1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27
28 struct bio_alloc_cache {
29 struct bio_list free_list;
30 unsigned int nr;
31 };
32
33 static struct biovec_slab {
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43
biovec_slab(unsigned short nr_vecs)44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
54 case 129 ... BIO_MAX_VECS:
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60 }
61
62 /*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68
69 /*
70 * Our slab pool management
71 */
72 struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80
create_bio_slab(unsigned int size)81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84
85 if (!bslab)
86 return NULL;
87
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
92 if (!bslab->slab)
93 goto fail_alloc_slab;
94
95 bslab->slab_ref = 1;
96 bslab->slab_size = size;
97
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 return bslab;
100
101 kmem_cache_destroy(bslab->slab);
102
103 fail_alloc_slab:
104 kfree(bslab);
105 return NULL;
106 }
107
bs_bio_slab_size(struct bio_set * bs)108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109 {
110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
111 }
112
bio_find_or_create_slab(struct bio_set * bs)113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114 {
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
117
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
120 if (bslab)
121 bslab->slab_ref++;
122 else
123 bslab = create_bio_slab(size);
124 mutex_unlock(&bio_slab_lock);
125
126 if (bslab)
127 return bslab->slab;
128 return NULL;
129 }
130
bio_put_slab(struct bio_set * bs)131 static void bio_put_slab(struct bio_set *bs)
132 {
133 struct bio_slab *bslab = NULL;
134 unsigned int slab_size = bs_bio_slab_size(bs);
135
136 mutex_lock(&bio_slab_lock);
137
138 bslab = xa_load(&bio_slabs, slab_size);
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 goto out;
141
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 xa_erase(&bio_slabs, slab_size);
150
151 kmem_cache_destroy(bslab->slab);
152 kfree(bslab);
153
154 out:
155 mutex_unlock(&bio_slab_lock);
156 }
157
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
159 {
160 BUG_ON(nr_vecs > BIO_MAX_VECS);
161
162 if (nr_vecs == BIO_MAX_VECS)
163 mempool_free(bv, pool);
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
166 }
167
168 /*
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
171 */
bvec_alloc_gfp(gfp_t gfp)172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173 {
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
176 }
177
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 gfp_t gfp_mask)
180 {
181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
182
183 if (WARN_ON_ONCE(!bvs))
184 return NULL;
185
186 /*
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
189 */
190 *nr_vecs = bvs->nr_vecs;
191
192 /*
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
196 */
197 if (*nr_vecs < BIO_MAX_VECS) {
198 struct bio_vec *bvl;
199
200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
202 return bvl;
203 *nr_vecs = BIO_MAX_VECS;
204 }
205
206 return mempool_alloc(pool, gfp_mask);
207 }
208
bio_uninit(struct bio * bio)209 void bio_uninit(struct bio *bio)
210 {
211 #ifdef CONFIG_BLK_CGROUP
212 if (bio->bi_blkg) {
213 blkg_put(bio->bi_blkg);
214 bio->bi_blkg = NULL;
215 }
216 #endif
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
219
220 bio_crypt_free_ctx(bio);
221 }
222 EXPORT_SYMBOL(bio_uninit);
223
bio_free(struct bio * bio)224 static void bio_free(struct bio *bio)
225 {
226 struct bio_set *bs = bio->bi_pool;
227 void *p;
228
229 bio_uninit(bio);
230
231 if (bs) {
232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
233
234 /*
235 * If we have front padding, adjust the bio pointer before freeing
236 */
237 p = bio;
238 p -= bs->front_pad;
239
240 mempool_free(p, &bs->bio_pool);
241 } else {
242 /* Bio was allocated by bio_kmalloc() */
243 kfree(bio);
244 }
245 }
246
247 /*
248 * Users of this function have their own bio allocation. Subsequently,
249 * they must remember to pair any call to bio_init() with bio_uninit()
250 * when IO has completed, or when the bio is released.
251 */
bio_init(struct bio * bio,struct bio_vec * table,unsigned short max_vecs)252 void bio_init(struct bio *bio, struct bio_vec *table,
253 unsigned short max_vecs)
254 {
255 bio->bi_next = NULL;
256 bio->bi_bdev = NULL;
257 bio->bi_opf = 0;
258 bio->bi_flags = 0;
259 bio->bi_ioprio = 0;
260 bio->bi_write_hint = 0;
261 bio->bi_status = 0;
262 bio->bi_iter.bi_sector = 0;
263 bio->bi_iter.bi_size = 0;
264 bio->bi_iter.bi_idx = 0;
265 bio->bi_iter.bi_bvec_done = 0;
266 bio->bi_end_io = NULL;
267 bio->bi_private = NULL;
268 #ifdef CONFIG_BLK_CGROUP
269 bio->bi_blkg = NULL;
270 bio->bi_issue.value = 0;
271 #ifdef CONFIG_BLK_CGROUP_IOCOST
272 bio->bi_iocost_cost = 0;
273 #endif
274 #endif
275 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
276 bio->bi_crypt_context = NULL;
277 #endif
278 #ifdef CONFIG_BLK_DEV_INTEGRITY
279 bio->bi_integrity = NULL;
280 #endif
281 bio->bi_vcnt = 0;
282
283 atomic_set(&bio->__bi_remaining, 1);
284 atomic_set(&bio->__bi_cnt, 1);
285 bio->bi_cookie = BLK_QC_T_NONE;
286
287 bio->bi_max_vecs = max_vecs;
288 bio->bi_io_vec = table;
289 bio->bi_pool = NULL;
290 }
291 EXPORT_SYMBOL(bio_init);
292
293 /**
294 * bio_reset - reinitialize a bio
295 * @bio: bio to reset
296 *
297 * Description:
298 * After calling bio_reset(), @bio will be in the same state as a freshly
299 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
300 * preserved are the ones that are initialized by bio_alloc_bioset(). See
301 * comment in struct bio.
