1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #include <net/page_pool.h>
41 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
42 #include <linux/netfilter/nf_conntrack_common.h>
43 #endif
44
45 /* The interface for checksum offload between the stack and networking drivers
46 * is as follows...
47 *
48 * A. IP checksum related features
49 *
50 * Drivers advertise checksum offload capabilities in the features of a device.
51 * From the stack's point of view these are capabilities offered by the driver.
52 * A driver typically only advertises features that it is capable of offloading
53 * to its device.
54 *
55 * The checksum related features are:
56 *
57 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
58 * IP (one's complement) checksum for any combination
59 * of protocols or protocol layering. The checksum is
60 * computed and set in a packet per the CHECKSUM_PARTIAL
61 * interface (see below).
62 *
63 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
64 * TCP or UDP packets over IPv4. These are specifically
65 * unencapsulated packets of the form IPv4|TCP or
66 * IPv4|UDP where the Protocol field in the IPv4 header
67 * is TCP or UDP. The IPv4 header may contain IP options.
68 * This feature cannot be set in features for a device
69 * with NETIF_F_HW_CSUM also set. This feature is being
70 * DEPRECATED (see below).
71 *
72 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
73 * TCP or UDP packets over IPv6. These are specifically
74 * unencapsulated packets of the form IPv6|TCP or
75 * IPv6|UDP where the Next Header field in the IPv6
76 * header is either TCP or UDP. IPv6 extension headers
77 * are not supported with this feature. This feature
78 * cannot be set in features for a device with
79 * NETIF_F_HW_CSUM also set. This feature is being
80 * DEPRECATED (see below).
81 *
82 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
83 * This flag is only used to disable the RX checksum
84 * feature for a device. The stack will accept receive
85 * checksum indication in packets received on a device
86 * regardless of whether NETIF_F_RXCSUM is set.
87 *
88 * B. Checksumming of received packets by device. Indication of checksum
89 * verification is set in skb->ip_summed. Possible values are:
90 *
91 * CHECKSUM_NONE:
92 *
93 * Device did not checksum this packet e.g. due to lack of capabilities.
94 * The packet contains full (though not verified) checksum in packet but
95 * not in skb->csum. Thus, skb->csum is undefined in this case.
96 *
97 * CHECKSUM_UNNECESSARY:
98 *
99 * The hardware you're dealing with doesn't calculate the full checksum
100 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
101 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
102 * if their checksums are okay. skb->csum is still undefined in this case
103 * though. A driver or device must never modify the checksum field in the
104 * packet even if checksum is verified.
105 *
106 * CHECKSUM_UNNECESSARY is applicable to following protocols:
107 * TCP: IPv6 and IPv4.
108 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
109 * zero UDP checksum for either IPv4 or IPv6, the networking stack
110 * may perform further validation in this case.
111 * GRE: only if the checksum is present in the header.
112 * SCTP: indicates the CRC in SCTP header has been validated.
113 * FCOE: indicates the CRC in FC frame has been validated.
114 *
115 * skb->csum_level indicates the number of consecutive checksums found in
116 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
117 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
118 * and a device is able to verify the checksums for UDP (possibly zero),
119 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to
120 * two. If the device were only able to verify the UDP checksum and not
121 * GRE, either because it doesn't support GRE checksum or because GRE
122 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
123 * not considered in this case).
124 *
125 * CHECKSUM_COMPLETE:
126 *
127 * This is the most generic way. The device supplied checksum of the _whole_
128 * packet as seen by netif_rx() and fills in skb->csum. This means the
129 * hardware doesn't need to parse L3/L4 headers to implement this.
130 *
131 * Notes:
132 * - Even if device supports only some protocols, but is able to produce
133 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
134 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
135 *
136 * CHECKSUM_PARTIAL:
137 *
138 * A checksum is set up to be offloaded to a device as described in the
139 * output description for CHECKSUM_PARTIAL. This may occur on a packet
140 * received directly from another Linux OS, e.g., a virtualized Linux kernel
141 * on the same host, or it may be set in the input path in GRO or remote
142 * checksum offload. For the purposes of checksum verification, the checksum
143 * referred to by skb->csum_start + skb->csum_offset and any preceding
144 * checksums in the packet are considered verified. Any checksums in the
145 * packet that are after the checksum being offloaded are not considered to
146 * be verified.
147 *
148 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
149 * in the skb->ip_summed for a packet. Values are:
150 *
151 * CHECKSUM_PARTIAL:
152 *
153 * The driver is required to checksum the packet as seen by hard_start_xmit()
154 * from skb->csum_start up to the end, and to record/write the checksum at
155 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
156 * csum_start and csum_offset values are valid values given the length and
157 * offset of the packet, but it should not attempt to validate that the
158 * checksum refers to a legitimate transport layer checksum -- it is the
159 * purview of the stack to validate that csum_start and csum_offset are set
160 * correctly.
161 *
162 * When the stack requests checksum offload for a packet, the driver MUST
163 * ensure that the checksum is set correctly. A driver can either offload the
164 * checksum calculation to the device, or call skb_checksum_help (in the case
165 * that the device does not support offload for a particular checksum).
166 *
167 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
168 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
169 * checksum offload capability.
170 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
171 * on network device checksumming capabilities: if a packet does not match
172 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
173 * csum_not_inet, see item D.) is called to resolve the checksum.
174 *
175 * CHECKSUM_NONE:
176 *
177 * The skb was already checksummed by the protocol, or a checksum is not
178 * required.
179 *
180 * CHECKSUM_UNNECESSARY:
181 *
182 * This has the same meaning as CHECKSUM_NONE for checksum offload on
183 * output.
184 *
185 * CHECKSUM_COMPLETE:
186 * Not used in checksum output. If a driver observes a packet with this value
187 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
188 *
189 * D. Non-IP checksum (CRC) offloads
190 *
191 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
192 * offloading the SCTP CRC in a packet. To perform this offload the stack
193 * will set csum_start and csum_offset accordingly, set ip_summed to
194 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
195 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
196 * A driver that supports both IP checksum offload and SCTP CRC32c offload
197 * must verify which offload is configured for a packet by testing the
198 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
199 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200 *
201 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
202 * offloading the FCOE CRC in a packet. To perform this offload the stack
203 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
204 * accordingly. Note that there is no indication in the skbuff that the
205 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
206 * both IP checksum offload and FCOE CRC offload must verify which offload
207 * is configured for a packet, presumably by inspecting packet headers.
208 *
209 * E. Checksumming on output with GSO.
210 *
211 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
212 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
213 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
214 * part of the GSO operation is implied. If a checksum is being offloaded
215 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
216 * csum_offset are set to refer to the outermost checksum being offloaded
217 * (two offloaded checksums are possible with UDP encapsulation).
218 */
219
220 /* Don't change this without changing skb_csum_unnecessary! */
221 #define CHECKSUM_NONE 0
222 #define CHECKSUM_UNNECESSARY 1
223 #define CHECKSUM_COMPLETE 2
224 #define CHECKSUM_PARTIAL 3
225
226 /* Maximum value in skb->csum_level */
227 #define SKB_MAX_CSUM_LEVEL 3
228
229 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
230 #define SKB_WITH_OVERHEAD(X) \
231 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
232 #define SKB_MAX_ORDER(X, ORDER) \
233 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
234 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
235 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
236
237 /* return minimum truesize of one skb containing X bytes of data */
238 #define SKB_TRUESIZE(X) ((X) + \
239 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
240 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
241
242 struct ahash_request;
243 struct net_device;
244 struct scatterlist;
245 struct pipe_inode_info;
246 struct iov_iter;
247 struct napi_struct;
248 struct bpf_prog;
249 union bpf_attr;
250 struct skb_ext;
251
252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
253 struct nf_bridge_info {
254 enum {
255 BRNF_PROTO_UNCHANGED,
256 BRNF_PROTO_8021Q,
257 BRNF_PROTO_PPPOE
258 } orig_proto:8;
259 u8 pkt_otherhost:1;
260 u8 in_prerouting:1;
261 u8 bridged_dnat:1;
262 __u16 frag_max_size;
263 struct net_device *physindev;
264
265 /* always valid & non-NULL from FORWARD on, for physdev match */
266 struct net_device *physoutdev;
267 union {
268 /* prerouting: detect dnat in orig/reply direction */
269 __be32 ipv4_daddr;
270 struct in6_addr ipv6_daddr;
271
272 /* after prerouting + nat detected: store original source
273 * mac since neigh resolution overwrites it, only used while
274 * skb is out in neigh layer.
275 */
276 char neigh_header[8];
277 };
278 };
279 #endif
280
281 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
282 /* Chain in tc_skb_ext will be used to share the tc chain with
283 * ovs recirc_id. It will be set to the current chain by tc
284 * and read by ovs to recirc_id.
285 */
286 struct tc_skb_ext {
287 __u32 chain;
288 __u16 mru;
289 __u16 zone;
290 bool post_ct;
291 };
292 #endif
293
294 struct sk_buff_head {
295 /* These two members must be first. */
296 struct sk_buff *next;
297 struct sk_buff *prev;
298
299 __u32 qlen;
300 spinlock_t lock;
301 };
302
303 struct sk_buff;
304
305 /* To allow 64K frame to be packed as single skb without frag_list we
306 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
307 * buffers which do not start on a page boundary.
308 *
309 * Since GRO uses frags we allocate at least 16 regardless of page
310 * size.
311 */
312 #if (65536/PAGE_SIZE + 1) < 16
313 #define MAX_SKB_FRAGS 16UL
314 #else
315 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
316 #endif
317 extern int sysctl_max_skb_frags;
318
319 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
320 * segment using its current segmentation instead.
321 */
322 #define GSO_BY_FRAGS 0xFFFF
323
324 typedef struct bio_vec skb_frag_t;
325
326 /**
327 * skb_frag_size() - Returns the size of a skb fragment
328 * @frag: skb fragment
329 */
skb_frag_size(const skb_frag_t * frag)330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331 {
332 return frag->bv_len;
333 }
334
335 /**
336 * skb_frag_size_set() - Sets the size of a skb fragment
337 * @frag: skb fragment
338 * @size: size of fragment
339 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)340 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
341 {
342 frag->bv_len = size;
343 }
344
345 /**
346 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
347 * @frag: skb fragment
348 * @delta: value to add
349 */
skb_frag_size_add(skb_frag_t * frag,int delta)350 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
351 {
352 frag->bv_len += delta;
353 }
354
355 /**
356 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
357 * @frag: skb fragment
358 * @delta: value to subtract
359 */
skb_frag_size_sub(skb_frag_t * frag,int delta)360 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
361 {
362 frag->bv_len -= delta;
363 }
364
365 /**
366 * skb_frag_must_loop - Test if %p is a high memory page
367 * @p: fragment's page
368 */
skb_frag_must_loop(struct page * p)369 static inline bool skb_frag_must_loop(struct page *p)
370 {
371 #if defined(CONFIG_HIGHMEM)
372 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
373 return true;
374 #endif
375 return false;
376 }
377
378 /**
379 * skb_frag_foreach_page - loop over pages in a fragment
380 *
381 * @f: skb frag to operate on
382 * @f_off: offset from start of f->bv_page
383 * @f_len: length from f_off to loop over
384 * @p: (temp var) current page
385 * @p_off: (temp var) offset from start of current page,
386 * non-zero only on first page.
387 * @p_len: (temp var) length in current page,
388 * < PAGE_SIZE only on first and last page.
389 * @copied: (temp var) length so far, excluding current p_len.
390 *
391 * A fragment can hold a compound page, in which case per-page
392 * operations, notably kmap_atomic, must be called for each
393 * regular page.
394 */
395 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
396 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
397 p_off = (f_off) & (PAGE_SIZE - 1), \
398 p_len = skb_frag_must_loop(p) ? \
399 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
400 copied = 0; \
401 copied < f_len; \
402 copied += p_len, p++, p_off = 0, \
403 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
404
405 #define HAVE_HW_TIME_STAMP
406
407 /**
408 * struct skb_shared_hwtstamps - hardware time stamps
409 * @hwtstamp: hardware time stamp transformed into duration
410 * since arbitrary point in time
411 *
412 * Software time stamps generated by ktime_get_real() are stored in
413 * skb->tstamp.
414 *
415 * hwtstamps can only be compared against other hwtstamps from
416 * the same device.
417 *
418 * This structure is attached to packets as part of the
419 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
420 */
421 struct skb_shared_hwtstamps {
422 ktime_t hwtstamp;
423 };
424
425 /* Definitions for tx_flags in struct skb_shared_info */
426 enum {
427 /* generate hardware time stamp */
428 SKBTX_HW_TSTAMP = 1 << 0,
429
430 /* generate software time stamp when queueing packet to NIC */
431 SKBTX_SW_TSTAMP = 1 << 1,
432
433 /* device driver is going to provide hardware time stamp */
434 SKBTX_IN_PROGRESS = 1 << 2,
435
436 /* generate wifi status information (where possible) */
437 SKBTX_WIFI_STATUS = 1 << 4,
438
439 /* generate software time stamp when entering packet scheduling */
440 SKBTX_SCHED_TSTAMP = 1 << 6,
441 };
442
443 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
444 SKBTX_SCHED_TSTAMP)
445 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
446
447 /* Definitions for flags in struct skb_shared_info */
448 enum {
449 /* use zcopy routines */
450 SKBFL_ZEROCOPY_ENABLE = BIT(0),
451
452 /* This indicates at least one fragment might be overwritten
453 * (as in vmsplice(), sendfile() ...)
454 * If we need to compute a TX checksum, we'll need to copy
455 * all frags to avoid possible bad checksum
456 */
457 SKBFL_SHARED_FRAG = BIT(1),
458
459 /* segment contains only zerocopy data and should not be
460 * charged to the kernel memory.
461 */
462 SKBFL_PURE_ZEROCOPY = BIT(2),
463 };
464
465 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
466 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
467
468 /*
469 * The callback notifies userspace to release buffers when skb DMA is done in
470 * lower device, the skb last reference should be 0 when calling this.
471 * The zerocopy_success argument is true if zero copy transmit occurred,
472 * false on data copy or out of memory error caused by data copy attempt.
473 * The ctx field is used to track device context.
474 * The desc field is used to track userspace buffer index.
475 */
476 struct ubuf_info {
477 void (*callback)(struct sk_buff *, struct ubuf_info *,
478 bool zerocopy_success);
479 union {
480 struct {
481 unsigned long desc;
482 void *ctx;
483 };
484 struct {
485 u32 id;
486 u16 len;
487 u16 zerocopy:1;
488 u32 bytelen;
489 };
490 };
491 refcount_t refcnt;
492 u8 flags;
493
494 struct mmpin {
495 struct user_struct *user;
496 unsigned int num_pg;
497 } mmp;
498 };
499
500 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
501
502 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
503 void mm_unaccount_pinned_pages(struct mmpin *mmp);
504
505 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
506 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
507 struct ubuf_info *uarg);
508
509 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
510
511 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
512 bool success);
513
514 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
515 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
516 struct msghdr *msg, int len,
517 struct ubuf_info *uarg);
518
519 /* This data is invariant across clones and lives at
520 * the end of the header data, ie. at skb->end.
521 */
522 struct skb_shared_info {
523 __u8 flags;
524 __u8 meta_len;
525 __u8 nr_frags;
526 __u8 tx_flags;
527 unsigned short gso_size;
528 /* Warning: this field is not always filled in (UFO)! */
529 unsigned short gso_segs;
530 struct sk_buff *frag_list;
531 struct skb_shared_hwtstamps hwtstamps;
532 unsigned int gso_type;
533 u32 tskey;
534
535 /*
536 * Warning : all fields before dataref are cleared in __alloc_skb()
537 */
538 atomic_t dataref;
539
540 /* Intermediate layers must ensure that destructor_arg
541 * remains valid until skb destructor */
542 void * destructor_arg;
543
544 /* must be last field, see pskb_expand_head() */
545 skb_frag_t frags[MAX_SKB_FRAGS];
546 };
547
548 /* We divide dataref into two halves. The higher 16 bits hold references
549 * to the payload part of skb->data. The lower 16 bits hold references to
550 * the entire skb->data. A clone of a headerless skb holds the length of
551 * the header in skb->hdr_len.
552 *
553 * All users must obey the rule that the skb->data reference count must be
554 * greater than or equal to the payload reference count.
555 *
556 * Holding a reference to the payload part means that the user does not
557 * care about modifications to the header part of skb->data.
