1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <string.h>
7 #include <linux/capability.h>
8 #include <linux/kernel.h>
9 #include <linux/mman.h>
10 #include <linux/string.h>
11 #include <linux/time64.h>
12 #include <sys/types.h>
13 #include <sys/stat.h>
14 #include <sys/param.h>
15 #include <fcntl.h>
16 #include <unistd.h>
17 #include <inttypes.h>
18 #include "annotate.h"
19 #include "build-id.h"
20 #include "cap.h"
21 #include "dso.h"
22 #include "util.h" // lsdir()
23 #include "debug.h"
24 #include "event.h"
25 #include "machine.h"
26 #include "map.h"
27 #include "symbol.h"
28 #include "map_symbol.h"
29 #include "mem-events.h"
30 #include "symsrc.h"
31 #include "strlist.h"
32 #include "intlist.h"
33 #include "namespaces.h"
34 #include "header.h"
35 #include "path.h"
36 #include <linux/ctype.h>
37 #include <linux/zalloc.h>
38
39 #include <elf.h>
40 #include <limits.h>
41 #include <symbol/kallsyms.h>
42 #include <sys/utsname.h>
43
44 static int dso__load_kernel_sym(struct dso *dso, struct map *map);
45 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map);
46 static bool symbol__is_idle(const char *name);
47
48 int vmlinux_path__nr_entries;
49 char **vmlinux_path;
50
51 struct symbol_conf symbol_conf = {
52 .nanosecs = false,
53 .use_modules = true,
54 .try_vmlinux_path = true,
55 .demangle = true,
56 .demangle_kernel = false,
57 .cumulate_callchain = true,
58 .time_quantum = 100 * NSEC_PER_MSEC, /* 100ms */
59 .show_hist_headers = true,
60 .symfs = "",
61 .event_group = true,
62 .inline_name = true,
63 .res_sample = 0,
64 };
65
66 static enum dso_binary_type binary_type_symtab[] = {
67 DSO_BINARY_TYPE__KALLSYMS,
68 DSO_BINARY_TYPE__GUEST_KALLSYMS,
69 DSO_BINARY_TYPE__JAVA_JIT,
70 DSO_BINARY_TYPE__DEBUGLINK,
71 DSO_BINARY_TYPE__BUILD_ID_CACHE,
72 DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO,
73 DSO_BINARY_TYPE__FEDORA_DEBUGINFO,
74 DSO_BINARY_TYPE__UBUNTU_DEBUGINFO,
75 DSO_BINARY_TYPE__BUILDID_DEBUGINFO,
76 DSO_BINARY_TYPE__SYSTEM_PATH_DSO,
77 DSO_BINARY_TYPE__GUEST_KMODULE,
78 DSO_BINARY_TYPE__GUEST_KMODULE_COMP,
79 DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE,
80 DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP,
81 DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO,
82 DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO,
83 DSO_BINARY_TYPE__NOT_FOUND,
84 };
85
86 #define DSO_BINARY_TYPE__SYMTAB_CNT ARRAY_SIZE(binary_type_symtab)
87
symbol_type__filter(char symbol_type)88 static bool symbol_type__filter(char symbol_type)
89 {
90 symbol_type = toupper(symbol_type);
91 return symbol_type == 'T' || symbol_type == 'W' || symbol_type == 'D' || symbol_type == 'B';
92 }
93
prefix_underscores_count(const char * str)94 static int prefix_underscores_count(const char *str)
95 {
96 const char *tail = str;
97
98 while (*tail == '_')
99 tail++;
100
101 return tail - str;
102 }
103
arch__symbols__fixup_end(struct symbol * p,struct symbol * c)104 void __weak arch__symbols__fixup_end(struct symbol *p, struct symbol *c)
105 {
106 p->end = c->start;
107 }
108
arch__normalize_symbol_name(const char * name)109 const char * __weak arch__normalize_symbol_name(const char *name)
110 {
111 return name;
112 }
113
arch__compare_symbol_names(const char * namea,const char * nameb)114 int __weak arch__compare_symbol_names(const char *namea, const char *nameb)
115 {
116 return strcmp(namea, nameb);
117 }
118
arch__compare_symbol_names_n(const char * namea,const char * nameb,unsigned int n)119 int __weak arch__compare_symbol_names_n(const char *namea, const char *nameb,
120 unsigned int n)
121 {
122 return strncmp(namea, nameb, n);
123 }
124
arch__choose_best_symbol(struct symbol * syma,struct symbol * symb __maybe_unused)125 int __weak arch__choose_best_symbol(struct symbol *syma,
126 struct symbol *symb __maybe_unused)
127 {
128 /* Avoid "SyS" kernel syscall aliases */
129 if (strlen(syma->name) >= 3 && !strncmp(syma->name, "SyS", 3))
130 return SYMBOL_B;
131 if (strlen(syma->name) >= 10 && !strncmp(syma->name, "compat_SyS", 10))
132 return SYMBOL_B;
133
134 return SYMBOL_A;
135 }
136
choose_best_symbol(struct symbol * syma,struct symbol * symb)137 static int choose_best_symbol(struct symbol *syma, struct symbol *symb)
138 {
139 s64 a;
140 s64 b;
141 size_t na, nb;
142
143 /* Prefer a symbol with non zero length */
144 a = syma->end - syma->start;
145 b = symb->end - symb->start;
146 if ((b == 0) && (a > 0))
147 return SYMBOL_A;
148 else if ((a == 0) && (b > 0))
149 return SYMBOL_B;
150
151 /* Prefer a non weak symbol over a weak one */
152 a = syma->binding == STB_WEAK;
153 b = symb->binding == STB_WEAK;
154 if (b && !a)
155 return SYMBOL_A;
156 if (a && !b)
157 return SYMBOL_B;
158
159 /* Prefer a global symbol over a non global one */
160 a = syma->binding == STB_GLOBAL;
161 b = symb->binding == STB_GLOBAL;
162 if (a && !b)
163 return SYMBOL_A;
164 if (b && !a)
165 return SYMBOL_B;
166
167 /* Prefer a symbol with less underscores */
168 a = prefix_underscores_count(syma->name);
169 b = prefix_underscores_count(symb->name);
170 if (b > a)
171 return SYMBOL_A;
172 else if (a > b)
173 return SYMBOL_B;
174
175 /* Choose the symbol with the longest name */
176 na = strlen(syma->name);
177 nb = strlen(symb->name);
178 if (na > nb)
179 return SYMBOL_A;
180 else if (na < nb)
181 return SYMBOL_B;
182
183 return arch__choose_best_symbol(syma, symb);
184 }
185
symbols__fixup_duplicate(struct rb_root_cached * symbols)186 void symbols__fixup_duplicate(struct rb_root_cached *symbols)
187 {
188 struct rb_node *nd;
189 struct symbol *curr, *next;
190
191 if (symbol_conf.allow_aliases)
192 return;
193
194 nd = rb_first_cached(symbols);
195
196 while (nd) {
197 curr = rb_entry(nd, struct symbol, rb_node);
198 again:
199 nd = rb_next(&curr->rb_node);
200 next = rb_entry(nd, struct symbol, rb_node);
201
202 if (!nd)
203 break;
204
205 if (curr->start != next->start)
206 continue;
207
208 if (choose_best_symbol(curr, next) == SYMBOL_A) {
209 rb_erase_cached(&next->rb_node, symbols);
210 symbol__delete(next);
211 goto again;
212 } else {
213 nd = rb_next(&curr->rb_node);
214 rb_erase_cached(&curr->rb_node, symbols);
215 symbol__delete(curr);
216 }
217 }
218 }
219
symbols__fixup_end(struct rb_root_cached * symbols)220 void symbols__fixup_end(struct rb_root_cached *symbols)
221 {
222 struct rb_node *nd, *prevnd = rb_first_cached(symbols);
223 struct symbol *curr, *prev;
224
225 if (prevnd == NULL)
226 return;
227
228 curr = rb_entry(prevnd, struct symbol, rb_node);
229
230 for (nd = rb_next(prevnd); nd; nd = rb_next(nd)) {
231 prev = curr;
232 curr = rb_entry(nd, struct symbol, rb_node);
233
234 if (prev->end == prev->start && prev->end != curr->start)
235 arch__symbols__fixup_end(prev, curr);
236 }
237
238 /* Last entry */
239 if (curr->end == curr->start)
240 curr->end = roundup(curr->start, 4096) + 4096;
241 }
242
maps__fixup_end(struct maps * maps)243 void maps__fixup_end(struct maps *maps)
244 {
245 struct map *prev = NULL, *curr;
246
247 down_write(&maps->lock);
248
249 maps__for_each_entry(maps, curr) {
250 if (prev != NULL && !prev->end)
251 prev->end = curr->start;
252
253 prev = curr;
254 }
255
256 /*
257 * We still haven't the actual symbols, so guess the
258 * last map final address.
259 */
260 if (curr && !curr->end)
261 curr->end = ~0ULL;
262
263 up_write(&maps->lock);
264 }
265
symbol__new(u64 start,u64 len,u8 binding,u8 type,const char * name)266 struct symbol *symbol__new(u64 start, u64 len, u8 binding, u8 type, const char *name)
267 {
268 size_t namelen = strlen(name) + 1;
269 struct symbol *sym = calloc(1, (symbol_conf.priv_size +
270 sizeof(*sym) + namelen));
271 if (sym == NULL)
272 return NULL;
273
274 if (symbol_conf.priv_size) {
275 if (symbol_conf.init_annotation) {
276 struct annotation *notes = (void *)sym;
277 annotation__init(notes);
278 }
279 sym = ((void *)sym) + symbol_conf.priv_size;
280 }
281
282 sym->start = start;
283 sym->end = len ? start + len : start;
284 sym->type = type;
285 sym->binding = binding;
286 sym->namelen = namelen - 1;
287
288 pr_debug4("%s: %s %#" PRIx64 "-%#" PRIx64 "\n",
289 __func__, name, start, sym->end);
290 memcpy(sym->name, name, namelen);
291
292 return sym;
293 }
294
symbol__delete(struct symbol * sym)295 void symbol__delete(struct symbol *sym)
296 {
297 if (symbol_conf.priv_size) {
298 if (symbol_conf.init_annotation) {
299 struct annotation *notes = symbol__annotation(sym);
300
301 annotation__exit(notes);
302 }
303 }
304 free(((void *)sym) - symbol_conf.priv_size);
305 }
306
symbols__delete(struct rb_root_cached * symbols)307 void symbols__delete(struct rb_root_cached *symbols)
308 {
309 struct symbol *pos;
310 struct rb_node *next = rb_first_cached(symbols);
311
312 while (next) {
313 pos = rb_entry(next, struct symbol, rb_node);
314 next = rb_next(&pos->rb_node);
315 rb_erase_cached(&pos->rb_node, symbols);
316 symbol__delete(pos);
317 }
318 }
319
__symbols__insert(struct rb_root_cached * symbols,struct symbol * sym,bool kernel)320 void __symbols__insert(struct rb_root_cached *symbols,
321 struct symbol *sym, bool kernel)
322 {
323 struct rb_node **p = &symbols->rb_root.rb_node;
324 struct rb_node *parent = NULL;
325 const u64 ip = sym->start;
326 struct symbol *s;
327 bool leftmost = true;
328
329 if (kernel) {
330 const char *name = sym->name;
331 /*
332 * ppc64 uses function descriptors and appends a '.' to the
333 * start of every instruction address. Remove it.
334 */
335 if (name[0] == '.')
