rcsum_slow(skb, len);
3551 }
3552 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3553 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3554 {
3555 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3556 		skb->ip_summed = CHECKSUM_NONE;
3557 	__skb_trim(skb, len);
3558 	return 0;
3559 }
3560 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3561 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3562 {
3563 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3564 		skb->ip_summed = CHECKSUM_NONE;
3565 	return __skb_grow(skb, len);
3566 }
3567 
3568 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3569 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3570 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3571 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3572 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3573 
3574 #define skb_queue_walk(queue, skb) \
3575 		for (skb = (queue)->next;					\
3576 		     skb != (struct sk_buff *)(queue);				\
3577 		     skb = skb->next)
3578 
3579 #define skb_queue_walk_safe(queue, skb, tmp)					\
3580 		for (skb = (queue)->next, tmp = skb->next;			\
3581 		     skb != (struct sk_buff *)(queue);				\
3582 		     skb = tmp, tmp = skb->next)
3583 
3584 #define skb_queue_walk_from(queue, skb)						\
3585 		for (; skb != (struct sk_buff *)(queue);			\
3586 		     skb = skb->next)
3587 
3588 #define skb_rbtree_walk(skb, root)						\
3589 		for (skb = skb_rb_first(root); skb != NULL;			\
3590 		     skb = skb_rb_next(skb))
3591 
3592 #define skb_rbtree_walk_from(skb)						\
3593 		for (; skb != NULL;						\
3594 		     skb = skb_rb_next(skb))
3595 
3596 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3597 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3598 		     skb = tmp)
3599 
3600 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3601 		for (tmp = skb->next;						\
3602 		     skb != (struct sk_buff *)(queue);				\
3603 		     skb = tmp, tmp = skb->next)
3604 
3605 #define skb_queue_reverse_walk(queue, skb) \
3606 		for (skb = (queue)->prev;					\
3607 		     skb != (struct sk_buff *)(queue);				\
3608 		     skb = skb->prev)
3609 
3610 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3611 		for (skb = (queue)->prev, tmp = skb->prev;			\
3612 		     skb != (struct sk_buff *)(queue);				\
3613 		     skb = tmp, tmp = skb->prev)
3614 
3615 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3616 		for (tmp = skb->prev;						\
3617 		     skb != (struct sk_buff *)(queue);				\
3618 		     skb = tmp, tmp = skb->prev)
3619 
skb_has_frag_list(const struct sk_buff * skb)3620 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3621 {
3622 	return skb_shinfo(skb)->frag_list != NULL;
3623 }
3624 
skb_frag_list_init(struct sk_buff * skb)3625 static inline void skb_frag_list_init(struct sk_buff *skb)
3626 {
3627 	skb_shinfo(skb)->frag_list = NULL;
3628 }
3629 
3630 #define skb_walk_frags(skb, iter)	\
3631 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3632 
3633 
3634 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3635 				int *err, long *timeo_p,
3636 				const struct sk_buff *skb);
3637 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3638 					  struct sk_buff_head *queue,
3639 					  unsigned int flags,
3640 					  int *off, int *err,
3641 					  struct sk_buff **last);
3642 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3643 					struct sk_buff_head *queue,
3644 					unsigned int flags, int *off, int *err,
3645 					struct sk_buff **last);
3646 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3647 				    struct sk_buff_head *sk_queue,
3648 				    unsigned int flags, int *off, int *err);
3649 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3650 				  int *err);
3651 __poll_t datagram_poll(struct file *file, struct socket *sock,
3652 			   struct poll_table_struct *wait);
3653 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3654 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3655 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3656 					struct msghdr *msg, int size)
3657 {
3658 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3659 }
3660 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3661 				   struct msghdr *msg);
3662 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3663 			   struct iov_iter *to, int len,
3664 			   struct ahash_request *hash);
3665 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3666 				 struct iov_iter *from, int len);
3667 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3668 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3669 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3670 static inline void skb_free_datagram_locked(struct sock *sk,
3671 					    struct sk_buff *skb)
3672 {
3673 	__skb_free_datagram_locked(sk, skb, 0);
3674 }
3675 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3676 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3677 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3678 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3679 			      int len);
3680 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3681 		    struct pipe_inode_info *pipe, unsigned int len,
3682 		    unsigned int flags);
3683 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3684 			 int len);