302 */
bio_reset(struct bio * bio)303 void bio_reset(struct bio *bio)
304 {
305 bio_uninit(bio);
306 memset(bio, 0, BIO_RESET_BYTES);
307 atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310
__bio_chain_endio(struct bio * bio)311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 struct bio *parent = bio->bi_private;
314
315 if (bio->bi_status && !parent->bi_status)
316 parent->bi_status = bio->bi_status;
317 bio_put(bio);
318 return parent;
319 }
320
bio_chain_endio(struct bio * bio)321 static void bio_chain_endio(struct bio *bio)
322 {
323 bio_endio(__bio_chain_endio(bio));
324 }
325
326 /**
327 * bio_chain - chain bio completions
328 * @bio: the target bio
329 * @parent: the parent bio of @bio
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
bio_chain(struct bio * bio,struct bio * parent)337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
343 bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346
bio_alloc_rescue(struct work_struct * work)347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 submit_bio_noacct(bio);
361 }
362 }
363
punt_bios_to_rescuer(struct bio_set * bs)364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
385 while ((bio = bio_list_pop(¤t->bio_list[0])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[0] = nopunt;
388
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(¤t->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400
401 /**
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_* mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
405 * @bs: the bio_set to allocate from.
406 *
407 * Allocate a bio from the mempools in @bs.
408 *
409 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
410 * allocate a bio. This is due to the mempool guarantees. To make this work,
411 * callers must never allocate more than 1 bio at a time from the general pool.
412 * Callers that need to allocate more than 1 bio must always submit the
413 * previously allocated bio for IO before attempting to allocate a new one.
414 * Failure to do so can cause deadlocks under memory pressure.
415 *
416 * Note that when running under submit_bio_noacct() (i.e. any block driver),
417 * bios are not submitted until after you return - see the code in
418 * submit_bio_noacct() that converts recursion into iteration, to prevent
419 * stack overflows.
420 *
421 * This would normally mean allocating multiple bios under submit_bio_noacct()
422 * would be susceptible to deadlocks, but we have
423 * deadlock avoidance code that resubmits any blocked bios from a rescuer
424 * thread.
425 *
426 * However, we do not guarantee forward progress for allocations from other
427 * mempools. Doing multiple allocations from the same mempool under
428 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
429 * for per bio allocations.
430 *
431 * Returns: Pointer to new bio on success, NULL on failure.
432 */
bio_alloc_bioset(gfp_t gfp_mask,unsigned short nr_iovecs,struct bio_set * bs)433 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
434 struct bio_set *bs)
435 {
436 gfp_t saved_gfp = gfp_mask;
437 struct bio *bio;
438 void *p;
439
440 /* should not use nobvec bioset for nr_iovecs > 0 */
441 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
442 return NULL;
443
444 /*
445 * submit_bio_noacct() converts recursion to iteration; this means if
446 * we're running beneath it, any bios we allocate and submit will not be
447 * submitted (and thus freed) until after we return.
448 *
449 * This exposes us to a potential deadlock if we allocate multiple bios
450 * from the same bio_set() while running underneath submit_bio_noacct().
451 * If we were to allocate multiple bios (say a stacking block driver
452 * that was splitting bios), we would deadlock if we exhausted the
453 * mempool's reserve.
454 *
455 * We solve this, and guarantee forward progress, with a rescuer
456 * workqueue per bio_set. If we go to allocate and there are bios on
457 * current->bio_list, we first try the allocation without
458 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
459 * blocking to the rescuer workqueue before we retry with the original
460 * gfp_flags.
461 */
462 if (current->bio_list &&
463 (!bio_list_empty(¤t->bio_list[0]) ||
464 !bio_list_empty(¤t->bio_list[1])) &&
465 bs->rescue_workqueue)
466 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
467
468 p = mempool_alloc(&bs->bio_pool, gfp_mask);
469 if (!p && gfp_mask != saved_gfp) {
470 punt_bios_to_rescuer(bs);
471 gfp_mask = saved_gfp;
472 p = mempool_alloc(&bs->bio_pool, gfp_mask);
473 }
474 if (unlikely(!p))
475 return NULL;
476
477 bio = p + bs->front_pad;
478 if (nr_iovecs > BIO_INLINE_VECS) {
479 struct bio_vec *bvl = NULL;
480
481 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
482 if (!bvl && gfp_mask != saved_gfp) {
483 punt_bios_to_rescuer(bs);
484 gfp_mask = saved_gfp;
485 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
486 }
487 if (unlikely(!bvl))
488 goto err_free;
489
490 bio_init(bio, bvl, nr_iovecs);
491 } else if (nr_iovecs) {
492 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
493 } else {
494 bio_init(bio, NULL, 0);
495 }
496
497 bio->bi_pool = bs;
498 return bio;
499
500 err_free:
501 mempool_free(p, &bs->bio_pool);
502 return NULL;
503 }
504 EXPORT_SYMBOL(bio_alloc_bioset);
505
506 /**
507 * bio_kmalloc - kmalloc a bio for I/O
508 * @gfp_mask: the GFP_* mask given to the slab allocator
509 * @nr_iovecs: number of iovecs to pre-allocate
510 *
511 * Use kmalloc to allocate and initialize a bio.
512 *
513 * Returns: Pointer to new bio on success, NULL on failure.
514 */
bio_kmalloc(gfp_t gfp_mask,unsigned short nr_iovecs)515 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
516 {
517 struct bio *bio;
518
519 if (nr_iovecs > UIO_MAXIOV)
520 return NULL;
521
522 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
523 if (unlikely(!bio))
524 return NULL;
525 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
526 bio->bi_pool = NULL;
527 return bio;
528 }
529 EXPORT_SYMBOL(bio_kmalloc);
530
zero_fill_bio(struct bio * bio)531 void zero_fill_bio(struct bio *bio)
532 {
533 struct bio_vec bv;
534 struct bvec_iter iter;
535
536 bio_for_each_segment(bv, bio, iter)
537 memzero_bvec(&bv);
538 }
539 EXPORT_SYMBOL(zero_fill_bio);
540
541 /**
542 * bio_truncate - truncate the bio to small size of @new_size
543 * @bio: the bio to be truncated
544 * @new_size: new size for truncating the bio
545 *
546 * Description:
547 * Truncate the bio to new size of @new_size. If bio_op(bio) is
548 * REQ_OP_READ, zero the truncated part. This function should only
549 * be used for handling corner cases, such as bio eod.