336 name++;
337 sym->idle = symbol__is_idle(name);
338 }
339
340 while (*p != NULL) {
341 parent = *p;
342 s = rb_entry(parent, struct symbol, rb_node);
343 if (ip < s->start)
344 p = &(*p)->rb_left;
345 else {
346 p = &(*p)->rb_right;
347 leftmost = false;
348 }
349 }
350 rb_link_node(&sym->rb_node, parent, p);
351 rb_insert_color_cached(&sym->rb_node, symbols, leftmost);
352 }
353
symbols__insert(struct rb_root_cached * symbols,struct symbol * sym)354 void symbols__insert(struct rb_root_cached *symbols, struct symbol *sym)
355 {
356 __symbols__insert(symbols, sym, false);
357 }
358
symbols__find(struct rb_root_cached * symbols,u64 ip)359 static struct symbol *symbols__find(struct rb_root_cached *symbols, u64 ip)
360 {
361 struct rb_node *n;
362
363 if (symbols == NULL)
364 return NULL;
365
366 n = symbols->rb_root.rb_node;
367
368 while (n) {
369 struct symbol *s = rb_entry(n, struct symbol, rb_node);
370
371 if (ip < s->start)
372 n = n->rb_left;
373 else if (ip > s->end || (ip == s->end && ip != s->start))
374 n = n->rb_right;
375 else
376 return s;
377 }
378
379 return NULL;
380 }
381
symbols__first(struct rb_root_cached * symbols)382 static struct symbol *symbols__first(struct rb_root_cached *symbols)
383 {
384 struct rb_node *n = rb_first_cached(symbols);
385
386 if (n)
387 return rb_entry(n, struct symbol, rb_node);
388
389 return NULL;
390 }
391
symbols__last(struct rb_root_cached * symbols)392 static struct symbol *symbols__last(struct rb_root_cached *symbols)
393 {
394 struct rb_node *n = rb_last(&symbols->rb_root);
395
396 if (n)
397 return rb_entry(n, struct symbol, rb_node);
398
399 return NULL;
400 }
401
symbols__next(struct symbol * sym)402 static struct symbol *symbols__next(struct symbol *sym)
403 {
404 struct rb_node *n = rb_next(&sym->rb_node);
405
406 if (n)
407 return rb_entry(n, struct symbol, rb_node);
408
409 return NULL;
410 }
411
symbols__insert_by_name(struct rb_root_cached * symbols,struct symbol * sym)412 static void symbols__insert_by_name(struct rb_root_cached *symbols, struct symbol *sym)
413 {
414 struct rb_node **p = &symbols->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct symbol_name_rb_node *symn, *s;
417 bool leftmost = true;
418
419 symn = container_of(sym, struct symbol_name_rb_node, sym);
420
421 while (*p != NULL) {
422 parent = *p;
423 s = rb_entry(parent, struct symbol_name_rb_node, rb_node);
424 if (strcmp(sym->name, s->sym.name) < 0)
425 p = &(*p)->rb_left;
426 else {
427 p = &(*p)->rb_right;
428 leftmost = false;
429 }
430 }
431 rb_link_node(&symn->rb_node, parent, p);
432 rb_insert_color_cached(&symn->rb_node, symbols, leftmost);
433 }
434
symbols__sort_by_name(struct rb_root_cached * symbols,struct rb_root_cached * source)435 static void symbols__sort_by_name(struct rb_root_cached *symbols,
436 struct rb_root_cached *source)
437 {
438 struct rb_node *nd;
439
440 for (nd = rb_first_cached(source); nd; nd = rb_next(nd)) {
441 struct symbol *pos = rb_entry(nd, struct symbol, rb_node);
442 symbols__insert_by_name(symbols, pos);
443 }
444 }
445
symbol__match_symbol_name(const char * name,const char * str,enum symbol_tag_include includes)446 int symbol__match_symbol_name(const char *name, const char *str,
447 enum symbol_tag_include includes)
448 {
449 const char *versioning;
450
451 if (includes == SYMBOL_TAG_INCLUDE__DEFAULT_ONLY &&
452 (versioning = strstr(name, "@@"))) {
453 int len = strlen(str);
454
455 if (len < versioning - name)
456 len = versioning - name;
457
458 return arch__compare_symbol_names_n(name, str, len);
459 } else
460 return arch__compare_symbol_names(name, str);
461 }
462
symbols__find_by_name(struct rb_root_cached * symbols,const char * name,enum symbol_tag_include includes)463 static struct symbol *symbols__find_by_name(struct rb_root_cached *symbols,
464 const char *name,
465 enum symbol_tag_include includes)
466 {
467 struct rb_node *n;
468 struct symbol_name_rb_node *s = NULL;
469
470 if (symbols == NULL)
471 return NULL;
472
473 n = symbols->rb_root.rb_node;
474
475 while (n) {
476 int cmp;
477
478 s = rb_entry(n, struct symbol_name_rb_node, rb_node);
479 cmp = symbol__match_symbol_name(s->sym.name, name, includes);
480
481 if (cmp > 0)
482 n = n->rb_left;
483 else if (cmp < 0)
484 n = n->rb_right;
485 else
486 break;
487 }
488
489 if (n == NULL)
490 return NULL;
491
492 if (includes != SYMBOL_TAG_INCLUDE__DEFAULT_ONLY)
493 /* return first symbol that has same name (if any) */
494 for (n = rb_prev(n); n; n = rb_prev(n)) {
495 struct symbol_name_rb_node *tmp;
496
497 tmp = rb_entry(n, struct symbol_name_rb_node, rb_node);
498 if (arch__compare_symbol_names(tmp->sym.name, s->sym.name))
499 break;
500
501 s = tmp;
502 }
503
504 return &s->sym;
505 }
506
dso__reset_find_symbol_cache(struct dso * dso)507 void dso__reset_find_symbol_cache(struct dso *dso)
508 {
509 dso->last_find_result.addr = 0;
510 dso->last_find_result.symbol = NULL;
511 }
512
dso__insert_symbol(struct dso * dso,struct symbol * sym)513 void dso__insert_symbol(struct dso *dso, struct symbol *sym)
514 {
515 __symbols__insert(&dso->symbols, sym, dso->kernel);
516
517 /* update the symbol cache if necessary */
518 if (dso->last_find_result.addr >= sym->start &&
519 (dso->last_find_result.addr < sym->end ||
520 sym->start == sym->end)) {
521 dso->last_find_result.symbol = sym;
522 }
523 }
524
dso__delete_symbol(struct dso * dso,struct symbol * sym)525 void dso__delete_symbol(struct dso *dso, struct symbol *sym)
526 {
527 rb_erase_cached(&sym->rb_node, &dso->symbols);
528 symbol__delete(sym);
529 dso__reset_find_symbol_cache(dso);
530 }
531
dso__find_symbol(struct dso * dso,u64 addr)532 struct symbol *dso__find_symbol(struct dso *dso, u64 addr)
533 {
534 if (dso->last_find_result.addr != addr || dso->last_find_result.symbol == NULL) {
535 dso->last_find_result.addr = addr;
536 dso->last_find_result.symbol = symbols__find(&dso->symbols, addr);
537 }
538
539 return dso->last_find_result.symbol;
540 }
541
dso__first_symbol(struct dso * dso)542 struct symbol *dso__first_symbol(struct dso *dso)
543 {
544 return symbols__first(&dso->symbols);
545 }
546
dso__last_symbol(struct dso * dso)547 struct symbol *dso__last_symbol(struct dso *dso)
548 {
549 return symbols__last(&dso->symbols);
550 }
551
dso__next_symbol(struct symbol * sym)552 struct symbol *dso__next_symbol(struct symbol *sym)
553 {
554 return symbols__next(sym);
555 }
556
symbol__next_by_name(struct symbol * sym)557 struct symbol *symbol__next_by_name(struct symbol *sym)
558 {
559 struct symbol_name_rb_node *s = container_of(sym, struct symbol_name_rb_node, sym);
560 struct rb_node *n = rb_next(&s->rb_node);
561
562 return n ? &rb_entry(n, struct symbol_name_rb_node, rb_node)->sym : NULL;
563 }
564
565 /*
566 * Returns first symbol that matched with @name.
567 */
dso__find_symbol_by_name(struct dso * dso,const char * name)568 struct symbol *dso__find_symbol_by_name(struct dso *dso, const char *name)
569 {
570 struct symbol *s = symbols__find_by_name(&dso->symbol_names, name,
571 SYMBOL_TAG_INCLUDE__NONE);
572 if (!s)
573 s = symbols__find_by_name(&dso->symbol_names, name,
574 SYMBOL_TAG_INCLUDE__DEFAULT_ONLY);
575 return s;
576 }
577
dso__sort_by_name(struct dso * dso)578 void dso__sort_by_name(struct dso *dso)
579 {
580 dso__set_sorted_by_name(dso);
581 return symbols__sort_by_name(&dso->symbol_names, &dso->symbols);
582 }
583
584 /*
585 * While we find nice hex chars, build a long_val.
586 * Return number of chars processed.
587 */
hex2u64(const char * ptr,u64 * long_val)588 static int hex2u64(const char *ptr, u64 *long_val)
589 {
590 char *p;
591
592 *long_val = strtoull(ptr, &p, 16);
593
594 return p - ptr;
595 }
596
597
modules__parse(const char * filename,void * arg,int (* process_module)(void * arg,const char * name,u64 start,u64 size))598 int modules__parse(const char *filename, void *arg,
599 int (*process_module)(void *arg, const char *name,
600 u64 start, u64 size))
601 {
602 char *line = NULL;
603 size_t n;
604 FILE *file;
605 int err = 0;
606
607 file = fopen(filename, "r");
608 if (file == NULL)
609 return -1;
610
611 while (1) {
612 char name[PATH_MAX];
613 u64 start, size;
614 char *sep, *endptr;
615 ssize_t line_len;
616
617 line_len = getline(&line, &n, file);
618 if (line_len < 0) {
619 if (feof(file))
620 break;
621 err = -1;
622 goto out;
623 }
624
625 if (!line) {
626 err = -1;
627 goto out;
628 }
629
630 line[--line_len] = '\0'; /* \n */
631
632 sep = strrchr(line, 'x');
633 if (sep == NULL)
634 continue;
635
636 hex2u64(sep + 1, &start);
637
638 sep = strchr(line, ' ');
639 if (sep == NULL)
640 continue;
641
642 *sep = '\0';
643
644 scnprintf(name, sizeof(name), "[%s]", line);
645
646 size = strtoul(sep + 1, &endptr, 0);
647 if (*endptr != ' ' && *endptr != '\t')
648 continue;
649
650 err = process_module(arg, name, start, size);
651 if (err)
652 break;
653 }
654 out:
655 free(line);
656 fclose(file);
657 return err;
658 }
659
660 /*
661 * These are symbols in the kernel image, so make sure that
662 * sym is from a kernel DSO.