3685 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3686 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3687 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3688 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3689 		 int len, int hlen);
3690 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3691 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3692 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3693 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3694 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3695 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3696 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3697 				 unsigned int offset);
3698 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3699 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3700 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3701 int skb_vlan_pop(struct sk_buff *skb);
3702 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3703 int skb_eth_pop(struct sk_buff *skb);
3704 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3705 		 const unsigned char *src);
3706 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3707 		  int mac_len, bool ethernet);
3708 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3709 		 bool ethernet);
3710 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3711 int skb_mpls_dec_ttl(struct sk_buff *skb);
3712 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3713 			     gfp_t gfp);
3714 
memcpy_from_msg(void * data,struct msghdr * msg,int len)3715 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3716 {
3717 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3718 }
3719 
memcpy_to_msg(struct msghdr * msg,void * data,int len)3720 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3721 {
3722 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3723 }
3724 
3725 struct skb_checksum_ops {
3726 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3727 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3728 };
3729 
3730 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3731 
3732 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3733 		      __wsum csum, const struct skb_checksum_ops *ops);
3734 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3735 		    __wsum csum);
3736 
3737 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)3738 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3739 		     const void *data, int hlen, void *buffer)
3740 {
3741 	if (likely(hlen - offset >= len))
3742 		return (void *)data + offset;
3743 
3744 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3745 		return NULL;
3746 
3747 	return buffer;
3748 }
3749 
3750 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3751 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3752 {
3753 	return __skb_header_pointer(skb, offset, len, skb->data,
3754 				    skb_headlen(skb), buffer);
3755 }
3756 
3757 /**
3758  *	skb_needs_linearize - check if we need to linearize a given skb
3759  *			      depending on the given device features.
3760  *	@skb: socket buffer to check
3761  *	@features: net device features
3762  *
3763  *	Returns true if either:
3764  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3765  *	2. skb is fragmented and the device does not support SG.
3766  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3767 static inline bool skb_needs_linearize(struct sk_buff *skb,
3768 				       netdev_features_t features)
3769 {
3770 	return skb_is_nonlinear(skb) &&
3771 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3772 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3773 }
3774 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3775 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3776 					     void *to,
3777 					     const unsigned int len)
3778 {
3779 	memcpy(to, skb->data, len);
3780 }
3781 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3782 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3783 						    const int offset, void *to,
3784 						    const unsigned int len)
3785 {
3786 	memcpy(to, skb->data + offset, len);
3787 }
3788 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3789 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3790 					   const void *from,
3791 					   const unsigned int len)
3792 {
3793 	memcpy(skb->data, from, len);
3794 }
3795 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3796 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3797 						  const int offset,
3798 						  const void *from,
3799 						  const unsigned int len)
3800 {
3801 	memcpy(skb->data + offset, from, len);
3802 }
3803 
3804 void skb_init(void);
3805 
skb_get_ktime(const struct sk_buff * skb)3806 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3807 {
3808 	return skb->tstamp;
3809 }
3810 
3811 /**
3812  *	skb_get_timestamp - get timestamp from a skb
3813  *	@skb: skb to get stamp from
3814  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3815  *
3816  *	Timestamps are stored in the skb as offsets to a base timestamp.
3817  *	This function converts the offset back to a struct timeval and stores
3818  *	it in stamp.
3819  */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3820 static inline void skb_get_timestamp(const struct sk_buff *skb,
3821 				     struct __kernel_old_timeval *stamp)
3822 {
3823 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3824 }
3825 
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3826 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3827 					 struct __kernel_sock_timeval *stamp)