550 */
bio_truncate(struct bio * bio,unsigned new_size)551 static void bio_truncate(struct bio *bio, unsigned new_size)
552 {
553 struct bio_vec bv;
554 struct bvec_iter iter;
555 unsigned int done = 0;
556 bool truncated = false;
557
558 if (new_size >= bio->bi_iter.bi_size)
559 return;
560
561 if (bio_op(bio) != REQ_OP_READ)
562 goto exit;
563
564 bio_for_each_segment(bv, bio, iter) {
565 if (done + bv.bv_len > new_size) {
566 unsigned offset;
567
568 if (!truncated)
569 offset = new_size - done;
570 else
571 offset = 0;
572 zero_user(bv.bv_page, offset, bv.bv_len - offset);
573 truncated = true;
574 }
575 done += bv.bv_len;
576 }
577
578 exit:
579 /*
580 * Don't touch bvec table here and make it really immutable, since
581 * fs bio user has to retrieve all pages via bio_for_each_segment_all
582 * in its .end_bio() callback.
583 *
584 * It is enough to truncate bio by updating .bi_size since we can make
585 * correct bvec with the updated .bi_size for drivers.
586 */
587 bio->bi_iter.bi_size = new_size;
588 }
589
590 /**
591 * guard_bio_eod - truncate a BIO to fit the block device
592 * @bio: bio to truncate
593 *
594 * This allows us to do IO even on the odd last sectors of a device, even if the
595 * block size is some multiple of the physical sector size.
596 *
597 * We'll just truncate the bio to the size of the device, and clear the end of
598 * the buffer head manually. Truly out-of-range accesses will turn into actual
599 * I/O errors, this only handles the "we need to be able to do I/O at the final
600 * sector" case.
601 */
guard_bio_eod(struct bio * bio)602 void guard_bio_eod(struct bio *bio)
603 {
604 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
605
606 if (!maxsector)
607 return;
608
609 /*
610 * If the *whole* IO is past the end of the device,
611 * let it through, and the IO layer will turn it into
612 * an EIO.
613 */
614 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
615 return;
616
617 maxsector -= bio->bi_iter.bi_sector;
618 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
619 return;
620
621 bio_truncate(bio, maxsector << 9);
622 }
623
624 #define ALLOC_CACHE_MAX 512
625 #define ALLOC_CACHE_SLACK 64
626
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)627 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
628 unsigned int nr)
629 {
630 unsigned int i = 0;
631 struct bio *bio;
632
633 while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
634 cache->nr--;
635 bio_free(bio);
636 if (++i == nr)
637 break;
638 }
639 }
640
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)641 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
642 {
643 struct bio_set *bs;
644
645 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
646 if (bs->cache) {
647 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
648
649 bio_alloc_cache_prune(cache, -1U);
650 }
651 return 0;
652 }
653
bio_alloc_cache_destroy(struct bio_set * bs)654 static void bio_alloc_cache_destroy(struct bio_set *bs)
655 {
656 int cpu;
657
658 if (!bs->cache)
659 return;
660
661 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
662 for_each_possible_cpu(cpu) {
663 struct bio_alloc_cache *cache;
664
665 cache = per_cpu_ptr(bs->cache, cpu);
666 bio_alloc_cache_prune(cache, -1U);
667 }
668 free_percpu(bs->cache);
669 }
670
671 /**
672 * bio_put - release a reference to a bio
673 * @bio: bio to release reference to
674 *
675 * Description:
676 * Put a reference to a &struct bio, either one you have gotten with
677 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
678 **/
bio_put(struct bio * bio)679 void bio_put(struct bio *bio)
680 {
681 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
682 BUG_ON(!atomic_read(&bio->__bi_cnt));
683 if (!atomic_dec_and_test(&bio->__bi_cnt))
684 return;
685 }
686
687 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
688 struct bio_alloc_cache *cache;
689
690 bio_uninit(bio);
691 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
692 bio_list_add_head(&cache->free_list, bio);
693 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
694 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
695 put_cpu();
696 } else {
697 bio_free(bio);
698 }
699 }
700 EXPORT_SYMBOL(bio_put);
701
702 /**
703 * __bio_clone_fast - clone a bio that shares the original bio's biovec
704 * @bio: destination bio
705 * @bio_src: bio to clone
706 *
707 * Clone a &bio. Caller will own the returned bio, but not
708 * the actual data it points to. Reference count of returned
709 * bio will be one.
710 *
711 * Caller must ensure that @bio_src is not freed before @bio.
712 */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)713 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
714 {
715 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
716
717 /*
718 * most users will be overriding ->bi_bdev with a new target,
719 * so we don't set nor calculate new physical/hw segment counts here
720 */
721 bio->bi_bdev = bio_src->bi_bdev;
722 bio_set_flag(bio, BIO_CLONED);
723 if (bio_flagged(bio_src, BIO_THROTTLED))
724 bio_set_flag(bio, BIO_THROTTLED);
725 if (bio_flagged(bio_src, BIO_REMAPPED))
726 bio_set_flag(bio, BIO_REMAPPED);
727 bio->bi_opf = bio_src->bi_opf;
728 bio->bi_ioprio = bio_src->bi_ioprio;
729 bio->bi_write_hint = bio_src->bi_write_hint;
730 bio->bi_iter = bio_src->bi_iter;
731 bio->bi_io_vec = bio_src->bi_io_vec;
732
733 bio_clone_blkg_association(bio, bio_src);
734 blkcg_bio_issue_init(bio);
735 }
736 EXPORT_SYMBOL(__bio_clone_fast);
737
738 /**
739 * bio_clone_fast - clone a bio that shares the original bio's biovec
740 * @bio: bio to clone
741 * @gfp_mask: allocation priority
742 * @bs: bio_set to allocate from
743 *
744 * Like __bio_clone_fast, only also allocates the returned bio
745 */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)746 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
747 {
748 struct bio *b;
749
750 b = bio_alloc_bioset(gfp_mask, 0, bs);
751 if (!b)
752 return NULL;
753
754 __bio_clone_fast(b, bio);
755
756 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
757 goto err_put;
758
759 if (bio_integrity(bio) &&
760 bio_integrity_clone(b, bio, gfp_mask) < 0)
761 goto err_put;
762
763 return b;
764
765 err_put:
766 bio_put(b);
767 return NULL;
768 }
769 EXPORT_SYMBOL(bio_clone_fast);
770
bio_devname(struct bio * bio,char * buf)771 const char *bio_devname(struct bio *bio, char *buf)
772 {
773 return bdevname(bio->bi_bdev, buf);
774 }
775 EXPORT_SYMBOL(bio_devname);
776
777 /**
778 * bio_full - check if the bio is full
779 * @bio: bio to check
780 * @len: length of one segment to be added
781 *
782 * Return true if @bio is full and one segment with @len bytes can't be
783 * added to the bio, otherwise return false
784 */
bio_full(struct bio * bio,unsigned len)785 static inline bool bio_full(struct bio *bio, unsigned len)
786 {
787 if (bio->bi_vcnt >= bio->bi_max_vecs)
788 return true;
789 if (bio->bi_iter.bi_size > UINT_MAX - len)
790 return true;
791 return false;
792 }
793
page_is_mergeable(const struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)794 static inline bool page_is_mergeable(const struct bio_vec *bv,
795 struct page *page, unsigned int len, unsigned int off,
796 bool *same_page)
797 {
798 size_t bv_end = bv->bv_offset + bv->bv_len;
799 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
800 phys_addr_t page_addr = page_to_phys(page);
801
802 if (vec_end_addr + 1 != page_addr + off)
803 return false;
804 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
805 return false;
806
807 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
808 if (*same_page)
809 return true;
810 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
811 }
812
813 /**
814 * __bio_try_merge_page - try appending data to an existing bvec.