558 */
559 #define SKB_DATAREF_SHIFT 16
560 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
561
562
563 enum {
564 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
565 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
566 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
567 };
568
569 enum {
570 SKB_GSO_TCPV4 = 1 << 0,
571
572 /* This indicates the skb is from an untrusted source. */
573 SKB_GSO_DODGY = 1 << 1,
574
575 /* This indicates the tcp segment has CWR set. */
576 SKB_GSO_TCP_ECN = 1 << 2,
577
578 SKB_GSO_TCP_FIXEDID = 1 << 3,
579
580 SKB_GSO_TCPV6 = 1 << 4,
581
582 SKB_GSO_FCOE = 1 << 5,
583
584 SKB_GSO_GRE = 1 << 6,
585
586 SKB_GSO_GRE_CSUM = 1 << 7,
587
588 SKB_GSO_IPXIP4 = 1 << 8,
589
590 SKB_GSO_IPXIP6 = 1 << 9,
591
592 SKB_GSO_UDP_TUNNEL = 1 << 10,
593
594 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
595
596 SKB_GSO_PARTIAL = 1 << 12,
597
598 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
599
600 SKB_GSO_SCTP = 1 << 14,
601
602 SKB_GSO_ESP = 1 << 15,
603
604 SKB_GSO_UDP = 1 << 16,
605
606 SKB_GSO_UDP_L4 = 1 << 17,
607
608 SKB_GSO_FRAGLIST = 1 << 18,
609 };
610
611 #if BITS_PER_LONG > 32
612 #define NET_SKBUFF_DATA_USES_OFFSET 1
613 #endif
614
615 #ifdef NET_SKBUFF_DATA_USES_OFFSET
616 typedef unsigned int sk_buff_data_t;
617 #else
618 typedef unsigned char *sk_buff_data_t;
619 #endif
620
621 /**
622 * struct sk_buff - socket buffer
623 * @next: Next buffer in list
624 * @prev: Previous buffer in list
625 * @tstamp: Time we arrived/left
626 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
627 * for retransmit timer
628 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
629 * @list: queue head
630 * @sk: Socket we are owned by
631 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
632 * fragmentation management
633 * @dev: Device we arrived on/are leaving by
634 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
635 * @cb: Control buffer. Free for use by every layer. Put private vars here
636 * @_skb_refdst: destination entry (with norefcount bit)
637 * @sp: the security path, used for xfrm
638 * @len: Length of actual data
639 * @data_len: Data length
640 * @mac_len: Length of link layer header
641 * @hdr_len: writable header length of cloned skb
642 * @csum: Checksum (must include start/offset pair)
643 * @csum_start: Offset from skb->head where checksumming should start
644 * @csum_offset: Offset from csum_start where checksum should be stored
645 * @priority: Packet queueing priority
646 * @ignore_df: allow local fragmentation
647 * @cloned: Head may be cloned (check refcnt to be sure)
648 * @ip_summed: Driver fed us an IP checksum
649 * @nohdr: Payload reference only, must not modify header
650 * @pkt_type: Packet class
651 * @fclone: skbuff clone status
652 * @ipvs_property: skbuff is owned by ipvs
653 * @inner_protocol_type: whether the inner protocol is
654 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
655 * @remcsum_offload: remote checksum offload is enabled
656 * @offload_fwd_mark: Packet was L2-forwarded in hardware
657 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
658 * @tc_skip_classify: do not classify packet. set by IFB device
659 * @tc_at_ingress: used within tc_classify to distinguish in/egress
660 * @redirected: packet was redirected by packet classifier
661 * @from_ingress: packet was redirected from the ingress path
662 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
663 * @peeked: this packet has been seen already, so stats have been
664 * done for it, don't do them again
665 * @nf_trace: netfilter packet trace flag
666 * @protocol: Packet protocol from driver
667 * @destructor: Destruct function
668 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
669 * @_sk_redir: socket redirection information for skmsg
670 * @_nfct: Associated connection, if any (with nfctinfo bits)
671 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
672 * @skb_iif: ifindex of device we arrived on
673 * @tc_index: Traffic control index
674 * @hash: the packet hash
675 * @queue_mapping: Queue mapping for multiqueue devices
676 * @head_frag: skb was allocated from page fragments,
677 * not allocated by kmalloc() or vmalloc().
678 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
679 * @pp_recycle: mark the packet for recycling instead of freeing (implies
680 * page_pool support on driver)
681 * @active_extensions: active extensions (skb_ext_id types)
682 * @ndisc_nodetype: router type (from link layer)
683 * @ooo_okay: allow the mapping of a socket to a queue to be changed
684 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
685 * ports.
686 * @sw_hash: indicates hash was computed in software stack
687 * @wifi_acked_valid: wifi_acked was set
688 * @wifi_acked: whether frame was acked on wifi or not
689 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
690 * @encapsulation: indicates the inner headers in the skbuff are valid
691 * @encap_hdr_csum: software checksum is needed
692 * @csum_valid: checksum is already valid
693 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
694 * @csum_complete_sw: checksum was completed by software
695 * @csum_level: indicates the number of consecutive checksums found in
696 * the packet minus one that have been verified as
697 * CHECKSUM_UNNECESSARY (max 3)
698 * @dst_pending_confirm: need to confirm neighbour
699 * @decrypted: Decrypted SKB
700 * @slow_gro: state present at GRO time, slower prepare step required
701 * @napi_id: id of the NAPI struct this skb came from
702 * @sender_cpu: (aka @napi_id) source CPU in XPS
703 * @secmark: security marking
704 * @mark: Generic packet mark
705 * @reserved_tailroom: (aka @mark) number of bytes of free space available
706 * at the tail of an sk_buff
707 * @vlan_present: VLAN tag is present
708 * @vlan_proto: vlan encapsulation protocol
709 * @vlan_tci: vlan tag control information
710 * @inner_protocol: Protocol (encapsulation)
711 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
712 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
713 * @inner_transport_header: Inner transport layer header (encapsulation)
714 * @inner_network_header: Network layer header (encapsulation)
715 * @inner_mac_header: Link layer header (encapsulation)
716 * @transport_header: Transport layer header
717 * @network_header: Network layer header
718 * @mac_header: Link layer header
719 * @kcov_handle: KCOV remote handle for remote coverage collection
720 * @tail: Tail pointer
721 * @end: End pointer
722 * @head: Head of buffer
723 * @data: Data head pointer
724 * @truesize: Buffer size
725 * @users: User count - see {datagram,tcp}.c
726 * @extensions: allocated extensions, valid if active_extensions is nonzero
727 */
728
729 struct sk_buff {
730 union {
731 struct {
732 /* These two members must be first. */
733 struct sk_buff *next;
734 struct sk_buff *prev;
735
736 union {
737 struct net_device *dev;
738 /* Some protocols might use this space to store information,
739 * while device pointer would be NULL.
740 * UDP receive path is one user.
741 */
742 unsigned long dev_scratch;
743 };
744 };
745 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
746 struct list_head list;
747 };
748
749 union {
750 struct sock *sk;
751 int ip_defrag_offset;
752 };
753
754 union {
755 ktime_t tstamp;
756 u64 skb_mstamp_ns; /* earliest departure time */
757 };
758 /*
759 * This is the control buffer. It is free to use for every
760 * layer. Please put your private variables there. If you
761 * want to keep them across layers you have to do a skb_clone()
762 * first. This is owned by whoever has the skb queued ATM.
763 */
764 char cb[48] __aligned(8);
765
766 union {
767 struct {
768 unsigned long _skb_refdst;
769 void (*destructor)(struct sk_buff *skb);
770 };
771 struct list_head tcp_tsorted_anchor;
772 #ifdef CONFIG_NET_SOCK_MSG
773 unsigned long _sk_redir;
774 #endif
775 };
776
777 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
778 unsigned long _nfct;
779 #endif
780 unsigned int len,
781 data_len;
782 __u16 mac_len,
783 hdr_len;
784
785 /* Following fields are _not_ copied in __copy_skb_header()
786 * Note that queue_mapping is here mostly to fill a hole.
787 */
788 __u16 queue_mapping;
789
790 /* if you move cloned around you also must adapt those constants */
791 #ifdef __BIG_ENDIAN_BITFIELD
792 #define CLONED_MASK (1 << 7)
793 #else
794 #define CLONED_MASK 1
795 #endif
796 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
797
798 /* private: */
799 __u8 __cloned_offset[0];
800 /* public: */
801 __u8 cloned:1,
802 nohdr:1,
803 fclone:2,
804 peeked:1,
805 head_frag:1,
806 pfmemalloc:1,
807 pp_recycle:1; /* page_pool recycle indicator */
808 #ifdef CONFIG_SKB_EXTENSIONS
809 __u8 active_extensions;
810 #endif
811
812 /* fields enclosed in headers_start/headers_end are copied
813 * using a single memcpy() in __copy_skb_header()
814 */
815 /* private: */
816 __u32 headers_start[0];
817 /* public: */
818
819 /* if you move pkt_type around you also must adapt those constants */
820 #ifdef __BIG_ENDIAN_BITFIELD
821 #define PKT_TYPE_MAX (7 << 5)
822 #else
823 #define PKT_TYPE_MAX 7
824 #endif
825 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
826
827 /* private: */
828 __u8 __pkt_type_offset[0];
829 /* public: */
830 __u8 pkt_type:3;
831 __u8 ignore_df:1;
832 __u8 nf_trace:1;
833 __u8 ip_summed:2;
834 __u8 ooo_okay:1;
835
836 __u8 l4_hash:1;
837 __u8 sw_hash:1;
838 __u8 wifi_acked_valid:1;
839 __u8 wifi_acked:1;
840 __u8 no_fcs:1;
841 /* Indicates the inner headers are valid in the skbuff. */
842 __u8 encapsulation:1;
843 __u8 encap_hdr_csum:1;
844 __u8 csum_valid:1;
845
846 #ifdef __BIG_ENDIAN_BITFIELD
847 #define PKT_VLAN_PRESENT_BIT 7
848 #else
849 #define PKT_VLAN_PRESENT_BIT 0
850 #endif
851 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
852 /* private: */
853 __u8 __pkt_vlan_present_offset[0];
854 /* public: */
855 __u8 vlan_present:1;
856 __u8 csum_complete_sw:1;
857 __u8 csum_level:2;
858 __u8 csum_not_inet:1;
859 __u8 dst_pending_confirm:1;
860 #ifdef CONFIG_IPV6_NDISC_NODETYPE
861 __u8 ndisc_nodetype:2;
862 #endif
863
864 __u8 ipvs_property:1;
865 __u8 inner_protocol_type:1;
866 __u8 remcsum_offload:1;
867 #ifdef CONFIG_NET_SWITCHDEV
868 __u8 offload_fwd_mark:1;
869 __u8 offload_l3_fwd_mark:1;
870 #endif
871 #ifdef CONFIG_NET_CLS_ACT
872 __u8 tc_skip_classify:1;
873 __u8 tc_at_ingress:1;
874 #endif
875 __u8 redirected:1;
876 #ifdef CONFIG_NET_REDIRECT
877 __u8 from_ingress:1;
878 #endif
879 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
880 __u8 nf_skip_egress:1;
881 #endif
882 #ifdef CONFIG_TLS_DEVICE
883 __u8 decrypted:1;
884 #endif
885 __u8 slow_gro:1;
886
887 #ifdef CONFIG_NET_SCHED
888 __u16 tc_index; /* traffic control index */
889 #endif
890
891 union {
892 __wsum csum;
893 struct {
894 __u16 csum_start;
895 __u16 csum_offset;
896 };
897 };
898 __u32 priority;
899 int skb_iif;
900 __u32 hash;
901 __be16 vlan_proto;
902 __u16 vlan_tci;
903 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
904 union {
905 unsigned int napi_id;
906 unsigned int sender_cpu;
907 };
908 #endif
909 #ifdef CONFIG_NETWORK_SECMARK
910 __u32 secmark;
911 #endif
912
913 union {
914 __u32 mark;
915 __u32 reserved_tailroom;
916 };
917
918 union {
919 __be16 inner_protocol;
920 __u8 inner_ipproto;
921 };
922
923 __u16 inner_transport_header;
924 __u16 inner_network_header;
925 __u16 inner_mac_header;
926
927 __be16 protocol;
928 __u16 transport_header;
929 __u16 network_header;
930 __u16 mac_header;
931
932 #ifdef CONFIG_KCOV
933 u64 kcov_handle;
934 #endif
935
936 /* private: */
937 __u32 headers_end[0];
938 /* public: */
939
940 /* These elements must be at the end, see alloc_skb() for details. */
941 sk_buff_data_t tail;
942 sk_buff_data_t end;
943 unsigned char *head,
944 *data;
945 unsigned int truesize;
946 refcount_t users;
947
948 #ifdef CONFIG_SKB_EXTENSIONS
949 /* only useable after checking ->active_extensions != 0 */
950 struct skb_ext *extensions;
951 #endif
952 };
953
954 #ifdef __KERNEL__
955 /*
956 * Handling routines are only of interest to the kernel
957 */
958
959 #define SKB_ALLOC_FCLONE 0x01
960 #define SKB_ALLOC_RX 0x02
961 #define SKB_ALLOC_NAPI 0x04
962
963 /**
964 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
965 * @skb: buffer
966 */
skb_pfmemalloc(const struct sk_buff * skb)967 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
968 {
969 return unlikely(skb->pfmemalloc);
970 }
971
972 /*
973 * skb might have a dst pointer attached, refcounted or not.
974 * _skb_refdst low order bit is set if refcount was _not_ taken
975 */
976 #define SKB_DST_NOREF 1UL
977 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
978
979 /**
980 * skb_dst - returns skb dst_entry
981 * @skb: buffer
982 *
983 * Returns skb dst_entry, regardless of reference taken or not.
984 */
skb_dst(const struct sk_buff * skb)985 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
986 {
987 /* If refdst was not refcounted, check we still are in a
988 * rcu_read_lock section
989 */
990 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
991 !rcu_read_lock_held() &&
992 !rcu_read_lock_bh_held());
993 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
994 }
995
996 /**
997 * skb_dst_set - sets skb dst
998 * @skb: buffer
999 * @dst: dst entry
1000 *
1001 * Sets skb dst, assuming a reference was taken on dst and should
1002 * be released by skb_dst_drop()
1003 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1004 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1005 {
1006 skb->slow_gro |= !!dst;
1007 skb->_skb_refdst = (unsigned long)dst;
1008 }
1009
1010 /**
1011 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1012 * @skb: buffer
1013 * @dst: dst entry
1014 *
1015 * Sets skb dst, assuming a reference was not taken on dst.
1016 * If dst entry is cached, we do not take reference and dst_release
1017 * will be avoided by refdst_drop. If dst entry is not cached, we take
1018 * reference, so that last dst_release can destroy the dst immediately.
1019 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1020 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1021 {
1022 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1023 skb->slow_gro |= !!dst;
1024 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1025 }
1026
1027 /**
1028 * skb_dst_is_noref - Test if skb dst isn't refcounted
1029 * @skb: buffer
1030 */
skb_dst_is_noref(const struct sk_buff * skb)1031 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1032 {
1033 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1034 }
1035
1036 /**
1037 * skb_rtable - Returns the skb &rtable
1038 * @skb: buffer
1039 */
skb_rtable(const struct sk_buff * skb)1040 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1041 {
1042 return (struct rtable *)skb_dst(skb);
1043 }
1044
1045 /* For mangling skb->pkt_type from user space side from applications
1046 * such as nft, tc, etc, we only allow a conservative subset of
1047 * possible pkt_types to be set.
1048 */
skb_pkt_type_ok(u32 ptype)1049 static inline bool skb_pkt_type_ok(u32 ptype)
1050 {
1051 return ptype <= PACKET_OTHERHOST;
1052 }
1053
1054 /**
1055 * skb_napi_id - Returns the skb's NAPI id
1056 * @skb: buffer
1057 */
skb_napi_id(const struct sk_buff * skb)1058 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1059 {
1060 #ifdef CONFIG_NET_RX_BUSY_POLL
1061 return skb->napi_id;
1062 #else
1063 return 0;
1064 #endif
1065 }
1066
1067 /**
1068 * skb_unref - decrement the skb's reference count
1069 * @skb: buffer
1070 *
1071 * Returns true if we can free the skb.
1072 */
skb_unref(struct sk_buff * skb)1073 static inline bool skb_unref(struct sk_buff *skb)
1074 {
1075 if (unlikely(!skb))
1076 return false;
1077 if (likely(refcount_read(&skb->users) == 1))
1078 smp_rmb();
1079 else if (likely(!refcount_dec_and_test(&skb->users)))
1080 return false;
1081
1082 return true;
1083 }
1084
1085 void skb_release_head_state(struct sk_buff *skb);
1086 void kfree_skb(struct sk_buff *skb);
1087 void kfree_skb_list(struct sk_buff *segs);
1088 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1089 void skb_tx_error(struct sk_buff *skb);
1090
1091 #ifdef CONFIG_TRACEPOINTS
1092 void consume_skb(struct sk_buff *skb);
1093 #else
consume_skb(struct sk_buff * skb)1094 static inline void consume_skb(struct sk_buff *skb)
1095 {
1096 return kfree_skb(skb);
1097 }
1098 #endif
1099
1100 void __consume_stateless_skb(struct sk_buff *skb);
1101 void __kfree_skb(struct sk_buff *skb);
1102 extern struct kmem_cache *skbuff_head_cache;
1103
1104 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1105 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1106 bool *fragstolen, int *delta_truesize);
1107
1108 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1109 int node);
1110 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1111 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1112 struct sk_buff *build_skb_around(struct sk_buff *skb,
1113 void *data, unsigned int frag_size);
1114
1115 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1116
1117 /**
1118 * alloc_skb - allocate a network buffer
1119 * @size: size to allocate
1120 * @priority: allocation mask
1121 *
1122 * This function is a convenient wrapper around __alloc_skb().
1123 */
alloc_skb(unsigned int size,gfp_t priority)1124 static inline struct sk_buff *alloc_skb(unsigned int size,
1125 gfp_t priority)
1126 {
1127 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1128 }
1129
1130 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1131 unsigned long data_len,
1132 int max_page_order,
1133 int *errcode,
1134 gfp_t gfp_mask);
1135 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1136
1137 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1138 struct sk_buff_fclones {
1139 struct sk_buff skb1;
1140
1141 struct sk_buff skb2;
1142
1143 refcount_t fclone_ref;
1144 };
1145
1146 /**
1147 * skb_fclone_busy - check if fclone is busy
1148 * @sk: socket
1149 * @skb: buffer
1150 *
1151 * Returns true if skb is a fast clone, and its clone is not freed.