3828 {
3829 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3830 
3831 	stamp->tv_sec = ts.tv_sec;
3832 	stamp->tv_usec = ts.tv_nsec / 1000;
3833 }
3834 
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3835 static inline void skb_get_timestampns(const struct sk_buff *skb,
3836 				       struct __kernel_old_timespec *stamp)
3837 {
3838 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3839 
3840 	stamp->tv_sec = ts.tv_sec;
3841 	stamp->tv_nsec = ts.tv_nsec;
3842 }
3843 
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3844 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3845 					   struct __kernel_timespec *stamp)
3846 {
3847 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3848 
3849 	stamp->tv_sec = ts.tv_sec;
3850 	stamp->tv_nsec = ts.tv_nsec;
3851 }
3852 
__net_timestamp(struct sk_buff * skb)3853 static inline void __net_timestamp(struct sk_buff *skb)
3854 {
3855 	skb->tstamp = ktime_get_real();
3856 }
3857 
net_timedelta(ktime_t t)3858 static inline ktime_t net_timedelta(ktime_t t)
3859 {
3860 	return ktime_sub(ktime_get_real(), t);
3861 }
3862 
net_invalid_timestamp(void)3863 static inline ktime_t net_invalid_timestamp(void)
3864 {
3865 	return 0;
3866 }
3867 
skb_metadata_len(const struct sk_buff * skb)3868 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3869 {
3870 	return skb_shinfo(skb)->meta_len;
3871 }
3872 
skb_metadata_end(const struct sk_buff * skb)3873 static inline void *skb_metadata_end(const struct sk_buff *skb)
3874 {
3875 	return skb_mac_header(skb);
3876 }
3877 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3878 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3879 					  const struct sk_buff *skb_b,
3880 					  u8 meta_len)
3881 {
3882 	const void *a = skb_metadata_end(skb_a);
3883 	const void *b = skb_metadata_end(skb_b);
3884 	/* Using more efficient varaiant than plain call to memcmp(). */
3885 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3886 	u64 diffs = 0;
3887 
3888 	switch (meta_len) {
3889 #define __it(x, op) (x -= sizeof(u##op))
3890 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3891 	case 32: diffs |= __it_diff(a, b, 64);
3892 		fallthrough;
3893 	case 24: diffs |= __it_diff(a, b, 64);
3894 		fallthrough;
3895 	case 16: diffs |= __it_diff(a, b, 64);
3896 		fallthrough;
3897 	case  8: diffs |= __it_diff(a, b, 64);
3898 		break;
3899 	case 28: diffs |= __it_diff(a, b, 64);
3900 		fallthrough;
3901 	case 20: diffs |= __it_diff(a, b, 64);
3902 		fallthrough;
3903 	case 12: diffs |= __it_diff(a, b, 64);
3904 		fallthrough;
3905 	case  4: diffs |= __it_diff(a, b, 32);
3906 		break;
3907 	}
3908 	return diffs;
3909 #else
3910 	return memcmp(a - meta_len, b - meta_len, meta_len);
3911 #endif
3912 }
3913 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3914 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3915 					const struct sk_buff *skb_b)
3916 {
3917 	u8 len_a = skb_metadata_len(skb_a);
3918 	u8 len_b = skb_metadata_len(skb_b);
3919 
3920 	if (!(len_a | len_b))
3921 		return false;
3922 
3923 	return len_a != len_b ?
3924 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3925 }
3926 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3927 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3928 {
3929 	skb_shinfo(skb)->meta_len = meta_len;
3930 }
3931 
skb_metadata_clear(struct sk_buff * skb)3932 static inline void skb_metadata_clear(struct sk_buff *skb)
3933 {
3934 	skb_metadata_set(skb, 0);
3935 }
3936 
3937 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3938 
3939 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3940 
3941 void skb_clone_tx_timestamp(struct sk_buff *skb);
3942 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3943 
3944 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3945 
skb_clone_tx_timestamp(struct sk_buff * skb)3946 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3947 {
3948 }
3949 
skb_defer_rx_timestamp(struct sk_buff * skb)3950 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3951 {
3952 	return false;
3953 }
3954 
3955 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3956 
3957 /**
3958  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3959  *
3960  * PHY drivers may accept clones of transmitted packets for
3961  * timestamping via their phy_driver.txtstamp method. These drivers
3962  * must call this function to return the skb back to the stack with a
3963  * timestamp.
3964  *
3965  * @skb: clone of the original outgoing packet
3966  * @hwtstamps: hardware time stamps
3967  *
3968  */
3969 void skb_complete_tx_timestamp(struct sk_buff *skb,
3970 			       struct skb_shared_hwtstamps *hwtstamps);
3971 
3972 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3973 		     struct skb_shared_hwtstamps *hwtstamps,
3974 		     struct sock *sk, int tstype);
3975 
3976 /**
3977  * skb_tstamp_tx - queue clone of skb with send time stamps
3978  * @orig_skb:	the original outgoing packet
3979  * @hwtstamps:	hardware time stamps, may be NULL if not available
3980  *
3981  * If the skb has a socket associated, then this function clones the
3982  * skb (thus sharing the actual data and optional structures), stores
3983  * the optional hardware time stamping information (if non NULL) or
3984  * generates a software time stamp (otherwise), then queues the clone
3985  * to the error queue of the socket.  Errors are silently ignored.