663 */
symbol__is_idle(const char * name)664 static bool symbol__is_idle(const char *name)
665 {
666 const char * const idle_symbols[] = {
667 "acpi_idle_do_entry",
668 "acpi_processor_ffh_cstate_enter",
669 "arch_cpu_idle",
670 "cpu_idle",
671 "cpu_startup_entry",
672 "idle_cpu",
673 "intel_idle",
674 "default_idle",
675 "native_safe_halt",
676 "enter_idle",
677 "exit_idle",
678 "mwait_idle",
679 "mwait_idle_with_hints",
680 "mwait_idle_with_hints.constprop.0",
681 "poll_idle",
682 "ppc64_runlatch_off",
683 "pseries_dedicated_idle_sleep",
684 "psw_idle",
685 "psw_idle_exit",
686 NULL
687 };
688 int i;
689 static struct strlist *idle_symbols_list;
690
691 if (idle_symbols_list)
692 return strlist__has_entry(idle_symbols_list, name);
693
694 idle_symbols_list = strlist__new(NULL, NULL);
695
696 for (i = 0; idle_symbols[i]; i++)
697 strlist__add(idle_symbols_list, idle_symbols[i]);
698
699 return strlist__has_entry(idle_symbols_list, name);
700 }
701
map__process_kallsym_symbol(void * arg,const char * name,char type,u64 start)702 static int map__process_kallsym_symbol(void *arg, const char *name,
703 char type, u64 start)
704 {
705 struct symbol *sym;
706 struct dso *dso = arg;
707 struct rb_root_cached *root = &dso->symbols;
708
709 if (!symbol_type__filter(type))
710 return 0;
711
712 /* Ignore local symbols for ARM modules */
713 if (name[0] == '$')
714 return 0;
715
716 /*
717 * module symbols are not sorted so we add all
718 * symbols, setting length to 0, and rely on
719 * symbols__fixup_end() to fix it up.
720 */
721 sym = symbol__new(start, 0, kallsyms2elf_binding(type), kallsyms2elf_type(type), name);
722 if (sym == NULL)
723 return -ENOMEM;
724 /*
725 * We will pass the symbols to the filter later, in
726 * map__split_kallsyms, when we have split the maps per module
727 */
728 __symbols__insert(root, sym, !strchr(name, '['));
729
730 return 0;
731 }
732
733 /*
734 * Loads the function entries in /proc/kallsyms into kernel_map->dso,
735 * so that we can in the next step set the symbol ->end address and then
736 * call kernel_maps__split_kallsyms.
737 */
dso__load_all_kallsyms(struct dso * dso,const char * filename)738 static int dso__load_all_kallsyms(struct dso *dso, const char *filename)
739 {
740 return kallsyms__parse(filename, dso, map__process_kallsym_symbol);
741 }
742
maps__split_kallsyms_for_kcore(struct maps * kmaps,struct dso * dso)743 static int maps__split_kallsyms_for_kcore(struct maps *kmaps, struct dso *dso)
744 {
745 struct map *curr_map;
746 struct symbol *pos;
747 int count = 0;
748 struct rb_root_cached old_root = dso->symbols;
749 struct rb_root_cached *root = &dso->symbols;
750 struct rb_node *next = rb_first_cached(root);
751
752 if (!kmaps)
753 return -1;
754
755 *root = RB_ROOT_CACHED;
756
757 while (next) {
758 char *module;
759
760 pos = rb_entry(next, struct symbol, rb_node);
761 next = rb_next(&pos->rb_node);
762
763 rb_erase_cached(&pos->rb_node, &old_root);
764 RB_CLEAR_NODE(&pos->rb_node);
765 module = strchr(pos->name, '\t');
766 if (module)
767 *module = '\0';
768
769 curr_map = maps__find(kmaps, pos->start);
770
771 if (!curr_map) {
772 symbol__delete(pos);
773 continue;
774 }
775
776 pos->start -= curr_map->start - curr_map->pgoff;
777 if (pos->end > curr_map->end)
778 pos->end = curr_map->end;
779 if (pos->end)
780 pos->end -= curr_map->start - curr_map->pgoff;
781 symbols__insert(&curr_map->dso->symbols, pos);
782 ++count;
783 }
784
785 /* Symbols have been adjusted */
786 dso->adjust_symbols = 1;
787
788 return count;
789 }
790
791 /*
792 * Split the symbols into maps, making sure there are no overlaps, i.e. the
793 * kernel range is broken in several maps, named [kernel].N, as we don't have
794 * the original ELF section names vmlinux have.
795 */
maps__split_kallsyms(struct maps * kmaps,struct dso * dso,u64 delta,struct map * initial_map)796 static int maps__split_kallsyms(struct maps *kmaps, struct dso *dso, u64 delta,
797 struct map *initial_map)
798 {
799 struct machine *machine;
800 struct map *curr_map = initial_map;
801 struct symbol *pos;
802 int count = 0, moved = 0;
803 struct rb_root_cached *root = &dso->symbols;
804 struct rb_node *next = rb_first_cached(root);
805 int kernel_range = 0;
806 bool x86_64;
807
808 if (!kmaps)
809 return -1;
810
811 machine = kmaps->machine;
812
813 x86_64 = machine__is(machine, "x86_64");
814
815 while (next) {
816 char *module;
817
818 pos = rb_entry(next, struct symbol, rb_node);
819 next = rb_next(&pos->rb_node);
820
821 module = strchr(pos->name, '\t');
822 if (module) {
823 if (!symbol_conf.use_modules)
824 goto discard_symbol;
825
826 *module++ = '\0';
827
828 if (strcmp(curr_map->dso->short_name, module)) {
829 if (curr_map != initial_map &&
830 dso->kernel == DSO_SPACE__KERNEL_GUEST &&
831 machine__is_default_guest(machine)) {
832 /*
833 * We assume all symbols of a module are
834 * continuous in * kallsyms, so curr_map
835 * points to a module and all its
836 * symbols are in its kmap. Mark it as
837 * loaded.
838 */
839 dso__set_loaded(curr_map->dso);
840 }
841
842 curr_map = maps__find_by_name(kmaps, module);
843 if (curr_map == NULL) {
844 pr_debug("%s/proc/{kallsyms,modules} "
845 "inconsistency while looking "
846 "for \"%s\" module!\n",
847 machine->root_dir, module);
848 curr_map = initial_map;
849 goto discard_symbol;
850 }
851
852 if (curr_map->dso->loaded &&
853 !machine__is_default_guest(machine))
854 goto discard_symbol;
855 }
856 /*
857 * So that we look just like we get from .ko files,
858 * i.e. not prelinked, relative to initial_map->start.
859 */
860 pos->start = curr_map->map_ip(curr_map, pos->start);
861 pos->end = curr_map->map_ip(curr_map, pos->end);
862 } else if (x86_64 && is_entry_trampoline(pos->name)) {
863 /*
864 * These symbols are not needed anymore since the
865 * trampoline maps refer to the text section and it's
866 * symbols instead. Avoid having to deal with
867 * relocations, and the assumption that the first symbol
868 * is the start of kernel text, by simply removing the
869 * symbols at this point.
870 */
871 goto discard_symbol;
872 } else if (curr_map != initial_map) {
873 char dso_name[PATH_MAX];
874 struct dso *ndso;
875
876 if (delta) {
877 /* Kernel was relocated at boot time */
878 pos->start -= delta;
879 pos->end -= delta;
880 }
881
882 if (count == 0) {
883 curr_map = initial_map;
884 goto add_symbol;
885 }
886
887 if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
888 snprintf(dso_name, sizeof(dso_name),
889 "[guest.kernel].%d",
890 kernel_range++);
891 else
892 snprintf(dso_name, sizeof(dso_name),
893 "[kernel].%d",
894 kernel_range++);
895
896 ndso = dso__new(dso_name);
897 if (ndso == NULL)
898 return -1;
899
900 ndso->kernel = dso->kernel;
901
902 curr_map = map__new2(pos->start, ndso);
903 if (curr_map == NULL) {
904 dso__put(ndso);
905 return -1;
906 }
907
908 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
909 maps__insert(kmaps, curr_map);
910 ++kernel_range;
911 } else if (delta) {
912 /* Kernel was relocated at boot time */
913 pos->start -= delta;
914 pos->end -= delta;
915 }
916 add_symbol:
917 if (curr_map != initial_map) {
918 rb_erase_cached(&pos->rb_node, root);
919 symbols__insert(&curr_map->dso->symbols, pos);
920 ++moved;
921 } else
922 ++count;
923
924 continue;
925 discard_symbol:
926 rb_erase_cached(&pos->rb_node, root);
927 symbol__delete(pos);
928 }
929
930 if (curr_map != initial_map &&
931 dso->kernel == DSO_SPACE__KERNEL_GUEST &&
932 machine__is_default_guest(kmaps->machine)) {
933 dso__set_loaded(curr_map->dso);
934 }
935
936 return count + moved;
937 }
938
symbol__restricted_filename(const char * filename,const char * restricted_filename)939 bool symbol__restricted_filename(const char *filename,
940 const char *restricted_filename)
941 {
942 bool restricted = false;
943
944 if (symbol_conf.kptr_restrict) {
945 char *r = realpath(filename, NULL);
946
947 if (r != NULL) {
948 restricted = strcmp(r, restricted_filename) == 0;
949 free(r);
950 return restricted;
951 }
952 }
953
954 return restricted;
955 }
956
957 struct module_info {
958 struct rb_node rb_node;
959 char *name;
960 u64 start;
961 };
962
add_module(struct module_info * mi,struct rb_root * modules)963 static void add_module(struct module_info *mi, struct rb_root *modules)
964 {
965 struct rb_node **p = &modules->rb_node;
966 struct rb_node *parent = NULL;
967 struct module_info *m;
968
969 while (*p != NULL) {
970 parent = *p;
971 m = rb_entry(parent, struct module_info, rb_node);
972 if (strcmp(mi->name, m->name) < 0)
973 p = &(*p)->rb_left;
974 else
975 p = &(*p)->rb_right;
976 }
977 rb_link_node(&mi->rb_node, parent, p);
978 rb_insert_color(&mi->rb_node, modules);
979 }
980
delete_modules(struct rb_root * modules)981 static void delete_modules(struct rb_root *modules)
982 {
983 struct module_info *mi;
984 struct rb_node *next = rb_first(modules);
985
986 while (next) {
987 mi = rb_entry(next, struct module_info, rb_node);
988 next = rb_next(&mi->rb_node);
989 rb_erase(&mi->rb_node, modules);
990 zfree(&mi->name);
991 free(mi);
992 }
993 }
994
find_module(const char * name,struct rb_root * modules)995 static struct module_info *find_module(const char *name,
996 struct rb_root *modules)
997 {
998 struct rb_node *n = modules->rb_node;
999
1000 while (n) {
1001 struct module_info *m;
1002 int cmp;
1003
1004 m = rb_entry(n, struct module_info, rb_node);
1005 cmp = strcmp(name, m->name);
1006 if (cmp < 0)
1007 n = n->rb_left;
1008 else if (cmp > 0)
1009 n = n->rb_right;
1010 else
1011 return m;
1012 }
1013
1014 return NULL;
1015 }
1016
__read_proc_modules(void * arg,const char * name,u64 start,u64 size __maybe_unused)1017 static int __read_proc_modules(void *arg, const char *name, u64 start,
1018 u64 size __maybe_unused)
1019 {
1020 struct rb_root *modules = arg;
1021 struct module_info *mi;
1022
1023 mi = zalloc(sizeof(struct module_info));
1024 if (!mi)
1025 return -ENOMEM;
1026
1027 mi->name = strdup(name);
1028 mi->start = start;
1029
1030 if (!mi->name) {
1031 free(mi);
1032 return -ENOMEM;
1033 }
1034
1035 add_module(mi, modules);
1036
1037 return 0;
1038 }
1039
read_proc_modules(const char * filename,struct rb_root * modules)1040 static int read_proc_modules(const char *filename, struct rb_root *modules)
1041 {
1042 if (symbol__restricted_filename(filename, "/proc/modules"))
1043 return -1;
1044
1045 if (modules__parse(filename, modules, __read_proc_modules)) {
1046 delete_modules(modules);
1047 return -1;
1048 }
1049
1050 return 0;
1051 }
1052
compare_proc_modules(const char * from,const char * to)1053 int compare_proc_modules(const char *from, const char *to)
1054 {
1055 struct rb_root from_modules = RB_ROOT;
1056 struct rb_root to_modules = RB_ROOT;
1057 struct rb_node *from_node, *to_node;
1058 struct module_info *from_m, *to_m;
1059 int ret = -1;
1060
1061 if (read_proc_modules(from, &from_modules))
1062 return -1;
1063
1064 if (read_proc_modules(to, &to_modules))
1065 goto out_delete_from;
1066
1067 from_node = rb_first(&from_modules);
1068 to_node = rb_first(&to_modules);
1069 while (from_node) {
1070 if (!to_node)
1071 break;
1072
1073 from_m = rb_entry(from_node, struct module_info, rb_node);
1074 to_m = rb_entry(to_node, struct module_info, rb_node);
1075
1076 if (from_m->start != to_m->start ||
1077 strcmp(from_m->name, to_m->name))
1078 break;
1079
1080 from_node = rb_next(from_node);
1081 to_node = rb_next(to_node);
1082 }
1083
1084 if (!from_node && !to_node)
1085 ret = 0;
1086
1087 delete_modules(&to_modules);
1088 out_delete_from:
1089 delete_modules(&from_modules);
1090
1091 return ret;
1092 }
1093
do_validate_kcore_modules(const char * filename,struct maps * kmaps)1094 static int do_validate_kcore_modules(const char *filename, struct maps *kmaps)
1095 {
1096 struct rb_root modules = RB_ROOT;
1097 struct map *old_map;
1098 int err;
1099
1100 err = read_proc_modules(filename, &modules);
1101 if (err)
1102 return err;
1103
1104 maps__for_each_entry(kmaps, old_map) {
1105 struct module_info *mi;
1106
1107 if (!__map__is_kmodule(old_map)) {
1108 continue;
1109 }
1110
1111 /* Module must be in memory at the same address */
1112 mi = find_module(old_map->dso->short_name, &modules);
1113 if (!mi || mi->start != old_map->start) {
1114 err = -EINVAL;
1115 goto out;
1116 }
1117 }
1118 out:
1119 delete_modules(&modules);
1120 return err;
1121 }
1122
1123 /*
1124 * If kallsyms is referenced by name then we look for filename in the same
1125 * directory.