1152 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1153 * so we also check that this didnt happen.
1154 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1155 static inline bool skb_fclone_busy(const struct sock *sk,
1156 const struct sk_buff *skb)
1157 {
1158 const struct sk_buff_fclones *fclones;
1159
1160 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1161
1162 return skb->fclone == SKB_FCLONE_ORIG &&
1163 refcount_read(&fclones->fclone_ref) > 1 &&
1164 READ_ONCE(fclones->skb2.sk) == sk;
1165 }
1166
1167 /**
1168 * alloc_skb_fclone - allocate a network buffer from fclone cache
1169 * @size: size to allocate
1170 * @priority: allocation mask
1171 *
1172 * This function is a convenient wrapper around __alloc_skb().
1173 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1174 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1175 gfp_t priority)
1176 {
1177 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1178 }
1179
1180 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1181 void skb_headers_offset_update(struct sk_buff *skb, int off);
1182 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1183 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1184 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1185 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1186 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1187 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1188 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1189 gfp_t gfp_mask)
1190 {
1191 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1192 }
1193
1194 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1195 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1196 unsigned int headroom);
1197 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1198 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1199 int newtailroom, gfp_t priority);
1200 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1201 int offset, int len);
1202 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1203 int offset, int len);
1204 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1205 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1206
1207 /**
1208 * skb_pad - zero pad the tail of an skb
1209 * @skb: buffer to pad
1210 * @pad: space to pad
1211 *
1212 * Ensure that a buffer is followed by a padding area that is zero
1213 * filled. Used by network drivers which may DMA or transfer data
1214 * beyond the buffer end onto the wire.
1215 *
1216 * May return error in out of memory cases. The skb is freed on error.
1217 */
skb_pad(struct sk_buff * skb,int pad)1218 static inline int skb_pad(struct sk_buff *skb, int pad)
1219 {
1220 return __skb_pad(skb, pad, true);
1221 }
1222 #define dev_kfree_skb(a) consume_skb(a)
1223
1224 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1225 int offset, size_t size);
1226
1227 struct skb_seq_state {
1228 __u32 lower_offset;
1229 __u32 upper_offset;
1230 __u32 frag_idx;
1231 __u32 stepped_offset;
1232 struct sk_buff *root_skb;
1233 struct sk_buff *cur_skb;
1234 __u8 *frag_data;
1235 __u32 frag_off;
1236 };
1237
1238 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1239 unsigned int to, struct skb_seq_state *st);
1240 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1241 struct skb_seq_state *st);
1242 void skb_abort_seq_read(struct skb_seq_state *st);
1243
1244 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1245 unsigned int to, struct ts_config *config);
1246
1247 /*
1248 * Packet hash types specify the type of hash in skb_set_hash.
1249 *
1250 * Hash types refer to the protocol layer addresses which are used to
1251 * construct a packet's hash. The hashes are used to differentiate or identify
1252 * flows of the protocol layer for the hash type. Hash types are either
1253 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1254 *
1255 * Properties of hashes:
1256 *
1257 * 1) Two packets in different flows have different hash values
1258 * 2) Two packets in the same flow should have the same hash value
1259 *
1260 * A hash at a higher layer is considered to be more specific. A driver should
1261 * set the most specific hash possible.
1262 *
1263 * A driver cannot indicate a more specific hash than the layer at which a hash
1264 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1265 *
1266 * A driver may indicate a hash level which is less specific than the
1267 * actual layer the hash was computed on. For instance, a hash computed
1268 * at L4 may be considered an L3 hash. This should only be done if the
1269 * driver can't unambiguously determine that the HW computed the hash at
1270 * the higher layer. Note that the "should" in the second property above
1271 * permits this.
1272 */
1273 enum pkt_hash_types {
1274 PKT_HASH_TYPE_NONE, /* Undefined type */
1275 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1276 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1277 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1278 };
1279
skb_clear_hash(struct sk_buff * skb)1280 static inline void skb_clear_hash(struct sk_buff *skb)
1281 {
1282 skb->hash = 0;
1283 skb->sw_hash = 0;
1284 skb->l4_hash = 0;
1285 }
1286
skb_clear_hash_if_not_l4(struct sk_buff * skb)1287 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1288 {
1289 if (!skb->l4_hash)
1290 skb_clear_hash(skb);
1291 }
1292
1293 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1294 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1295 {
1296 skb->l4_hash = is_l4;
1297 skb->sw_hash = is_sw;
1298 skb->hash = hash;
1299 }
1300
1301 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1302 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1303 {
1304 /* Used by drivers to set hash from HW */
1305 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1306 }
1307
1308 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1309 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1310 {
1311 __skb_set_hash(skb, hash, true, is_l4);
1312 }
1313
1314 void __skb_get_hash(struct sk_buff *skb);
1315 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1316 u32 skb_get_poff(const struct sk_buff *skb);
1317 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1318 const struct flow_keys_basic *keys, int hlen);
1319 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1320 const void *data, int hlen_proto);
1321
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1322 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1323 int thoff, u8 ip_proto)
1324 {
1325 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1326 }
1327
1328 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1329 const struct flow_dissector_key *key,
1330 unsigned int key_count);
1331
1332 struct bpf_flow_dissector;
1333 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1334 __be16 proto, int nhoff, int hlen, unsigned int flags);
1335
1336 bool __skb_flow_dissect(const struct net *net,
1337 const struct sk_buff *skb,
1338 struct flow_dissector *flow_dissector,
1339 void *target_container, const void *data,
1340 __be16 proto, int nhoff, int hlen, unsigned int flags);
1341
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1342 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1343 struct flow_dissector *flow_dissector,
1344 void *target_container, unsigned int flags)
1345 {
1346 return __skb_flow_dissect(NULL, skb, flow_dissector,
1347 target_container, NULL, 0, 0, 0, flags);
1348 }
1349
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1350 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1351 struct flow_keys *flow,
1352 unsigned int flags)
1353 {
1354 memset(flow, 0, sizeof(*flow));
1355 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1356 flow, NULL, 0, 0, 0, flags);
1357 }
1358
1359 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1360 skb_flow_dissect_flow_keys_basic(const struct net *net,
1361 const struct sk_buff *skb,
1362 struct flow_keys_basic *flow,
1363 const void *data, __be16 proto,
1364 int nhoff, int hlen, unsigned int flags)
1365 {
1366 memset(flow, 0, sizeof(*flow));
1367 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1368 data, proto, nhoff, hlen, flags);
1369 }
1370
1371 void skb_flow_dissect_meta(const struct sk_buff *skb,
1372 struct flow_dissector *flow_dissector,
1373 void *target_container);
1374
1375 /* Gets a skb connection tracking info, ctinfo map should be a
1376 * map of mapsize to translate enum ip_conntrack_info states
1377 * to user states.
1378 */
1379 void
1380 skb_flow_dissect_ct(const struct sk_buff *skb,
1381 struct flow_dissector *flow_dissector,
1382 void *target_container,
1383 u16 *ctinfo_map, size_t mapsize,
1384 bool post_ct, u16 zone);
1385 void
1386 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1387 struct flow_dissector *flow_dissector,
1388 void *target_container);
1389
1390 void skb_flow_dissect_hash(const struct sk_buff *skb,
1391 struct flow_dissector *flow_dissector,
1392 void *target_container);
1393
skb_get_hash(struct sk_buff * skb)1394 static inline __u32 skb_get_hash(struct sk_buff *skb)
1395 {
1396 if (!skb->l4_hash && !skb->sw_hash)
1397 __skb_get_hash(skb);
1398
1399 return skb->hash;
1400 }
1401
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1402 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1403 {
1404 if (!skb->l4_hash && !skb->sw_hash) {
1405 struct flow_keys keys;
1406 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1407
1408 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1409 }
1410
1411 return skb->hash;
1412 }
1413
1414 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1415 const siphash_key_t *perturb);
1416
skb_get_hash_raw(const struct sk_buff * skb)1417 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1418 {
1419 return skb->hash;
1420 }
1421
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1422 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1423 {
1424 to->hash = from->hash;
1425 to->sw_hash = from->sw_hash;
1426 to->l4_hash = from->l4_hash;
1427 };
1428
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1429 static inline void skb_copy_decrypted(struct sk_buff *to,
1430 const struct sk_buff *from)
1431 {
1432 #ifdef CONFIG_TLS_DEVICE
1433 to->decrypted = from->decrypted;
1434 #endif
1435 }
1436
1437 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1438 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1439 {
1440 return skb->head + skb->end;
1441 }
1442
skb_end_offset(const struct sk_buff * skb)1443 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1444 {
1445 return skb->end;
1446 }
1447 #else
skb_end_pointer(const struct sk_buff * skb)1448 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1449 {
1450 return skb->end;
1451 }
1452
skb_end_offset(const struct sk_buff * skb)1453 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1454 {
1455 return skb->end - skb->head;
1456 }
1457 #endif
1458
1459 /* Internal */
1460 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1461
skb_hwtstamps(struct sk_buff * skb)1462 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1463 {
1464 return &skb_shinfo(skb)->hwtstamps;
1465 }
1466
skb_zcopy(struct sk_buff * skb)1467 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1468 {
1469 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1470
1471 return is_zcopy ? skb_uarg(skb) : NULL;
1472 }
1473
skb_zcopy_pure(const struct sk_buff * skb)1474 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1475 {
1476 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1477 }
1478
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1479 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1480 const struct sk_buff *skb2)
1481 {
1482 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1483 }
1484
net_zcopy_get(struct ubuf_info * uarg)1485 static inline void net_zcopy_get(struct ubuf_info *uarg)
1486 {
1487 refcount_inc(&uarg->refcnt);
1488 }
1489
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1490 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1491 {
1492 skb_shinfo(skb)->destructor_arg = uarg;
1493 skb_shinfo(skb)->flags |= uarg->flags;
1494 }
1495
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1496 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1497 bool *have_ref)
1498 {
1499 if (skb && uarg && !skb_zcopy(skb)) {
1500 if (unlikely(have_ref && *have_ref))
1501 *have_ref = false;
1502 else
1503 net_zcopy_get(uarg);
1504 skb_zcopy_init(skb, uarg);
1505 }
1506 }
1507
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1508 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1509 {
1510 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1511 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1512 }
1513
skb_zcopy_is_nouarg(struct sk_buff * skb)1514 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1515 {
1516 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1517 }
1518
skb_zcopy_get_nouarg(struct sk_buff * skb)1519 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1520 {
1521 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1522 }
1523
net_zcopy_put(struct ubuf_info * uarg)1524 static inline void net_zcopy_put(struct ubuf_info *uarg)
1525 {
1526 if (uarg)
1527 uarg->callback(NULL, uarg, true);
1528 }
1529
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1530 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1531 {
1532 if (uarg) {
1533 if (uarg->callback == msg_zerocopy_callback)
1534 msg_zerocopy_put_abort(uarg, have_uref);
1535 else if (have_uref)
1536 net_zcopy_put(uarg);
1537 }
1538 }
1539
1540 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1541 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1542 {
1543 struct ubuf_info *uarg = skb_zcopy(skb);
1544
1545 if (uarg) {
1546 if (!skb_zcopy_is_nouarg(skb))
1547 uarg->callback(skb, uarg, zerocopy_success);
1548
1549 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1550 }
1551 }
1552
skb_mark_not_on_list(struct sk_buff * skb)1553 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1554 {
1555 skb->next = NULL;
1556 }
1557
1558 /* Iterate through singly-linked GSO fragments of an skb. */
1559 #define skb_list_walk_safe(first, skb, next_skb) \
1560 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1561 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1562
skb_list_del_init(struct sk_buff * skb)1563 static inline void skb_list_del_init(struct sk_buff *skb)
1564 {
1565 __list_del_entry(&skb->list);
1566 skb_mark_not_on_list(skb);
1567 }
1568
1569 /**
1570 * skb_queue_empty - check if a queue is empty
1571 * @list: queue head
1572 *
1573 * Returns true if the queue is empty, false otherwise.
1574 */
skb_queue_empty(const struct sk_buff_head * list)1575 static inline int skb_queue_empty(const struct sk_buff_head *list)
1576 {
1577 return list->next == (const struct sk_buff *) list;
1578 }
1579
1580 /**
1581 * skb_queue_empty_lockless - check if a queue is empty
1582 * @list: queue head
1583 *
1584 * Returns true if the queue is empty, false otherwise.
1585 * This variant can be used in lockless contexts.
1586 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1587 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1588 {
1589 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1590 }
1591
1592
1593 /**
1594 * skb_queue_is_last - check if skb is the last entry in the queue
1595 * @list: queue head
1596 * @skb: buffer
1597 *
1598 * Returns true if @skb is the last buffer on the list.
1599 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1600 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1601 const struct sk_buff *skb)
1602 {
1603 return skb->next == (const struct sk_buff *) list;
1604 }
1605
1606 /**
1607 * skb_queue_is_first - check if skb is the first entry in the queue
1608 * @list: queue head
1609 * @skb: buffer
1610 *
1611 * Returns true if @skb is the first buffer on the list.
1612 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1613 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1614 const struct sk_buff *skb)
1615 {
1616 return skb->prev == (const struct sk_buff *) list;
1617 }
1618
1619 /**
1620 * skb_queue_next - return the next packet in the queue
1621 * @list: queue head
1622 * @skb: current buffer
1623 *
1624 * Return the next packet in @list after @skb. It is only valid to
1625 * call this if skb_queue_is_last() evaluates to false.
1626 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1627 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1628 const struct sk_buff *skb)
1629 {
1630 /* This BUG_ON may seem severe, but if we just return then we
1631 * are going to dereference garbage.
1632 */
1633 BUG_ON(skb_queue_is_last(list, skb));
1634 return skb->next;
1635 }
1636
1637 /**
1638 * skb_queue_prev - return the prev packet in the queue
1639 * @list: queue head
1640 * @skb: current buffer
1641 *
1642 * Return the prev packet in @list before @skb. It is only valid to
1643 * call this if skb_queue_is_first() evaluates to false.
1644 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1645 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1646 const struct sk_buff *skb)
1647 {
1648 /* This BUG_ON may seem severe, but if we just return then we
1649 * are going to dereference garbage.
1650 */
1651 BUG_ON(skb_queue_is_first(list, skb));
1652 return skb->prev;
1653 }
1654
1655 /**
1656 * skb_get - reference buffer
1657 * @skb: buffer to reference
1658 *
1659 * Makes another reference to a socket buffer and returns a pointer
1660 * to the buffer.
1661 */
skb_get(struct sk_buff * skb)1662 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1663 {
1664 refcount_inc(&skb->users);
1665 return skb;
1666 }
1667
1668 /*
1669 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1670 */
1671
1672 /**
1673 * skb_cloned - is the buffer a clone
1674 * @skb: buffer to check
1675 *
1676 * Returns true if the buffer was generated with skb_clone() and is
1677 * one of multiple shared copies of the buffer. Cloned buffers are
1678 * shared data so must not be written to under normal circumstances.
1679 */
skb_cloned(const struct sk_buff * skb)1680 static inline int skb_cloned(const struct sk_buff *skb)
1681 {
1682 return skb->cloned &&
1683 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1684 }
1685
skb_unclone(struct sk_buff * skb,gfp_t pri)1686 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1687 {
1688 might_sleep_if(gfpflags_allow_blocking(pri));
1689
1690 if (skb_cloned(skb))
1691 return pskb_expand_head(skb, 0, 0, pri);
1692
1693 return 0;
1694 }
1695
1696 /* This variant of skb_unclone() makes sure skb->truesize is not changed */
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1697 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1698 {
1699 might_sleep_if(gfpflags_allow_blocking(pri));
1700
1701 if (skb_cloned(skb)) {
1702 unsigned int save = skb->truesize;
1703 int res;
1704
1705 res = pskb_expand_head(skb, 0, 0, pri);
1706 skb->truesize = save;
1707 return res;
1708 }
1709 return 0;
1710 }
1711
1712 /**
1713 * skb_header_cloned - is the header a clone
1714 * @skb: buffer to check
1715 *
1716 * Returns true if modifying the header part of the buffer requires
1717 * the data to be copied.
1718 */
skb_header_cloned(const struct sk_buff * skb)1719 static inline int skb_header_cloned(const struct sk_buff *skb)
1720 {
1721 int dataref;
1722
1723 if (!skb->cloned)
1724 return 0;
1725
1726 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1727 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1728 return dataref != 1;
1729 }
1730
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1731 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1732 {
1733 might_sleep_if(gfpflags_allow_blocking(pri));
1734
1735 if (skb_header_cloned(skb))
1736 return pskb_expand_head(skb, 0, 0, pri);
1737
1738 return 0;
1739 }
1740
1741 /**
1742 * __skb_header_release - release reference to header
1743 * @skb: buffer to operate on
1744 */
__skb_header_release(struct sk_buff * skb)1745 static inline void __skb_header_release(struct sk_buff *skb)
1746 {
1747 skb->nohdr = 1;
1748 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1749 }
1750
1751
1752 /**
1753 * skb_shared - is the buffer shared
1754 * @skb: buffer to check
1755 *
1756 * Returns true if more than one person has a reference to this
1757 * buffer.
1758 */
skb_shared(const struct sk_buff * skb)1759 static inline int skb_shared(const struct sk_buff *skb)
1760 {
1761 return refcount_read(&skb->users) != 1;
1762 }
1763
1764 /**
1765 * skb_share_check - check if buffer is shared and if so clone it
1766 * @skb: buffer to check
1767 * @pri: priority for memory allocation
1768 *
1769 * If the buffer is shared the buffer is cloned and the old copy
1770 * drops a reference. A new clone with a single reference is returned.