3986  */
3987 void skb_tstamp_tx(struct sk_buff *orig_skb,
3988 		   struct skb_shared_hwtstamps *hwtstamps);
3989 
3990 /**
3991  * skb_tx_timestamp() - Driver hook for transmit timestamping
3992  *
3993  * Ethernet MAC Drivers should call this function in their hard_xmit()
3994  * function immediately before giving the sk_buff to the MAC hardware.
3995  *
3996  * Specifically, one should make absolutely sure that this function is
3997  * called before TX completion of this packet can trigger.  Otherwise
3998  * the packet could potentially already be freed.
3999  *
4000  * @skb: A socket buffer.
4001  */
skb_tx_timestamp(struct sk_buff * skb)4002 static inline void skb_tx_timestamp(struct sk_buff *skb)
4003 {
4004 	skb_clone_tx_timestamp(skb);
4005 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4006 		skb_tstamp_tx(skb, NULL);
4007 }
4008 
4009 /**
4010  * skb_complete_wifi_ack - deliver skb with wifi status
4011  *
4012  * @skb: the original outgoing packet
4013  * @acked: ack status
4014  *
4015  */
4016 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4017 
4018 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4019 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4020 
skb_csum_unnecessary(const struct sk_buff * skb)4021 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4022 {
4023 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4024 		skb->csum_valid ||
4025 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4026 		 skb_checksum_start_offset(skb) >= 0));
4027 }
4028 
4029 /**
4030  *	skb_checksum_complete - Calculate checksum of an entire packet
4031  *	@skb: packet to process
4032  *
4033  *	This function calculates the checksum over the entire packet plus
4034  *	the value of skb->csum.  The latter can be used to supply the
4035  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4036  *	checksum.
4037  *
4038  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4039  *	this function can be used to verify that checksum on received
4040  *	packets.  In that case the function should return zero if the
4041  *	checksum is correct.  In particular, this function will return zero
4042  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4043  *	hardware has already verified the correctness of the checksum.
4044  */
skb_checksum_complete(struct sk_buff * skb)4045 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4046 {
4047 	return skb_csum_unnecessary(skb) ?
4048 	       0 : __skb_checksum_complete(skb);
4049 }
4050 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4051 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4052 {
4053 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4054 		if (skb->csum_level == 0)
4055 			skb->ip_summed = CHECKSUM_NONE;
4056 		else
4057 			skb->csum_level--;
4058 	}
4059 }
4060 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4061 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4062 {
4063 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4064 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4065 			skb->csum_level++;
4066 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4067 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4068 		skb->csum_level = 0;
4069 	}
4070 }
4071 
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4072 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4073 {
4074 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4075 		skb->ip_summed = CHECKSUM_NONE;
4076 		skb->csum_level = 0;
4077 	}
4078 }
4079 
4080 /* Check if we need to perform checksum complete validation.
4081  *
4082  * Returns true if checksum complete is needed, false otherwise
4083  * (either checksum is unnecessary or zero checksum is allowed).
4084  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4085 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4086 						  bool zero_okay,
4087 						  __sum16 check)
4088 {
4089 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4090 		skb->csum_valid = 1;
4091 		__skb_decr_checksum_unnecessary(skb);
4092 		return false;
4093 	}
4094 
4095 	return true;
4096 }
4097 
4098 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4099  * in checksum_init.
4100  */
4101 #define CHECKSUM_BREAK 76
4102 
4103 /* Unset checksum-complete
4104  *
4105  * Unset checksum complete can be done when packet is being modified
4106  * (uncompressed for instance) and checksum-complete value is
4107  * invalidated.
4108  */
skb_checksum_complete_unset(struct sk_buff * skb)4109 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4110 {
4111 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4112 		skb->ip_summed = CHECKSUM_NONE;
4113 }
4114 
4115 /* Validate (init) checksum based on checksum complete.
4116  *
4117  * Return values:
4118  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4119  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4120  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4121  *   non-zero: value of invalid checksum
4122  *
4123  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4124 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4125 						       bool complete,
4126 						       __wsum psum)
4127 {
4128 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4129 		if (!csum_fold(csum_add(psum, skb->csum))) {
4130 			skb->csum_valid = 1;
4131 			return 0;
4132 		}
4133 	}
4134 
4135 	skb->csum = psum;
4136 
4137 	if (complete || skb->len <= CHECKSUM_BREAK) {
4138 		__sum16 csum;
4139 
4140 		csum = __skb_checksum_complete(skb);
4141 		skb->csum_valid = !csum;
4142 		return csum;
4143 	}
4144 
4145 	return 0;
4146 }
4147 
null_compute_pseudo(struct sk_buff * skb,int proto)4148 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4149 {
4150 	return 0;
4151 }
4152 
4153 /* Perform checksum validate (init). Note that this is a macro since we only
4154  * want to calculate the pseudo header which is an input function if necessary.
