1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * High-level sync()-related operations
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/kernel.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/namei.h>
13 #include <linux/sched.h>
14 #include <linux/writeback.h>
15 #include <linux/syscalls.h>
16 #include <linux/linkage.h>
17 #include <linux/pagemap.h>
18 #include <linux/quotaops.h>
19 #include <linux/backing-dev.h>
20 #include "internal.h"
21
22 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
23 SYNC_FILE_RANGE_WAIT_AFTER)
24
25 /*
26 * Write out and wait upon all dirty data associated with this
27 * superblock. Filesystem data as well as the underlying block
28 * device. Takes the superblock lock.
29 */
sync_filesystem(struct super_block * sb)30 int sync_filesystem(struct super_block *sb)
31 {
32 int ret;
33
34 /*
35 * We need to be protected against the filesystem going from
36 * r/o to r/w or vice versa.
37 */
38 WARN_ON(!rwsem_is_locked(&sb->s_umount));
39
40 /*
41 * No point in syncing out anything if the filesystem is read-only.
42 */
43 if (sb_rdonly(sb))
44 return 0;
45
46 /*
47 * Do the filesystem syncing work. For simple filesystems
48 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have
49 * to submit I/O for these buffers via sync_blockdev(). This also
50 * speeds up the wait == 1 case since in that case write_inode()
51 * methods call sync_dirty_buffer() and thus effectively write one block
52 * at a time.
53 */
54 writeback_inodes_sb(sb, WB_REASON_SYNC);
55 if (sb->s_op->sync_fs)
56 sb->s_op->sync_fs(sb, 0);
57 ret = sync_blockdev_nowait(sb->s_bdev);
58 if (ret < 0)
59 return ret;
60
61 sync_inodes_sb(sb);
62 if (sb->s_op->sync_fs)
63 sb->s_op->sync_fs(sb, 1);
64 return sync_blockdev(sb->s_bdev);
65 }
66 EXPORT_SYMBOL(sync_filesystem);
67
sync_inodes_one_sb(struct super_block * sb,void * arg)68 static void sync_inodes_one_sb(struct super_block *sb, void *arg)
69 {
70 if (!sb_rdonly(sb))
71 sync_inodes_sb(sb);
72 }
73
sync_fs_one_sb(struct super_block * sb,void * arg)74 static void sync_fs_one_sb(struct super_block *sb, void *arg)
75 {
76 if (!sb_rdonly(sb) && !(sb->s_iflags & SB_I_SKIP_SYNC) &&
77 sb->s_op->sync_fs)
78 sb->s_op->sync_fs(sb, *(int *)arg);
79 }
80
81 /*
82 * Sync everything. We start by waking flusher threads so that most of
83 * writeback runs on all devices in parallel. Then we sync all inodes reliably
84 * which effectively also waits for all flusher threads to finish doing
85 * writeback. At this point all data is on disk so metadata should be stable
86 * and we tell filesystems to sync their metadata via ->sync_fs() calls.
87 * Finally, we writeout all block devices because some filesystems (e.g. ext2)
88 * just write metadata (such as inodes or bitmaps) to block device page cache
89 * and do not sync it on their own in ->sync_fs().
