1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Takashi Iwai <tiwai@suse.de>
5 *
6 * Generic memory allocators
7 */
8
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/genalloc.h>
13 #include <linux/highmem.h>
14 #include <linux/vmalloc.h>
15 #ifdef CONFIG_X86
16 #include <asm/set_memory.h>
17 #endif
18 #include <sound/memalloc.h>
19 #include "memalloc_local.h"
20
21 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
22
23 /* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */
snd_mem_get_gfp_flags(const struct snd_dma_buffer * dmab,gfp_t default_gfp)24 static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab,
25 gfp_t default_gfp)
26 {
27 if (!dmab->dev.dev)
28 return default_gfp;
29 else
30 return (__force gfp_t)(unsigned long)dmab->dev.dev;
31 }
32
__snd_dma_alloc_pages(struct snd_dma_buffer * dmab,size_t size)33 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
34 {
35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
36
37 if (WARN_ON_ONCE(!ops || !ops->alloc))
38 return NULL;
39 return ops->alloc(dmab, size);
40 }
41
42 /**
43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
44 * type and direction
45 * @type: the DMA buffer type
46 * @device: the device pointer
47 * @dir: DMA direction
48 * @size: the buffer size to allocate
49 * @dmab: buffer allocation record to store the allocated data
50 *
51 * Calls the memory-allocator function for the corresponding
52 * buffer type.
53 *
54 * Return: Zero if the buffer with the given size is allocated successfully,
55 * otherwise a negative value on error.
56 */
snd_dma_alloc_dir_pages(int type,struct device * device,enum dma_data_direction dir,size_t size,struct snd_dma_buffer * dmab)57 int snd_dma_alloc_dir_pages(int type, struct device *device,
58 enum dma_data_direction dir, size_t size,
59 struct snd_dma_buffer *dmab)
60 {
61 if (WARN_ON(!size))
62 return -ENXIO;
63 if (WARN_ON(!dmab))
64 return -ENXIO;
65
66 size = PAGE_ALIGN(size);
67 dmab->dev.type = type;
68 dmab->dev.dev = device;
69 dmab->dev.dir = dir;
70 dmab->bytes = 0;
71 dmab->addr = 0;
72 dmab->private_data = NULL;
73 dmab->area = __snd_dma_alloc_pages(dmab, size);
74 if (!dmab->area)
75 return -ENOMEM;
76 dmab->bytes = size;
77 return 0;
78 }
79 EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
80
81 /**
82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
83 * @type: the DMA buffer type
84 * @device: the device pointer
85 * @size: the buffer size to allocate
86 * @dmab: buffer allocation record to store the allocated data
87 *
88 * Calls the memory-allocator function for the corresponding
89 * buffer type. When no space is left, this function reduces the size and
90 * tries to allocate again. The size actually allocated is stored in
91 * res_size argument.
92 *
93 * Return: Zero if the buffer with the given size is allocated successfully,
94 * otherwise a negative value on error.
95 */
snd_dma_alloc_pages_fallback(int type,struct device * device,size_t size,struct snd_dma_buffer * dmab)96 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
97 struct snd_dma_buffer *dmab)
98 {
99 int err;
100
101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
102 if (err != -ENOMEM)
103 return err;
104 if (size <= PAGE_SIZE)
105 return -ENOMEM;
106 size >>= 1;
107 size = PAGE_SIZE << get_order(size);
108 }
109 if (! dmab->area)
110 return -ENOMEM;
111 return 0;
112 }
113 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
114
115 /**
116 * snd_dma_free_pages - release the allocated buffer
117 * @dmab: the buffer allocation record to release
118 *
119 * Releases the allocated buffer via snd_dma_alloc_pages().
120 */
snd_dma_free_pages(struct snd_dma_buffer * dmab)121 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
122 {
123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
124
125 if (ops && ops->free)
126 ops->free(dmab);
127 }
128 EXPORT_SYMBOL(snd_dma_free_pages);
129
130 /* called by devres */
__snd_release_pages(struct device * dev,void * res)131 static void __snd_release_pages(struct device *dev, void *res)
132 {
133 snd_dma_free_pages(res);
134 }
135
136 /**
137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
138 * @dev: the device pointer
139 * @type: the DMA buffer type
140 * @dir: DMA direction
141 * @size: the buffer size to allocate
142 *
143 * Allocate buffer pages depending on the given type and manage using devres.
144 * The pages will be released automatically at the device removal.