4155  * First we try to validate without any computation (checksum unnecessary) and
4156  * then calculate based on checksum complete calling the function to compute
4157  * pseudo header.
4158  *
4159  * Return values:
4160  *   0: checksum is validated or try to in skb_checksum_complete
4161  *   non-zero: value of invalid checksum
4162  */
4163 #define __skb_checksum_validate(skb, proto, complete,			\
4164 				zero_okay, check, compute_pseudo)	\
4165 ({									\
4166 	__sum16 __ret = 0;						\
4167 	skb->csum_valid = 0;						\
4168 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4169 		__ret = __skb_checksum_validate_complete(skb,		\
4170 				complete, compute_pseudo(skb, proto));	\
4171 	__ret;								\
4172 })
4173 
4174 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4175 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4176 
4177 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4178 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4179 
4180 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4181 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4182 
4183 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4184 					 compute_pseudo)		\
4185 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4186 
4187 #define skb_checksum_simple_validate(skb)				\
4188 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4189 
__skb_checksum_convert_check(struct sk_buff * skb)4190 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4191 {
4192 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4193 }
4194 
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4195 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4196 {
4197 	skb->csum = ~pseudo;
4198 	skb->ip_summed = CHECKSUM_COMPLETE;
4199 }
4200 
4201 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4202 do {									\
4203 	if (__skb_checksum_convert_check(skb))				\
4204 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4205 } while (0)
4206 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4207 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4208 					      u16 start, u16 offset)
4209 {
4210 	skb->ip_summed = CHECKSUM_PARTIAL;
4211 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4212 	skb->csum_offset = offset - start;
4213 }
4214 
4215 /* Update skbuf and packet to reflect the remote checksum offload operation.
4216  * When called, ptr indicates the starting point for skb->csum when
4217  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4218  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4219  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4220 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4221 				       int start, int offset, bool nopartial)
4222 {
4223 	__wsum delta;
4224 
4225 	if (!nopartial) {
4226 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4227 		return;
4228 	}
4229 
4230 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4231 		__skb_checksum_complete(skb);
4232 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4233 	}
4234 
4235 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4236 
4237 	/* Adjust skb->csum since we changed the packet */
4238 	skb->csum = csum_add(skb->csum, delta);
4239 }
4240 
skb_nfct(const struct sk_buff * skb)4241 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4242 {
4243 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4244 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4245 #else
4246 	return NULL;
4247 #endif
4248 }
4249 
skb_get_nfct(const struct sk_buff * skb)4250 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4251 {
4252 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4253 	return skb->_nfct;
4254 #else
4255 	return 0UL;
4256 #endif
4257 }
4258 
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4259 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4260 {
4261 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4262 	skb->slow_gro |= !!nfct;
4263 	skb->_nfct = nfct;
4264 #endif
4265 }
4266 
4267 #ifdef CONFIG_SKB_EXTENSIONS
4268 enum skb_ext_id {
4269 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4270 	SKB_EXT_BRIDGE_NF,
4271 #endif
4272 #ifdef CONFIG_XFRM
4273 	SKB_EXT_SEC_PATH,
4274 #endif
4275 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4276 	TC_SKB_EXT,
4277 #endif
4278 #if IS_ENABLED(CONFIG_MPTCP)
4279 	SKB_EXT_MPTCP,
4280 #endif
4281 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4282 	SKB_EXT_MCTP,
4283 #endif
4284 	SKB_EXT_NUM, /* must be last */
4285 };
4286 
4287 /**
4288  *	struct skb_ext - sk_buff extensions
4289  *	@refcnt: 1 on allocation, deallocated on 0
4290  *	@offset: offset to add to @data to obtain extension address
4291  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4292  *	@data: start of extension data, variable sized
4293  *
4294  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4295  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4296  */
4297 struct skb_ext {
4298 	refcount_t refcnt;
4299 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4300 	u8 chunks;		/* same */
4301 	char data[] __aligned(8);
4302 };
4303 
4304 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4305 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4306 		    struct skb_ext *ext);
4307 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4308 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4309 void __skb_ext_put(struct skb_ext *ext);
4310 
skb_ext_put(struct sk_buff * skb)4311 static inline void skb_ext_put(struct sk_buff *skb)
4312 {
4313 	if (skb->active_extensions)
4314 		__skb_ext_put(skb->extensions);
4315 }
4316 
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4317 static inline void __skb_ext_copy(struct sk_buff *dst,
4318 				  const struct sk_buff *src)
4319 {
4320 	dst->active_extensions = src->active_extensions;
4321 
4322 	if (src->active_extensions) {
4323 		struct skb_ext *ext = src->extensions;
4324 
4325 		refcount_inc(&ext->refcnt);
4326 		dst->extensions = ext;
4327 	}
4328 }
4329 