1771 * If the buffer is not shared the original buffer is returned. When
1772 * being called from interrupt status or with spinlocks held pri must
1773 * be GFP_ATOMIC.
1774 *
1775 * NULL is returned on a memory allocation failure.
1776 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1777 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1778 {
1779 might_sleep_if(gfpflags_allow_blocking(pri));
1780 if (skb_shared(skb)) {
1781 struct sk_buff *nskb = skb_clone(skb, pri);
1782
1783 if (likely(nskb))
1784 consume_skb(skb);
1785 else
1786 kfree_skb(skb);
1787 skb = nskb;
1788 }
1789 return skb;
1790 }
1791
1792 /*
1793 * Copy shared buffers into a new sk_buff. We effectively do COW on
1794 * packets to handle cases where we have a local reader and forward
1795 * and a couple of other messy ones. The normal one is tcpdumping
1796 * a packet thats being forwarded.
1797 */
1798
1799 /**
1800 * skb_unshare - make a copy of a shared buffer
1801 * @skb: buffer to check
1802 * @pri: priority for memory allocation
1803 *
1804 * If the socket buffer is a clone then this function creates a new
1805 * copy of the data, drops a reference count on the old copy and returns
1806 * the new copy with the reference count at 1. If the buffer is not a clone
1807 * the original buffer is returned. When called with a spinlock held or
1808 * from interrupt state @pri must be %GFP_ATOMIC
1809 *
1810 * %NULL is returned on a memory allocation failure.
1811 */
skb_unshare(struct sk_buff * skb,gfp_t pri)1812 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1813 gfp_t pri)
1814 {
1815 might_sleep_if(gfpflags_allow_blocking(pri));
1816 if (skb_cloned(skb)) {
1817 struct sk_buff *nskb = skb_copy(skb, pri);
1818
1819 /* Free our shared copy */
1820 if (likely(nskb))
1821 consume_skb(skb);
1822 else
1823 kfree_skb(skb);
1824 skb = nskb;
1825 }
1826 return skb;
1827 }
1828
1829 /**
1830 * skb_peek - peek at the head of an &sk_buff_head
1831 * @list_: list to peek at
1832 *
1833 * Peek an &sk_buff. Unlike most other operations you _MUST_
1834 * be careful with this one. A peek leaves the buffer on the
1835 * list and someone else may run off with it. You must hold
1836 * the appropriate locks or have a private queue to do this.
1837 *
1838 * Returns %NULL for an empty list or a pointer to the head element.
1839 * The reference count is not incremented and the reference is therefore
1840 * volatile. Use with caution.
1841 */
skb_peek(const struct sk_buff_head * list_)1842 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1843 {
1844 struct sk_buff *skb = list_->next;
1845
1846 if (skb == (struct sk_buff *)list_)
1847 skb = NULL;
1848 return skb;
1849 }
1850
1851 /**
1852 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1853 * @list_: list to peek at
1854 *
1855 * Like skb_peek(), but the caller knows that the list is not empty.
1856 */
__skb_peek(const struct sk_buff_head * list_)1857 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1858 {
1859 return list_->next;
1860 }
1861
1862 /**
1863 * skb_peek_next - peek skb following the given one from a queue
1864 * @skb: skb to start from
1865 * @list_: list to peek at
1866 *
1867 * Returns %NULL when the end of the list is met or a pointer to the
1868 * next element. The reference count is not incremented and the
1869 * reference is therefore volatile. Use with caution.
1870 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1871 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1872 const struct sk_buff_head *list_)
1873 {
1874 struct sk_buff *next = skb->next;
1875
1876 if (next == (struct sk_buff *)list_)
1877 next = NULL;
1878 return next;
1879 }
1880
1881 /**
1882 * skb_peek_tail - peek at the tail of an &sk_buff_head
1883 * @list_: list to peek at
1884 *
1885 * Peek an &sk_buff. Unlike most other operations you _MUST_
1886 * be careful with this one. A peek leaves the buffer on the
1887 * list and someone else may run off with it. You must hold
1888 * the appropriate locks or have a private queue to do this.
1889 *
1890 * Returns %NULL for an empty list or a pointer to the tail element.
1891 * The reference count is not incremented and the reference is therefore
1892 * volatile. Use with caution.
1893 */
skb_peek_tail(const struct sk_buff_head * list_)1894 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1895 {
1896 struct sk_buff *skb = READ_ONCE(list_->prev);
1897
1898 if (skb == (struct sk_buff *)list_)
1899 skb = NULL;
1900 return skb;
1901
1902 }
1903
1904 /**
1905 * skb_queue_len - get queue length
1906 * @list_: list to measure
1907 *
1908 * Return the length of an &sk_buff queue.
1909 */
skb_queue_len(const struct sk_buff_head * list_)1910 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1911 {
1912 return list_->qlen;
1913 }
1914
1915 /**
1916 * skb_queue_len_lockless - get queue length
1917 * @list_: list to measure
1918 *
1919 * Return the length of an &sk_buff queue.
1920 * This variant can be used in lockless contexts.
1921 */
skb_queue_len_lockless(const struct sk_buff_head * list_)1922 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1923 {
1924 return READ_ONCE(list_->qlen);
1925 }
1926
1927 /**
1928 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1929 * @list: queue to initialize
1930 *
1931 * This initializes only the list and queue length aspects of
1932 * an sk_buff_head object. This allows to initialize the list
1933 * aspects of an sk_buff_head without reinitializing things like
1934 * the spinlock. It can also be used for on-stack sk_buff_head
1935 * objects where the spinlock is known to not be used.
1936 */
__skb_queue_head_init(struct sk_buff_head * list)1937 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1938 {
1939 list->prev = list->next = (struct sk_buff *)list;
1940 list->qlen = 0;
1941 }
1942
1943 /*
1944 * This function creates a split out lock class for each invocation;
1945 * this is needed for now since a whole lot of users of the skb-queue
1946 * infrastructure in drivers have different locking usage (in hardirq)
1947 * than the networking core (in softirq only). In the long run either the
1948 * network layer or drivers should need annotation to consolidate the
1949 * main types of usage into 3 classes.
1950 */
skb_queue_head_init(struct sk_buff_head * list)1951 static inline void skb_queue_head_init(struct sk_buff_head *list)
1952 {
1953 spin_lock_init(&list->lock);
1954 __skb_queue_head_init(list);
1955 }
1956
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1957 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1958 struct lock_class_key *class)
1959 {
1960 skb_queue_head_init(list);
1961 lockdep_set_class(&list->lock, class);
1962 }
1963
1964 /*
1965 * Insert an sk_buff on a list.
1966 *
1967 * The "__skb_xxxx()" functions are the non-atomic ones that
1968 * can only be called with interrupts disabled.
1969 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1970 static inline void __skb_insert(struct sk_buff *newsk,
1971 struct sk_buff *prev, struct sk_buff *next,
1972 struct sk_buff_head *list)
1973 {
1974 /* See skb_queue_empty_lockless() and skb_peek_tail()
1975 * for the opposite READ_ONCE()
1976 */
1977 WRITE_ONCE(newsk->next, next);
1978 WRITE_ONCE(newsk->prev, prev);
1979 WRITE_ONCE(next->prev, newsk);
1980 WRITE_ONCE(prev->next, newsk);
1981 WRITE_ONCE(list->qlen, list->qlen + 1);
1982 }
1983
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1984 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1985 struct sk_buff *prev,
1986 struct sk_buff *next)
1987 {
1988 struct sk_buff *first = list->next;
1989 struct sk_buff *last = list->prev;
1990
1991 WRITE_ONCE(first->prev, prev);
1992 WRITE_ONCE(prev->next, first);
1993
1994 WRITE_ONCE(last->next, next);
1995 WRITE_ONCE(next->prev, last);
1996 }
1997
1998 /**
1999 * skb_queue_splice - join two skb lists, this is designed for stacks
2000 * @list: the new list to add
2001 * @head: the place to add it in the first list
2002 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2003 static inline void skb_queue_splice(const struct sk_buff_head *list,
2004 struct sk_buff_head *head)
2005 {
2006 if (!skb_queue_empty(list)) {
2007 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2008 head->qlen += list->qlen;
2009 }
2010 }
2011
2012 /**
2013 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2014 * @list: the new list to add
2015 * @head: the place to add it in the first list
2016 *
2017 * The list at @list is reinitialised
2018 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2019 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2020 struct sk_buff_head *head)
2021 {
2022 if (!skb_queue_empty(list)) {
2023 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2024 head->qlen += list->qlen;
2025 __skb_queue_head_init(list);
2026 }
2027 }
2028
2029 /**
2030 * skb_queue_splice_tail - join two skb lists, each list being a queue
2031 * @list: the new list to add
2032 * @head: the place to add it in the first list
2033 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2034 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2035 struct sk_buff_head *head)
2036 {
2037 if (!skb_queue_empty(list)) {
2038 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2039 head->qlen += list->qlen;
2040 }
2041 }
2042
2043 /**
2044 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2045 * @list: the new list to add
2046 * @head: the place to add it in the first list
2047 *
2048 * Each of the lists is a queue.
2049 * The list at @list is reinitialised
2050 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2051 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2052 struct sk_buff_head *head)
2053 {
2054 if (!skb_queue_empty(list)) {
2055 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2056 head->qlen += list->qlen;
2057 __skb_queue_head_init(list);
2058 }
2059 }
2060
2061 /**
2062 * __skb_queue_after - queue a buffer at the list head
2063 * @list: list to use
2064 * @prev: place after this buffer
2065 * @newsk: buffer to queue
2066 *
2067 * Queue a buffer int the middle of a list. This function takes no locks
2068 * and you must therefore hold required locks before calling it.
2069 *
2070 * A buffer cannot be placed on two lists at the same time.
2071 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2072 static inline void __skb_queue_after(struct sk_buff_head *list,
2073 struct sk_buff *prev,
2074 struct sk_buff *newsk)
2075 {
2076 __skb_insert(newsk, prev, prev->next, list);
2077 }
2078
2079 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2080 struct sk_buff_head *list);
2081
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2082 static inline void __skb_queue_before(struct sk_buff_head *list,
2083 struct sk_buff *next,
2084 struct sk_buff *newsk)
2085 {
2086 __skb_insert(newsk, next->prev, next, list);
2087 }
2088
2089 /**
2090 * __skb_queue_head - queue a buffer at the list head
2091 * @list: list to use
2092 * @newsk: buffer to queue
2093 *
2094 * Queue a buffer at the start of a list. This function takes no locks
2095 * and you must therefore hold required locks before calling it.
2096 *
2097 * A buffer cannot be placed on two lists at the same time.
2098 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2099 static inline void __skb_queue_head(struct sk_buff_head *list,
2100 struct sk_buff *newsk)
2101 {
2102 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2103 }
2104 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2105
2106 /**
2107 * __skb_queue_tail - queue a buffer at the list tail
2108 * @list: list to use
2109 * @newsk: buffer to queue
2110 *
2111 * Queue a buffer at the end of a list. This function takes no locks
2112 * and you must therefore hold required locks before calling it.
2113 *
2114 * A buffer cannot be placed on two lists at the same time.
2115 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2116 static inline void __skb_queue_tail(struct sk_buff_head *list,
2117 struct sk_buff *newsk)
2118 {
2119 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2120 }
2121 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2122
2123 /*
2124 * remove sk_buff from list. _Must_ be called atomically, and with
2125 * the list known..
2126 */
2127 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2128 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2129 {
2130 struct sk_buff *next, *prev;
2131
2132 WRITE_ONCE(list->qlen, list->qlen - 1);
2133 next = skb->next;
2134 prev = skb->prev;
2135 skb->next = skb->prev = NULL;
2136 WRITE_ONCE(next->prev, prev);
2137 WRITE_ONCE(prev->next, next);
2138 }
2139
2140 /**
2141 * __skb_dequeue - remove from the head of the queue
2142 * @list: list to dequeue from
2143 *
2144 * Remove the head of the list. This function does not take any locks
2145 * so must be used with appropriate locks held only. The head item is
2146 * returned or %NULL if the list is empty.
2147 */
__skb_dequeue(struct sk_buff_head * list)2148 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2149 {
2150 struct sk_buff *skb = skb_peek(list);
2151 if (skb)
2152 __skb_unlink(skb, list);
2153 return skb;
2154 }
2155 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2156
2157 /**
2158 * __skb_dequeue_tail - remove from the tail of the queue
2159 * @list: list to dequeue from
2160 *
2161 * Remove the tail of the list. This function does not take any locks
2162 * so must be used with appropriate locks held only. The tail item is
2163 * returned or %NULL if the list is empty.
2164 */
__skb_dequeue_tail(struct sk_buff_head * list)2165 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2166 {
2167 struct sk_buff *skb = skb_peek_tail(list);
2168 if (skb)
2169 __skb_unlink(skb, list);
2170 return skb;
2171 }
2172 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2173
2174
skb_is_nonlinear(const struct sk_buff * skb)2175 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2176 {
2177 return skb->data_len;
2178 }
2179
skb_headlen(const struct sk_buff * skb)2180 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2181 {
2182 return skb->len - skb->data_len;
2183 }
2184
__skb_pagelen(const struct sk_buff * skb)2185 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2186 {
2187 unsigned int i, len = 0;
2188
2189 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2190 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2191 return len;
2192 }
2193
skb_pagelen(const struct sk_buff * skb)2194 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2195 {
2196 return skb_headlen(skb) + __skb_pagelen(skb);
2197 }
2198
2199 /**
2200 * __skb_fill_page_desc - initialise a paged fragment in an skb
2201 * @skb: buffer containing fragment to be initialised
2202 * @i: paged fragment index to initialise
2203 * @page: the page to use for this fragment
2204 * @off: the offset to the data with @page
2205 * @size: the length of the data
2206 *
2207 * Initialises the @i'th fragment of @skb to point to &size bytes at
2208 * offset @off within @page.
2209 *
2210 * Does not take any additional reference on the fragment.
2211 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2212 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2213 struct page *page, int off, int size)
2214 {
2215 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2216
2217 /*
2218 * Propagate page pfmemalloc to the skb if we can. The problem is
2219 * that not all callers have unique ownership of the page but rely
2220 * on page_is_pfmemalloc doing the right thing(tm).
2221 */
2222 frag->bv_page = page;
2223 frag->bv_offset = off;
2224 skb_frag_size_set(frag, size);
2225
2226 page = compound_head(page);
2227 if (page_is_pfmemalloc(page))
2228 skb->pfmemalloc = true;
2229 }
2230
2231 /**
2232 * skb_fill_page_desc - initialise a paged fragment in an skb
2233 * @skb: buffer containing fragment to be initialised
2234 * @i: paged fragment index to initialise
2235 * @page: the page to use for this fragment
2236 * @off: the offset to the data with @page
2237 * @size: the length of the data
2238 *
2239 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2240 * @skb to point to @size bytes at offset @off within @page. In
2241 * addition updates @skb such that @i is the last fragment.
2242 *
2243 * Does not take any additional reference on the fragment.
2244 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2245 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2246 struct page *page, int off, int size)
2247 {
2248 __skb_fill_page_desc(skb, i, page, off, size);
2249 skb_shinfo(skb)->nr_frags = i + 1;
2250 }
2251
2252 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2253 int size, unsigned int truesize);
2254
2255 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2256 unsigned int truesize);
2257
2258 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2259
2260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2261 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2262 {
2263 return skb->head + skb->tail;
2264 }
2265
skb_reset_tail_pointer(struct sk_buff * skb)2266 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2267 {
2268 skb->tail = skb->data - skb->head;
2269 }
2270
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2271 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2272 {
2273 skb_reset_tail_pointer(skb);
2274 skb->tail += offset;
2275 }
2276
2277 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2278 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2279 {
2280 return skb->tail;
2281 }
2282
skb_reset_tail_pointer(struct sk_buff * skb)2283 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2284 {
2285 skb->tail = skb->data;
2286 }
2287
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2288 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2289 {
2290 skb->tail = skb->data + offset;
2291 }
2292
2293 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2294
2295 /*
2296 * Add data to an sk_buff
2297 */
2298 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2299 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2300 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2301 {
2302 void *tmp = skb_tail_pointer(skb);
2303 SKB_LINEAR_ASSERT(skb);
2304 skb->tail += len;
2305 skb->len += len;
2306 return tmp;
2307 }
2308
__skb_put_zero(struct sk_buff * skb,unsigned int len)2309 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2310 {
2311 void *tmp = __skb_put(skb, len);
2312
2313 memset(tmp, 0, len);
2314 return tmp;
2315 }
2316
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2317 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2318 unsigned int len)
2319 {
2320 void *tmp = __skb_put(skb, len);
2321
2322 memcpy(tmp, data, len);
2323 return tmp;
2324 }
2325
__skb_put_u8(struct sk_buff * skb,u8 val)2326 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2327 {
2328 *(u8 *)__skb_put(skb, 1) = val;
2329 }
2330
skb_put_zero(struct sk_buff * skb,unsigned int len)2331 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2332 {
2333 void *tmp = skb_put(skb, len);
2334
2335 memset(tmp, 0, len);
2336
2337 return tmp;
2338 }
2339
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2340 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2341 unsigned int len)
2342 {
2343 void *tmp = skb_put(skb, len);
2344
2345 memcpy(tmp, data, len);
2346
2347 return tmp;
2348 }
2349
skb_put_u8(struct sk_buff * skb,u8 val)2350 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2351 {
2352 *(u8 *)skb_put(skb, 1) = val;
2353 }
2354
2355 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2356 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2357 {
2358 skb->data -= len;
2359 skb->len += len;
2360 return skb->data;
2361 }
2362
2363 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2364 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2365 {
2366 skb->len -= len;
2367 BUG_ON(skb->len < skb->data_len);
2368 return skb->data += len;
2369 }
2370
skb_pull_inline(struct sk_buff * skb,unsigned int len)2371 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2372 {
2373 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2374 }
2375
2376 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2377
__pskb_pull(struct sk_buff * skb,unsigned int len)2378 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2379 {
2380 if (len > skb_headlen(skb) &&
2381 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2382 return NULL;
2383 skb->len -= len;
2384 return skb->data += len;
2385 }
2386
pskb_pull(struct sk_buff * skb,unsigned int len)2387 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2388 {
2389 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2390 }
2391
pskb_may_pull(struct sk_buff * skb,unsigned int len)2392 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2393 {
2394 if (likely(len <= skb_headlen(skb)))
2395 return true;
2396 if (unlikely(len > skb->len))
2397 return false;
2398 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2399 }
2400
2401 void skb_condense(struct sk_buff *skb);
2402
2403 /**
2404 * skb_headroom - bytes at buffer head
2405 * @skb: buffer to check
2406 *
2407 * Return the number of bytes of free space at the head of an &sk_buff.