1126 */
filename_from_kallsyms_filename(char * filename,const char * base_name,const char * kallsyms_filename)1127 static bool filename_from_kallsyms_filename(char *filename,
1128 const char *base_name,
1129 const char *kallsyms_filename)
1130 {
1131 char *name;
1132
1133 strcpy(filename, kallsyms_filename);
1134 name = strrchr(filename, '/');
1135 if (!name)
1136 return false;
1137
1138 name += 1;
1139
1140 if (!strcmp(name, "kallsyms")) {
1141 strcpy(name, base_name);
1142 return true;
1143 }
1144
1145 return false;
1146 }
1147
validate_kcore_modules(const char * kallsyms_filename,struct map * map)1148 static int validate_kcore_modules(const char *kallsyms_filename,
1149 struct map *map)
1150 {
1151 struct maps *kmaps = map__kmaps(map);
1152 char modules_filename[PATH_MAX];
1153
1154 if (!kmaps)
1155 return -EINVAL;
1156
1157 if (!filename_from_kallsyms_filename(modules_filename, "modules",
1158 kallsyms_filename))
1159 return -EINVAL;
1160
1161 if (do_validate_kcore_modules(modules_filename, kmaps))
1162 return -EINVAL;
1163
1164 return 0;
1165 }
1166
validate_kcore_addresses(const char * kallsyms_filename,struct map * map)1167 static int validate_kcore_addresses(const char *kallsyms_filename,
1168 struct map *map)
1169 {
1170 struct kmap *kmap = map__kmap(map);
1171
1172 if (!kmap)
1173 return -EINVAL;
1174
1175 if (kmap->ref_reloc_sym && kmap->ref_reloc_sym->name) {
1176 u64 start;
1177
1178 if (kallsyms__get_function_start(kallsyms_filename,
1179 kmap->ref_reloc_sym->name, &start))
1180 return -ENOENT;
1181 if (start != kmap->ref_reloc_sym->addr)
1182 return -EINVAL;
1183 }
1184
1185 return validate_kcore_modules(kallsyms_filename, map);
1186 }
1187
1188 struct kcore_mapfn_data {
1189 struct dso *dso;
1190 struct list_head maps;
1191 };
1192
kcore_mapfn(u64 start,u64 len,u64 pgoff,void * data)1193 static int kcore_mapfn(u64 start, u64 len, u64 pgoff, void *data)
1194 {
1195 struct kcore_mapfn_data *md = data;
1196 struct map *map;
1197
1198 map = map__new2(start, md->dso);
1199 if (map == NULL)
1200 return -ENOMEM;
1201
1202 map->end = map->start + len;
1203 map->pgoff = pgoff;
1204
1205 list_add(&map->node, &md->maps);
1206
1207 return 0;
1208 }
1209
1210 /*
1211 * Merges map into maps by splitting the new map within the existing map
1212 * regions.
1213 */
maps__merge_in(struct maps * kmaps,struct map * new_map)1214 int maps__merge_in(struct maps *kmaps, struct map *new_map)
1215 {
1216 struct map *old_map;
1217 LIST_HEAD(merged);
1218
1219 maps__for_each_entry(kmaps, old_map) {
1220 /* no overload with this one */
1221 if (new_map->end < old_map->start ||
1222 new_map->start >= old_map->end)
1223 continue;
1224
1225 if (new_map->start < old_map->start) {
1226 /*
1227 * |new......
1228 * |old....
1229 */
1230 if (new_map->end < old_map->end) {
1231 /*
1232 * |new......| -> |new..|
1233 * |old....| -> |old....|
1234 */
1235 new_map->end = old_map->start;
1236 } else {
1237 /*
1238 * |new.............| -> |new..| |new..|
1239 * |old....| -> |old....|
1240 */
1241 struct map *m = map__clone(new_map);
1242
1243 if (!m)
1244 return -ENOMEM;
1245
1246 m->end = old_map->start;
1247 list_add_tail(&m->node, &merged);
1248 new_map->pgoff += old_map->end - new_map->start;
1249 new_map->start = old_map->end;
1250 }
1251 } else {
1252 /*
1253 * |new......
1254 * |old....
1255 */
1256 if (new_map->end < old_map->end) {
1257 /*
1258 * |new..| -> x
1259 * |old.........| -> |old.........|
1260 */
1261 map__put(new_map);
1262 new_map = NULL;
1263 break;
1264 } else {
1265 /*
1266 * |new......| -> |new...|
1267 * |old....| -> |old....|
1268 */
1269 new_map->pgoff += old_map->end - new_map->start;
1270 new_map->start = old_map->end;
1271 }
1272 }
1273 }
1274
1275 while (!list_empty(&merged)) {
1276 old_map = list_entry(merged.next, struct map, node);
1277 list_del_init(&old_map->node);
1278 maps__insert(kmaps, old_map);
1279 map__put(old_map);
1280 }
1281
1282 if (new_map) {
1283 maps__insert(kmaps, new_map);
1284 map__put(new_map);
1285 }
1286 return 0;
1287 }
1288
dso__load_kcore(struct dso * dso,struct map * map,const char * kallsyms_filename)1289 static int dso__load_kcore(struct dso *dso, struct map *map,
1290 const char *kallsyms_filename)
1291 {
1292 struct maps *kmaps = map__kmaps(map);
1293 struct kcore_mapfn_data md;
1294 struct map *old_map, *new_map, *replacement_map = NULL, *next;
1295 struct machine *machine;
1296 bool is_64_bit;
1297 int err, fd;
1298 char kcore_filename[PATH_MAX];
1299 u64 stext;
1300
1301 if (!kmaps)
1302 return -EINVAL;
1303
1304 machine = kmaps->machine;
1305
1306 /* This function requires that the map is the kernel map */
1307 if (!__map__is_kernel(map))
1308 return -EINVAL;
1309
1310 if (!filename_from_kallsyms_filename(kcore_filename, "kcore",
1311 kallsyms_filename))
1312 return -EINVAL;
1313
1314 /* Modules and kernel must be present at their original addresses */
1315 if (validate_kcore_addresses(kallsyms_filename, map))
1316 return -EINVAL;
1317
1318 md.dso = dso;
1319 INIT_LIST_HEAD(&md.maps);
1320
1321 fd = open(kcore_filename, O_RDONLY);
1322 if (fd < 0) {
1323 pr_debug("Failed to open %s. Note /proc/kcore requires CAP_SYS_RAWIO capability to access.\n",
1324 kcore_filename);
1325 return -EINVAL;
1326 }
1327
1328 /* Read new maps into temporary lists */
1329 err = file__read_maps(fd, map->prot & PROT_EXEC, kcore_mapfn, &md,
1330 &is_64_bit);
1331 if (err)
1332 goto out_err;
1333 dso->is_64_bit = is_64_bit;
1334
1335 if (list_empty(&md.maps)) {
1336 err = -EINVAL;
1337 goto out_err;
1338 }
1339
1340 /* Remove old maps */
1341 maps__for_each_entry_safe(kmaps, old_map, next) {
1342 /*
1343 * We need to preserve eBPF maps even if they are
1344 * covered by kcore, because we need to access
1345 * eBPF dso for source data.
1346 */
1347 if (old_map != map && !__map__is_bpf_prog(old_map))
1348 maps__remove(kmaps, old_map);
1349 }
1350 machine->trampolines_mapped = false;
1351
1352 /* Find the kernel map using the '_stext' symbol */
1353 if (!kallsyms__get_function_start(kallsyms_filename, "_stext", &stext)) {
1354 list_for_each_entry(new_map, &md.maps, node) {
1355 if (stext >= new_map->start && stext < new_map->end) {
1356 replacement_map = new_map;
1357 break;
1358 }
1359 }
1360 }
1361
1362 if (!replacement_map)
1363 replacement_map = list_entry(md.maps.next, struct map, node);
1364
1365 /* Add new maps */
1366 while (!list_empty(&md.maps)) {
1367 new_map = list_entry(md.maps.next, struct map, node);
1368 list_del_init(&new_map->node);
1369 if (new_map == replacement_map) {
1370 map->start = new_map->start;
1371 map->end = new_map->end;
1372 map->pgoff = new_map->pgoff;
1373 map->map_ip = new_map->map_ip;
1374 map->unmap_ip = new_map->unmap_ip;
1375 /* Ensure maps are correctly ordered */
1376 map__get(map);
1377 maps__remove(kmaps, map);
1378 maps__insert(kmaps, map);
1379 map__put(map);
1380 map__put(new_map);
1381 } else {
1382 /*
1383 * Merge kcore map into existing maps,
1384 * and ensure that current maps (eBPF)
1385 * stay intact.
1386 */
1387 if (maps__merge_in(kmaps, new_map))
1388 goto out_err;
1389 }
1390 }
1391
1392 if (machine__is(machine, "x86_64")) {
1393 u64 addr;
1394
1395 /*
1396 * If one of the corresponding symbols is there, assume the
1397 * entry trampoline maps are too.