145 *
146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
148 * SNDRV_DMA_TYPE_VMALLOC type.
149 *
150 * The function returns the snd_dma_buffer object at success, or NULL if failed.
151 */
152 struct snd_dma_buffer *
snd_devm_alloc_dir_pages(struct device * dev,int type,enum dma_data_direction dir,size_t size)153 snd_devm_alloc_dir_pages(struct device *dev, int type,
154 enum dma_data_direction dir, size_t size)
155 {
156 struct snd_dma_buffer *dmab;
157 int err;
158
159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
160 type == SNDRV_DMA_TYPE_VMALLOC))
161 return NULL;
162
163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
164 if (!dmab)
165 return NULL;
166
167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
168 if (err < 0) {
169 devres_free(dmab);
170 return NULL;
171 }
172
173 devres_add(dev, dmab);
174 return dmab;
175 }
176 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
177
178 /**
179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
180 * @dmab: buffer allocation information
181 * @area: VM area information
182 */
snd_dma_buffer_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)183 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
184 struct vm_area_struct *area)
185 {
186 const struct snd_malloc_ops *ops;
187
188 if (!dmab)
189 return -ENOENT;
190 ops = snd_dma_get_ops(dmab);
191 if (ops && ops->mmap)
192 return ops->mmap(dmab, area);
193 else
194 return -ENOENT;
195 }
196 EXPORT_SYMBOL(snd_dma_buffer_mmap);
197
198 #ifdef CONFIG_HAS_DMA
199 /**
200 * snd_dma_buffer_sync - sync DMA buffer between CPU and device
201 * @dmab: buffer allocation information
202 * @mode: sync mode
203 */
snd_dma_buffer_sync(struct snd_dma_buffer * dmab,enum snd_dma_sync_mode mode)204 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
205 enum snd_dma_sync_mode mode)
206 {
207 const struct snd_malloc_ops *ops;
208
209 if (!dmab || !dmab->dev.need_sync)
210 return;
211 ops = snd_dma_get_ops(dmab);
212 if (ops && ops->sync)
213 ops->sync(dmab, mode);
214 }
215 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
216 #endif /* CONFIG_HAS_DMA */
217
218 /**
219 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
220 * @dmab: buffer allocation information
221 * @offset: offset in the ring buffer
222 */
snd_sgbuf_get_addr(struct snd_dma_buffer * dmab,size_t offset)223 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
224 {
225 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
226
227 if (ops && ops->get_addr)
228 return ops->get_addr(dmab, offset);
229 else
230 return dmab->addr + offset;
231 }
232 EXPORT_SYMBOL(snd_sgbuf_get_addr);
233
234 /**
235 * snd_sgbuf_get_page - return the physical page at the corresponding offset
236 * @dmab: buffer allocation information
237 * @offset: offset in the ring buffer
238 */
snd_sgbuf_get_page(struct snd_dma_buffer * dmab,size_t offset)239 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
240 {
241 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
242
243 if (ops && ops->get_page)
244 return ops->get_page(dmab, offset);
245 else
246 return virt_to_page(dmab->area + offset);
247 }
248 EXPORT_SYMBOL(snd_sgbuf_get_page);
249
250 /**
251 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
252 * on sg-buffer
253 * @dmab: buffer allocation information
254 * @ofs: offset in the ring buffer
255 * @size: the requested size
256 */
snd_sgbuf_get_chunk_size(struct snd_dma_buffer * dmab,unsigned int ofs,unsigned int size)257 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
258 unsigned int ofs, unsigned int size)
259 {
260 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
261
262 if (ops && ops->get_chunk_size)
263 return ops->get_chunk_size(dmab, ofs, size);
264 else
265 return size;
266 }
267 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
268
269 /*
270 * Continuous pages allocator
271 */