2408 */
skb_headroom(const struct sk_buff * skb)2409 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2410 {
2411 return skb->data - skb->head;
2412 }
2413
2414 /**
2415 * skb_tailroom - bytes at buffer end
2416 * @skb: buffer to check
2417 *
2418 * Return the number of bytes of free space at the tail of an sk_buff
2419 */
skb_tailroom(const struct sk_buff * skb)2420 static inline int skb_tailroom(const struct sk_buff *skb)
2421 {
2422 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2423 }
2424
2425 /**
2426 * skb_availroom - bytes at buffer end
2427 * @skb: buffer to check
2428 *
2429 * Return the number of bytes of free space at the tail of an sk_buff
2430 * allocated by sk_stream_alloc()
2431 */
skb_availroom(const struct sk_buff * skb)2432 static inline int skb_availroom(const struct sk_buff *skb)
2433 {
2434 if (skb_is_nonlinear(skb))
2435 return 0;
2436
2437 return skb->end - skb->tail - skb->reserved_tailroom;
2438 }
2439
2440 /**
2441 * skb_reserve - adjust headroom
2442 * @skb: buffer to alter
2443 * @len: bytes to move
2444 *
2445 * Increase the headroom of an empty &sk_buff by reducing the tail
2446 * room. This is only allowed for an empty buffer.
2447 */
skb_reserve(struct sk_buff * skb,int len)2448 static inline void skb_reserve(struct sk_buff *skb, int len)
2449 {
2450 skb->data += len;
2451 skb->tail += len;
2452 }
2453
2454 /**
2455 * skb_tailroom_reserve - adjust reserved_tailroom
2456 * @skb: buffer to alter
2457 * @mtu: maximum amount of headlen permitted
2458 * @needed_tailroom: minimum amount of reserved_tailroom
2459 *
2460 * Set reserved_tailroom so that headlen can be as large as possible but
2461 * not larger than mtu and tailroom cannot be smaller than
2462 * needed_tailroom.
2463 * The required headroom should already have been reserved before using
2464 * this function.
2465 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2466 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2467 unsigned int needed_tailroom)
2468 {
2469 SKB_LINEAR_ASSERT(skb);
2470 if (mtu < skb_tailroom(skb) - needed_tailroom)
2471 /* use at most mtu */
2472 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2473 else
2474 /* use up to all available space */
2475 skb->reserved_tailroom = needed_tailroom;
2476 }
2477
2478 #define ENCAP_TYPE_ETHER 0
2479 #define ENCAP_TYPE_IPPROTO 1
2480
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2481 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2482 __be16 protocol)
2483 {
2484 skb->inner_protocol = protocol;
2485 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2486 }
2487
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2488 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2489 __u8 ipproto)
2490 {
2491 skb->inner_ipproto = ipproto;
2492 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2493 }
2494
skb_reset_inner_headers(struct sk_buff * skb)2495 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2496 {
2497 skb->inner_mac_header = skb->mac_header;
2498 skb->inner_network_header = skb->network_header;
2499 skb->inner_transport_header = skb->transport_header;
2500 }
2501
skb_reset_mac_len(struct sk_buff * skb)2502 static inline void skb_reset_mac_len(struct sk_buff *skb)
2503 {
2504 skb->mac_len = skb->network_header - skb->mac_header;
2505 }
2506
skb_inner_transport_header(const struct sk_buff * skb)2507 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2508 *skb)
2509 {
2510 return skb->head + skb->inner_transport_header;
2511 }
2512
skb_inner_transport_offset(const struct sk_buff * skb)2513 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2514 {
2515 return skb_inner_transport_header(skb) - skb->data;
2516 }
2517
skb_reset_inner_transport_header(struct sk_buff * skb)2518 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2519 {
2520 skb->inner_transport_header = skb->data - skb->head;
2521 }
2522
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2523 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2524 const int offset)
2525 {
2526 skb_reset_inner_transport_header(skb);
2527 skb->inner_transport_header += offset;
2528 }
2529
skb_inner_network_header(const struct sk_buff * skb)2530 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2531 {
2532 return skb->head + skb->inner_network_header;
2533 }
2534
skb_reset_inner_network_header(struct sk_buff * skb)2535 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2536 {
2537 skb->inner_network_header = skb->data - skb->head;
2538 }
2539
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2540 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2541 const int offset)
2542 {
2543 skb_reset_inner_network_header(skb);
2544 skb->inner_network_header += offset;
2545 }
2546
skb_inner_mac_header(const struct sk_buff * skb)2547 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2548 {
2549 return skb->head + skb->inner_mac_header;
2550 }
2551
skb_reset_inner_mac_header(struct sk_buff * skb)2552 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2553 {
2554 skb->inner_mac_header = skb->data - skb->head;
2555 }
2556
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2557 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2558 const int offset)
2559 {
2560 skb_reset_inner_mac_header(skb);
2561 skb->inner_mac_header += offset;
2562 }
skb_transport_header_was_set(const struct sk_buff * skb)2563 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2564 {
2565 return skb->transport_header != (typeof(skb->transport_header))~0U;
2566 }
2567
skb_transport_header(const struct sk_buff * skb)2568 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2569 {
2570 return skb->head + skb->transport_header;
2571 }
2572
skb_reset_transport_header(struct sk_buff * skb)2573 static inline void skb_reset_transport_header(struct sk_buff *skb)
2574 {
2575 skb->transport_header = skb->data - skb->head;
2576 }
2577
skb_set_transport_header(struct sk_buff * skb,const int offset)2578 static inline void skb_set_transport_header(struct sk_buff *skb,
2579 const int offset)
2580 {
2581 skb_reset_transport_header(skb);
2582 skb->transport_header += offset;
2583 }
2584
skb_network_header(const struct sk_buff * skb)2585 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2586 {
2587 return skb->head + skb->network_header;
2588 }
2589
skb_reset_network_header(struct sk_buff * skb)2590 static inline void skb_reset_network_header(struct sk_buff *skb)
2591 {
2592 skb->network_header = skb->data - skb->head;
2593 }
2594
skb_set_network_header(struct sk_buff * skb,const int offset)2595 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2596 {
2597 skb_reset_network_header(skb);
2598 skb->network_header += offset;
2599 }
2600
skb_mac_header(const struct sk_buff * skb)2601 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2602 {
2603 return skb->head + skb->mac_header;
2604 }
2605
skb_mac_offset(const struct sk_buff * skb)2606 static inline int skb_mac_offset(const struct sk_buff *skb)
2607 {
2608 return skb_mac_header(skb) - skb->data;
2609 }
2610
skb_mac_header_len(const struct sk_buff * skb)2611 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2612 {
2613 return skb->network_header - skb->mac_header;
2614 }
2615
skb_mac_header_was_set(const struct sk_buff * skb)2616 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2617 {
2618 return skb->mac_header != (typeof(skb->mac_header))~0U;
2619 }
2620
skb_unset_mac_header(struct sk_buff * skb)2621 static inline void skb_unset_mac_header(struct sk_buff *skb)
2622 {
2623 skb->mac_header = (typeof(skb->mac_header))~0U;
2624 }
2625
skb_reset_mac_header(struct sk_buff * skb)2626 static inline void skb_reset_mac_header(struct sk_buff *skb)
2627 {
2628 skb->mac_header = skb->data - skb->head;
2629 }
2630
skb_set_mac_header(struct sk_buff * skb,const int offset)2631 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2632 {
2633 skb_reset_mac_header(skb);
2634 skb->mac_header += offset;
2635 }
2636
skb_pop_mac_header(struct sk_buff * skb)2637 static inline void skb_pop_mac_header(struct sk_buff *skb)
2638 {
2639 skb->mac_header = skb->network_header;
2640 }
2641
skb_probe_transport_header(struct sk_buff * skb)2642 static inline void skb_probe_transport_header(struct sk_buff *skb)
2643 {
2644 struct flow_keys_basic keys;
2645
2646 if (skb_transport_header_was_set(skb))
2647 return;
2648
2649 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2650 NULL, 0, 0, 0, 0))
2651 skb_set_transport_header(skb, keys.control.thoff);
2652 }
2653
skb_mac_header_rebuild(struct sk_buff * skb)2654 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2655 {
2656 if (skb_mac_header_was_set(skb)) {
2657 const unsigned char *old_mac = skb_mac_header(skb);
2658
2659 skb_set_mac_header(skb, -skb->mac_len);
2660 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2661 }
2662 }
2663
skb_checksum_start_offset(const struct sk_buff * skb)2664 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2665 {
2666 return skb->csum_start - skb_headroom(skb);
2667 }
2668
skb_checksum_start(const struct sk_buff * skb)2669 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2670 {
2671 return skb->head + skb->csum_start;
2672 }
2673
skb_transport_offset(const struct sk_buff * skb)2674 static inline int skb_transport_offset(const struct sk_buff *skb)
2675 {
2676 return skb_transport_header(skb) - skb->data;
2677 }
2678
skb_network_header_len(const struct sk_buff * skb)2679 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2680 {
2681 return skb->transport_header - skb->network_header;
2682 }
2683
skb_inner_network_header_len(const struct sk_buff * skb)2684 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2685 {
2686 return skb->inner_transport_header - skb->inner_network_header;
2687 }
2688
skb_network_offset(const struct sk_buff * skb)2689 static inline int skb_network_offset(const struct sk_buff *skb)
2690 {
2691 return skb_network_header(skb) - skb->data;
2692 }
2693
skb_inner_network_offset(const struct sk_buff * skb)2694 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2695 {
2696 return skb_inner_network_header(skb) - skb->data;
2697 }
2698
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2699 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2700 {
2701 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2702 }
2703
2704 /*
2705 * CPUs often take a performance hit when accessing unaligned memory
2706 * locations. The actual performance hit varies, it can be small if the
2707 * hardware handles it or large if we have to take an exception and fix it
2708 * in software.
2709 *
2710 * Since an ethernet header is 14 bytes network drivers often end up with
2711 * the IP header at an unaligned offset. The IP header can be aligned by
2712 * shifting the start of the packet by 2 bytes. Drivers should do this
2713 * with:
2714 *
2715 * skb_reserve(skb, NET_IP_ALIGN);
2716 *
2717 * The downside to this alignment of the IP header is that the DMA is now
2718 * unaligned. On some architectures the cost of an unaligned DMA is high
2719 * and this cost outweighs the gains made by aligning the IP header.
2720 *
2721 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2722 * to be overridden.
2723 */
2724 #ifndef NET_IP_ALIGN
2725 #define NET_IP_ALIGN 2
2726 #endif
2727
2728 /*
2729 * The networking layer reserves some headroom in skb data (via
2730 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2731 * the header has to grow. In the default case, if the header has to grow
2732 * 32 bytes or less we avoid the reallocation.
2733 *
2734 * Unfortunately this headroom changes the DMA alignment of the resulting
2735 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2736 * on some architectures. An architecture can override this value,
2737 * perhaps setting it to a cacheline in size (since that will maintain
2738 * cacheline alignment of the DMA). It must be a power of 2.
2739 *
2740 * Various parts of the networking layer expect at least 32 bytes of
2741 * headroom, you should not reduce this.
2742 *
2743 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2744 * to reduce average number of cache lines per packet.
2745 * get_rps_cpu() for example only access one 64 bytes aligned block :
2746 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2747 */
2748 #ifndef NET_SKB_PAD
2749 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2750 #endif
2751
2752 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2753
__skb_set_length(struct sk_buff * skb,unsigned int len)2754 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2755 {
2756 if (WARN_ON(skb_is_nonlinear(skb)))
2757 return;
2758 skb->len = len;
2759 skb_set_tail_pointer(skb, len);
2760 }
2761
__skb_trim(struct sk_buff * skb,unsigned int len)2762 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2763 {
2764 __skb_set_length(skb, len);
2765 }
2766
2767 void skb_trim(struct sk_buff *skb, unsigned int len);
2768
__pskb_trim(struct sk_buff * skb,unsigned int len)2769 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2770 {
2771 if (skb->data_len)
2772 return ___pskb_trim(skb, len);
2773 __skb_trim(skb, len);
2774 return 0;
2775 }
2776
pskb_trim(struct sk_buff * skb,unsigned int len)2777 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2778 {
2779 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2780 }
2781
2782 /**
2783 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2784 * @skb: buffer to alter
2785 * @len: new length
2786 *
2787 * This is identical to pskb_trim except that the caller knows that
2788 * the skb is not cloned so we should never get an error due to out-
2789 * of-memory.
2790 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2791 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2792 {
2793 int err = pskb_trim(skb, len);
2794 BUG_ON(err);
2795 }
2796
__skb_grow(struct sk_buff * skb,unsigned int len)2797 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2798 {
2799 unsigned int diff = len - skb->len;
2800
2801 if (skb_tailroom(skb) < diff) {
2802 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2803 GFP_ATOMIC);
2804 if (ret)
2805 return ret;
2806 }
2807 __skb_set_length(skb, len);
2808 return 0;
2809 }
2810
2811 /**
2812 * skb_orphan - orphan a buffer
2813 * @skb: buffer to orphan
2814 *
2815 * If a buffer currently has an owner then we call the owner's
2816 * destructor function and make the @skb unowned. The buffer continues
2817 * to exist but is no longer charged to its former owner.
2818 */
skb_orphan(struct sk_buff * skb)2819 static inline void skb_orphan(struct sk_buff *skb)
2820 {
2821 if (skb->destructor) {
2822 skb->destructor(skb);
2823 skb->destructor = NULL;
2824 skb->sk = NULL;
2825 } else {
2826 BUG_ON(skb->sk);
2827 }
2828 }
2829
2830 /**
2831 * skb_orphan_frags - orphan the frags contained in a buffer
2832 * @skb: buffer to orphan frags from
2833 * @gfp_mask: allocation mask for replacement pages
2834 *
2835 * For each frag in the SKB which needs a destructor (i.e. has an
2836 * owner) create a copy of that frag and release the original
2837 * page by calling the destructor.
2838 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2839 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2840 {
2841 if (likely(!skb_zcopy(skb)))
2842 return 0;
2843 if (!skb_zcopy_is_nouarg(skb) &&
2844 skb_uarg(skb)->callback == msg_zerocopy_callback)
2845 return 0;
2846 return skb_copy_ubufs(skb, gfp_mask);
2847 }
2848
2849 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2850 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2851 {
2852 if (likely(!skb_zcopy(skb)))
2853 return 0;
2854 return skb_copy_ubufs(skb, gfp_mask);
2855 }
2856
2857 /**
2858 * __skb_queue_purge - empty a list
2859 * @list: list to empty
2860 *
2861 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2862 * the list and one reference dropped. This function does not take the
2863 * list lock and the caller must hold the relevant locks to use it.
2864 */
__skb_queue_purge(struct sk_buff_head * list)2865 static inline void __skb_queue_purge(struct sk_buff_head *list)
2866 {
2867 struct sk_buff *skb;
2868 while ((skb = __skb_dequeue(list)) != NULL)
2869 kfree_skb(skb);
2870 }
2871 void skb_queue_purge(struct sk_buff_head *list);
2872
2873 unsigned int skb_rbtree_purge(struct rb_root *root);
2874
2875 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2876
2877 /**
2878 * netdev_alloc_frag - allocate a page fragment
2879 * @fragsz: fragment size
2880 *
2881 * Allocates a frag from a page for receive buffer.
2882 * Uses GFP_ATOMIC allocations.
2883 */
netdev_alloc_frag(unsigned int fragsz)2884 static inline void *netdev_alloc_frag(unsigned int fragsz)
2885 {
2886 return __netdev_alloc_frag_align(fragsz, ~0u);
2887 }
2888
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)2889 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2890 unsigned int align)
2891 {
2892 WARN_ON_ONCE(!is_power_of_2(align));
2893 return __netdev_alloc_frag_align(fragsz, -align);
2894 }
2895
2896 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2897 gfp_t gfp_mask);
2898
2899 /**
2900 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2901 * @dev: network device to receive on
2902 * @length: length to allocate
2903 *
2904 * Allocate a new &sk_buff and assign it a usage count of one. The
2905 * buffer has unspecified headroom built in. Users should allocate
2906 * the headroom they think they need without accounting for the
2907 * built in space. The built in space is used for optimisations.
2908 *
2909 * %NULL is returned if there is no free memory. Although this function
2910 * allocates memory it can be called from an interrupt.