815 * @bio: destination bio
816 * @page: start page to add
817 * @len: length of the data to add
818 * @off: offset of the data relative to @page
819 * @same_page: return if the segment has been merged inside the same page
820 *
821 * Try to add the data at @page + @off to the last bvec of @bio. This is a
822 * useful optimisation for file systems with a block size smaller than the
823 * page size.
824 *
825 * Warn if (@len, @off) crosses pages in case that @same_page is true.
826 *
827 * Return %true on success or %false on failure.
828 */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off,bool * same_page)829 static bool __bio_try_merge_page(struct bio *bio, struct page *page,
830 unsigned int len, unsigned int off, bool *same_page)
831 {
832 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
833 return false;
834
835 if (bio->bi_vcnt > 0) {
836 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
837
838 if (page_is_mergeable(bv, page, len, off, same_page)) {
839 if (bio->bi_iter.bi_size > UINT_MAX - len) {
840 *same_page = false;
841 return false;
842 }
843 bv->bv_len += len;
844 bio->bi_iter.bi_size += len;
845 return true;
846 }
847 }
848 return false;
849 }
850
851 /*
852 * Try to merge a page into a segment, while obeying the hardware segment
853 * size limit. This is not for normal read/write bios, but for passthrough
854 * or Zone Append operations that we can't split.
855 */
bio_try_merge_hw_seg(struct request_queue * q,struct bio * bio,struct page * page,unsigned len,unsigned offset,bool * same_page)856 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
857 struct page *page, unsigned len,
858 unsigned offset, bool *same_page)
859 {
860 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
861 unsigned long mask = queue_segment_boundary(q);
862 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
863 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
864
865 if ((addr1 | mask) != (addr2 | mask))
866 return false;
867 if (bv->bv_len + len > queue_max_segment_size(q))
868 return false;
869 return __bio_try_merge_page(bio, page, len, offset, same_page);
870 }
871
872 /**
873 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
874 * @q: the target queue
875 * @bio: destination bio
876 * @page: page to add
877 * @len: vec entry length
878 * @offset: vec entry offset
879 * @max_sectors: maximum number of sectors that can be added
880 * @same_page: return if the segment has been merged inside the same page
881 *
882 * Add a page to a bio while respecting the hardware max_sectors, max_segment
883 * and gap limitations.
884 */
bio_add_hw_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned int max_sectors,bool * same_page)885 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
886 struct page *page, unsigned int len, unsigned int offset,
887 unsigned int max_sectors, bool *same_page)
888 {
889 struct bio_vec *bvec;
890
891 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
892 return 0;
893
894 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
895 return 0;
896
897 if (bio->bi_vcnt > 0) {
898 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
899 return len;
900
901 /*
902 * If the queue doesn't support SG gaps and adding this segment
903 * would create a gap, disallow it.
904 */
905 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
906 if (bvec_gap_to_prev(q, bvec, offset))
907 return 0;
908 }
909
910 if (bio_full(bio, len))
911 return 0;
912
913 if (bio->bi_vcnt >= queue_max_segments(q))
914 return 0;
915
916 bvec = &bio->bi_io_vec[bio->bi_vcnt];
917 bvec->bv_page = page;
918 bvec->bv_len = len;
919 bvec->bv_offset = offset;
920 bio->bi_vcnt++;
921 bio->bi_iter.bi_size += len;
922 return len;
923 }
924
925 /**
926 * bio_add_pc_page - attempt to add page to passthrough bio
927 * @q: the target queue
928 * @bio: destination bio
929 * @page: page to add
930 * @len: vec entry length
931 * @offset: vec entry offset
932 *
933 * Attempt to add a page to the bio_vec maplist. This can fail for a
934 * number of reasons, such as the bio being full or target block device
935 * limitations. The target block device must allow bio's up to PAGE_SIZE,
936 * so it is always possible to add a single page to an empty bio.
937 *
938 * This should only be used by passthrough bios.
939 */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)940 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
941 struct page *page, unsigned int len, unsigned int offset)
942 {
943 bool same_page = false;
944 return bio_add_hw_page(q, bio, page, len, offset,
945 queue_max_hw_sectors(q), &same_page);
946 }
947 EXPORT_SYMBOL(bio_add_pc_page);
948
949 /**
950 * bio_add_zone_append_page - attempt to add page to zone-append bio
951 * @bio: destination bio
952 * @page: page to add
953 * @len: vec entry length
954 * @offset: vec entry offset
955 *
956 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
957 * for a zone-append request. This can fail for a number of reasons, such as the
958 * bio being full or the target block device is not a zoned block device or
959 * other limitations of the target block device. The target block device must
960 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
961 * to an empty bio.
962 *
963 * Returns: number of bytes added to the bio, or 0 in case of a failure.
