1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3 * Copyright (c) 2020-2021, Arm Limited.
4 */
5 #include <bench.h>
6 #include <crypto/crypto.h>
7 #include <initcall.h>
8 #include <kernel/embedded_ts.h>
9 #include <kernel/ldelf_loader.h>
10 #include <kernel/secure_partition.h>
11 #include <kernel/spinlock.h>
12 #include <kernel/spmc_sp_handler.h>
13 #include <kernel/thread_spmc.h>
14 #include <kernel/ts_store.h>
15 #include <ldelf.h>
16 #include <mm/core_mmu.h>
17 #include <mm/fobj.h>
18 #include <mm/mobj.h>
19 #include <mm/vm.h>
20 #include <optee_ffa.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <tee_api_types.h>
24 #include <trace.h>
25 #include <types_ext.h>
26 #include <utee_defines.h>
27 #include <util.h>
28 #include <zlib.h>
29
30 #include "thread_private.h"
31
32 const struct ts_ops sp_ops;
33
34 /* List that holds all of the loaded SP's */
35 static struct sp_sessions_head open_sp_sessions =
36 TAILQ_HEAD_INITIALIZER(open_sp_sessions);
37
find_secure_partition(const TEE_UUID * uuid)38 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
39 {
40 const struct embedded_ts *sp = NULL;
41
42 for_each_secure_partition(sp) {
43 if (!memcmp(&sp->uuid, uuid, sizeof(*uuid)))
44 return sp;
45 }
46 return NULL;
47 }
48
is_sp_ctx(struct ts_ctx * ctx)49 bool is_sp_ctx(struct ts_ctx *ctx)
50 {
51 return ctx && (ctx->ops == &sp_ops);
52 }
53
set_sp_ctx_ops(struct ts_ctx * ctx)54 static void set_sp_ctx_ops(struct ts_ctx *ctx)
55 {
56 ctx->ops = &sp_ops;
57 }
58
sp_find_session_id(const TEE_UUID * uuid,uint32_t * session_id)59 TEE_Result sp_find_session_id(const TEE_UUID *uuid, uint32_t *session_id)
60 {
61 struct sp_session *s = NULL;
62
63 TAILQ_FOREACH(s, &open_sp_sessions, link) {
64 if (!memcmp(&s->ts_sess.ctx->uuid, uuid, sizeof(*uuid))) {
65 if (s->state == sp_dead)
66 return TEE_ERROR_TARGET_DEAD;
67
68 *session_id = s->endpoint_id;
69 return TEE_SUCCESS;
70 }
71 }
72
73 return TEE_ERROR_ITEM_NOT_FOUND;
74 }
75
sp_get_session(uint32_t session_id)76 struct sp_session *sp_get_session(uint32_t session_id)
77 {
78 struct sp_session *s = NULL;
79
80 TAILQ_FOREACH(s, &open_sp_sessions, link) {
81 if (s->endpoint_id == session_id)
82 return s;
83 }
84
85 return NULL;
86 }
87
sp_partition_info_get_all(struct ffa_partition_info * fpi,size_t * elem_count)88 TEE_Result sp_partition_info_get_all(struct ffa_partition_info *fpi,
89 size_t *elem_count)
90 {
91 size_t in_count = *elem_count;
92 struct sp_session *s = NULL;
93 size_t count = 0;
94
95 TAILQ_FOREACH(s, &open_sp_sessions, link) {
96 if (s->state == sp_dead)
97 continue;
98 if (count < in_count) {
99 spmc_fill_partition_entry(fpi, s->endpoint_id, 1);
100 fpi++;
101 }
102 count++;
103 }
104
105 *elem_count = count;
106 if (count > in_count)
107 return TEE_ERROR_SHORT_BUFFER;
108
109 return TEE_SUCCESS;
110 }
111
sp_has_exclusive_access(struct sp_mem_map_region * mem,struct user_mode_ctx * uctx)112 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
113 struct user_mode_ctx *uctx)
114 {
115 /*
116 * Check that we have access to the region if it is supposed to be
117 * mapped to the current context.
118 */
119 if (uctx) {
120 struct vm_region *region = NULL;
121
122 /* Make sure that each mobj belongs to the SP */
123 TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
124 if (region->mobj == mem->mobj)
125 break;
126 }
127
128 if (!region)
129 return false;
130 }
131
132 /* Check that it is not shared with another SP */
133 return !sp_mem_is_shared(mem);
134 }
135
sp_init_info(struct sp_ctx * ctx,struct thread_smc_args * args)136 static void sp_init_info(struct sp_ctx *ctx, struct thread_smc_args *args)
137 {
138 struct sp_ffa_init_info *info = NULL;
139
140 /*
141 * When starting the SP for the first time a init_info struct is passed.