2911 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2912 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2913 unsigned int length)
2914 {
2915 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2916 }
2917
2918 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2919 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2920 gfp_t gfp_mask)
2921 {
2922 return __netdev_alloc_skb(NULL, length, gfp_mask);
2923 }
2924
2925 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2926 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2927 {
2928 return netdev_alloc_skb(NULL, length);
2929 }
2930
2931
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2932 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2933 unsigned int length, gfp_t gfp)
2934 {
2935 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2936
2937 if (NET_IP_ALIGN && skb)
2938 skb_reserve(skb, NET_IP_ALIGN);
2939 return skb;
2940 }
2941
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2942 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2943 unsigned int length)
2944 {
2945 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2946 }
2947
skb_free_frag(void * addr)2948 static inline void skb_free_frag(void *addr)
2949 {
2950 page_frag_free(addr);
2951 }
2952
2953 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2954
napi_alloc_frag(unsigned int fragsz)2955 static inline void *napi_alloc_frag(unsigned int fragsz)
2956 {
2957 return __napi_alloc_frag_align(fragsz, ~0u);
2958 }
2959
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)2960 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2961 unsigned int align)
2962 {
2963 WARN_ON_ONCE(!is_power_of_2(align));
2964 return __napi_alloc_frag_align(fragsz, -align);
2965 }
2966
2967 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2968 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2969 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2970 unsigned int length)
2971 {
2972 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2973 }
2974 void napi_consume_skb(struct sk_buff *skb, int budget);
2975
2976 void napi_skb_free_stolen_head(struct sk_buff *skb);
2977 void __kfree_skb_defer(struct sk_buff *skb);
2978
2979 /**
2980 * __dev_alloc_pages - allocate page for network Rx
2981 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2982 * @order: size of the allocation
2983 *
2984 * Allocate a new page.
2985 *
2986 * %NULL is returned if there is no free memory.
2987 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2988 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2989 unsigned int order)
2990 {
2991 /* This piece of code contains several assumptions.
2992 * 1. This is for device Rx, therefor a cold page is preferred.
2993 * 2. The expectation is the user wants a compound page.
2994 * 3. If requesting a order 0 page it will not be compound
2995 * due to the check to see if order has a value in prep_new_page
2996 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2997 * code in gfp_to_alloc_flags that should be enforcing this.
2998 */
2999 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3000
3001 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3002 }
3003
dev_alloc_pages(unsigned int order)3004 static inline struct page *dev_alloc_pages(unsigned int order)
3005 {
3006 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3007 }
3008
3009 /**
3010 * __dev_alloc_page - allocate a page for network Rx
3011 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3012 *
3013 * Allocate a new page.
3014 *
3015 * %NULL is returned if there is no free memory.
3016 */
__dev_alloc_page(gfp_t gfp_mask)3017 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3018 {
3019 return __dev_alloc_pages(gfp_mask, 0);
3020 }
3021
dev_alloc_page(void)3022 static inline struct page *dev_alloc_page(void)
3023 {
3024 return dev_alloc_pages(0);
3025 }
3026
3027 /**
3028 * dev_page_is_reusable - check whether a page can be reused for network Rx
3029 * @page: the page to test
3030 *
3031 * A page shouldn't be considered for reusing/recycling if it was allocated
3032 * under memory pressure or at a distant memory node.
3033 *
3034 * Returns false if this page should be returned to page allocator, true
3035 * otherwise.
3036 */
dev_page_is_reusable(const struct page * page)3037 static inline bool dev_page_is_reusable(const struct page *page)
3038 {
3039 return likely(page_to_nid(page) == numa_mem_id() &&
3040 !page_is_pfmemalloc(page));
3041 }
3042
3043 /**
3044 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3045 * @page: The page that was allocated from skb_alloc_page
3046 * @skb: The skb that may need pfmemalloc set
3047 */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3048 static inline void skb_propagate_pfmemalloc(const struct page *page,
3049 struct sk_buff *skb)
3050 {
3051 if (page_is_pfmemalloc(page))
3052 skb->pfmemalloc = true;
3053 }
3054
3055 /**
3056 * skb_frag_off() - Returns the offset of a skb fragment
3057 * @frag: the paged fragment
3058 */
skb_frag_off(const skb_frag_t * frag)3059 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3060 {
3061 return frag->bv_offset;
3062 }
3063
3064 /**
3065 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3066 * @frag: skb fragment
3067 * @delta: value to add
3068 */
skb_frag_off_add(skb_frag_t * frag,int delta)3069 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3070 {
3071 frag->bv_offset += delta;
3072 }
3073
3074 /**
3075 * skb_frag_off_set() - Sets the offset of a skb fragment
3076 * @frag: skb fragment
3077 * @offset: offset of fragment
3078 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3079 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3080 {
3081 frag->bv_offset = offset;
3082 }
3083
3084 /**
3085 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3086 * @fragto: skb fragment where offset is set
3087 * @fragfrom: skb fragment offset is copied from
3088 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3089 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3090 const skb_frag_t *fragfrom)
3091 {
3092 fragto->bv_offset = fragfrom->bv_offset;
3093 }
3094
3095 /**
3096 * skb_frag_page - retrieve the page referred to by a paged fragment
3097 * @frag: the paged fragment
3098 *
3099 * Returns the &struct page associated with @frag.
3100 */
skb_frag_page(const skb_frag_t * frag)3101 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3102 {
3103 return frag->bv_page;
3104 }
3105
3106 /**
3107 * __skb_frag_ref - take an addition reference on a paged fragment.
3108 * @frag: the paged fragment
3109 *
3110 * Takes an additional reference on the paged fragment @frag.
3111 */
__skb_frag_ref(skb_frag_t * frag)3112 static inline void __skb_frag_ref(skb_frag_t *frag)
3113 {
3114 get_page(skb_frag_page(frag));
3115 }
3116
3117 /**
3118 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3119 * @skb: the buffer
3120 * @f: the fragment offset.
3121 *
3122 * Takes an additional reference on the @f'th paged fragment of @skb.
3123 */
skb_frag_ref(struct sk_buff * skb,int f)3124 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3125 {
3126 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3127 }
3128
3129 /**
3130 * __skb_frag_unref - release a reference on a paged fragment.
3131 * @frag: the paged fragment
3132 * @recycle: recycle the page if allocated via page_pool
3133 *
3134 * Releases a reference on the paged fragment @frag
3135 * or recycles the page via the page_pool API.
3136 */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3137 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3138 {
3139 struct page *page = skb_frag_page(frag);
3140
3141 #ifdef CONFIG_PAGE_POOL
3142 if (recycle && page_pool_return_skb_page(page))
3143 return;
3144 #endif
3145 put_page(page);
3146 }
3147
3148 /**
3149 * skb_frag_unref - release a reference on a paged fragment of an skb.
3150 * @skb: the buffer
3151 * @f: the fragment offset
3152 *
3153 * Releases a reference on the @f'th paged fragment of @skb.
3154 */
skb_frag_unref(struct sk_buff * skb,int f)3155 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3156 {
3157 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3158 }
3159
3160 /**
3161 * skb_frag_address - gets the address of the data contained in a paged fragment
3162 * @frag: the paged fragment buffer
3163 *
3164 * Returns the address of the data within @frag. The page must already
3165 * be mapped.
3166 */
skb_frag_address(const skb_frag_t * frag)3167 static inline void *skb_frag_address(const skb_frag_t *frag)
3168 {
3169 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3170 }
3171
3172 /**
3173 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3174 * @frag: the paged fragment buffer
3175 *
3176 * Returns the address of the data within @frag. Checks that the page
3177 * is mapped and returns %NULL otherwise.
3178 */
skb_frag_address_safe(const skb_frag_t * frag)3179 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3180 {
3181 void *ptr = page_address(skb_frag_page(frag));
3182 if (unlikely(!ptr))
3183 return NULL;
3184
3185 return ptr + skb_frag_off(frag);
3186 }
3187
3188 /**
3189 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3190 * @fragto: skb fragment where page is set
3191 * @fragfrom: skb fragment page is copied from
3192 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3193 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3194 const skb_frag_t *fragfrom)
3195 {
3196 fragto->bv_page = fragfrom->bv_page;
3197 }
3198
3199 /**
3200 * __skb_frag_set_page - sets the page contained in a paged fragment
3201 * @frag: the paged fragment
3202 * @page: the page to set
3203 *
3204 * Sets the fragment @frag to contain @page.
3205 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3206 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3207 {
3208 frag->bv_page = page;
3209 }
3210
3211 /**
3212 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3213 * @skb: the buffer
3214 * @f: the fragment offset
3215 * @page: the page to set
3216 *
3217 * Sets the @f'th fragment of @skb to contain @page.
3218 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3219 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3220 struct page *page)
3221 {
3222 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3223 }
3224
3225 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3226
3227 /**
3228 * skb_frag_dma_map - maps a paged fragment via the DMA API
3229 * @dev: the device to map the fragment to
3230 * @frag: the paged fragment to map
3231 * @offset: the offset within the fragment (starting at the
3232 * fragment's own offset)
3233 * @size: the number of bytes to map
3234 * @dir: the direction of the mapping (``PCI_DMA_*``)
3235 *
3236 * Maps the page associated with @frag to @device.
3237 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3238 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3239 const skb_frag_t *frag,
3240 size_t offset, size_t size,
3241 enum dma_data_direction dir)
3242 {
3243 return dma_map_page(dev, skb_frag_page(frag),
3244 skb_frag_off(frag) + offset, size, dir);
3245 }
3246
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3247 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3248 gfp_t gfp_mask)
3249 {
3250 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3251 }
3252
3253
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3254 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3255 gfp_t gfp_mask)
3256 {
3257 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3258 }
3259
3260
3261 /**
3262 * skb_clone_writable - is the header of a clone writable
3263 * @skb: buffer to check
3264 * @len: length up to which to write
3265 *
3266 * Returns true if modifying the header part of the cloned buffer
3267 * does not requires the data to be copied.
3268 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3269 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3270 {
3271 return !skb_header_cloned(skb) &&
3272 skb_headroom(skb) + len <= skb->hdr_len;
3273 }
3274
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3275 static inline int skb_try_make_writable(struct sk_buff *skb,
3276 unsigned int write_len)
3277 {
3278 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3279 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3280 }
3281
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3282 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3283 int cloned)
3284 {
3285 int delta = 0;
3286
3287 if (headroom > skb_headroom(skb))
3288 delta = headroom - skb_headroom(skb);
3289
3290 if (delta || cloned)
3291 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3292 GFP_ATOMIC);
3293 return 0;
3294 }
3295
3296 /**
3297 * skb_cow - copy header of skb when it is required
3298 * @skb: buffer to cow
3299 * @headroom: needed headroom
3300 *
3301 * If the skb passed lacks sufficient headroom or its data part
3302 * is shared, data is reallocated. If reallocation fails, an error
3303 * is returned and original skb is not changed.
3304 *
3305 * The result is skb with writable area skb->head...skb->tail
3306 * and at least @headroom of space at head.
3307 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3308 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3309 {
3310 return __skb_cow(skb, headroom, skb_cloned(skb));
3311 }
3312
3313 /**
3314 * skb_cow_head - skb_cow but only making the head writable
3315 * @skb: buffer to cow
3316 * @headroom: needed headroom
3317 *
3318 * This function is identical to skb_cow except that we replace the
3319 * skb_cloned check by skb_header_cloned. It should be used when
3320 * you only need to push on some header and do not need to modify
3321 * the data.
3322 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3323 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3324 {
3325 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3326 }
3327
3328 /**
3329 * skb_padto - pad an skbuff up to a minimal size
3330 * @skb: buffer to pad
3331 * @len: minimal length
3332 *
3333 * Pads up a buffer to ensure the trailing bytes exist and are
3334 * blanked. If the buffer already contains sufficient data it
3335 * is untouched. Otherwise it is extended. Returns zero on
3336 * success. The skb is freed on error.
3337 */
skb_padto(struct sk_buff * skb,unsigned int len)3338 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3339 {
3340 unsigned int size = skb->len;
3341 if (likely(size >= len))
3342 return 0;
3343 return skb_pad(skb, len - size);
3344 }
3345
3346 /**
3347 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3348 * @skb: buffer to pad
3349 * @len: minimal length
3350 * @free_on_error: free buffer on error
3351 *
3352 * Pads up a buffer to ensure the trailing bytes exist and are
3353 * blanked. If the buffer already contains sufficient data it
3354 * is untouched. Otherwise it is extended. Returns zero on
3355 * success. The skb is freed on error if @free_on_error is true.
3356 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3357 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3358 unsigned int len,
3359 bool free_on_error)
3360 {
3361 unsigned int size = skb->len;
3362
3363 if (unlikely(size < len)) {
3364 len -= size;
3365 if (__skb_pad(skb, len, free_on_error))
3366 return -ENOMEM;
3367 __skb_put(skb, len);
3368 }
3369 return 0;
3370 }
3371
3372 /**
3373 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3374 * @skb: buffer to pad
3375 * @len: minimal length
3376 *
3377 * Pads up a buffer to ensure the trailing bytes exist and are
3378 * blanked. If the buffer already contains sufficient data it
3379 * is untouched. Otherwise it is extended. Returns zero on
3380 * success. The skb is freed on error.
3381 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3382 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3383 {
3384 return __skb_put_padto(skb, len, true);
3385 }
3386
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3387 static inline int skb_add_data(struct sk_buff *skb,
3388 struct iov_iter *from, int copy)
3389 {
3390 const int off = skb->len;
3391
3392 if (skb->ip_summed == CHECKSUM_NONE) {
3393 __wsum csum = 0;
3394 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3395 &csum, from)) {
3396 skb->csum = csum_block_add(skb->csum, csum, off);
3397 return 0;
3398 }
3399 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3400 return 0;
3401
3402 __skb_trim(skb, off);
3403 return -EFAULT;
3404 }
3405
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3406 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3407 const struct page *page, int off)
3408 {
3409 if (skb_zcopy(skb))
3410 return false;
3411 if (i) {
3412 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3413
3414 return page == skb_frag_page(frag) &&
3415 off == skb_frag_off(frag) + skb_frag_size(frag);
3416 }
3417 return false;
3418 }
3419
__skb_linearize(struct sk_buff * skb)3420 static inline int __skb_linearize(struct sk_buff *skb)
3421 {
3422 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3423 }
3424
3425 /**
3426 * skb_linearize - convert paged skb to linear one
3427 * @skb: buffer to linarize
3428 *
3429 * If there is no free memory -ENOMEM is returned, otherwise zero
3430 * is returned and the old skb data released.
3431 */
skb_linearize(struct sk_buff * skb)3432 static inline int skb_linearize(struct sk_buff *skb)
3433 {
3434 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3435 }
3436
3437 /**
3438 * skb_has_shared_frag - can any frag be overwritten
3439 * @skb: buffer to test
3440 *
3441 * Return true if the skb has at least one frag that might be modified
3442 * by an external entity (as in vmsplice()/sendfile())
3443 */
skb_has_shared_frag(const struct sk_buff * skb)3444 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3445 {
3446 return skb_is_nonlinear(skb) &&
3447 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3448 }
3449
3450 /**
3451 * skb_linearize_cow - make sure skb is linear and writable
3452 * @skb: buffer to process
3453 *
3454 * If there is no free memory -ENOMEM is returned, otherwise zero
3455 * is returned and the old skb data released.
3456 */
skb_linearize_cow(struct sk_buff * skb)3457 static inline int skb_linearize_cow(struct sk_buff *skb)
3458 {
3459 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3460 __skb_linearize(skb) : 0;
3461 }
3462
3463 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3464 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3465 unsigned int off)
3466 {
3467 if (skb->ip_summed == CHECKSUM_COMPLETE)
3468 skb->csum = csum_block_sub(skb->csum,
3469 csum_partial(start, len, 0), off);
3470 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3471 skb_checksum_start_offset(skb) < 0)
3472 skb->ip_summed = CHECKSUM_NONE;
3473 }
3474
3475 /**
3476 * skb_postpull_rcsum - update checksum for received skb after pull
3477 * @skb: buffer to update
3478 * @start: start of data before pull
3479 * @len: length of data pulled
3480 *
3481 * After doing a pull on a received packet, you need to call this to
3482 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3483 * CHECKSUM_NONE so that it can be recomputed from scratch.
3484 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3485 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3486 const void *start, unsigned int len)
3487 {
3488 __skb_postpull_rcsum(skb, start, len, 0);
3489 }
3490
3491 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3492 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3493 unsigned int off)
3494 {
3495 if (skb->ip_summed == CHECKSUM_COMPLETE)
3496 skb->csum = csum_block_add(skb->csum,
3497 csum_partial(start, len, 0), off);
3498 }
3499
3500 /**
3501 * skb_postpush_rcsum - update checksum for received skb after push
3502 * @skb: buffer to update
3503 * @start: start of data after push
3504 * @len: length of data pushed
3505 *
3506 * After doing a push on a received packet, you need to call this to
3507 * update the CHECKSUM_COMPLETE checksum.
3508 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3509 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3510 const void *start, unsigned int len)
3511 {
3512 __skb_postpush_rcsum(skb, start, len, 0);
3513 }
3514
3515 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3516
3517 /**
3518 * skb_push_rcsum - push skb and update receive checksum
3519 * @skb: buffer to update
3520 * @len: length of data pulled
3521 *
3522 * This function performs an skb_push on the packet and updates
3523 * the CHECKSUM_COMPLETE checksum. It should be used on
3524 * receive path processing instead of skb_push unless you know
3525 * that the checksum difference is zero (e.g., a valid IP header)
3526 * or you are setting ip_summed to CHECKSUM_NONE.