964 */
bio_add_zone_append_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)965 int bio_add_zone_append_page(struct bio *bio, struct page *page,
966 unsigned int len, unsigned int offset)
967 {
968 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
969 bool same_page = false;
970
971 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
972 return 0;
973
974 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
975 return 0;
976
977 return bio_add_hw_page(q, bio, page, len, offset,
978 queue_max_zone_append_sectors(q), &same_page);
979 }
980 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
981
982 /**
983 * __bio_add_page - add page(s) to a bio in a new segment
984 * @bio: destination bio
985 * @page: start page to add
986 * @len: length of the data to add, may cross pages
987 * @off: offset of the data relative to @page, may cross pages
988 *
989 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
990 * that @bio has space for another bvec.
991 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)992 void __bio_add_page(struct bio *bio, struct page *page,
993 unsigned int len, unsigned int off)
994 {
995 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
996
997 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
998 WARN_ON_ONCE(bio_full(bio, len));
999
1000 bv->bv_page = page;
1001 bv->bv_offset = off;
1002 bv->bv_len = len;
1003
1004 bio->bi_iter.bi_size += len;
1005 bio->bi_vcnt++;
1006
1007 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1008 bio_set_flag(bio, BIO_WORKINGSET);
1009 }
1010 EXPORT_SYMBOL_GPL(__bio_add_page);
1011
1012 /**
1013 * bio_add_page - attempt to add page(s) to bio
1014 * @bio: destination bio
1015 * @page: start page to add
1016 * @len: vec entry length, may cross pages
1017 * @offset: vec entry offset relative to @page, may cross pages
1018 *
1019 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1020 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1021 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1022 int bio_add_page(struct bio *bio, struct page *page,
1023 unsigned int len, unsigned int offset)
1024 {
1025 bool same_page = false;
1026
1027 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1028 if (bio_full(bio, len))
1029 return 0;
1030 __bio_add_page(bio, page, len, offset);
1031 }
1032 return len;
1033 }
1034 EXPORT_SYMBOL(bio_add_page);
1035
__bio_release_pages(struct bio * bio,bool mark_dirty)1036 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1037 {
1038 struct bvec_iter_all iter_all;
1039 struct bio_vec *bvec;
1040
1041 bio_for_each_segment_all(bvec, bio, iter_all) {
1042 if (mark_dirty && !PageCompound(bvec->bv_page))
1043 set_page_dirty_lock(bvec->bv_page);
1044 put_page(bvec->bv_page);
1045 }
1046 }
1047 EXPORT_SYMBOL_GPL(__bio_release_pages);
1048
bio_iov_bvec_set(struct bio * bio,struct iov_iter * iter)1049 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1050 {
1051 size_t size = iov_iter_count(iter);
1052
1053 WARN_ON_ONCE(bio->bi_max_vecs);
1054
1055 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1056 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1057 size_t max_sectors = queue_max_zone_append_sectors(q);
1058
1059 size = min(size, max_sectors << SECTOR_SHIFT);
1060 }
1061
1062 bio->bi_vcnt = iter->nr_segs;
1063 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1064 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1065 bio->bi_iter.bi_size = size;
1066 bio_set_flag(bio, BIO_NO_PAGE_REF);
1067 bio_set_flag(bio, BIO_CLONED);
1068 }
1069
bio_put_pages(struct page ** pages,size_t size,size_t off)1070 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1071 {
1072 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1073
1074 for (i = 0; i < nr; i++)
1075 put_page(pages[i]);
1076 }
1077
1078 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1079
1080 /**
1081 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1082 * @bio: bio to add pages to
1083 * @iter: iov iterator describing the region to be mapped
1084 *
1085 * Pins pages from *iter and appends them to @bio's bvec array. The
1086 * pages will have to be released using put_page() when done.
1087 * For multi-segment *iter, this function only adds pages from the
1088 * next non-empty segment of the iov iterator.
1089 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1090 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1091 {
1092 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1093 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1094 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1095 struct page **pages = (struct page **)bv;
1096 bool same_page = false;
1097 ssize_t size, left;
1098 unsigned len, i;
1099 size_t offset;
1100
1101 /*
1102 * Move page array up in the allocated memory for the bio vecs as far as
1103 * possible so that we can start filling biovecs from the beginning
1104 * without overwriting the temporary page array.
1105 */
1106 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1107 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1108
1109 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1110 if (unlikely(size <= 0))
1111 return size ? size : -EFAULT;
1112
1113 for (left = size, i = 0; left > 0; left -= len, i++) {
1114 struct page *page = pages[i];
1115
1116 len = min_t(size_t, PAGE_SIZE - offset, left);
1117
1118 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1119 if (same_page)
1120 put_page(page);
1121 } else {
1122 if (WARN_ON_ONCE(bio_full(bio, len))) {
1123 bio_put_pages(pages + i, left, offset);
1124 return -EINVAL;
1125 }
1126 __bio_add_page(bio, page, len, offset);
1127 }
1128 offset = 0;
1129 }
1130
1131 iov_iter_advance(iter, size);
1132 return 0;
1133 }
1134
__bio_iov_append_get_pages(struct bio * bio,struct iov_iter * iter)1135 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1136 {
1137 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1138 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1139 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1140 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1141 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1142 struct page **pages = (struct page **)bv;
1143 ssize_t size, left;
1144 unsigned len, i;
1145 size_t offset;
1146 int ret = 0;
1147
1148 if (WARN_ON_ONCE(!max_append_sectors))
1149 return 0;
1150
1151 /*
1152 * Move page array up in the allocated memory for the bio vecs as far as
1153 * possible so that we can start filling biovecs from the beginning
1154 * without overwriting the temporary page array.
1155 */
1156 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1157 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1158
1159 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1160 if (unlikely(size <= 0))
1161 return size ? size : -EFAULT;
1162
1163 for (left = size, i = 0; left > 0; left -= len, i++) {
1164 struct page *page = pages[i];
1165 bool same_page = false;
1166
1167 len = min_t(size_t, PAGE_SIZE - offset, left);
1168 if (bio_add_hw_page(q, bio, page, len, offset,
1169 max_append_sectors, &same_page) != len) {
1170 bio_put_pages(pages + i, left, offset);
1171 ret = -EINVAL;
1172 break;
1173 }
1174 if (same_page)
1175 put_page(page);
1176 offset = 0;
1177 }
1178
1179 iov_iter_advance(iter, size - left);
1180 return ret;
1181 }
1182
1183 /**
1184 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1185 * @bio: bio to add pages to
1186 * @iter: iov iterator describing the region to be added
1187 *
1188 * This takes either an iterator pointing to user memory, or one pointing to
1189 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1190 * map them into the kernel. On IO completion, the caller should put those
1191 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1192 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1193 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1194 * completed by a call to ->ki_complete() or returns with an error other than
1195 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1196 * on IO completion. If it isn't, then pages should be released.