snd_dma_continuous_alloc(struct snd_dma_buffer * dmab,size_t size)272 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
273 {
274 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL);
275 void *p = alloc_pages_exact(size, gfp);
276
277 if (p)
278 dmab->addr = page_to_phys(virt_to_page(p));
279 return p;
280 }
281
snd_dma_continuous_free(struct snd_dma_buffer * dmab)282 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
283 {
284 free_pages_exact(dmab->area, dmab->bytes);
285 }
286
snd_dma_continuous_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)287 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
288 struct vm_area_struct *area)
289 {
290 return remap_pfn_range(area, area->vm_start,
291 dmab->addr >> PAGE_SHIFT,
292 area->vm_end - area->vm_start,
293 area->vm_page_prot);
294 }
295
296 static const struct snd_malloc_ops snd_dma_continuous_ops = {
297 .alloc = snd_dma_continuous_alloc,
298 .free = snd_dma_continuous_free,
299 .mmap = snd_dma_continuous_mmap,
300 };
301
302 /*
303 * VMALLOC allocator
304 */
snd_dma_vmalloc_alloc(struct snd_dma_buffer * dmab,size_t size)305 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
306 {
307 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM);
308
309 return __vmalloc(size, gfp);
310 }
311
snd_dma_vmalloc_free(struct snd_dma_buffer * dmab)312 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
313 {
314 vfree(dmab->area);
315 }
316
snd_dma_vmalloc_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)317 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
318 struct vm_area_struct *area)
319 {
320 return remap_vmalloc_range(area, dmab->area, 0);
321 }
322
323 #define get_vmalloc_page_addr(dmab, offset) \
324 page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
325
snd_dma_vmalloc_get_addr(struct snd_dma_buffer * dmab,size_t offset)326 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
327 size_t offset)
328 {
329 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
330 }
331
snd_dma_vmalloc_get_page(struct snd_dma_buffer * dmab,size_t offset)332 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
333 size_t offset)
334 {
335 return vmalloc_to_page(dmab->area + offset);
336 }
337
338 static unsigned int
snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer * dmab,unsigned int ofs,unsigned int size)339 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
340 unsigned int ofs, unsigned int size)
341 {
342 unsigned int start, end;
343 unsigned long addr;
344
345 start = ALIGN_DOWN(ofs, PAGE_SIZE);
346 end = ofs + size - 1; /* the last byte address */
347 /* check page continuity */
348 addr = get_vmalloc_page_addr(dmab, start);
349 for (;;) {
350 start += PAGE_SIZE;
351 if (start > end)
352 break;
353 addr += PAGE_SIZE;
354 if (get_vmalloc_page_addr(dmab, start) != addr)
355 return start - ofs;
356 }
357 /* ok, all on continuous pages */
358 return size;
359 }
360
361 static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
362 .alloc = snd_dma_vmalloc_alloc,
363 .free = snd_dma_vmalloc_free,
364 .mmap = snd_dma_vmalloc_mmap,
365 .get_addr = snd_dma_vmalloc_get_addr,
366 .get_page = snd_dma_vmalloc_get_page,
367 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
368 };
369
370 #ifdef CONFIG_HAS_DMA
371 /*
372 * IRAM allocator
373 */
374 #ifdef CONFIG_GENERIC_ALLOCATOR
snd_dma_iram_alloc(struct snd_dma_buffer * dmab,size_t size)375 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
376 {
377 struct device *dev = dmab->dev.dev;
378 struct gen_pool *pool;
379 void *p;
380
381 if (dev->of_node) {
382 pool = of_gen_pool_get(dev->of_node, "iram", 0);
383 /* Assign the pool into private_data field */
384 dmab->private_data = pool;
385
386 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
387 if (p)
388 return p;
389 }
390
391 /* Internal memory might have limited size and no enough space,
392 * so if we fail to malloc, try to fetch memory traditionally.