3527 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3528 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3529 {
3530 skb_push(skb, len);
3531 skb_postpush_rcsum(skb, skb->data, len);
3532 return skb->data;
3533 }
3534
3535 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3536 /**
3537 * pskb_trim_rcsum - trim received skb and update checksum
3538 * @skb: buffer to trim
3539 * @len: new length
3540 *
3541 * This is exactly the same as pskb_trim except that it ensures the
3542 * checksum of received packets are still valid after the operation.
3543 * It can change skb pointers.
3544 */
3545
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3546 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3547 {
3548 if (likely(len >= skb->len))
3549 return 0;
3550 return pskb_trim_rcsum_slow(skb, len);
3551 }
3552
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3553 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3554 {
3555 if (skb->ip_summed == CHECKSUM_COMPLETE)
3556 skb->ip_summed = CHECKSUM_NONE;
3557 __skb_trim(skb, len);
3558 return 0;
3559 }
3560
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3561 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3562 {
3563 if (skb->ip_summed == CHECKSUM_COMPLETE)
3564 skb->ip_summed = CHECKSUM_NONE;
3565 return __skb_grow(skb, len);
3566 }
3567
3568 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3569 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3570 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3571 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3572 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3573
3574 #define skb_queue_walk(queue, skb) \
3575 for (skb = (queue)->next; \
3576 skb != (struct sk_buff *)(queue); \
3577 skb = skb->next)
3578
3579 #define skb_queue_walk_safe(queue, skb, tmp) \
3580 for (skb = (queue)->next, tmp = skb->next; \
3581 skb != (struct sk_buff *)(queue); \
3582 skb = tmp, tmp = skb->next)
3583
3584 #define skb_queue_walk_from(queue, skb) \
3585 for (; skb != (struct sk_buff *)(queue); \
3586 skb = skb->next)
3587
3588 #define skb_rbtree_walk(skb, root) \
3589 for (skb = skb_rb_first(root); skb != NULL; \
3590 skb = skb_rb_next(skb))
3591
3592 #define skb_rbtree_walk_from(skb) \
3593 for (; skb != NULL; \
3594 skb = skb_rb_next(skb))
3595
3596 #define skb_rbtree_walk_from_safe(skb, tmp) \
3597 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3598 skb = tmp)
3599
3600 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3601 for (tmp = skb->next; \
3602 skb != (struct sk_buff *)(queue); \
3603 skb = tmp, tmp = skb->next)
3604
3605 #define skb_queue_reverse_walk(queue, skb) \
3606 for (skb = (queue)->prev; \
3607 skb != (struct sk_buff *)(queue); \
3608 skb = skb->prev)
3609
3610 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3611 for (skb = (queue)->prev, tmp = skb->prev; \
3612 skb != (struct sk_buff *)(queue); \
3613 skb = tmp, tmp = skb->prev)
3614
3615 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3616 for (tmp = skb->prev; \
3617 skb != (struct sk_buff *)(queue); \
3618 skb = tmp, tmp = skb->prev)
3619
skb_has_frag_list(const struct sk_buff * skb)3620 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3621 {
3622 return skb_shinfo(skb)->frag_list != NULL;
3623 }
3624
skb_frag_list_init(struct sk_buff * skb)3625 static inline void skb_frag_list_init(struct sk_buff *skb)
3626 {
3627 skb_shinfo(skb)->frag_list = NULL;
3628 }
3629
3630 #define skb_walk_frags(skb, iter) \
3631 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3632
3633
3634 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3635 int *err, long *timeo_p,
3636 const struct sk_buff *skb);
3637 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3638 struct sk_buff_head *queue,
3639 unsigned int flags,
3640 int *off, int *err,
3641 struct sk_buff **last);
3642 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3643 struct sk_buff_head *queue,
3644 unsigned int flags, int *off, int *err,
3645 struct sk_buff **last);
3646 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3647 struct sk_buff_head *sk_queue,
3648 unsigned int flags, int *off, int *err);
3649 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3650 int *err);
3651 __poll_t datagram_poll(struct file *file, struct socket *sock,
3652 struct poll_table_struct *wait);
3653 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3654 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3655 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3656 struct msghdr *msg, int size)
3657 {
3658 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3659 }
3660 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3661 struct msghdr *msg);
3662 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3663 struct iov_iter *to, int len,
3664 struct ahash_request *hash);
3665 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3666 struct iov_iter *from, int len);
3667 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3668 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3669 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3670 static inline void skb_free_datagram_locked(struct sock *sk,
3671 struct sk_buff *skb)
3672 {
3673 __skb_free_datagram_locked(sk, skb, 0);
3674 }
3675 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3676 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3677 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3678 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3679 int len);
3680 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3681 struct pipe_inode_info *pipe, unsigned int len,
3682 unsigned int flags);
3683 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3684 int len);
3685 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3686 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3687 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3688 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3689 int len, int hlen);
3690 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3691 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3692 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3693 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3694 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3695 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3696 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3697 unsigned int offset);
3698 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3699 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3700 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3701 int skb_vlan_pop(struct sk_buff *skb);
3702 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3703 int skb_eth_pop(struct sk_buff *skb);
3704 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3705 const unsigned char *src);
3706 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3707 int mac_len, bool ethernet);
3708 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3709 bool ethernet);
3710 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3711 int skb_mpls_dec_ttl(struct sk_buff *skb);
3712 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3713 gfp_t gfp);
3714
memcpy_from_msg(void * data,struct msghdr * msg,int len)3715 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3716 {
3717 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3718 }
3719
memcpy_to_msg(struct msghdr * msg,void * data,int len)3720 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3721 {
3722 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3723 }
3724
3725 struct skb_checksum_ops {
3726 __wsum (*update)(const void *mem, int len, __wsum wsum);
3727 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3728 };
3729
3730 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3731
3732 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3733 __wsum csum, const struct skb_checksum_ops *ops);
3734 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3735 __wsum csum);
3736
3737 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)3738 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3739 const void *data, int hlen, void *buffer)
3740 {
3741 if (likely(hlen - offset >= len))
3742 return (void *)data + offset;
3743
3744 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3745 return NULL;
3746
3747 return buffer;
3748 }
3749
3750 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3751 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3752 {
3753 return __skb_header_pointer(skb, offset, len, skb->data,
3754 skb_headlen(skb), buffer);
3755 }
3756
3757 /**
3758 * skb_needs_linearize - check if we need to linearize a given skb
3759 * depending on the given device features.
3760 * @skb: socket buffer to check
3761 * @features: net device features
3762 *
3763 * Returns true if either:
3764 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3765 * 2. skb is fragmented and the device does not support SG.
3766 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3767 static inline bool skb_needs_linearize(struct sk_buff *skb,
3768 netdev_features_t features)
3769 {
3770 return skb_is_nonlinear(skb) &&
3771 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3772 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3773 }
3774
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3775 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3776 void *to,
3777 const unsigned int len)
3778 {
3779 memcpy(to, skb->data, len);
3780 }
3781
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3782 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3783 const int offset, void *to,
3784 const unsigned int len)
3785 {
3786 memcpy(to, skb->data + offset, len);
3787 }
3788
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3789 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3790 const void *from,
3791 const unsigned int len)
3792 {
3793 memcpy(skb->data, from, len);
3794 }
3795
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3796 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3797 const int offset,
3798 const void *from,
3799 const unsigned int len)
3800 {
3801 memcpy(skb->data + offset, from, len);
3802 }
3803
3804 void skb_init(void);
3805
skb_get_ktime(const struct sk_buff * skb)3806 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3807 {
3808 return skb->tstamp;
3809 }
3810
3811 /**
3812 * skb_get_timestamp - get timestamp from a skb
3813 * @skb: skb to get stamp from
3814 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
3815 *
3816 * Timestamps are stored in the skb as offsets to a base timestamp.
3817 * This function converts the offset back to a struct timeval and stores
3818 * it in stamp.
3819 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3820 static inline void skb_get_timestamp(const struct sk_buff *skb,
3821 struct __kernel_old_timeval *stamp)
3822 {
3823 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3824 }
3825
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3826 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3827 struct __kernel_sock_timeval *stamp)
3828 {
3829 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3830
3831 stamp->tv_sec = ts.tv_sec;
3832 stamp->tv_usec = ts.tv_nsec / 1000;
3833 }
3834
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3835 static inline void skb_get_timestampns(const struct sk_buff *skb,
3836 struct __kernel_old_timespec *stamp)
3837 {
3838 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3839
3840 stamp->tv_sec = ts.tv_sec;
3841 stamp->tv_nsec = ts.tv_nsec;
3842 }
3843
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3844 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3845 struct __kernel_timespec *stamp)
3846 {
3847 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3848
3849 stamp->tv_sec = ts.tv_sec;
3850 stamp->tv_nsec = ts.tv_nsec;
3851 }
3852
__net_timestamp(struct sk_buff * skb)3853 static inline void __net_timestamp(struct sk_buff *skb)
3854 {
3855 skb->tstamp = ktime_get_real();
3856 }
3857
net_timedelta(ktime_t t)3858 static inline ktime_t net_timedelta(ktime_t t)
3859 {
3860 return ktime_sub(ktime_get_real(), t);
3861 }
3862
net_invalid_timestamp(void)3863 static inline ktime_t net_invalid_timestamp(void)
3864 {
3865 return 0;
3866 }
3867
skb_metadata_len(const struct sk_buff * skb)3868 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3869 {
3870 return skb_shinfo(skb)->meta_len;
3871 }
3872
skb_metadata_end(const struct sk_buff * skb)3873 static inline void *skb_metadata_end(const struct sk_buff *skb)
3874 {
3875 return skb_mac_header(skb);
3876 }
3877
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3878 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3879 const struct sk_buff *skb_b,
3880 u8 meta_len)
3881 {
3882 const void *a = skb_metadata_end(skb_a);
3883 const void *b = skb_metadata_end(skb_b);
3884 /* Using more efficient varaiant than plain call to memcmp(). */
3885 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3886 u64 diffs = 0;
3887
3888 switch (meta_len) {
3889 #define __it(x, op) (x -= sizeof(u##op))
3890 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3891 case 32: diffs |= __it_diff(a, b, 64);
3892 fallthrough;
3893 case 24: diffs |= __it_diff(a, b, 64);
3894 fallthrough;
3895 case 16: diffs |= __it_diff(a, b, 64);
3896 fallthrough;
3897 case 8: diffs |= __it_diff(a, b, 64);
3898 break;
3899 case 28: diffs |= __it_diff(a, b, 64);
3900 fallthrough;
3901 case 20: diffs |= __it_diff(a, b, 64);
3902 fallthrough;
3903 case 12: diffs |= __it_diff(a, b, 64);
3904 fallthrough;
3905 case 4: diffs |= __it_diff(a, b, 32);
3906 break;
3907 }
3908 return diffs;
3909 #else
3910 return memcmp(a - meta_len, b - meta_len, meta_len);
3911 #endif
3912 }
3913
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3914 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3915 const struct sk_buff *skb_b)
3916 {
3917 u8 len_a = skb_metadata_len(skb_a);
3918 u8 len_b = skb_metadata_len(skb_b);
3919
3920 if (!(len_a | len_b))
3921 return false;
3922
3923 return len_a != len_b ?
3924 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3925 }
3926
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3927 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3928 {
3929 skb_shinfo(skb)->meta_len = meta_len;
3930 }
3931
skb_metadata_clear(struct sk_buff * skb)3932 static inline void skb_metadata_clear(struct sk_buff *skb)
3933 {
3934 skb_metadata_set(skb, 0);
3935 }
3936
3937 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3938
3939 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3940
3941 void skb_clone_tx_timestamp(struct sk_buff *skb);
3942 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3943
3944 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3945
skb_clone_tx_timestamp(struct sk_buff * skb)3946 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3947 {
3948 }
3949
skb_defer_rx_timestamp(struct sk_buff * skb)3950 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3951 {
3952 return false;
3953 }
3954
3955 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3956
3957 /**
3958 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3959 *
3960 * PHY drivers may accept clones of transmitted packets for
3961 * timestamping via their phy_driver.txtstamp method. These drivers
3962 * must call this function to return the skb back to the stack with a
3963 * timestamp.
3964 *
3965 * @skb: clone of the original outgoing packet
3966 * @hwtstamps: hardware time stamps
3967 *
3968 */
3969 void skb_complete_tx_timestamp(struct sk_buff *skb,
3970 struct skb_shared_hwtstamps *hwtstamps);
3971
3972 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3973 struct skb_shared_hwtstamps *hwtstamps,
3974 struct sock *sk, int tstype);
3975
3976 /**
3977 * skb_tstamp_tx - queue clone of skb with send time stamps
3978 * @orig_skb: the original outgoing packet
3979 * @hwtstamps: hardware time stamps, may be NULL if not available
3980 *
3981 * If the skb has a socket associated, then this function clones the
3982 * skb (thus sharing the actual data and optional structures), stores
3983 * the optional hardware time stamping information (if non NULL) or
3984 * generates a software time stamp (otherwise), then queues the clone
3985 * to the error queue of the socket. Errors are silently ignored.
3986 */
3987 void skb_tstamp_tx(struct sk_buff *orig_skb,
3988 struct skb_shared_hwtstamps *hwtstamps);
3989
3990 /**
3991 * skb_tx_timestamp() - Driver hook for transmit timestamping
3992 *
3993 * Ethernet MAC Drivers should call this function in their hard_xmit()
3994 * function immediately before giving the sk_buff to the MAC hardware.
3995 *
3996 * Specifically, one should make absolutely sure that this function is
3997 * called before TX completion of this packet can trigger. Otherwise
3998 * the packet could potentially already be freed.
3999 *
4000 * @skb: A socket buffer.
4001 */
skb_tx_timestamp(struct sk_buff * skb)4002 static inline void skb_tx_timestamp(struct sk_buff *skb)
4003 {
4004 skb_clone_tx_timestamp(skb);
4005 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4006 skb_tstamp_tx(skb, NULL);
4007 }
4008
4009 /**
4010 * skb_complete_wifi_ack - deliver skb with wifi status
4011 *
4012 * @skb: the original outgoing packet
4013 * @acked: ack status
4014 *
4015 */
4016 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4017
4018 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4019 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4020
skb_csum_unnecessary(const struct sk_buff * skb)4021 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4022 {
4023 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4024 skb->csum_valid ||
4025 (skb->ip_summed == CHECKSUM_PARTIAL &&
4026 skb_checksum_start_offset(skb) >= 0));
4027 }
4028
4029 /**
4030 * skb_checksum_complete - Calculate checksum of an entire packet
4031 * @skb: packet to process
4032 *
4033 * This function calculates the checksum over the entire packet plus
4034 * the value of skb->csum. The latter can be used to supply the
4035 * checksum of a pseudo header as used by TCP/UDP. It returns the
4036 * checksum.
4037 *
4038 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4039 * this function can be used to verify that checksum on received
4040 * packets. In that case the function should return zero if the
4041 * checksum is correct. In particular, this function will return zero
4042 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4043 * hardware has already verified the correctness of the checksum.
4044 */
skb_checksum_complete(struct sk_buff * skb)4045 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4046 {
4047 return skb_csum_unnecessary(skb) ?
4048 0 : __skb_checksum_complete(skb);
4049 }
4050
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4051 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4052 {
4053 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4054 if (skb->csum_level == 0)
4055 skb->ip_summed = CHECKSUM_NONE;
4056 else
4057 skb->csum_level--;
4058 }
4059 }
4060
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4061 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4062 {
4063 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4064 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4065 skb->csum_level++;
4066 } else if (skb->ip_summed == CHECKSUM_NONE) {
4067 skb->ip_summed = CHECKSUM_UNNECESSARY;
4068 skb->csum_level = 0;
4069 }
4070 }
4071
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4072 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4073 {
4074 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4075 skb->ip_summed = CHECKSUM_NONE;
4076 skb->csum_level = 0;
4077 }
4078 }
4079
4080 /* Check if we need to perform checksum complete validation.
4081 *
4082 * Returns true if checksum complete is needed, false otherwise
4083 * (either checksum is unnecessary or zero checksum is allowed).
4084 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4085 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4086 bool zero_okay,
4087 __sum16 check)
4088 {
4089 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4090 skb->csum_valid = 1;
4091 __skb_decr_checksum_unnecessary(skb);
4092 return false;
4093 }
4094
4095 return true;
4096 }
4097
4098 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4099 * in checksum_init.
4100 */
4101 #define CHECKSUM_BREAK 76
4102
4103 /* Unset checksum-complete
4104 *
4105 * Unset checksum complete can be done when packet is being modified
4106 * (uncompressed for instance) and checksum-complete value is
4107 * invalidated.
4108 */
skb_checksum_complete_unset(struct sk_buff * skb)4109 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4110 {
4111 if (skb->ip_summed == CHECKSUM_COMPLETE)
4112 skb->ip_summed = CHECKSUM_NONE;
4113 }
4114
4115 /* Validate (init) checksum based on checksum complete.
4116 *
4117 * Return values:
4118 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4119 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4120 * checksum is stored in skb->csum for use in __skb_checksum_complete
4121 * non-zero: value of invalid checksum
4122 *
4123 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4124 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4125 bool complete,
4126 __wsum psum)
4127 {
4128 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4129 if (!csum_fold(csum_add(psum, skb->csum))) {
4130 skb->csum_valid = 1;
4131 return 0;
4132 }
4133 }
4134
4135 skb->csum = psum;
4136
4137 if (complete || skb->len <= CHECKSUM_BREAK) {
4138 __sum16 csum;
4139
4140 csum = __skb_checksum_complete(skb);
4141 skb->csum_valid = !csum;
4142 return csum;
4143 }
4144
4145 return 0;
4146 }
4147
null_compute_pseudo(struct sk_buff * skb,int proto)4148 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4149 {
4150 return 0;
4151 }
4152
4153 /* Perform checksum validate (init). Note that this is a macro since we only
4154 * want to calculate the pseudo header which is an input function if necessary.