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4330 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4331 {
4332 	skb_ext_put(dst);
4333 	__skb_ext_copy(dst, src);
4334 }
4335 
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4336 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4337 {
4338 	return !!ext->offset[i];
4339 }
4340 
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4341 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4342 {
4343 	return skb->active_extensions & (1 << id);
4344 }
4345 
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4346 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4347 {
4348 	if (skb_ext_exist(skb, id))
4349 		__skb_ext_del(skb, id);
4350 }
4351 
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4352 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4353 {
4354 	if (skb_ext_exist(skb, id)) {
4355 		struct skb_ext *ext = skb->extensions;
4356 
4357 		return (void *)ext + (ext->offset[id] << 3);
4358 	}
4359 
4360 	return NULL;
4361 }
4362 
skb_ext_reset(struct sk_buff * skb)4363 static inline void skb_ext_reset(struct sk_buff *skb)
4364 {
4365 	if (unlikely(skb->active_extensions)) {
4366 		__skb_ext_put(skb->extensions);
4367 		skb->active_extensions = 0;
4368 	}
4369 }
4370 
skb_has_extensions(struct sk_buff * skb)4371 static inline bool skb_has_extensions(struct sk_buff *skb)
4372 {
4373 	return unlikely(skb->active_extensions);
4374 }
4375 #else
skb_ext_put(struct sk_buff * skb)4376 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4377 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4378 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4379 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4380 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4381 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4382 #endif /* CONFIG_SKB_EXTENSIONS */
4383 
nf_reset_ct(struct sk_buff * skb)4384 static inline void nf_reset_ct(struct sk_buff *skb)
4385 {
4386 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4387 	nf_conntrack_put(skb_nfct(skb));
4388 	skb->_nfct = 0;
4389 #endif
4390 }
4391 
nf_reset_trace(struct sk_buff * skb)4392 static inline void nf_reset_trace(struct sk_buff *skb)
4393 {
4394 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4395 	skb->nf_trace = 0;
4396 #endif
4397 }
4398 
ipvs_reset(struct sk_buff * skb)4399 static inline void ipvs_reset(struct sk_buff *skb)
4400 {
4401 #if IS_ENABLED(CONFIG_IP_VS)
4402 	skb->ipvs_property = 0;
4403 #endif
4404 }
4405 
4406 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4407 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4408 			     bool copy)
4409 {
4410 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4411 	dst->_nfct = src->_nfct;
4412 	nf_conntrack_get(skb_nfct(src));
4413 #endif
4414 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4415 	if (copy)
4416 		dst->nf_trace = src->nf_trace;
4417 #endif
4418 }
4419 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4420 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4421 {
4422 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4423 	nf_conntrack_put(skb_nfct(dst));
4424 #endif
4425 	dst->slow_gro = src->slow_gro;
4426 	__nf_copy(dst, src, true);
4427 }
4428 
4429 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4430 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4431 {
4432 	to->secmark = from->secmark;
4433 }
4434 
skb_init_secmark(struct sk_buff * skb)4435 static inline void skb_init_secmark(struct sk_buff *skb)
4436 {
4437 	skb->secmark = 0;
4438 }
4439 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4440 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4441 { }
4442 
skb_init_secmark(struct sk_buff * skb)4443 static inline void skb_init_secmark(struct sk_buff *skb)
4444 { }
4445 #endif
4446 
secpath_exists(const struct sk_buff * skb)4447 static inline int secpath_exists(const struct sk_buff *skb)
4448 {
4449 #ifdef CONFIG_XFRM
4450 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4451 #else
4452 	return 0;
4453 #endif
4454 }
4455 
skb_irq_freeable(const struct sk_buff * skb)4456 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4457 {
4458 	return !skb->destructor &&
4459 		!secpath_exists(skb) &&
4460 		!skb_nfct(skb) &&
4461 		!skb->_skb_refdst &&
4462 		!skb_has_frag_list(skb);
4463 }
4464 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4465 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4466 {
4467 	skb->queue_mapping = queue_mapping;
4468 }
4469 
skb_get_queue_mapping(const struct sk_buff * skb)4470 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4471 {
4472 	return skb->queue_mapping;
4473 }
4474 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4475 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4476 {
4477 	to->queue_mapping = from->queue_mapping;
4478 }
4479 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4480 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4481 {
4482 	skb->queue_mapping = rx_queue + 1;
4483 }
4484 
skb_get_rx_queue(const struct sk_buff * skb)4485 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4486 {
4487 	return skb->queue_mapping - 1;
4488 }
4489 
skb_rx_queue_recorded(const struct sk_buff * skb)4490 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4491 {
4492 	return skb->queue_mapping != 0;
4493 }
4494 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4495 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4496 {
4497 	skb->dst_pending_confirm = val;
4498 }
4499 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4500 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4501 {
4502 	return skb->dst_pending_confirm != 0;
4503 }
4504 
skb_sec_path(const struct sk_buff * skb)4505 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4506 {
4507 #ifdef CONFIG_XFRM
4508 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4509 #else
4510 	return NULL;
4511 #endif
4512 }
4513 
4514 /* Keeps track of mac header offset relative to skb->head.