1197 *
1198 * The function tries, but does not guarantee, to pin as many pages as
1199 * fit into the bio, or are requested in @iter, whatever is smaller. If
1200 * MM encounters an error pinning the requested pages, it stops. Error
1201 * is returned only if 0 pages could be pinned.
1202 *
1203 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1204 * responsible for setting BIO_WORKINGSET if necessary.
1205 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1206 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1207 {
1208 int ret = 0;
1209
1210 if (iov_iter_is_bvec(iter)) {
1211 bio_iov_bvec_set(bio, iter);
1212 iov_iter_advance(iter, bio->bi_iter.bi_size);
1213 return 0;
1214 }
1215
1216 do {
1217 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1218 ret = __bio_iov_append_get_pages(bio, iter);
1219 else
1220 ret = __bio_iov_iter_get_pages(bio, iter);
1221 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1222
1223 /* don't account direct I/O as memory stall */
1224 bio_clear_flag(bio, BIO_WORKINGSET);
1225 return bio->bi_vcnt ? 0 : ret;
1226 }
1227 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1228
submit_bio_wait_endio(struct bio * bio)1229 static void submit_bio_wait_endio(struct bio *bio)
1230 {
1231 complete(bio->bi_private);
1232 }
1233
1234 /**
1235 * submit_bio_wait - submit a bio, and wait until it completes
1236 * @bio: The &struct bio which describes the I/O
1237 *
1238 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1239 * bio_endio() on failure.
1240 *
1241 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1242 * result in bio reference to be consumed. The caller must drop the reference
1243 * on his own.
1244 */
submit_bio_wait(struct bio * bio)1245 int submit_bio_wait(struct bio *bio)
1246 {
1247 DECLARE_COMPLETION_ONSTACK_MAP(done,
1248 bio->bi_bdev->bd_disk->lockdep_map);
1249 unsigned long hang_check;
1250
1251 bio->bi_private = &done;
1252 bio->bi_end_io = submit_bio_wait_endio;
1253 bio->bi_opf |= REQ_SYNC;
1254 submit_bio(bio);
1255
1256 /* Prevent hang_check timer from firing at us during very long I/O */
1257 hang_check = sysctl_hung_task_timeout_secs;
1258 if (hang_check)
1259 while (!wait_for_completion_io_timeout(&done,
1260 hang_check * (HZ/2)))
1261 ;
1262 else
1263 wait_for_completion_io(&done);
1264
1265 return blk_status_to_errno(bio->bi_status);
1266 }
1267 EXPORT_SYMBOL(submit_bio_wait);
1268
__bio_advance(struct bio * bio,unsigned bytes)1269 void __bio_advance(struct bio *bio, unsigned bytes)
1270 {
1271 if (bio_integrity(bio))
1272 bio_integrity_advance(bio, bytes);
1273
1274 bio_crypt_advance(bio, bytes);
1275 bio_advance_iter(bio, &bio->bi_iter, bytes);
1276 }
1277 EXPORT_SYMBOL(__bio_advance);
1278
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1279 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1280 struct bio *src, struct bvec_iter *src_iter)
1281 {
1282 while (src_iter->bi_size && dst_iter->bi_size) {
1283 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1284 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1285 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1286 void *src_buf;
1287
1288 src_buf = bvec_kmap_local(&src_bv);
1289 memcpy_to_bvec(&dst_bv, src_buf);
1290 kunmap_local(src_buf);
1291
1292 bio_advance_iter_single(src, src_iter, bytes);
1293 bio_advance_iter_single(dst, dst_iter, bytes);
1294 }
1295 }
1296 EXPORT_SYMBOL(bio_copy_data_iter);
1297
1298 /**
1299 * bio_copy_data - copy contents of data buffers from one bio to another
1300 * @src: source bio
1301 * @dst: destination bio
1302 *
1303 * Stops when it reaches the end of either @src or @dst - that is, copies
1304 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1305 */
bio_copy_data(struct bio * dst,struct bio * src)1306 void bio_copy_data(struct bio *dst, struct bio *src)
1307 {
1308 struct bvec_iter src_iter = src->bi_iter;
1309 struct bvec_iter dst_iter = dst->bi_iter;
1310
1311 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1312 }
1313 EXPORT_SYMBOL(bio_copy_data);
1314
bio_free_pages(struct bio * bio)1315 void bio_free_pages(struct bio *bio)
1316 {
1317 struct bio_vec *bvec;
1318 struct bvec_iter_all iter_all;
1319
1320 bio_for_each_segment_all(bvec, bio, iter_all)
1321 __free_page(bvec->bv_page);
1322 }
1323 EXPORT_SYMBOL(bio_free_pages);
1324
1325 /*
1326 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1327 * for performing direct-IO in BIOs.
1328 *
1329 * The problem is that we cannot run set_page_dirty() from interrupt context
1330 * because the required locks are not interrupt-safe. So what we can do is to
1331 * mark the pages dirty _before_ performing IO. And in interrupt context,
1332 * check that the pages are still dirty. If so, fine. If not, redirty them
1333 * in process context.
1334 *
1335 * We special-case compound pages here: normally this means reads into hugetlb
1336 * pages. The logic in here doesn't really work right for compound pages
1337 * because the VM does not uniformly chase down the head page in all cases.
1338 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1339 * handle them at all. So we skip compound pages here at an early stage.
1340 *
1341 * Note that this code is very hard to test under normal circumstances because
1342 * direct-io pins the pages with get_user_pages(). This makes
1343 * is_page_cache_freeable return false, and the VM will not clean the pages.
1344 * But other code (eg, flusher threads) could clean the pages if they are mapped
1345 * pagecache.
1346 *
1347 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1348 * deferred bio dirtying paths.