4155 * First we try to validate without any computation (checksum unnecessary) and
4156 * then calculate based on checksum complete calling the function to compute
4157 * pseudo header.
4158 *
4159 * Return values:
4160 * 0: checksum is validated or try to in skb_checksum_complete
4161 * non-zero: value of invalid checksum
4162 */
4163 #define __skb_checksum_validate(skb, proto, complete, \
4164 zero_okay, check, compute_pseudo) \
4165 ({ \
4166 __sum16 __ret = 0; \
4167 skb->csum_valid = 0; \
4168 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4169 __ret = __skb_checksum_validate_complete(skb, \
4170 complete, compute_pseudo(skb, proto)); \
4171 __ret; \
4172 })
4173
4174 #define skb_checksum_init(skb, proto, compute_pseudo) \
4175 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4176
4177 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4178 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4179
4180 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4181 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4182
4183 #define skb_checksum_validate_zero_check(skb, proto, check, \
4184 compute_pseudo) \
4185 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4186
4187 #define skb_checksum_simple_validate(skb) \
4188 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4189
__skb_checksum_convert_check(struct sk_buff * skb)4190 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4191 {
4192 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4193 }
4194
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4195 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4196 {
4197 skb->csum = ~pseudo;
4198 skb->ip_summed = CHECKSUM_COMPLETE;
4199 }
4200
4201 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4202 do { \
4203 if (__skb_checksum_convert_check(skb)) \
4204 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4205 } while (0)
4206
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4207 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4208 u16 start, u16 offset)
4209 {
4210 skb->ip_summed = CHECKSUM_PARTIAL;
4211 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4212 skb->csum_offset = offset - start;
4213 }
4214
4215 /* Update skbuf and packet to reflect the remote checksum offload operation.
4216 * When called, ptr indicates the starting point for skb->csum when
4217 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4218 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4219 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4220 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4221 int start, int offset, bool nopartial)
4222 {
4223 __wsum delta;
4224
4225 if (!nopartial) {
4226 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4227 return;
4228 }
4229
4230 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4231 __skb_checksum_complete(skb);
4232 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4233 }
4234
4235 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4236
4237 /* Adjust skb->csum since we changed the packet */
4238 skb->csum = csum_add(skb->csum, delta);
4239 }
4240
skb_nfct(const struct sk_buff * skb)4241 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4242 {
4243 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4244 return (void *)(skb->_nfct & NFCT_PTRMASK);
4245 #else
4246 return NULL;
4247 #endif
4248 }
4249
skb_get_nfct(const struct sk_buff * skb)4250 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4251 {
4252 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4253 return skb->_nfct;
4254 #else
4255 return 0UL;
4256 #endif
4257 }
4258
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4259 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4260 {
4261 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4262 skb->slow_gro |= !!nfct;
4263 skb->_nfct = nfct;
4264 #endif
4265 }
4266
4267 #ifdef CONFIG_SKB_EXTENSIONS
4268 enum skb_ext_id {
4269 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4270 SKB_EXT_BRIDGE_NF,
4271 #endif
4272 #ifdef CONFIG_XFRM
4273 SKB_EXT_SEC_PATH,
4274 #endif
4275 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4276 TC_SKB_EXT,
4277 #endif
4278 #if IS_ENABLED(CONFIG_MPTCP)
4279 SKB_EXT_MPTCP,
4280 #endif
4281 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4282 SKB_EXT_MCTP,
4283 #endif
4284 SKB_EXT_NUM, /* must be last */
4285 };
4286
4287 /**
4288 * struct skb_ext - sk_buff extensions
4289 * @refcnt: 1 on allocation, deallocated on 0
4290 * @offset: offset to add to @data to obtain extension address
4291 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4292 * @data: start of extension data, variable sized
4293 *
4294 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4295 * to use 'u8' types while allowing up to 2kb worth of extension data.
4296 */
4297 struct skb_ext {
4298 refcount_t refcnt;
4299 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4300 u8 chunks; /* same */
4301 char data[] __aligned(8);
4302 };
4303
4304 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4305 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4306 struct skb_ext *ext);
4307 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4308 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4309 void __skb_ext_put(struct skb_ext *ext);
4310
skb_ext_put(struct sk_buff * skb)4311 static inline void skb_ext_put(struct sk_buff *skb)
4312 {
4313 if (skb->active_extensions)
4314 __skb_ext_put(skb->extensions);
4315 }
4316
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4317 static inline void __skb_ext_copy(struct sk_buff *dst,
4318 const struct sk_buff *src)
4319 {
4320 dst->active_extensions = src->active_extensions;
4321
4322 if (src->active_extensions) {
4323 struct skb_ext *ext = src->extensions;
4324
4325 refcount_inc(&ext->refcnt);
4326 dst->extensions = ext;
4327 }
4328 }
4329
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4330 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4331 {
4332 skb_ext_put(dst);
4333 __skb_ext_copy(dst, src);
4334 }
4335
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4336 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4337 {
4338 return !!ext->offset[i];
4339 }
4340
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4341 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4342 {
4343 return skb->active_extensions & (1 << id);
4344 }
4345
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4346 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4347 {
4348 if (skb_ext_exist(skb, id))
4349 __skb_ext_del(skb, id);
4350 }
4351
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4352 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4353 {
4354 if (skb_ext_exist(skb, id)) {
4355 struct skb_ext *ext = skb->extensions;
4356
4357 return (void *)ext + (ext->offset[id] << 3);
4358 }
4359
4360 return NULL;
4361 }
4362
skb_ext_reset(struct sk_buff * skb)4363 static inline void skb_ext_reset(struct sk_buff *skb)
4364 {
4365 if (unlikely(skb->active_extensions)) {
4366 __skb_ext_put(skb->extensions);
4367 skb->active_extensions = 0;
4368 }
4369 }
4370
skb_has_extensions(struct sk_buff * skb)4371 static inline bool skb_has_extensions(struct sk_buff *skb)
4372 {
4373 return unlikely(skb->active_extensions);
4374 }
4375 #else
skb_ext_put(struct sk_buff * skb)4376 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4377 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4378 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4379 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4380 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4381 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4382 #endif /* CONFIG_SKB_EXTENSIONS */
4383
nf_reset_ct(struct sk_buff * skb)4384 static inline void nf_reset_ct(struct sk_buff *skb)
4385 {
4386 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4387 nf_conntrack_put(skb_nfct(skb));
4388 skb->_nfct = 0;
4389 #endif
4390 }
4391
nf_reset_trace(struct sk_buff * skb)4392 static inline void nf_reset_trace(struct sk_buff *skb)
4393 {
4394 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4395 skb->nf_trace = 0;
4396 #endif
4397 }
4398
ipvs_reset(struct sk_buff * skb)4399 static inline void ipvs_reset(struct sk_buff *skb)
4400 {
4401 #if IS_ENABLED(CONFIG_IP_VS)
4402 skb->ipvs_property = 0;
4403 #endif
4404 }
4405
4406 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4407 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4408 bool copy)
4409 {
4410 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4411 dst->_nfct = src->_nfct;
4412 nf_conntrack_get(skb_nfct(src));
4413 #endif
4414 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4415 if (copy)
4416 dst->nf_trace = src->nf_trace;
4417 #endif
4418 }
4419
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4420 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4421 {
4422 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4423 nf_conntrack_put(skb_nfct(dst));
4424 #endif
4425 dst->slow_gro = src->slow_gro;
4426 __nf_copy(dst, src, true);
4427 }
4428
4429 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4430 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4431 {
4432 to->secmark = from->secmark;
4433 }
4434
skb_init_secmark(struct sk_buff * skb)4435 static inline void skb_init_secmark(struct sk_buff *skb)
4436 {
4437 skb->secmark = 0;
4438 }
4439 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4440 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4441 { }
4442
skb_init_secmark(struct sk_buff * skb)4443 static inline void skb_init_secmark(struct sk_buff *skb)
4444 { }
4445 #endif
4446
secpath_exists(const struct sk_buff * skb)4447 static inline int secpath_exists(const struct sk_buff *skb)
4448 {
4449 #ifdef CONFIG_XFRM
4450 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4451 #else
4452 return 0;
4453 #endif
4454 }
4455
skb_irq_freeable(const struct sk_buff * skb)4456 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4457 {
4458 return !skb->destructor &&
4459 !secpath_exists(skb) &&
4460 !skb_nfct(skb) &&
4461 !skb->_skb_refdst &&
4462 !skb_has_frag_list(skb);
4463 }
4464
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4465 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4466 {
4467 skb->queue_mapping = queue_mapping;
4468 }
4469
skb_get_queue_mapping(const struct sk_buff * skb)4470 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4471 {
4472 return skb->queue_mapping;
4473 }
4474
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4475 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4476 {
4477 to->queue_mapping = from->queue_mapping;
4478 }
4479
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4480 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4481 {
4482 skb->queue_mapping = rx_queue + 1;
4483 }
4484
skb_get_rx_queue(const struct sk_buff * skb)4485 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4486 {
4487 return skb->queue_mapping - 1;
4488 }
4489
skb_rx_queue_recorded(const struct sk_buff * skb)4490 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4491 {
4492 return skb->queue_mapping != 0;
4493 }
4494
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4495 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4496 {
4497 skb->dst_pending_confirm = val;
4498 }
4499
skb_get_dst_pending_confirm(const struct sk_buff * skb)4500 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4501 {
4502 return skb->dst_pending_confirm != 0;
4503 }
4504
skb_sec_path(const struct sk_buff * skb)4505 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4506 {
4507 #ifdef CONFIG_XFRM
4508 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4509 #else
4510 return NULL;
4511 #endif
4512 }
4513
4514 /* Keeps track of mac header offset relative to skb->head.
4515 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4516 * For non-tunnel skb it points to skb_mac_header() and for
4517 * tunnel skb it points to outer mac header.
4518 * Keeps track of level of encapsulation of network headers.
4519 */
4520 struct skb_gso_cb {
4521 union {
4522 int mac_offset;
4523 int data_offset;
4524 };
4525 int encap_level;
4526 __wsum csum;
4527 __u16 csum_start;
4528 };
4529 #define SKB_GSO_CB_OFFSET 32
4530 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4531
skb_tnl_header_len(const struct sk_buff * inner_skb)4532 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4533 {
4534 return (skb_mac_header(inner_skb) - inner_skb->head) -
4535 SKB_GSO_CB(inner_skb)->mac_offset;
4536 }
4537
gso_pskb_expand_head(struct sk_buff * skb,int extra)4538 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4539 {
4540 int new_headroom, headroom;
4541 int ret;
4542
4543 headroom = skb_headroom(skb);
4544 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4545 if (ret)
4546 return ret;
4547
4548 new_headroom = skb_headroom(skb);
4549 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4550 return 0;
4551 }
4552
gso_reset_checksum(struct sk_buff * skb,__wsum res)4553 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4554 {
4555 /* Do not update partial checksums if remote checksum is enabled. */
4556 if (skb->remcsum_offload)
4557 return;
4558
4559 SKB_GSO_CB(skb)->csum = res;
4560 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4561 }
4562
4563 /* Compute the checksum for a gso segment. First compute the checksum value
4564 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4565 * then add in skb->csum (checksum from csum_start to end of packet).
4566 * skb->csum and csum_start are then updated to reflect the checksum of the
4567 * resultant packet starting from the transport header-- the resultant checksum
4568 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4569 * header.
4570 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4571 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4572 {
4573 unsigned char *csum_start = skb_transport_header(skb);
4574 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4575 __wsum partial = SKB_GSO_CB(skb)->csum;
4576
4577 SKB_GSO_CB(skb)->csum = res;
4578 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4579
4580 return csum_fold(csum_partial(csum_start, plen, partial));
4581 }
4582
skb_is_gso(const struct sk_buff * skb)4583 static inline bool skb_is_gso(const struct sk_buff *skb)
4584 {
4585 return skb_shinfo(skb)->gso_size;
4586 }
4587
4588 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4589 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4590 {
4591 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4592 }
4593
4594 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4595 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4596 {
4597 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4598 }
4599
4600 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4601 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4602 {
4603 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4604 }
4605
skb_gso_reset(struct sk_buff * skb)4606 static inline void skb_gso_reset(struct sk_buff *skb)
4607 {
4608 skb_shinfo(skb)->gso_size = 0;
4609 skb_shinfo(skb)->gso_segs = 0;
4610 skb_shinfo(skb)->gso_type = 0;
4611 }
4612
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4613 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4614 u16 increment)
4615 {
4616 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4617 return;
4618 shinfo->gso_size += increment;
4619 }
4620
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4621 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4622 u16 decrement)
4623 {
4624 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4625 return;
4626 shinfo->gso_size -= decrement;
4627 }
4628
4629 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4630
skb_warn_if_lro(const struct sk_buff * skb)4631 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4632 {
4633 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4634 * wanted then gso_type will be set. */
4635 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4636
4637 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4638 unlikely(shinfo->gso_type == 0)) {
4639 __skb_warn_lro_forwarding(skb);
4640 return true;
4641 }
4642 return false;
4643 }
4644
skb_forward_csum(struct sk_buff * skb)4645 static inline void skb_forward_csum(struct sk_buff *skb)
4646 {
4647 /* Unfortunately we don't support this one. Any brave souls? */
4648 if (skb->ip_summed == CHECKSUM_COMPLETE)
4649 skb->ip_summed = CHECKSUM_NONE;
4650 }
4651
4652 /**
4653 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4654 * @skb: skb to check
4655 *
4656 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4657 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4658 * use this helper, to document places where we make this assertion.
4659 */
skb_checksum_none_assert(const struct sk_buff * skb)4660 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4661 {
4662 #ifdef DEBUG
4663 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4664 #endif
4665 }
4666
4667 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4668
4669 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4670 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4671 unsigned int transport_len,
4672 __sum16(*skb_chkf)(struct sk_buff *skb));
4673
4674 /**
4675 * skb_head_is_locked - Determine if the skb->head is locked down
4676 * @skb: skb to check
4677 *
4678 * The head on skbs build around a head frag can be removed if they are
4679 * not cloned. This function returns true if the skb head is locked down
4680 * due to either being allocated via kmalloc, or by being a clone with
4681 * multiple references to the head.
4682 */
skb_head_is_locked(const struct sk_buff * skb)4683 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4684 {
4685 return !skb->head_frag || skb_cloned(skb);
4686 }
4687
4688 /* Local Checksum Offload.
4689 * Compute outer checksum based on the assumption that the
4690 * inner checksum will be offloaded later.
4691 * See Documentation/networking/checksum-offloads.rst for
4692 * explanation of how this works.
4693 * Fill in outer checksum adjustment (e.g. with sum of outer
4694 * pseudo-header) before calling.
4695 * Also ensure that inner checksum is in linear data area.
4696 */
lco_csum(struct sk_buff * skb)4697 static inline __wsum lco_csum(struct sk_buff *skb)
4698 {
4699 unsigned char *csum_start = skb_checksum_start(skb);
4700 unsigned char *l4_hdr = skb_transport_header(skb);
4701 __wsum partial;
4702
4703 /* Start with complement of inner checksum adjustment */
4704 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4705 skb->csum_offset));
4706
4707 /* Add in checksum of our headers (incl. outer checksum
4708 * adjustment filled in by caller) and return result.
4709 */
4710 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4711 }
4712
skb_is_redirected(const struct sk_buff * skb)4713 static inline bool skb_is_redirected(const struct sk_buff *skb)
4714 {
4715 return skb->redirected;
4716 }
4717
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4718 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4719 {
4720 skb->redirected = 1;
4721 #ifdef CONFIG_NET_REDIRECT
4722 skb->from_ingress = from_ingress;
4723 if (skb->from_ingress)
4724 skb->tstamp = 0;
4725 #endif
4726 }
4727
skb_reset_redirect(struct sk_buff * skb)4728 static inline void skb_reset_redirect(struct sk_buff *skb)
4729 {
4730 skb->redirected = 0;
4731 }
4732
skb_csum_is_sctp(struct sk_buff * skb)4733 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4734 {
4735 return skb->csum_not_inet;
4736 }
4737
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4738 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4739 const u64 kcov_handle)
4740 {
4741 #ifdef CONFIG_KCOV
4742 skb->kcov_handle = kcov_handle;
4743 #endif
4744 }
4745
skb_get_kcov_handle(struct sk_buff * skb)4746 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4747 {
4748 #ifdef CONFIG_KCOV
4749 return skb->kcov_handle;
4750 #else
4751 return 0;
4752 #endif
4753 }
4754
4755 #ifdef CONFIG_PAGE_POOL
skb_mark_for_recycle(struct sk_buff * skb)4756 static inline void skb_mark_for_recycle(struct sk_buff *skb)
4757 {
4758 skb->pp_recycle = 1;
4759 }
4760 #endif
4761
skb_pp_recycle(struct sk_buff * skb,void * data)4762 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4763 {
4764 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4765 return false;
4766 return page_pool_return_skb_page(virt_to_page(data));
4767 }
4768
4769 #endif /* __KERNEL__ */
4770 #endif /* _LINUX_SKBUFF_H */
4771