142 * Store the struct on the stack and store the address in x0
143 */
144 ctx->uctx.stack_ptr -= ROUNDUP(sizeof(*info), STACK_ALIGNMENT);
145
146 info = (struct sp_ffa_init_info *)ctx->uctx.stack_ptr;
147
148 info->magic = 0;
149 info->count = 0;
150 args->a0 = (vaddr_t)info;
151 }
152
new_session_id(struct sp_sessions_head * open_sessions)153 static uint16_t new_session_id(struct sp_sessions_head *open_sessions)
154 {
155 struct sp_session *last = NULL;
156 uint16_t id = SPMC_ENDPOINT_ID + 1;
157
158 last = TAILQ_LAST(open_sessions, sp_sessions_head);
159 if (last)
160 id = last->endpoint_id + 1;
161
162 assert(id > SPMC_ENDPOINT_ID);
163 return id;
164 }
165
sp_create_ctx(const TEE_UUID * uuid,struct sp_session * s)166 static TEE_Result sp_create_ctx(const TEE_UUID *uuid, struct sp_session *s)
167 {
168 TEE_Result res = TEE_SUCCESS;
169 struct sp_ctx *spc = NULL;
170
171 /* Register context */
172 spc = calloc(1, sizeof(struct sp_ctx));
173 if (!spc)
174 return TEE_ERROR_OUT_OF_MEMORY;
175
176 spc->uctx.ts_ctx = &spc->ts_ctx;
177 spc->open_session = s;
178 s->ts_sess.ctx = &spc->ts_ctx;
179 spc->ts_ctx.uuid = *uuid;
180
181 res = vm_info_init(&spc->uctx);
182 if (res)
183 goto err;
184
185 set_sp_ctx_ops(&spc->ts_ctx);
186
187 return TEE_SUCCESS;
188
189 err:
190 free(spc);
191 return res;
192 }
193
sp_create_session(struct sp_sessions_head * open_sessions,const TEE_UUID * uuid,struct sp_session ** sess)194 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
195 const TEE_UUID *uuid,
196 struct sp_session **sess)
197 {
198 TEE_Result res = TEE_SUCCESS;
199 struct sp_session *s = calloc(1, sizeof(struct sp_session));
200
201 if (!s)
202 return TEE_ERROR_OUT_OF_MEMORY;
203
204 s->endpoint_id = new_session_id(open_sessions);
205 if (!s->endpoint_id) {
206 res = TEE_ERROR_OVERFLOW;
207 goto err;
208 }
209
210 DMSG("Loading Secure Partition %pUl", (void *)uuid);
211 res = sp_create_ctx(uuid, s);
212 if (res)
213 goto err;
214
215 TAILQ_INSERT_TAIL(open_sessions, s, link);
216 *sess = s;
217 return TEE_SUCCESS;
218
219 err:
220 free(s);
221 return res;
222 }
223
sp_init_set_registers(struct sp_ctx * ctx)224 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
225 {
226 struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
227
228 memset(sp_regs, 0, sizeof(*sp_regs));
229 sp_regs->sp = ctx->uctx.stack_ptr;
230 sp_regs->pc = ctx->uctx.entry_func;
231
232 return TEE_SUCCESS;
233 }
234
sp_map_shared(struct sp_session * s,struct sp_mem_receiver * receiver,struct sp_mem * smem,uint64_t * va)235 TEE_Result sp_map_shared(struct sp_session *s,
236 struct sp_mem_receiver *receiver,
237 struct sp_mem *smem,
238 uint64_t *va)
239 {
240 TEE_Result res = TEE_SUCCESS;
241 struct sp_ctx *ctx = NULL;
242 uint32_t perm = TEE_MATTR_UR;
243 struct sp_mem_map_region *reg = NULL;
244
245 ctx = to_sp_ctx(s->ts_sess.ctx);
246
247 /* Get the permission */
248 if (receiver->perm.perm & FFA_MEM_ACC_EXE)
249 perm |= TEE_MATTR_UX;
250
251 if (receiver->perm.perm & FFA_MEM_ACC_RW) {
252 if (receiver->perm.perm & FFA_MEM_ACC_EXE)
253 return TEE_ERROR_ACCESS_CONFLICT;
254
255 perm |= TEE_MATTR_UW;
256 }
257 /*
258 * Currently we don't support passing a va. We can't guarantee that the
259 * full region will be mapped in a contiguous region. A smem->region can
260 * have multiple mobj for one share. Currently there doesn't seem to be
261 * an option to guarantee that these will be mapped in a contiguous va
262 * space.