1349 */
1350
1351 /*
1352 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1353 */
bio_set_pages_dirty(struct bio * bio)1354 void bio_set_pages_dirty(struct bio *bio)
1355 {
1356 struct bio_vec *bvec;
1357 struct bvec_iter_all iter_all;
1358
1359 bio_for_each_segment_all(bvec, bio, iter_all) {
1360 if (!PageCompound(bvec->bv_page))
1361 set_page_dirty_lock(bvec->bv_page);
1362 }
1363 }
1364
1365 /*
1366 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1367 * If they are, then fine. If, however, some pages are clean then they must
1368 * have been written out during the direct-IO read. So we take another ref on
1369 * the BIO and re-dirty the pages in process context.
1370 *
1371 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1372 * here on. It will run one put_page() against each page and will run one
1373 * bio_put() against the BIO.
1374 */
1375
1376 static void bio_dirty_fn(struct work_struct *work);
1377
1378 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1379 static DEFINE_SPINLOCK(bio_dirty_lock);
1380 static struct bio *bio_dirty_list;
1381
1382 /*
1383 * This runs in process context
1384 */
bio_dirty_fn(struct work_struct * work)1385 static void bio_dirty_fn(struct work_struct *work)
1386 {
1387 struct bio *bio, *next;
1388
1389 spin_lock_irq(&bio_dirty_lock);
1390 next = bio_dirty_list;
1391 bio_dirty_list = NULL;
1392 spin_unlock_irq(&bio_dirty_lock);
1393
1394 while ((bio = next) != NULL) {
1395 next = bio->bi_private;
1396
1397 bio_release_pages(bio, true);
1398 bio_put(bio);
1399 }
1400 }
1401
bio_check_pages_dirty(struct bio * bio)1402 void bio_check_pages_dirty(struct bio *bio)
1403 {
1404 struct bio_vec *bvec;
1405 unsigned long flags;
1406 struct bvec_iter_all iter_all;
1407
1408 bio_for_each_segment_all(bvec, bio, iter_all) {
1409 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1410 goto defer;
1411 }
1412
1413 bio_release_pages(bio, false);
1414 bio_put(bio);
1415 return;
1416 defer:
1417 spin_lock_irqsave(&bio_dirty_lock, flags);
1418 bio->bi_private = bio_dirty_list;
1419 bio_dirty_list = bio;
1420 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1421 schedule_work(&bio_dirty_work);
1422 }
1423
bio_remaining_done(struct bio * bio)1424 static inline bool bio_remaining_done(struct bio *bio)
1425 {
1426 /*
1427 * If we're not chaining, then ->__bi_remaining is always 1 and
1428 * we always end io on the first invocation.
1429 */
1430 if (!bio_flagged(bio, BIO_CHAIN))
1431 return true;
1432
1433 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1434
1435 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1436 bio_clear_flag(bio, BIO_CHAIN);
1437 return true;
1438 }
1439
1440 return false;
1441 }
1442
1443 /**
1444 * bio_endio - end I/O on a bio
1445 * @bio: bio
1446 *
1447 * Description:
1448 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1449 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1450 * bio unless they own it and thus know that it has an end_io function.
1451 *
1452 * bio_endio() can be called several times on a bio that has been chained
1453 * using bio_chain(). The ->bi_end_io() function will only be called the
1454 * last time.
1455 **/
bio_endio(struct bio * bio)1456 void bio_endio(struct bio *bio)
1457 {
1458 again:
1459 if (!bio_remaining_done(bio))
1460 return;
1461 if (!bio_integrity_endio(bio))
1462 return;
1463
1464 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1465 rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio);
1466
1467 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1468 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1469 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1470 }
1471
1472 /*
1473 * Need to have a real endio function for chained bios, otherwise
1474 * various corner cases will break (like stacking block devices that
1475 * save/restore bi_end_io) - however, we want to avoid unbounded
1476 * recursion and blowing the stack. Tail call optimization would
1477 * handle this, but compiling with frame pointers also disables
1478 * gcc's sibling call optimization.
1479 */
1480 if (bio->bi_end_io == bio_chain_endio) {
1481 bio = __bio_chain_endio(bio);
1482 goto again;
1483 }
1484
1485 blk_throtl_bio_endio(bio);
1486 /* release cgroup info */
1487 bio_uninit(bio);
1488 if (bio->bi_end_io)
1489 bio->bi_end_io(bio);
1490 }
1491 EXPORT_SYMBOL(bio_endio);
1492
1493 /**
1494 * bio_split - split a bio
1495 * @bio: bio to split
1496 * @sectors: number of sectors to split from the front of @bio
1497 * @gfp: gfp mask
1498 * @bs: bio set to allocate from
1499 *
1500 * Allocates and returns a new bio which represents @sectors from the start of
1501 * @bio, and updates @bio to represent the remaining sectors.
1502 *
1503 * Unless this is a discard request the newly allocated bio will point
1504 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1505 * neither @bio nor @bs are freed before the split bio.
1506 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1507 struct bio *bio_split(struct bio *bio, int sectors,
1508 gfp_t gfp, struct bio_set *bs)
1509 {
1510 struct bio *split;
1511
1512 BUG_ON(sectors <= 0);
1513 BUG_ON(sectors >= bio_sectors(bio));
1514
1515 /* Zone append commands cannot be split */
1516 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1517 return NULL;
1518
1519 split = bio_clone_fast(bio, gfp, bs);
1520 if (!split)
1521 return NULL;
1522
1523 split->bi_iter.bi_size = sectors << 9;
1524
1525 if (bio_integrity(split))
1526 bio_integrity_trim(split);
1527
1528 bio_advance(bio, split->bi_iter.bi_size);
1529
1530 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1531 bio_set_flag(split, BIO_TRACE_COMPLETION);
1532
1533 return split;
1534 }
1535 EXPORT_SYMBOL(bio_split);
1536
1537 /**
1538 * bio_trim - trim a bio
1539 * @bio: bio to trim
1540 * @offset: number of sectors to trim from the front of @bio
1541 * @size: size we want to trim @bio to, in sectors
1542 *
1543 * This function is typically used for bios that are cloned and submitted
1544 * to the underlying device in parts.