4515  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4516  * For non-tunnel skb it points to skb_mac_header() and for
4517  * tunnel skb it points to outer mac header.
4518  * Keeps track of level of encapsulation of network headers.
4519  */
4520 struct skb_gso_cb {
4521 	union {
4522 		int	mac_offset;
4523 		int	data_offset;
4524 	};
4525 	int	encap_level;
4526 	__wsum	csum;
4527 	__u16	csum_start;
4528 };
4529 #define SKB_GSO_CB_OFFSET	32
4530 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4531 
skb_tnl_header_len(const struct sk_buff * inner_skb)4532 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4533 {
4534 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4535 		SKB_GSO_CB(inner_skb)->mac_offset;
4536 }
4537 
gso_pskb_expand_head(struct sk_buff * skb,int extra)4538 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4539 {
4540 	int new_headroom, headroom;
4541 	int ret;
4542 
4543 	headroom = skb_headroom(skb);
4544 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4545 	if (ret)
4546 		return ret;
4547 
4548 	new_headroom = skb_headroom(skb);
4549 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4550 	return 0;
4551 }
4552 
gso_reset_checksum(struct sk_buff * skb,__wsum res)4553 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4554 {
4555 	/* Do not update partial checksums if remote checksum is enabled. */
4556 	if (skb->remcsum_offload)
4557 		return;
4558 
4559 	SKB_GSO_CB(skb)->csum = res;
4560 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4561 }
4562 
4563 /* Compute the checksum for a gso segment. First compute the checksum value
4564  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4565  * then add in skb->csum (checksum from csum_start to end of packet).
4566  * skb->csum and csum_start are then updated to reflect the checksum of the
4567  * resultant packet starting from the transport header-- the resultant checksum
4568  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4569  * header.
4570  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4571 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4572 {
4573 	unsigned char *csum_start = skb_transport_header(skb);
4574 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4575 	__wsum partial = SKB_GSO_CB(skb)->csum;
4576 
4577 	SKB_GSO_CB(skb)->csum = res;
4578 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4579 
4580 	return csum_fold(csum_partial(csum_start, plen, partial));
4581 }
4582 
skb_is_gso(const struct sk_buff * skb)4583 static inline bool skb_is_gso(const struct sk_buff *skb)
4584 {
4585 	return skb_shinfo(skb)->gso_size;
4586 }
4587 
4588 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4589 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4590 {
4591 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4592 }
4593 
4594 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4595 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4596 {
4597 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4598 }
4599 
4600 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4601 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4602 {
4603 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4604 }
4605 
skb_gso_reset(struct sk_buff * skb)4606 static inline void skb_gso_reset(struct sk_buff *skb)
4607 {
4608 	skb_shinfo(skb)->gso_size = 0;
4609 	skb_shinfo(skb)->gso_segs = 0;
4610 	skb_shinfo(skb)->gso_type = 0;
4611 }
4612 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4613 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4614 					 u16 increment)
4615 {
4616 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4617 		return;
4618 	shinfo->gso_size += increment;
4619 }
4620 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4621 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4622 					 u16 decrement)
4623 {
4624 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4625 		return;
4626 	shinfo->gso_size -= decrement;
4627 }
4628 
4629 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4630 
skb_warn_if_lro(const struct sk_buff * skb)4631 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4632 {
4633 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4634 	 * wanted then gso_type will be set. */
4635 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4636 
4637 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4638 	    unlikely(shinfo->gso_type == 0)) {
4639 		__skb_warn_lro_forwarding(skb);
4640 		return true;
4641 	}
4642 	return false;
4643 }
4644 
skb_forward_csum(struct sk_buff * skb)4645 static inline void skb_forward_csum(struct sk_buff *skb)
4646 {
4647 	/* Unfortunately we don't support this one.  Any brave souls? */
4648 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4649 		skb->ip_summed = CHECKSUM_NONE;
4650 }
4651 
4652 /**
4653  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4654  * @skb: skb to check
4655  *
4656  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4657  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4658  * use this helper, to document places where we make this assertion.