1398 */
1399 if (!kallsyms__get_function_start(kallsyms_filename,
1400 ENTRY_TRAMPOLINE_NAME,
1401 &addr))
1402 machine->trampolines_mapped = true;
1403 }
1404
1405 /*
1406 * Set the data type and long name so that kcore can be read via
1407 * dso__data_read_addr().
1408 */
1409 if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
1410 dso->binary_type = DSO_BINARY_TYPE__GUEST_KCORE;
1411 else
1412 dso->binary_type = DSO_BINARY_TYPE__KCORE;
1413 dso__set_long_name(dso, strdup(kcore_filename), true);
1414
1415 close(fd);
1416
1417 if (map->prot & PROT_EXEC)
1418 pr_debug("Using %s for kernel object code\n", kcore_filename);
1419 else
1420 pr_debug("Using %s for kernel data\n", kcore_filename);
1421
1422 return 0;
1423
1424 out_err:
1425 while (!list_empty(&md.maps)) {
1426 map = list_entry(md.maps.next, struct map, node);
1427 list_del_init(&map->node);
1428 map__put(map);
1429 }
1430 close(fd);
1431 return -EINVAL;
1432 }
1433
1434 /*
1435 * If the kernel is relocated at boot time, kallsyms won't match. Compute the
1436 * delta based on the relocation reference symbol.
1437 */
kallsyms__delta(struct kmap * kmap,const char * filename,u64 * delta)1438 static int kallsyms__delta(struct kmap *kmap, const char *filename, u64 *delta)
1439 {
1440 u64 addr;
1441
1442 if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->name)
1443 return 0;
1444
1445 if (kallsyms__get_function_start(filename, kmap->ref_reloc_sym->name, &addr))
1446 return -1;
1447
1448 *delta = addr - kmap->ref_reloc_sym->addr;
1449 return 0;
1450 }
1451
__dso__load_kallsyms(struct dso * dso,const char * filename,struct map * map,bool no_kcore)1452 int __dso__load_kallsyms(struct dso *dso, const char *filename,
1453 struct map *map, bool no_kcore)
1454 {
1455 struct kmap *kmap = map__kmap(map);
1456 u64 delta = 0;
1457
1458 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1459 return -1;
1460
1461 if (!kmap || !kmap->kmaps)
1462 return -1;
1463
1464 if (dso__load_all_kallsyms(dso, filename) < 0)
1465 return -1;
1466
1467 if (kallsyms__delta(kmap, filename, &delta))
1468 return -1;
1469
1470 symbols__fixup_end(&dso->symbols);
1471 symbols__fixup_duplicate(&dso->symbols);
1472
1473 if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
1474 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
1475 else
1476 dso->symtab_type = DSO_BINARY_TYPE__KALLSYMS;
1477
1478 if (!no_kcore && !dso__load_kcore(dso, map, filename))
1479 return maps__split_kallsyms_for_kcore(kmap->kmaps, dso);
1480 else
1481 return maps__split_kallsyms(kmap->kmaps, dso, delta, map);
1482 }
1483
dso__load_kallsyms(struct dso * dso,const char * filename,struct map * map)1484 int dso__load_kallsyms(struct dso *dso, const char *filename,
1485 struct map *map)
1486 {
1487 return __dso__load_kallsyms(dso, filename, map, false);
1488 }
1489
dso__load_perf_map(const char * map_path,struct dso * dso)1490 static int dso__load_perf_map(const char *map_path, struct dso *dso)
1491 {
1492 char *line = NULL;
1493 size_t n;
1494 FILE *file;
1495 int nr_syms = 0;
1496
1497 file = fopen(map_path, "r");
1498 if (file == NULL)
1499 goto out_failure;
1500
1501 while (!feof(file)) {
1502 u64 start, size;
1503 struct symbol *sym;
1504 int line_len, len;
1505
1506 line_len = getline(&line, &n, file);
1507 if (line_len < 0)
1508 break;
1509
1510 if (!line)
1511 goto out_failure;
1512
1513 line[--line_len] = '\0'; /* \n */
1514
1515 len = hex2u64(line, &start);
1516
1517 len++;
1518 if (len + 2 >= line_len)
1519 continue;
1520
1521 len += hex2u64(line + len, &size);
1522
1523 len++;
1524 if (len + 2 >= line_len)
1525 continue;
1526
1527 sym = symbol__new(start, size, STB_GLOBAL, STT_FUNC, line + len);
1528
1529 if (sym == NULL)
1530 goto out_delete_line;
1531
1532 symbols__insert(&dso->symbols, sym);
1533 nr_syms++;
1534 }
1535
1536 free(line);
1537 fclose(file);
1538
1539 return nr_syms;
1540
1541 out_delete_line:
1542 free(line);
1543 out_failure:
1544 return -1;
1545 }
1546
1547 #ifdef HAVE_LIBBFD_SUPPORT
1548 #define PACKAGE 'perf'
1549 #include <bfd.h>
1550
bfd_symbols__cmpvalue(const void * a,const void * b)1551 static int bfd_symbols__cmpvalue(const void *a, const void *b)
1552 {
1553 const asymbol *as = *(const asymbol **)a, *bs = *(const asymbol **)b;
1554
1555 if (bfd_asymbol_value(as) != bfd_asymbol_value(bs))
1556 return bfd_asymbol_value(as) - bfd_asymbol_value(bs);
1557
1558 return bfd_asymbol_name(as)[0] - bfd_asymbol_name(bs)[0];
1559 }
1560
bfd2elf_binding(asymbol * symbol)1561 static int bfd2elf_binding(asymbol *symbol)
1562 {
1563 if (symbol->flags & BSF_WEAK)
1564 return STB_WEAK;
1565 if (symbol->flags & BSF_GLOBAL)
1566 return STB_GLOBAL;
1567 if (symbol->flags & BSF_LOCAL)
1568 return STB_LOCAL;
1569 return -1;
1570 }
1571
dso__load_bfd_symbols(struct dso * dso,const char * debugfile)1572 int dso__load_bfd_symbols(struct dso *dso, const char *debugfile)
1573 {
1574 int err = -1;
1575 long symbols_size, symbols_count, i;
1576 asection *section;
1577 asymbol **symbols, *sym;
1578 struct symbol *symbol;
1579 bfd *abfd;
1580 u64 start, len;
1581
1582 abfd = bfd_openr(debugfile, NULL);
1583 if (!abfd)
1584 return -1;
1585
1586 if (!bfd_check_format(abfd, bfd_object)) {
1587 pr_debug2("%s: cannot read %s bfd file.\n", __func__,
1588 dso->long_name);
1589 goto out_close;
1590 }
1591
1592 if (bfd_get_flavour(abfd) == bfd_target_elf_flavour)
1593 goto out_close;
1594
1595 symbols_size = bfd_get_symtab_upper_bound(abfd);
1596 if (symbols_size == 0) {
1597 bfd_close(abfd);
1598 return 0;
1599 }
1600
1601 if (symbols_size < 0)
1602 goto out_close;
1603
1604 symbols = malloc(symbols_size);
1605 if (!symbols)
1606 goto out_close;
1607
1608 symbols_count = bfd_canonicalize_symtab(abfd, symbols);
1609 if (symbols_count < 0)
1610 goto out_free;
1611
1612 section = bfd_get_section_by_name(abfd, ".text");
1613 if (section) {
1614 for (i = 0; i < symbols_count; ++i) {
1615 if (!strcmp(bfd_asymbol_name(symbols[i]), "__ImageBase") ||
1616 !strcmp(bfd_asymbol_name(symbols[i]), "__image_base__"))
1617 break;
1618 }
1619 if (i < symbols_count) {
1620 /* PE symbols can only have 4 bytes, so use .text high bits */
1621 dso->text_offset = section->vma - (u32)section->vma;
1622 dso->text_offset += (u32)bfd_asymbol_value(symbols[i]);
1623 } else {
1624 dso->text_offset = section->vma - section->filepos;
1625 }
1626 }
1627
1628 qsort(symbols, symbols_count, sizeof(asymbol *), bfd_symbols__cmpvalue);
1629
1630 #ifdef bfd_get_section
1631 #define bfd_asymbol_section bfd_get_section
1632 #endif
1633 for (i = 0; i < symbols_count; ++i) {
1634 sym = symbols[i];
1635 section = bfd_asymbol_section(sym);
1636 if (bfd2elf_binding(sym) < 0)
1637 continue;
1638
1639 while (i + 1 < symbols_count &&
1640 bfd_asymbol_section(symbols[i + 1]) == section &&
1641 bfd2elf_binding(symbols[i + 1]) < 0)
1642 i++;
1643
1644 if (i + 1 < symbols_count &&
1645 bfd_asymbol_section(symbols[i + 1]) == section)
1646 len = symbols[i + 1]->value - sym->value;
1647 else
1648 len = section->size - sym->value;
1649
1650 start = bfd_asymbol_value(sym) - dso->text_offset;
1651 symbol = symbol__new(start, len, bfd2elf_binding(sym), STT_FUNC,
1652 bfd_asymbol_name(sym));
1653 if (!symbol)
1654 goto out_free;
1655
1656 symbols__insert(&dso->symbols, symbol);
1657 }
1658 #ifdef bfd_get_section
1659 #undef bfd_asymbol_section
1660 #endif
1661
1662 symbols__fixup_end(&dso->symbols);
1663 symbols__fixup_duplicate(&dso->symbols);
1664 dso->adjust_symbols = 1;
1665
1666 err = 0;
1667 out_free:
1668 free(symbols);
1669 out_close:
1670 bfd_close(abfd);
1671 return err;
1672 }
1673 #endif
1674
dso__is_compatible_symtab_type(struct dso * dso,bool kmod,enum dso_binary_type type)1675 static bool dso__is_compatible_symtab_type(struct dso *dso, bool kmod,
1676 enum dso_binary_type type)
1677 {
1678 switch (type) {
1679 case DSO_BINARY_TYPE__JAVA_JIT:
1680 case DSO_BINARY_TYPE__DEBUGLINK:
1681 case DSO_BINARY_TYPE__SYSTEM_PATH_DSO:
1682 case DSO_BINARY_TYPE__FEDORA_DEBUGINFO:
1683 case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO:
1684 case DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO:
1685 case DSO_BINARY_TYPE__BUILDID_DEBUGINFO:
1686 case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO:
1687 return !kmod && dso->kernel == DSO_SPACE__USER;
1688
1689 case DSO_BINARY_TYPE__KALLSYMS:
1690 case DSO_BINARY_TYPE__VMLINUX:
1691 case DSO_BINARY_TYPE__KCORE:
1692 return dso->kernel == DSO_SPACE__KERNEL;
1693
1694 case DSO_BINARY_TYPE__GUEST_KALLSYMS:
1695 case DSO_BINARY_TYPE__GUEST_VMLINUX:
1696 case DSO_BINARY_TYPE__GUEST_KCORE:
1697 return dso->kernel == DSO_SPACE__KERNEL_GUEST;
1698
1699 case DSO_BINARY_TYPE__GUEST_KMODULE:
1700 case DSO_BINARY_TYPE__GUEST_KMODULE_COMP:
1701 case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE:
1702 case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP:
1703 /*
1704 * kernel modules know their symtab type - it's set when
1705 * creating a module dso in machine__addnew_module_map().