1545 */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1546 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1547 {
1548 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1549 offset + size > bio->bi_iter.bi_size))
1550 return;
1551
1552 size <<= 9;
1553 if (offset == 0 && size == bio->bi_iter.bi_size)
1554 return;
1555
1556 bio_advance(bio, offset << 9);
1557 bio->bi_iter.bi_size = size;
1558
1559 if (bio_integrity(bio))
1560 bio_integrity_trim(bio);
1561 }
1562 EXPORT_SYMBOL_GPL(bio_trim);
1563
1564 /*
1565 * create memory pools for biovec's in a bio_set.
1566 * use the global biovec slabs created for general use.
1567 */
biovec_init_pool(mempool_t * pool,int pool_entries)1568 int biovec_init_pool(mempool_t *pool, int pool_entries)
1569 {
1570 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1571
1572 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1573 }
1574
1575 /*
1576 * bioset_exit - exit a bioset initialized with bioset_init()
1577 *
1578 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1579 * kzalloc()).
1580 */
bioset_exit(struct bio_set * bs)1581 void bioset_exit(struct bio_set *bs)
1582 {
1583 bio_alloc_cache_destroy(bs);
1584 if (bs->rescue_workqueue)
1585 destroy_workqueue(bs->rescue_workqueue);
1586 bs->rescue_workqueue = NULL;
1587
1588 mempool_exit(&bs->bio_pool);
1589 mempool_exit(&bs->bvec_pool);
1590
1591 bioset_integrity_free(bs);
1592 if (bs->bio_slab)
1593 bio_put_slab(bs);
1594 bs->bio_slab = NULL;
1595 }
1596 EXPORT_SYMBOL(bioset_exit);
1597
1598 /**
1599 * bioset_init - Initialize a bio_set
1600 * @bs: pool to initialize
1601 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1602 * @front_pad: Number of bytes to allocate in front of the returned bio
1603 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1604 * and %BIOSET_NEED_RESCUER
1605 *
1606 * Description:
1607 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1608 * to ask for a number of bytes to be allocated in front of the bio.
1609 * Front pad allocation is useful for embedding the bio inside
1610 * another structure, to avoid allocating extra data to go with the bio.
1611 * Note that the bio must be embedded at the END of that structure always,
1612 * or things will break badly.
1613 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1614 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1615 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1616 * dispatch queued requests when the mempool runs out of space.
1617 *
1618 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1619 int bioset_init(struct bio_set *bs,
1620 unsigned int pool_size,
1621 unsigned int front_pad,
1622 int flags)
1623 {
1624 bs->front_pad = front_pad;
1625 if (flags & BIOSET_NEED_BVECS)
1626 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1627 else
1628 bs->back_pad = 0;
1629
1630 spin_lock_init(&bs->rescue_lock);
1631 bio_list_init(&bs->rescue_list);
1632 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1633
1634 bs->bio_slab = bio_find_or_create_slab(bs);
1635 if (!bs->bio_slab)
1636 return -ENOMEM;
1637
1638 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1639 goto bad;
1640
1641 if ((flags & BIOSET_NEED_BVECS) &&
1642 biovec_init_pool(&bs->bvec_pool, pool_size))
1643 goto bad;
1644
1645 if (flags & BIOSET_NEED_RESCUER) {
1646 bs->rescue_workqueue = alloc_workqueue("bioset",
1647 WQ_MEM_RECLAIM, 0);
1648 if (!bs->rescue_workqueue)
1649 goto bad;
1650 }
1651 if (flags & BIOSET_PERCPU_CACHE) {
1652 bs->cache = alloc_percpu(struct bio_alloc_cache);
1653 if (!bs->cache)
1654 goto bad;
1655 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1656 }
1657
1658 return 0;
1659 bad:
1660 bioset_exit(bs);
1661 return -ENOMEM;
1662 }
1663 EXPORT_SYMBOL(bioset_init);
1664
1665 /*
1666 * Initialize and setup a new bio_set, based on the settings from
1667 * another bio_set.
1668 */
bioset_init_from_src(struct bio_set * bs,struct bio_set * src)1669 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1670 {
1671 int flags;
1672
1673 flags = 0;
1674 if (src->bvec_pool.min_nr)
1675 flags |= BIOSET_NEED_BVECS;
1676 if (src->rescue_workqueue)
1677 flags |= BIOSET_NEED_RESCUER;
1678
1679 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1680 }
1681 EXPORT_SYMBOL(bioset_init_from_src);
1682
1683 /**
1684 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1685 * @kiocb: kiocb describing the IO
1686 * @nr_vecs: number of iovecs to pre-allocate
1687 * @bs: bio_set to allocate from
1688 *
1689 * Description:
1690 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1691 * used to check if we should dip into the per-cpu bio_set allocation
1692 * cache. The allocation uses GFP_KERNEL internally. On return, the
1693 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1694 * MUST be done from process context, not hard/soft IRQ.
1695 *
1696 */
bio_alloc_kiocb(struct kiocb * kiocb,unsigned short nr_vecs,struct bio_set * bs)1697 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1698 struct bio_set *bs)
1699 {
1700 struct bio_alloc_cache *cache;
1701 struct bio *bio;
1702
1703 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1704 return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1705
1706 cache = per_cpu_ptr(bs->cache, get_cpu());
1707 bio = bio_list_pop(&cache->free_list);
1708 if (bio) {
1709 cache->nr--;
1710 put_cpu();
1711 bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1712 bio->bi_pool = bs;
1713 bio_set_flag(bio, BIO_PERCPU_CACHE);
1714 return bio;
1715 }
1716 put_cpu();
1717 bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1718 bio_set_flag(bio, BIO_PERCPU_CACHE);
1719 return bio;
1720 }
1721 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1722
init_bio(void)1723 static int __init init_bio(void)
1724 {
1725 int i;
1726
1727 bio_integrity_init();
1728
1729 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1730 struct biovec_slab *bvs = bvec_slabs + i;
1731
1732 bvs->slab = kmem_cache_create(bvs->name,
1733 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1734 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1735 }
1736
1737 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1738 bio_cpu_dead);
1739
1740 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1741 panic("bio: can't allocate bios\n");
1742
1743 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1744 panic("bio: can't create integrity pool\n");
1745
1746 return 0;
1747 }
1748 subsys_initcall(init_bio);
1749