1 // SPDX-License-Identifier: BSD-2-Clause
2 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
3  *
4  * LibTomCrypt is a library that provides various cryptographic
5  * algorithms in a highly modular and flexible manner.
6  *
7  * The library is free for all purposes without any express
8  * guarantee it works.
9  */
10 
11 /**
12   @file skipjack.c
13   Skipjack Implementation by Tom St Denis
14 */
15 #include "tomcrypt_private.h"
16 
17 #ifdef LTC_SKIPJACK
18 
19 const struct ltc_cipher_descriptor skipjack_desc =
20 {
21     "skipjack",
22     17,
23     10, 10, 8, 32,
24     &skipjack_setup,
25     &skipjack_ecb_encrypt,
26     &skipjack_ecb_decrypt,
27     &skipjack_test,
28     &skipjack_done,
29     &skipjack_keysize,
30     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
31 };
32 
33 static const unsigned char sbox[256] = {
34    0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9,
35    0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28,
36    0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53,
37    0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2,
38    0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8,
39    0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90,
40    0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76,
41    0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d,
42    0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18,
43    0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4,
44    0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40,
45    0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5,
46    0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2,
47    0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8,
48    0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac,
49    0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46
50 };
51 
52 /* simple x + 1 (mod 10) in one step. */
53 static const int keystep[] =  { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
54 
55 /* simple x - 1 (mod 10) in one step */
56 static const int ikeystep[] = { 9, 0, 1, 2, 3, 4, 5, 6, 7, 8 };
57 
58  /**
59     Initialize the Skipjack block cipher
60     @param key The symmetric key you wish to pass
61     @param keylen The key length in bytes
62     @param num_rounds The number of rounds desired (0 for default)
63     @param skey The key in as scheduled by this function.
64     @return CRYPT_OK if successful
65  */
skipjack_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)66 int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
67 {
68    int x;
69 
70    LTC_ARGCHK(key  != NULL);
71    LTC_ARGCHK(skey != NULL);
72 
73    if (keylen != 10) {
74       return CRYPT_INVALID_KEYSIZE;
75    }
76 
77    if (num_rounds != 32 && num_rounds != 0) {
78       return CRYPT_INVALID_ROUNDS;
79    }
80 
81    /* make sure the key is in range for platforms where CHAR_BIT != 8 */
82    for (x = 0; x < 10; x++) {
83        skey->skipjack.key[x] = key[x] & 255;
84    }
85 
86    return CRYPT_OK;
87 }
88 
89 #define RULE_A \
90    tmp = g_func(w1, &kp, skey->skipjack.key);      \
91    w1  = tmp ^ w4 ^ x;                            \
92    w4  = w3; w3 = w2;                             \
93    w2  = tmp;
94 
95 #define RULE_B \
96    tmp  = g_func(w1, &kp, skey->skipjack.key);     \
97    tmp1 = w4; w4  = w3;                           \
98    w3   = w1 ^ w2 ^ x;                            \
99    w1   = tmp1; w2 = tmp;
100 
101 #define RULE_A1 \
102    tmp = w1 ^ w2 ^ x;                             \
103    w1  = ig_func(w2, &kp, skey->skipjack.key);     \
104    w2  = w3; w3 = w4; w4 = tmp;
105 
106 #define RULE_B1 \
107    tmp = ig_func(w2, &kp, skey->skipjack.key);     \
108    w2  = tmp ^ w3 ^ x;                            \
109    w3  = w4; w4 = w1; w1 = tmp;
110 
g_func(unsigned w,int * kp,const unsigned char * key)111 static unsigned g_func(unsigned w, int *kp, const unsigned char *key)
112 {
113    unsigned char g1,g2;
114 
115    g1 = (w >> 8) & 255; g2 = w & 255;
116    g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
117    g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
118    g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
119    g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
120    return ((unsigned)g1<<8)|(unsigned)g2;
121 }
122 
ig_func(unsigned w,int * kp,const unsigned char * key)123 static unsigned ig_func(unsigned w, int *kp, const unsigned char *key)
124 {
125    unsigned char g1,g2;
126 
127    g1 = (w >> 8) & 255; g2 = w & 255;
128    *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
129    *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
130    *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
131    *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
132    return ((unsigned)g1<<8)|(unsigned)g2;
133 }
134 
135 /**
136   Encrypts a block of text with Skipjack
137   @param pt The input plaintext (8 bytes)
138   @param ct The output ciphertext (8 bytes)
139   @param skey The key as scheduled
140   @return CRYPT_OK if successful
141 */
142 #ifdef LTC_CLEAN_STACK
_skipjack_ecb_encrypt(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)143 static int _skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
144 #else
145 int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
146 #endif
147 {
148    unsigned w1,w2,w3,w4,tmp,tmp1;
149    int x, kp;
150 
151    LTC_ARGCHK(pt   != NULL);
152    LTC_ARGCHK(ct   != NULL);
153    LTC_ARGCHK(skey != NULL);
154 
155    /* load block */