393 */
394 dmab->dev.type = SNDRV_DMA_TYPE_DEV;
395 return __snd_dma_alloc_pages(dmab, size);
396 }
397
snd_dma_iram_free(struct snd_dma_buffer * dmab)398 static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
399 {
400 struct gen_pool *pool = dmab->private_data;
401
402 if (pool && dmab->area)
403 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
404 }
405
snd_dma_iram_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)406 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
407 struct vm_area_struct *area)
408 {
409 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
410 return remap_pfn_range(area, area->vm_start,
411 dmab->addr >> PAGE_SHIFT,
412 area->vm_end - area->vm_start,
413 area->vm_page_prot);
414 }
415
416 static const struct snd_malloc_ops snd_dma_iram_ops = {
417 .alloc = snd_dma_iram_alloc,
418 .free = snd_dma_iram_free,
419 .mmap = snd_dma_iram_mmap,
420 };
421 #endif /* CONFIG_GENERIC_ALLOCATOR */
422
423 #define DEFAULT_GFP \
424 (GFP_KERNEL | \
425 __GFP_COMP | /* compound page lets parts be mapped */ \
426 __GFP_NORETRY | /* don't trigger OOM-killer */ \
427 __GFP_NOWARN) /* no stack trace print - this call is non-critical */
428
429 /*
430 * Coherent device pages allocator
431 */
snd_dma_dev_alloc(struct snd_dma_buffer * dmab,size_t size)432 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
433 {
434 void *p;
435
436 p = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
437 #ifdef CONFIG_X86
438 if (p && dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC)
439 set_memory_wc((unsigned long)p, PAGE_ALIGN(size) >> PAGE_SHIFT);
440 #endif
441 return p;
442 }
443
snd_dma_dev_free(struct snd_dma_buffer * dmab)444 static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
445 {
446 #ifdef CONFIG_X86
447 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC)
448 set_memory_wb((unsigned long)dmab->area,
449 PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT);
450 #endif
451 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
452 }
453
snd_dma_dev_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)454 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
455 struct vm_area_struct *area)
456 {
457 #ifdef CONFIG_X86
458 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC)
459 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
460 #endif
461 return dma_mmap_coherent(dmab->dev.dev, area,
462 dmab->area, dmab->addr, dmab->bytes);
463 }
464
465 static const struct snd_malloc_ops snd_dma_dev_ops = {
466 .alloc = snd_dma_dev_alloc,
467 .free = snd_dma_dev_free,
468 .mmap = snd_dma_dev_mmap,
469 };
470
471 /*
472 * Write-combined pages
473 */
474 #ifdef CONFIG_X86
475 /* On x86, share the same ops as the standard dev ops */
476 #define snd_dma_wc_ops snd_dma_dev_ops
477 #else /* CONFIG_X86 */
snd_dma_wc_alloc(struct snd_dma_buffer * dmab,size_t size)478 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
479 {
480 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
481 }
482
snd_dma_wc_free(struct snd_dma_buffer * dmab)483 static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
484 {
485 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
486 }
487
snd_dma_wc_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)488 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
489 struct vm_area_struct *area)
490 {
491 return dma_mmap_wc(dmab->dev.dev, area,
492 dmab->area, dmab->addr, dmab->bytes);
493 }
494
495 static const struct snd_malloc_ops snd_dma_wc_ops = {
496 .alloc = snd_dma_wc_alloc,
497 .free = snd_dma_wc_free,
498 .mmap = snd_dma_wc_mmap,
499 };
500 #endif /* CONFIG_X86 */
501
502 /*
503 * Non-contiguous pages allocator
504 */
snd_dma_noncontig_alloc(struct snd_dma_buffer * dmab,size_t size)505 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
506 {
507 struct sg_table *sgt;
508 void *p;
509
510 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
511 DEFAULT_GFP, 0);
512 if (!sgt)
513 return NULL;
514 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->dev.dir);
515 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
516 if (p)
517 dmab->private_data = sgt;
518 else
519 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
520 return p;
521 }
522
snd_dma_noncontig_free(struct snd_dma_buffer * dmab)523 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
524 {
525 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
526 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
527 dmab->dev.dir);
528 }
529
snd_dma_noncontig_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)530 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
531 struct vm_area_struct *area)
532 {
533 return dma_mmap_noncontiguous(dmab->dev.dev, area,
534 dmab->bytes, dmab->private_data);
535 }
536
snd_dma_noncontig_sync(struct snd_dma_buffer * dmab,enum snd_dma_sync_mode mode)537 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
538 enum snd_dma_sync_mode mode)
539 {
540 if (mode == SNDRV_DMA_SYNC_CPU) {
541 if (dmab->dev.dir == DMA_TO_DEVICE)
542 return;
543 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
544 dmab->dev.dir);
545 invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
546 } else {
547 if (dmab->dev.dir == DMA_FROM_DEVICE)
548 return;
549 flush_kernel_vmap_range(dmab->area, dmab->bytes);