1706 */
1707 return kmod && dso->symtab_type == type;
1708
1709 case DSO_BINARY_TYPE__BUILD_ID_CACHE:
1710 case DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO:
1711 return true;
1712
1713 case DSO_BINARY_TYPE__BPF_PROG_INFO:
1714 case DSO_BINARY_TYPE__BPF_IMAGE:
1715 case DSO_BINARY_TYPE__OOL:
1716 case DSO_BINARY_TYPE__NOT_FOUND:
1717 default:
1718 return false;
1719 }
1720 }
1721
1722 /* Checks for the existence of the perf-<pid>.map file in two different
1723 * locations. First, if the process is a separate mount namespace, check in
1724 * that namespace using the pid of the innermost pid namespace. If's not in a
1725 * namespace, or the file can't be found there, try in the mount namespace of
1726 * the tracing process using our view of its pid.
1727 */
dso__find_perf_map(char * filebuf,size_t bufsz,struct nsinfo ** nsip)1728 static int dso__find_perf_map(char *filebuf, size_t bufsz,
1729 struct nsinfo **nsip)
1730 {
1731 struct nscookie nsc;
1732 struct nsinfo *nsi;
1733 struct nsinfo *nnsi;
1734 int rc = -1;
1735
1736 nsi = *nsip;
1737
1738 if (nsi->need_setns) {
1739 snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsi->nstgid);
1740 nsinfo__mountns_enter(nsi, &nsc);
1741 rc = access(filebuf, R_OK);
1742 nsinfo__mountns_exit(&nsc);
1743 if (rc == 0)
1744 return rc;
1745 }
1746
1747 nnsi = nsinfo__copy(nsi);
1748 if (nnsi) {
1749 nsinfo__put(nsi);
1750
1751 nnsi->need_setns = false;
1752 snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nnsi->tgid);
1753 *nsip = nnsi;
1754 rc = 0;
1755 }
1756
1757 return rc;
1758 }
1759
dso__load(struct dso * dso,struct map * map)1760 int dso__load(struct dso *dso, struct map *map)
1761 {
1762 char *name;
1763 int ret = -1;
1764 u_int i;
1765 struct machine *machine = NULL;
1766 char *root_dir = (char *) "";
1767 int ss_pos = 0;
1768 struct symsrc ss_[2];
1769 struct symsrc *syms_ss = NULL, *runtime_ss = NULL;
1770 bool kmod;
1771 bool perfmap;
1772 struct build_id bid;
1773 struct nscookie nsc;
1774 char newmapname[PATH_MAX];
1775 const char *map_path = dso->long_name;
1776
1777 perfmap = strncmp(dso->name, "/tmp/perf-", 10) == 0;
1778 if (perfmap) {
1779 if (dso->nsinfo && (dso__find_perf_map(newmapname,
1780 sizeof(newmapname), &dso->nsinfo) == 0)) {
1781 map_path = newmapname;
1782 }
1783 }
1784
1785 nsinfo__mountns_enter(dso->nsinfo, &nsc);
1786 pthread_mutex_lock(&dso->lock);
1787
1788 /* check again under the dso->lock */
1789 if (dso__loaded(dso)) {
1790 ret = 1;
1791 goto out;
1792 }
1793
1794 kmod = dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1795 dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP ||
1796 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE ||
1797 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE_COMP;
1798
1799 if (dso->kernel && !kmod) {
1800 if (dso->kernel == DSO_SPACE__KERNEL)
1801 ret = dso__load_kernel_sym(dso, map);
1802 else if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
1803 ret = dso__load_guest_kernel_sym(dso, map);
1804
1805 machine = map__kmaps(map)->machine;
1806 if (machine__is(machine, "x86_64"))
1807 machine__map_x86_64_entry_trampolines(machine, dso);
1808 goto out;
1809 }
1810
1811 dso->adjust_symbols = 0;
1812
1813 if (perfmap) {
1814 ret = dso__load_perf_map(map_path, dso);
1815 dso->symtab_type = ret > 0 ? DSO_BINARY_TYPE__JAVA_JIT :
1816 DSO_BINARY_TYPE__NOT_FOUND;
1817 goto out;
1818 }
1819
1820 if (machine)
1821 root_dir = machine->root_dir;
1822
1823 name = malloc(PATH_MAX);
1824 if (!name)
1825 goto out;
1826
1827 /*
1828 * Read the build id if possible. This is required for
1829 * DSO_BINARY_TYPE__BUILDID_DEBUGINFO to work
1830 */
1831 if (!dso->has_build_id &&
1832 is_regular_file(dso->long_name)) {
1833 __symbol__join_symfs(name, PATH_MAX, dso->long_name);
1834 if (filename__read_build_id(name, &bid) > 0)
1835 dso__set_build_id(dso, &bid);
1836 }
1837
1838 /*
1839 * Iterate over candidate debug images.
1840 * Keep track of "interesting" ones (those which have a symtab, dynsym,
1841 * and/or opd section) for processing.
1842 */
1843 for (i = 0; i < DSO_BINARY_TYPE__SYMTAB_CNT; i++) {
1844 struct symsrc *ss = &ss_[ss_pos];
1845 bool next_slot = false;
1846 bool is_reg;
1847 bool nsexit;
1848 int bfdrc = -1;
1849 int sirc = -1;
1850
1851 enum dso_binary_type symtab_type = binary_type_symtab[i];
1852
1853 nsexit = (symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE ||
1854 symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO);
1855
1856 if (!dso__is_compatible_symtab_type(dso, kmod, symtab_type))
1857 continue;
1858
1859 if (dso__read_binary_type_filename(dso, symtab_type,
1860 root_dir, name, PATH_MAX))
1861 continue;
1862
1863 if (nsexit)
1864 nsinfo__mountns_exit(&nsc);
1865
1866 is_reg = is_regular_file(name);
1867 #ifdef HAVE_LIBBFD_SUPPORT
1868 if (is_reg)
1869 bfdrc = dso__load_bfd_symbols(dso, name);
1870 #endif
1871 if (is_reg && bfdrc < 0)
1872 sirc = symsrc__init(ss, dso, name, symtab_type);
1873
1874 if (nsexit)
1875 nsinfo__mountns_enter(dso->nsinfo, &nsc);
1876
1877 if (bfdrc == 0) {
1878 ret = 0;
1879 break;
1880 }
1881
1882 if (!is_reg || sirc < 0)
1883 continue;
1884
1885 if (!syms_ss && symsrc__has_symtab(ss)) {
1886 syms_ss = ss;
1887 next_slot = true;
1888 if (!dso->symsrc_filename)
1889 dso->symsrc_filename = strdup(name);
1890 }
1891
1892 if (!runtime_ss && symsrc__possibly_runtime(ss)) {
1893 runtime_ss = ss;
1894 next_slot = true;
1895 }
1896
1897 if (next_slot) {
1898 ss_pos++;
1899
1900 if (syms_ss && runtime_ss)
1901 break;
1902 } else {
1903 symsrc__destroy(ss);
1904 }
1905
1906 }
1907
1908 if (!runtime_ss && !syms_ss)
1909 goto out_free;
1910
1911 if (runtime_ss && !syms_ss) {
1912 syms_ss = runtime_ss;
1913 }
1914
1915 /* We'll have to hope for the best */
1916 if (!runtime_ss && syms_ss)
1917 runtime_ss = syms_ss;
1918
1919 if (syms_ss)
1920 ret = dso__load_sym(dso, map, syms_ss, runtime_ss, kmod);
1921 else
1922 ret = -1;
1923
1924 if (ret > 0) {
1925 int nr_plt;
1926
1927 nr_plt = dso__synthesize_plt_symbols(dso, runtime_ss);
1928 if (nr_plt > 0)
1929 ret += nr_plt;
1930 }
1931
1932 for (; ss_pos > 0; ss_pos--)
1933 symsrc__destroy(&ss_[ss_pos - 1]);
1934 out_free:
1935 free(name);
1936 if (ret < 0 && strstr(dso->name, " (deleted)") != NULL)
1937 ret = 0;
1938 out:
1939 dso__set_loaded(dso);
1940 pthread_mutex_unlock(&dso->lock);
1941 nsinfo__mountns_exit(&nsc);
1942
1943 return ret;
1944 }
1945
map__strcmp(const void * a,const void * b)1946 static int map__strcmp(const void *a, const void *b)
1947 {
1948 const struct map *ma = *(const struct map **)a, *mb = *(const struct map **)b;
1949 return strcmp(ma->dso->short_name, mb->dso->short_name);
1950 }
1951
map__strcmp_name(const void * name,const void * b)1952 static int map__strcmp_name(const void *name, const void *b)
1953 {
1954 const struct map *map = *(const struct map **)b;
1955 return strcmp(name, map->dso->short_name);
1956 }
1957
__maps__sort_by_name(struct maps * maps)1958 void __maps__sort_by_name(struct maps *maps)
1959 {
1960 qsort(maps->maps_by_name, maps->nr_maps, sizeof(struct map *), map__strcmp);
1961 }
1962
map__groups__sort_by_name_from_rbtree(struct maps * maps)1963 static int map__groups__sort_by_name_from_rbtree(struct maps *maps)
1964 {
1965 struct map *map;
1966 struct map **maps_by_name = realloc(maps->maps_by_name, maps->nr_maps * sizeof(map));
1967 int i = 0;
1968
1969 if (maps_by_name == NULL)
1970 return -1;
1971
1972 maps->maps_by_name = maps_by_name;
1973 maps->nr_maps_allocated = maps->nr_maps;
1974
1975 maps__for_each_entry(maps, map)
1976 maps_by_name[i++] = map;
1977
1978 __maps__sort_by_name(maps);
1979 return 0;
1980 }
1981
__maps__find_by_name(struct maps * maps,const char * name)1982 static struct map *__maps__find_by_name(struct maps *maps, const char *name)
1983 {
1984 struct map **mapp;
1985
1986 if (maps->maps_by_name == NULL &&
1987 map__groups__sort_by_name_from_rbtree(maps))
1988 return NULL;
1989
1990 mapp = bsearch(name, maps->maps_by_name, maps->nr_maps, sizeof(*mapp), map__strcmp_name);
1991 if (mapp)
1992 return *mapp;
1993 return NULL;
1994 }
1995
maps__find_by_name(struct maps * maps,const char * name)1996 struct map *maps__find_by_name(struct maps *maps, const char *name)
1997 {
1998 struct map *map;
1999
2000 down_read(&maps->lock);
2001
2002 if (maps->last_search_by_name && strcmp(maps->last_search_by_name->dso->short_name, name) == 0) {
2003 map = maps->last_search_by_name;
2004 goto out_unlock;
2005 }
2006 /*
2007 * If we have maps->maps_by_name, then the name isn't in the rbtree,
2008 * as maps->maps_by_name mirrors the rbtree when lookups by name are
2009 * made.