4659  */
skb_checksum_none_assert(const struct sk_buff * skb)4660 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4661 {
4662 #ifdef DEBUG
4663 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4664 #endif
4665 }
4666 
4667 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4668 
4669 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4670 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4671 				     unsigned int transport_len,
4672 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4673 
4674 /**
4675  * skb_head_is_locked - Determine if the skb->head is locked down
4676  * @skb: skb to check
4677  *
4678  * The head on skbs build around a head frag can be removed if they are
4679  * not cloned.  This function returns true if the skb head is locked down
4680  * due to either being allocated via kmalloc, or by being a clone with
4681  * multiple references to the head.
4682  */
skb_head_is_locked(const struct sk_buff * skb)4683 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4684 {
4685 	return !skb->head_frag || skb_cloned(skb);
4686 }
4687 
4688 /* Local Checksum Offload.
4689  * Compute outer checksum based on the assumption that the
4690  * inner checksum will be offloaded later.
4691  * See Documentation/networking/checksum-offloads.rst for
4692  * explanation of how this works.
4693  * Fill in outer checksum adjustment (e.g. with sum of outer
4694  * pseudo-header) before calling.
4695  * Also ensure that inner checksum is in linear data area.
4696  */
lco_csum(struct sk_buff * skb)4697 static inline __wsum lco_csum(struct sk_buff *skb)
4698 {
4699 	unsigned char *csum_start = skb_checksum_start(skb);
4700 	unsigned char *l4_hdr = skb_transport_header(skb);
4701 	__wsum partial;
4702 
4703 	/* Start with complement of inner checksum adjustment */
4704 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4705 						    skb->csum_offset));
4706 
4707 	/* Add in checksum of our headers (incl. outer checksum
4708 	 * adjustment filled in by caller) and return result.
4709 	 */
4710 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4711 }
4712 
skb_is_redirected(const struct sk_buff * skb)4713 static inline bool skb_is_redirected(const struct sk_buff *skb)
4714 {
4715 	return skb->redirected;
4716 }
4717 
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4718 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4719 {
4720 	skb->redirected = 1;
4721 #ifdef CONFIG_NET_REDIRECT
4722 	skb->from_ingress = from_ingress;
4723 	if (skb->from_ingress)
4724 		skb->tstamp = 0;
4725 #endif
4726 }
4727 
skb_reset_redirect(struct sk_buff * skb)4728 static inline void skb_reset_redirect(struct sk_buff *skb)
4729 {
4730 	skb->redirected = 0;
4731 }
4732 
skb_csum_is_sctp(struct sk_buff * skb)4733 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4734 {
4735 	return skb->csum_not_inet;
4736 }
4737 
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4738 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4739 				       const u64 kcov_handle)
4740 {
4741 #ifdef CONFIG_KCOV
4742 	skb->kcov_handle = kcov_handle;
4743 #endif
4744 }
4745 
skb_get_kcov_handle(struct sk_buff * skb)4746 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4747 {
4748 #ifdef CONFIG_KCOV
4749 	return skb->kcov_handle;
4750 #else
4751 	return 0;
4752 #endif
4753 }
4754 
4755 #ifdef CONFIG_PAGE_POOL
skb_mark_for_recycle(struct sk_buff * skb)4756 static inline void skb_mark_for_recycle(struct sk_buff *skb)
4757 {
4758 	skb->pp_recycle = 1;
4759 }
4760 #endif
4761 
skb_pp_recycle(struct sk_buff * skb,void * data)4762 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4763 {
4764 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4765 		return false;
4766 	return page_pool_return_skb_page(virt_to_page(data));
4767 }
4768 
4769 #endif	/* __KERNEL__ */
4770 #endif	/* _LINUX_SKBUFF_H */
4771