550 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
551 dmab->dev.dir);
552 }
553 }
554
snd_dma_noncontig_iter_set(struct snd_dma_buffer * dmab,struct sg_page_iter * piter,size_t offset)555 static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
556 struct sg_page_iter *piter,
557 size_t offset)
558 {
559 struct sg_table *sgt = dmab->private_data;
560
561 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
562 offset >> PAGE_SHIFT);
563 }
564
snd_dma_noncontig_get_addr(struct snd_dma_buffer * dmab,size_t offset)565 static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
566 size_t offset)
567 {
568 struct sg_dma_page_iter iter;
569
570 snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
571 __sg_page_iter_dma_next(&iter);
572 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
573 }
574
snd_dma_noncontig_get_page(struct snd_dma_buffer * dmab,size_t offset)575 static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
576 size_t offset)
577 {
578 struct sg_page_iter iter;
579
580 snd_dma_noncontig_iter_set(dmab, &iter, offset);
581 __sg_page_iter_next(&iter);
582 return sg_page_iter_page(&iter);
583 }
584
585 static unsigned int
snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer * dmab,unsigned int ofs,unsigned int size)586 snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
587 unsigned int ofs, unsigned int size)
588 {
589 struct sg_dma_page_iter iter;
590 unsigned int start, end;
591 unsigned long addr;
592
593 start = ALIGN_DOWN(ofs, PAGE_SIZE);
594 end = ofs + size - 1; /* the last byte address */
595 snd_dma_noncontig_iter_set(dmab, &iter.base, start);
596 if (!__sg_page_iter_dma_next(&iter))
597 return 0;
598 /* check page continuity */
599 addr = sg_page_iter_dma_address(&iter);
600 for (;;) {
601 start += PAGE_SIZE;
602 if (start > end)
603 break;
604 addr += PAGE_SIZE;
605 if (!__sg_page_iter_dma_next(&iter) ||
606 sg_page_iter_dma_address(&iter) != addr)
607 return start - ofs;
608 }
609 /* ok, all on continuous pages */
610 return size;
611 }
612
613 static const struct snd_malloc_ops snd_dma_noncontig_ops = {
614 .alloc = snd_dma_noncontig_alloc,
615 .free = snd_dma_noncontig_free,
616 .mmap = snd_dma_noncontig_mmap,
617 .sync = snd_dma_noncontig_sync,
618 .get_addr = snd_dma_noncontig_get_addr,
619 .get_page = snd_dma_noncontig_get_page,
620 .get_chunk_size = snd_dma_noncontig_get_chunk_size,
621 };
622
623 /*
624 * Non-coherent pages allocator
625 */
snd_dma_noncoherent_alloc(struct snd_dma_buffer * dmab,size_t size)626 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
627 {
628 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->dev.dir);
629 return dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
630 dmab->dev.dir, DEFAULT_GFP);
631 }
632
snd_dma_noncoherent_free(struct snd_dma_buffer * dmab)633 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
634 {
635 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
636 dmab->addr, dmab->dev.dir);
637 }
638
snd_dma_noncoherent_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)639 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
640 struct vm_area_struct *area)
641 {
642 area->vm_page_prot = vm_get_page_prot(area->vm_flags);
643 return dma_mmap_pages(dmab->dev.dev, area,
644 area->vm_end - area->vm_start,
645 virt_to_page(dmab->area));
646 }
647
snd_dma_noncoherent_sync(struct snd_dma_buffer * dmab,enum snd_dma_sync_mode mode)648 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
649 enum snd_dma_sync_mode mode)
650 {
651 if (mode == SNDRV_DMA_SYNC_CPU) {
652 if (dmab->dev.dir != DMA_TO_DEVICE)
653 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
654 dmab->bytes, dmab->dev.dir);
655 } else {
656 if (dmab->dev.dir != DMA_FROM_DEVICE)
657 dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
658 dmab->bytes, dmab->dev.dir);
659 }
660 }
661
662 static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
663 .alloc = snd_dma_noncoherent_alloc,
664 .free = snd_dma_noncoherent_free,
665 .mmap = snd_dma_noncoherent_mmap,
666 .sync = snd_dma_noncoherent_sync,
667 };
668
669 #endif /* CONFIG_HAS_DMA */
670
671 /*
672 * Entry points
673 */
674 static const struct snd_malloc_ops *dma_ops[] = {
675 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
676 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
677 #ifdef CONFIG_HAS_DMA
678 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
679 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
680 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
681 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
682 #ifdef CONFIG_GENERIC_ALLOCATOR
683 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
684 #endif /* CONFIG_GENERIC_ALLOCATOR */
685 #endif /* CONFIG_HAS_DMA */
686 #ifdef CONFIG_SND_DMA_SGBUF
687 [SNDRV_DMA_TYPE_DEV_SG] = &snd_dma_sg_ops,
688 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_ops,
689 #endif
690 };
691
snd_dma_get_ops(struct snd_dma_buffer * dmab)692 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
693 {
694 if (WARN_ON_ONCE(!dmab))
695 return NULL;
696 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
697 dmab->dev.type >= ARRAY_SIZE(dma_ops)))
698 return NULL;
699 return dma_ops[dmab->dev.type];
700 }
701