263 */
264 if (*va)
265 return TEE_ERROR_NOT_SUPPORTED;
266
267 SLIST_FOREACH(reg, &smem->regions, link) {
268 res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
269 perm, 0, reg->mobj, reg->page_offset);
270
271 if (res != TEE_SUCCESS) {
272 EMSG("Failed to map memory region %#"PRIx32, res);
273 return res;
274 }
275 }
276 return TEE_SUCCESS;
277 }
278
sp_unmap_ffa_regions(struct sp_session * s,struct sp_mem * smem)279 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
280 {
281 TEE_Result res = TEE_SUCCESS;
282 vaddr_t vaddr = 0;
283 size_t len = 0;
284 struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
285 struct sp_mem_map_region *reg = NULL;
286
287 SLIST_FOREACH(reg, &smem->regions, link) {
288 vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
289 reg->mobj);
290 len = reg->page_count * SMALL_PAGE_SIZE;
291
292 res = vm_unmap(&ctx->uctx, vaddr, len);
293 if (res != TEE_SUCCESS)
294 return res;
295 }
296
297 return TEE_SUCCESS;
298 }
299
sp_open_session(struct sp_session ** sess,struct sp_sessions_head * open_sessions,const TEE_UUID * uuid)300 static TEE_Result sp_open_session(struct sp_session **sess,
301 struct sp_sessions_head *open_sessions,
302 const TEE_UUID *uuid)
303 {
304 TEE_Result res = TEE_SUCCESS;
305 struct sp_session *s = NULL;
306 struct sp_ctx *ctx = NULL;
307
308 if (!find_secure_partition(uuid))
309 return TEE_ERROR_ITEM_NOT_FOUND;
310
311 res = sp_create_session(open_sessions, uuid, &s);
312 if (res != TEE_SUCCESS) {
313 DMSG("sp_create_session failed %#"PRIx32, res);
314 return res;
315 }
316
317 ctx = to_sp_ctx(s->ts_sess.ctx);
318 assert(ctx);
319 if (!ctx)
320 return TEE_ERROR_TARGET_DEAD;
321 *sess = s;
322
323 ts_push_current_session(&s->ts_sess);
324 /* Load the SP using ldelf. */
325 ldelf_load_ldelf(&ctx->uctx);
326 res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
327
328 if (res != TEE_SUCCESS) {
329 EMSG("Failed. loading SP using ldelf %#"PRIx32, res);
330 ts_pop_current_session();
331 return TEE_ERROR_TARGET_DEAD;
332 }
333
334 /* Make the SP ready for its first run */
335 s->state = sp_idle;
336 s->caller_id = 0;
337 sp_init_set_registers(ctx);
338 ts_pop_current_session();
339
340 return TEE_SUCCESS;
341 }
342
sp_init_uuid(const TEE_UUID * uuid)343 static TEE_Result sp_init_uuid(const TEE_UUID *uuid)
344 {
345 TEE_Result res = TEE_SUCCESS;
346 struct sp_session *sess = NULL;
347 struct thread_smc_args args = { };
348
349 res = sp_open_session(&sess,
350 &open_sp_sessions,
351 uuid);
352 if (res)
353 return res;
354
355 ts_push_current_session(&sess->ts_sess);
356 sp_init_info(to_sp_ctx(sess->ts_sess.ctx), &args);
357 ts_pop_current_session();
358
359 if (sp_enter(&args, sess))
360 return FFA_ABORTED;
361
362 spmc_sp_msg_handler(&args, sess);
363
364 return TEE_SUCCESS;
365 }
366
sp_enter(struct thread_smc_args * args,struct sp_session * sp)367 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp)
368 {
369 TEE_Result res = FFA_OK;
370 struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
371
372 ctx->sp_regs.x[0] = args->a0;
373 ctx->sp_regs.x[1] = args->a1;
374 ctx->sp_regs.x[2] = args->a2;
375 ctx->sp_regs.x[3] = args->a3;
376 ctx->sp_regs.x[4] = args->a4;
377 ctx->sp_regs.x[5] = args->a5;
378 ctx->sp_regs.x[6] = args->a6;
379 ctx->sp_regs.x[7] = args->a7;
380
381 res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
382
383 args->a0 = ctx->sp_regs.x[0];
384 args->a1 = ctx->sp_regs.x[1];
385 args->a2 = ctx->sp_regs.x[2];
386 args->a3 = ctx->sp_regs.x[3];
387 args->a4 = ctx->sp_regs.x[4];
388 args->a5 = ctx->sp_regs.x[5];
389 args->a6 = ctx->sp_regs.x[6];
390 args->a7 = ctx->sp_regs.x[7];
391
392 return res;
393 }
394
sp_enter_invoke_cmd(struct ts_session * s,uint32_t cmd __unused)395 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
396 uint32_t cmd __unused)
397 {
398 struct sp_ctx *ctx = to_sp_ctx(s->ctx);
399 TEE_Result res = TEE_SUCCESS;
400 uint32_t exceptions = 0;