2010 */
2011 map = __maps__find_by_name(maps, name);
2012 if (map || maps->maps_by_name != NULL)
2013 goto out_unlock;
2014
2015 /* Fallback to traversing the rbtree... */
2016 maps__for_each_entry(maps, map)
2017 if (strcmp(map->dso->short_name, name) == 0) {
2018 maps->last_search_by_name = map;
2019 goto out_unlock;
2020 }
2021
2022 map = NULL;
2023
2024 out_unlock:
2025 up_read(&maps->lock);
2026 return map;
2027 }
2028
dso__load_vmlinux(struct dso * dso,struct map * map,const char * vmlinux,bool vmlinux_allocated)2029 int dso__load_vmlinux(struct dso *dso, struct map *map,
2030 const char *vmlinux, bool vmlinux_allocated)
2031 {
2032 int err = -1;
2033 struct symsrc ss;
2034 char symfs_vmlinux[PATH_MAX];
2035 enum dso_binary_type symtab_type;
2036
2037 if (vmlinux[0] == '/')
2038 snprintf(symfs_vmlinux, sizeof(symfs_vmlinux), "%s", vmlinux);
2039 else
2040 symbol__join_symfs(symfs_vmlinux, vmlinux);
2041
2042 if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
2043 symtab_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
2044 else
2045 symtab_type = DSO_BINARY_TYPE__VMLINUX;
2046
2047 if (symsrc__init(&ss, dso, symfs_vmlinux, symtab_type))
2048 return -1;
2049
2050 err = dso__load_sym(dso, map, &ss, &ss, 0);
2051 symsrc__destroy(&ss);
2052
2053 if (err > 0) {
2054 if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
2055 dso->binary_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
2056 else
2057 dso->binary_type = DSO_BINARY_TYPE__VMLINUX;
2058 dso__set_long_name(dso, vmlinux, vmlinux_allocated);
2059 dso__set_loaded(dso);
2060 pr_debug("Using %s for symbols\n", symfs_vmlinux);
2061 }
2062
2063 return err;
2064 }
2065
dso__load_vmlinux_path(struct dso * dso,struct map * map)2066 int dso__load_vmlinux_path(struct dso *dso, struct map *map)
2067 {
2068 int i, err = 0;
2069 char *filename = NULL;
2070
2071 pr_debug("Looking at the vmlinux_path (%d entries long)\n",
2072 vmlinux_path__nr_entries + 1);
2073
2074 for (i = 0; i < vmlinux_path__nr_entries; ++i) {
2075 err = dso__load_vmlinux(dso, map, vmlinux_path[i], false);
2076 if (err > 0)
2077 goto out;
2078 }
2079
2080 if (!symbol_conf.ignore_vmlinux_buildid)
2081 filename = dso__build_id_filename(dso, NULL, 0, false);
2082 if (filename != NULL) {
2083 err = dso__load_vmlinux(dso, map, filename, true);
2084 if (err > 0)
2085 goto out;
2086 free(filename);
2087 }
2088 out:
2089 return err;
2090 }
2091
visible_dir_filter(const char * name,struct dirent * d)2092 static bool visible_dir_filter(const char *name, struct dirent *d)
2093 {
2094 if (d->d_type != DT_DIR)
2095 return false;
2096 return lsdir_no_dot_filter(name, d);
2097 }
2098
find_matching_kcore(struct map * map,char * dir,size_t dir_sz)2099 static int find_matching_kcore(struct map *map, char *dir, size_t dir_sz)
2100 {
2101 char kallsyms_filename[PATH_MAX];
2102 int ret = -1;
2103 struct strlist *dirs;
2104 struct str_node *nd;
2105
2106 dirs = lsdir(dir, visible_dir_filter);
2107 if (!dirs)
2108 return -1;
2109
2110 strlist__for_each_entry(nd, dirs) {
2111 scnprintf(kallsyms_filename, sizeof(kallsyms_filename),
2112 "%s/%s/kallsyms", dir, nd->s);
2113 if (!validate_kcore_addresses(kallsyms_filename, map)) {
2114 strlcpy(dir, kallsyms_filename, dir_sz);
2115 ret = 0;
2116 break;
2117 }
2118 }
2119
2120 strlist__delete(dirs);
2121
2122 return ret;
2123 }
2124
2125 /*
2126 * Use open(O_RDONLY) to check readability directly instead of access(R_OK)
2127 * since access(R_OK) only checks with real UID/GID but open() use effective
2128 * UID/GID and actual capabilities (e.g. /proc/kcore requires CAP_SYS_RAWIO).
2129 */
filename__readable(const char * file)2130 static bool filename__readable(const char *file)
2131 {
2132 int fd = open(file, O_RDONLY);
2133 if (fd < 0)
2134 return false;
2135 close(fd);
2136 return true;
2137 }
2138
dso__find_kallsyms(struct dso * dso,struct map * map)2139 static char *dso__find_kallsyms(struct dso *dso, struct map *map)
2140 {
2141 struct build_id bid;
2142 char sbuild_id[SBUILD_ID_SIZE];
2143 bool is_host = false;
2144 char path[PATH_MAX];
2145
2146 if (!dso->has_build_id) {
2147 /*
2148 * Last resort, if we don't have a build-id and couldn't find
2149 * any vmlinux file, try the running kernel kallsyms table.
2150 */
2151 goto proc_kallsyms;
2152 }
2153
2154 if (sysfs__read_build_id("/sys/kernel/notes", &bid) == 0)
2155 is_host = dso__build_id_equal(dso, &bid);
2156
2157 /* Try a fast path for /proc/kallsyms if possible */
2158 if (is_host) {
2159 /*
2160 * Do not check the build-id cache, unless we know we cannot use
2161 * /proc/kcore or module maps don't match to /proc/kallsyms.
2162 * To check readability of /proc/kcore, do not use access(R_OK)
2163 * since /proc/kcore requires CAP_SYS_RAWIO to read and access
2164 * can't check it.
2165 */
2166 if (filename__readable("/proc/kcore") &&
2167 !validate_kcore_addresses("/proc/kallsyms", map))
2168 goto proc_kallsyms;
2169 }
2170
2171 build_id__sprintf(&dso->bid, sbuild_id);
2172
2173 /* Find kallsyms in build-id cache with kcore */
2174 scnprintf(path, sizeof(path), "%s/%s/%s",
2175 buildid_dir, DSO__NAME_KCORE, sbuild_id);
2176
2177 if (!find_matching_kcore(map, path, sizeof(path)))
2178 return strdup(path);
2179
2180 /* Use current /proc/kallsyms if possible */
2181 if (is_host) {
2182 proc_kallsyms:
2183 return strdup("/proc/kallsyms");
2184 }
2185
2186 /* Finally, find a cache of kallsyms */
2187 if (!build_id_cache__kallsyms_path(sbuild_id, path, sizeof(path))) {
2188 pr_err("No kallsyms or vmlinux with build-id %s was found\n",
2189 sbuild_id);
2190 return NULL;
2191 }
2192
2193 return strdup(path);
2194 }
2195
dso__load_kernel_sym(struct dso * dso,struct map * map)2196 static int dso__load_kernel_sym(struct dso *dso, struct map *map)
2197 {
2198 int err;
2199 const char *kallsyms_filename = NULL;
2200 char *kallsyms_allocated_filename = NULL;
2201 char *filename = NULL;
2202
2203 /*
2204 * Step 1: if the user specified a kallsyms or vmlinux filename, use
2205 * it and only it, reporting errors to the user if it cannot be used.
2206 *
2207 * For instance, try to analyse an ARM perf.data file _without_ a
2208 * build-id, or if the user specifies the wrong path to the right
2209 * vmlinux file, obviously we can't fallback to another vmlinux (a
2210 * x86_86 one, on the machine where analysis is being performed, say),
2211 * or worse, /proc/kallsyms.
2212 *
2213 * If the specified file _has_ a build-id and there is a build-id
2214 * section in the perf.data file, we will still do the expected
2215 * validation in dso__load_vmlinux and will bail out if they don't
2216 * match.
2217 */
2218 if (symbol_conf.kallsyms_name != NULL) {
2219 kallsyms_filename = symbol_conf.kallsyms_name;
2220 goto do_kallsyms;
2221 }
2222
2223 if (!symbol_conf.ignore_vmlinux && symbol_conf.vmlinux_name != NULL) {
2224 return dso__load_vmlinux(dso, map, symbol_conf.vmlinux_name, false);
2225 }
2226
2227 /*
2228 * Before checking on common vmlinux locations, check if it's
2229 * stored as standard build id binary (not kallsyms) under
2230 * .debug cache.
2231 */
2232 if (!symbol_conf.ignore_vmlinux_buildid)
2233 filename = __dso__build_id_filename(dso, NULL, 0, false, false);
2234 if (filename != NULL) {
2235 err = dso__load_vmlinux(dso, map, filename, true);
2236 if (err > 0)
2237 return err;
2238 free(filename);
2239 }
2240
2241 if (!symbol_conf.ignore_vmlinux && vmlinux_path != NULL) {
2242 err = dso__load_vmlinux_path(dso, map);
2243 if (err > 0)
2244 return err;
2245 }
2246
2247 /* do not try local files if a symfs was given */
2248 if (symbol_conf.symfs[0] != 0)
2249 return -1;
2250
2251 kallsyms_allocated_filename = dso__find_kallsyms(dso, map);
2252 if (!kallsyms_allocated_filename)
2253 return -1;
2254
2255 kallsyms_filename = kallsyms_allocated_filename;
2256
2257 do_kallsyms:
2258 err = dso__load_kallsyms(dso, kallsyms_filename, map);
2259 if (err > 0)
2260 pr_debug("Using %s for symbols\n", kallsyms_filename);
2261 free(kallsyms_allocated_filename);
2262
2263 if (err > 0 && !dso__is_kcore(dso)) {
2264 dso->binary_type = DSO_BINARY_TYPE__KALLSYMS;
2265 dso__set_long_name(dso, DSO__NAME_KALLSYMS, false);
2266 map__fixup_start(map);
2267 map__fixup_end(map);
2268 }
2269
2270 return err;
2271 }
2272
dso__load_guest_kernel_sym(struct dso * dso,struct map * map)2273 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map)
2274 {
2275 int err;
2276 const char *kallsyms_filename = NULL;
2277 struct machine *machine = map__kmaps(map)->machine;
2278 char path[PATH_MAX];
2279
2280 if (machine__is_default_guest(machine)) {
2281 /*
2282 * if the user specified a vmlinux filename, use it and only
2283 * it, reporting errors to the user if it cannot be used.