156    w1 = ((unsigned)pt[0]<<8)|pt[1];
157    w2 = ((unsigned)pt[2]<<8)|pt[3];
158    w3 = ((unsigned)pt[4]<<8)|pt[5];
159    w4 = ((unsigned)pt[6]<<8)|pt[7];
160 
161    /* 8 rounds of RULE A */
162    for (x = 1, kp = 0; x < 9; x++) {
163        RULE_A;
164    }
165 
166    /* 8 rounds of RULE B */
167    for (; x < 17; x++) {
168        RULE_B;
169    }
170 
171    /* 8 rounds of RULE A */
172    for (; x < 25; x++) {
173        RULE_A;
174    }
175 
176    /* 8 rounds of RULE B */
177    for (; x < 33; x++) {
178        RULE_B;
179    }
180 
181    /* store block */
182    ct[0] = (w1>>8)&255; ct[1] = w1&255;
183    ct[2] = (w2>>8)&255; ct[3] = w2&255;
184    ct[4] = (w3>>8)&255; ct[5] = w3&255;
185    ct[6] = (w4>>8)&255; ct[7] = w4&255;
186 
187    return CRYPT_OK;
188 }
189 
190 #ifdef LTC_CLEAN_STACK
skipjack_ecb_encrypt(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)191 int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
192 {
193    int err = _skipjack_ecb_encrypt(pt, ct, skey);
194    burn_stack(sizeof(unsigned) * 8 + sizeof(int) * 2);
195    return err;
196 }
197 #endif
198 
199 /**
200   Decrypts a block of text with Skipjack
201   @param ct The input ciphertext (8 bytes)
202   @param pt The output plaintext (8 bytes)
203   @param skey The key as scheduled
204   @return CRYPT_OK if successful
205 */
206 #ifdef LTC_CLEAN_STACK
_skipjack_ecb_decrypt(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)207 static int _skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
208 #else
209 int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
210 #endif
211 {
212    unsigned w1,w2,w3,w4,tmp;
213    int x, kp;
214 
215    LTC_ARGCHK(pt   != NULL);
216    LTC_ARGCHK(ct   != NULL);
217    LTC_ARGCHK(skey != NULL);
218 
219    /* load block */
220    w1 = ((unsigned)ct[0]<<8)|ct[1];
221    w2 = ((unsigned)ct[2]<<8)|ct[3];
222    w3 = ((unsigned)ct[4]<<8)|ct[5];
223    w4 = ((unsigned)ct[6]<<8)|ct[7];
224 
225    /* 8 rounds of RULE B^-1
226 
227       Note the value "kp = 8" comes from "kp = (32 * 4) mod 10" where 32*4 is 128 which mod 10 is 8
228     */
229    for (x = 32, kp = 8; x > 24; x--) {
230        RULE_B1;
231    }
232 
233    /* 8 rounds of RULE A^-1 */
234    for (; x > 16; x--) {
235        RULE_A1;
236    }
237 
238 
239    /* 8 rounds of RULE B^-1 */
240    for (; x > 8; x--) {
241        RULE_B1;
242    }
243 
244    /* 8 rounds of RULE A^-1 */
245    for (; x > 0; x--) {
246        RULE_A1;
247    }
248 
249    /* store block */
250    pt[0] = (w1>>8)&255; pt[1] = w1&255;
251    pt[2] = (w2>>8)&255; pt[3] = w2&255;
252    pt[4] = (w3>>8)&255; pt[5] = w3&255;
253    pt[6] = (w4>>8)&255; pt[7] = w4&255;
254 
255    return CRYPT_OK;
256 }
257 
258 #ifdef LTC_CLEAN_STACK
skipjack_ecb_decrypt(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)259 int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
260 {
261    int err = _skipjack_ecb_decrypt(ct, pt, skey);
262    burn_stack(sizeof(unsigned) * 7 + sizeof(int) * 2);
263    return err;
264 }
265 #endif
266 
267 /**
268   Performs a self-test of the Skipjack block cipher
269   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
270 */
skipjack_test(void)271 int skipjack_test(void)
272 {
273  #ifndef LTC_TEST
274     return CRYPT_NOP;
275  #else
276    static const struct {
277        unsigned char key[10], pt[8], ct[8];
278    } tests[] = {
279    {
280        { 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11 },
281        { 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa },
282        { 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00 }
283    }
284    };
285    unsigned char buf[2][8];
286    int x, y, err;
287    symmetric_key key;
288 
289    for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
290       /* setup key */
291       if ((err = skipjack_setup(tests[x].key, 10, 0, &key)) != CRYPT_OK) {
292          return err;
293       }
294 
295       /* encrypt and decrypt */
296       skipjack_ecb_encrypt(tests[x].pt, buf[0], &key);
297       skipjack_ecb_decrypt(buf[0], buf[1], &key);
298 
299       /* compare */
300       if (compare_testvector(buf[0], 8, tests[x].ct, 8, "Skipjack Encrypt", x) != 0 ||
301             compare_testvector(buf[1], 8, tests[x].pt, 8, "Skipjack Decrypt", x) != 0) {
302          return CRYPT_FAIL_TESTVECTOR;
303       }
304 
305       /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
306       for (y = 0; y < 8; y++) buf[0][y] = 0;
307       for (y = 0; y < 1000; y++) skipjack_ecb_encrypt(buf[0], buf[0], &key);
308       for (y = 0; y < 1000; y++) skipjack_ecb_decrypt(buf[0], buf[0], &key);
309       for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
310    }
311 
312    return CRYPT_OK;
313   #endif
314 }
315 
316 /** Terminate the context
317    @param skey    The scheduled key
318 */
skipjack_done(symmetric_key * skey)319 void skipjack_done(symmetric_key *skey)
320 {
321   LTC_UNUSED_PARAM(skey);
322 }
323 
324 /**
325   Gets suitable key size
326   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
327   @return CRYPT_OK if the input key size is acceptable.
328 */
skipjack_keysize(int * keysize)329 int skipjack_keysize(int *keysize)
330 {
331    LTC_ARGCHK(keysize != NULL);
332    if (*keysize < 10) {
333       return CRYPT_INVALID_KEYSIZE;
334    }
335    if (*keysize > 10) {
336       *keysize = 10;
337    }
338    return CRYPT_OK;
339 }
340 
341 #endif
342 
343 /* ref:         $Format:%D$ */
344 /* git commit:  $Format:%H$ */
345 /* commit time: $Format:%ai$ */
346