401 uint64_t cpsr = 0;
402 struct sp_session *sp_s = to_sp_session(s);
403 struct ts_session *sess = NULL;
404 struct thread_ctx_regs *sp_regs = NULL;
405 uint32_t panicked = false;
406 uint32_t panic_code = 0;
407
408 bm_timestamp();
409
410 sp_regs = &ctx->sp_regs;
411 ts_push_current_session(s);
412
413 cpsr = sp_regs->cpsr;
414 sp_regs->cpsr = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
415
416 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
417 __thread_enter_user_mode(sp_regs, &panicked, &panic_code);
418 sp_regs->cpsr = cpsr;
419 thread_unmask_exceptions(exceptions);
420
421 thread_user_clear_vfp(&ctx->uctx);
422
423 if (panicked) {
424 DMSG("SP panicked with code %#"PRIx32, panic_code);
425 abort_print_current_ts();
426
427 sess = ts_pop_current_session();
428 cpu_spin_lock(&sp_s->spinlock);
429 sp_s->state = sp_dead;
430 cpu_spin_unlock(&sp_s->spinlock);
431
432 return TEE_ERROR_TARGET_DEAD;
433 }
434
435 sess = ts_pop_current_session();
436 assert(sess == s);
437
438 bm_timestamp();
439
440 return res;
441 }
442
443 /* We currently don't support 32 bits */
444 #ifdef ARM64
sp_svc_store_registers(struct thread_svc_regs * regs,struct thread_ctx_regs * sp_regs)445 static void sp_svc_store_registers(struct thread_svc_regs *regs,
446 struct thread_ctx_regs *sp_regs)
447 {
448 COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
449 memcpy(sp_regs->x, ®s->x0, 31 * sizeof(regs->x0));
450 sp_regs->pc = regs->elr;
451 sp_regs->sp = regs->sp_el0;
452 }
453 #endif
454
sp_handle_svc(struct thread_svc_regs * regs)455 static bool sp_handle_svc(struct thread_svc_regs *regs)
456 {
457 struct ts_session *ts = ts_get_current_session();
458 struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
459 struct sp_session *s = uctx->open_session;
460
461 assert(s);
462
463 sp_svc_store_registers(regs, &uctx->sp_regs);
464
465 regs->x0 = 0;
466 regs->x1 = 0; /* panic */
467 regs->x2 = 0; /* panic code */
468
469 /*
470 * All the registers of the SP are saved in the SP session by the SVC
471 * handler.
472 * We always return to S-El1 after handling the SVC. We will continue
473 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
474 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
475 * saved registers to the thread_smc_args. The thread_smc_args object is
476 * afterward used by the spmc_sp_msg_handler() to handle the
477 * FF-A message send by the SP.
478 */
479 return false;
480 }
481
482 /*
483 * Note: this variable is weak just to ease breaking its dependency chain
484 * when added to the unpaged area.
485 */
486 const struct ts_ops sp_ops __weak __rodata_unpaged("sp_ops") = {
487 .enter_invoke_cmd = sp_enter_invoke_cmd,
488 .handle_svc = sp_handle_svc,
489 };
490
sp_init_all(void)491 static TEE_Result sp_init_all(void)
492 {
493 TEE_Result res = TEE_SUCCESS;
494 const struct embedded_ts *sp = NULL;
495 char __maybe_unused msg[60] = { '\0', };
496
497 for_each_secure_partition(sp) {
498 if (sp->uncompressed_size)
499 snprintf(msg, sizeof(msg),
500 " (compressed, uncompressed %u)",
501 sp->uncompressed_size);
502 else
503 msg[0] = '\0';
504 DMSG("SP %pUl size %u%s", (void *)&sp->uuid, sp->size, msg);
505
506 res = sp_init_uuid(&sp->uuid);
507
508 if (res != TEE_SUCCESS) {
509 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
510 &sp->uuid, res);
511 if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
512 panic();
513 }
514 }
515
516 return TEE_SUCCESS;
517 }
518
519 boot_final(sp_init_all);
520
secure_partition_open(const TEE_UUID * uuid,struct ts_store_handle ** h)521 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
522 struct ts_store_handle **h)
523 {
524 return emb_ts_open(uuid, h, find_secure_partition);
525 }
526
527 REGISTER_SP_STORE(2) = {
528 .description = "SP store",
529 .open = secure_partition_open,
530 .get_size = emb_ts_get_size,
531 .get_tag = emb_ts_get_tag,
532 .read = emb_ts_read,
533 .close = emb_ts_close,
534 };
535