2284 * Or use file guest_kallsyms inputted by user on commandline
2285 */
2286 if (symbol_conf.default_guest_vmlinux_name != NULL) {
2287 err = dso__load_vmlinux(dso, map,
2288 symbol_conf.default_guest_vmlinux_name,
2289 false);
2290 return err;
2291 }
2292
2293 kallsyms_filename = symbol_conf.default_guest_kallsyms;
2294 if (!kallsyms_filename)
2295 return -1;
2296 } else {
2297 sprintf(path, "%s/proc/kallsyms", machine->root_dir);
2298 kallsyms_filename = path;
2299 }
2300
2301 err = dso__load_kallsyms(dso, kallsyms_filename, map);
2302 if (err > 0)
2303 pr_debug("Using %s for symbols\n", kallsyms_filename);
2304 if (err > 0 && !dso__is_kcore(dso)) {
2305 dso->binary_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
2306 dso__set_long_name(dso, machine->mmap_name, false);
2307 map__fixup_start(map);
2308 map__fixup_end(map);
2309 }
2310
2311 return err;
2312 }
2313
vmlinux_path__exit(void)2314 static void vmlinux_path__exit(void)
2315 {
2316 while (--vmlinux_path__nr_entries >= 0)
2317 zfree(&vmlinux_path[vmlinux_path__nr_entries]);
2318 vmlinux_path__nr_entries = 0;
2319
2320 zfree(&vmlinux_path);
2321 }
2322
2323 static const char * const vmlinux_paths[] = {
2324 "vmlinux",
2325 "/boot/vmlinux"
2326 };
2327
2328 static const char * const vmlinux_paths_upd[] = {
2329 "/boot/vmlinux-%s",
2330 "/usr/lib/debug/boot/vmlinux-%s",
2331 "/lib/modules/%s/build/vmlinux",
2332 "/usr/lib/debug/lib/modules/%s/vmlinux",
2333 "/usr/lib/debug/boot/vmlinux-%s.debug"
2334 };
2335
vmlinux_path__add(const char * new_entry)2336 static int vmlinux_path__add(const char *new_entry)
2337 {
2338 vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry);
2339 if (vmlinux_path[vmlinux_path__nr_entries] == NULL)
2340 return -1;
2341 ++vmlinux_path__nr_entries;
2342
2343 return 0;
2344 }
2345
vmlinux_path__init(struct perf_env * env)2346 static int vmlinux_path__init(struct perf_env *env)
2347 {
2348 struct utsname uts;
2349 char bf[PATH_MAX];
2350 char *kernel_version;
2351 unsigned int i;
2352
2353 vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) +
2354 ARRAY_SIZE(vmlinux_paths_upd)));
2355 if (vmlinux_path == NULL)
2356 return -1;
2357
2358 for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++)
2359 if (vmlinux_path__add(vmlinux_paths[i]) < 0)
2360 goto out_fail;
2361
2362 /* only try kernel version if no symfs was given */
2363 if (symbol_conf.symfs[0] != 0)
2364 return 0;
2365
2366 if (env) {
2367 kernel_version = env->os_release;
2368 } else {
2369 if (uname(&uts) < 0)
2370 goto out_fail;
2371
2372 kernel_version = uts.release;
2373 }
2374
2375 for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) {
2376 snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version);
2377 if (vmlinux_path__add(bf) < 0)
2378 goto out_fail;
2379 }
2380
2381 return 0;
2382
2383 out_fail:
2384 vmlinux_path__exit();
2385 return -1;
2386 }
2387
setup_list(struct strlist ** list,const char * list_str,const char * list_name)2388 int setup_list(struct strlist **list, const char *list_str,
2389 const char *list_name)
2390 {
2391 if (list_str == NULL)
2392 return 0;
2393
2394 *list = strlist__new(list_str, NULL);
2395 if (!*list) {
2396 pr_err("problems parsing %s list\n", list_name);
2397 return -1;
2398 }
2399
2400 symbol_conf.has_filter = true;
2401 return 0;
2402 }
2403
setup_intlist(struct intlist ** list,const char * list_str,const char * list_name)2404 int setup_intlist(struct intlist **list, const char *list_str,
2405 const char *list_name)
2406 {
2407 if (list_str == NULL)
2408 return 0;
2409
2410 *list = intlist__new(list_str);
2411 if (!*list) {
2412 pr_err("problems parsing %s list\n", list_name);
2413 return -1;
2414 }
2415 return 0;
2416 }
2417
setup_addrlist(struct intlist ** addr_list,struct strlist * sym_list)2418 static int setup_addrlist(struct intlist **addr_list, struct strlist *sym_list)
2419 {
2420 struct str_node *pos, *tmp;
2421 unsigned long val;
2422 char *sep;
2423 const char *end;
2424 int i = 0, err;
2425
2426 *addr_list = intlist__new(NULL);
2427 if (!*addr_list)
2428 return -1;
2429
2430 strlist__for_each_entry_safe(pos, tmp, sym_list) {
2431 errno = 0;
2432 val = strtoul(pos->s, &sep, 16);
2433 if (errno || (sep == pos->s))
2434 continue;
2435
2436 if (*sep != '\0') {
2437 end = pos->s + strlen(pos->s) - 1;
2438 while (end >= sep && isspace(*end))
2439 end--;
2440
2441 if (end >= sep)
2442 continue;
2443 }
2444
2445 err = intlist__add(*addr_list, val);
2446 if (err)
2447 break;
2448
2449 strlist__remove(sym_list, pos);
2450 i++;
2451 }
2452
2453 if (i == 0) {
2454 intlist__delete(*addr_list);
2455 *addr_list = NULL;
2456 }
2457
2458 return 0;
2459 }
2460
symbol__read_kptr_restrict(void)2461 static bool symbol__read_kptr_restrict(void)
2462 {
2463 bool value = false;
2464 FILE *fp = fopen("/proc/sys/kernel/kptr_restrict", "r");
2465
2466 if (fp != NULL) {
2467 char line[8];
2468
2469 if (fgets(line, sizeof(line), fp) != NULL)
2470 value = perf_cap__capable(CAP_SYSLOG) ?
2471 (atoi(line) >= 2) :
2472 (atoi(line) != 0);
2473
2474 fclose(fp);
2475 }
2476
2477 /* Per kernel/kallsyms.c:
2478 * we also restrict when perf_event_paranoid > 1 w/o CAP_SYSLOG
2479 */
2480 if (perf_event_paranoid() > 1 && !perf_cap__capable(CAP_SYSLOG))
2481 value = true;
2482
2483 return value;
2484 }
2485
symbol__annotation_init(void)2486 int symbol__annotation_init(void)
2487 {
2488 if (symbol_conf.init_annotation)
2489 return 0;
2490
2491 if (symbol_conf.initialized) {
2492 pr_err("Annotation needs to be init before symbol__init()\n");
2493 return -1;
2494 }
2495
2496 symbol_conf.priv_size += sizeof(struct annotation);
2497 symbol_conf.init_annotation = true;
2498 return 0;
2499 }
2500
symbol__init(struct perf_env * env)2501 int symbol__init(struct perf_env *env)
2502 {
2503 const char *symfs;
2504
2505 if (symbol_conf.initialized)
2506 return 0;
2507
2508 symbol_conf.priv_size = PERF_ALIGN(symbol_conf.priv_size, sizeof(u64));
2509
2510 symbol__elf_init();
2511
2512 if (symbol_conf.sort_by_name)
2513 symbol_conf.priv_size += (sizeof(struct symbol_name_rb_node) -
2514 sizeof(struct symbol));
2515
2516 if (symbol_conf.try_vmlinux_path && vmlinux_path__init(env) < 0)
2517 return -1;
2518
2519 if (symbol_conf.field_sep && *symbol_conf.field_sep == '.') {
2520 pr_err("'.' is the only non valid --field-separator argument\n");
2521 return -1;
2522 }
2523
2524 if (setup_list(&symbol_conf.dso_list,
2525 symbol_conf.dso_list_str, "dso") < 0)
2526 return -1;
2527
2528 if (setup_list(&symbol_conf.comm_list,
2529 symbol_conf.comm_list_str, "comm") < 0)
2530 goto out_free_dso_list;
2531
2532 if (setup_intlist(&symbol_conf.pid_list,
2533 symbol_conf.pid_list_str, "pid") < 0)
2534 goto out_free_comm_list;
2535
2536 if (setup_intlist(&symbol_conf.tid_list,
2537 symbol_conf.tid_list_str, "tid") < 0)
2538 goto out_free_pid_list;
2539
2540 if (setup_list(&symbol_conf.sym_list,
2541 symbol_conf.sym_list_str, "symbol") < 0)
2542 goto out_free_tid_list;
2543
2544 if (symbol_conf.sym_list &&
2545 setup_addrlist(&symbol_conf.addr_list, symbol_conf.sym_list) < 0)
2546 goto out_free_sym_list;
2547
2548 if (setup_list(&symbol_conf.bt_stop_list,
2549 symbol_conf.bt_stop_list_str, "symbol") < 0)
2550 goto out_free_sym_list;
2551
2552 /*
2553 * A path to symbols of "/" is identical to ""
2554 * reset here for simplicity.
2555 */
2556 symfs = realpath(symbol_conf.symfs, NULL);
2557 if (symfs == NULL)
2558 symfs = symbol_conf.symfs;
2559 if (strcmp(symfs, "/") == 0)
2560 symbol_conf.symfs = "";
2561 if (symfs != symbol_conf.symfs)
2562 free((void *)symfs);
2563
2564 symbol_conf.kptr_restrict = symbol__read_kptr_restrict();
2565
2566 symbol_conf.initialized = true;
2567 return 0;
2568
2569 out_free_sym_list:
2570 strlist__delete(symbol_conf.sym_list);
2571 intlist__delete(symbol_conf.addr_list);
2572 out_free_tid_list:
2573 intlist__delete(symbol_conf.tid_list);
2574 out_free_pid_list:
2575 intlist__delete(symbol_conf.pid_list);
2576 out_free_comm_list:
2577 strlist__delete(symbol_conf.comm_list);
2578 out_free_dso_list:
2579 strlist__delete(symbol_conf.dso_list);
2580 return -1;
2581 }
2582
symbol__exit(void)2583 void symbol__exit(void)
2584 {
2585 if (!symbol_conf.initialized)
2586 return;
2587 strlist__delete(symbol_conf.bt_stop_list);
2588 strlist__delete(symbol_conf.sym_list);
2589 strlist__delete(symbol_conf.dso_list);
2590 strlist__delete(symbol_conf.comm_list);
2591 intlist__delete(symbol_conf.tid_list);
2592 intlist__delete(symbol_conf.pid_list);
2593 intlist__delete(symbol_conf.addr_list);
2594 vmlinux_path__exit();
2595 symbol_conf.sym_list = symbol_conf.dso_list = symbol_conf.comm_list = NULL;
2596 symbol_conf.bt_stop_list = NULL;
2597 symbol_conf.initialized = false;
2598 }
2599
symbol__config_symfs(const struct option * opt __maybe_unused,const char * dir,int unset __maybe_unused)2600 int symbol__config_symfs(const struct option *opt __maybe_unused,
2601 const char *dir, int unset __maybe_unused)
2602 {
2603 char *bf = NULL;
2604 int ret;
2605
2606 symbol_conf.symfs = strdup(dir);
2607 if (symbol_conf.symfs == NULL)
2608 return -ENOMEM;
2609
2610 /* skip the locally configured cache if a symfs is given, and
2611 * config buildid dir to symfs/.debug
2612 */
2613 ret = asprintf(&bf, "%s/%s", dir, ".debug");
2614 if (ret < 0)
2615 return -ENOMEM;
2616
2617 set_buildid_dir(bf);
2618
2619 free(bf);
2620 return 0;
2621 }
2622
mem_info__get(struct mem_info * mi)2623 struct mem_info *mem_info__get(struct mem_info *mi)
2624 {
2625 if (mi)
2626 refcount_inc(&mi->refcnt);
2627 return mi;
2628 }
2629
mem_info__put(struct mem_info * mi)2630 void mem_info__put(struct mem_info *mi)
2631 {
2632 if (mi && refcount_dec_and_test(&mi->refcnt))
2633 free(mi);
2634 }
2635
mem_info__new(void)2636 struct mem_info *mem_info__new(void)
2637 {
2638 struct mem_info *mi = zalloc(sizeof(*mi));
2639
2640 if (mi)
2641 refcount_set(&mi->refcnt, 1);
2642 return mi;
2643 }
2644
2645 /*
2646 * Checks that user supplied symbol kernel files are accessible because
2647 * the default mechanism for accessing elf files fails silently. i.e. if
2648 * debug syms for a build ID aren't found perf carries on normally. When
2649 * they are user supplied we should assume that the user doesn't want to
2650 * silently fail.
2651 */
symbol__validate_sym_arguments(void)2652 int symbol__validate_sym_arguments(void)
2653 {
2654 if (symbol_conf.vmlinux_name &&
2655 access(symbol_conf.vmlinux_name, R_OK)) {
2656 pr_err("Invalid file: %s\n", symbol_conf.vmlinux_name);
2657 return -EINVAL;
2658 }
2659 if (symbol_conf.kallsyms_name &&
2660 access(symbol_conf.kallsyms_name, R_OK)) {
2661 pr_err("Invalid file: %s\n", symbol_conf.kallsyms_name);
2662 return -EINVAL;
2663 }
2664 return 0;
2665 }
2666