90 */
ksys_sync(void)91 void ksys_sync(void)
92 {
93 int nowait = 0, wait = 1;
94
95 wakeup_flusher_threads(WB_REASON_SYNC);
96 iterate_supers(sync_inodes_one_sb, NULL);
97 iterate_supers(sync_fs_one_sb, &nowait);
98 iterate_supers(sync_fs_one_sb, &wait);
99 sync_bdevs(false);
100 sync_bdevs(true);
101 if (unlikely(laptop_mode))
102 laptop_sync_completion();
103 }
104
SYSCALL_DEFINE0(sync)105 SYSCALL_DEFINE0(sync)
106 {
107 ksys_sync();
108 return 0;
109 }
110
do_sync_work(struct work_struct * work)111 static void do_sync_work(struct work_struct *work)
112 {
113 int nowait = 0;
114
115 /*
116 * Sync twice to reduce the possibility we skipped some inodes / pages
117 * because they were temporarily locked
118 */
119 iterate_supers(sync_inodes_one_sb, &nowait);
120 iterate_supers(sync_fs_one_sb, &nowait);
121 sync_bdevs(false);
122 iterate_supers(sync_inodes_one_sb, &nowait);
123 iterate_supers(sync_fs_one_sb, &nowait);
124 sync_bdevs(false);
125 printk("Emergency Sync complete\n");
126 kfree(work);
127 }
128
emergency_sync(void)129 void emergency_sync(void)
130 {
131 struct work_struct *work;
132
133 work = kmalloc(sizeof(*work), GFP_ATOMIC);
134 if (work) {
135 INIT_WORK(work, do_sync_work);
136 schedule_work(work);
137 }
138 }
139
140 /*
141 * sync a single super
142 */
SYSCALL_DEFINE1(syncfs,int,fd)143 SYSCALL_DEFINE1(syncfs, int, fd)
144 {
145 struct fd f = fdget(fd);
146 struct super_block *sb;
147 int ret, ret2;
148
149 if (!f.file)
150 return -EBADF;
151 sb = f.file->f_path.dentry->d_sb;
152
153 down_read(&sb->s_umount);
154 ret = sync_filesystem(sb);
155 up_read(&sb->s_umount);
156
157 ret2 = errseq_check_and_advance(&sb->s_wb_err, &f.file->f_sb_err);
158
159 fdput(f);
160 return ret ? ret : ret2;
161 }
162
163 /**
164 * vfs_fsync_range - helper to sync a range of data & metadata to disk
165 * @file: file to sync
166 * @start: offset in bytes of the beginning of data range to sync
167 * @end: offset in bytes of the end of data range (inclusive)
168 * @datasync: perform only datasync
169 *
170 * Write back data in range @start..@end and metadata for @file to disk. If
171 * @datasync is set only metadata needed to access modified file data is
172 * written.
173 */
vfs_fsync_range(struct file * file,loff_t start,loff_t end,int datasync)174 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
175 {
176 struct inode *inode = file->f_mapping->host;
177
178 if (!file->f_op->fsync)
179 return -EINVAL;
180 if (!datasync && (inode->i_state & I_DIRTY_TIME))
181 mark_inode_dirty_sync(inode);
182 return file->f_op->fsync(file, start, end, datasync);
183 }
184 EXPORT_SYMBOL(vfs_fsync_range);
185
186 /**
187 * vfs_fsync - perform a fsync or fdatasync on a file
188 * @file: file to sync
189 * @datasync: only perform a fdatasync operation
190 *
191 * Write back data and metadata for @file to disk. If @datasync is
192 * set only metadata needed to access modified file data is written.
193 */
vfs_fsync(struct file * file,int datasync)194 int vfs_fsync(struct file *file, int datasync)
195 {
196 return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
197 }
198 EXPORT_SYMBOL(vfs_fsync);
199
do_fsync(unsigned int fd,int datasync)200 static int do_fsync(unsigned int fd, int datasync)
201 {
202 struct fd f = fdget(fd);
203 int ret = -EBADF;
204
205 if (f.file) {
206 ret = vfs_fsync(f.file, datasync);
207 fdput(f);
208 }
209 return ret;
210 }
211
SYSCALL_DEFINE1(fsync,unsigned int,fd)212 SYSCALL_DEFINE1(fsync, unsigned int, fd)
213 {
214 return do_fsync(fd, 0);
215 }
216
SYSCALL_DEFINE1(fdatasync,unsigned int,fd)217 SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
218 {
219 return do_fsync(fd, 1);
220 }
221
sync_file_range(struct file * file,loff_t offset,loff_t nbytes,unsigned int flags)222 int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
223 unsigned int flags)
224 {
225 int ret;
226 struct address_space *mapping;
227 loff_t endbyte; /* inclusive */
228 umode_t i_mode;
229
230 ret = -EINVAL;
231 if (flags & ~VALID_FLAGS)
232 goto out;
233
234 endbyte = offset + nbytes;
235
236 if ((s64)offset < 0)
237 goto out;
238 if ((s64)endbyte < 0)
239 goto out;
240 if (endbyte < offset)
241 goto out;
242
243 if (sizeof(pgoff_t) == 4) {
244 if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
245 /*
246 * The range starts outside a 32 bit machine's
247 * pagecache addressing capabilities. Let it "succeed"
248 */
249 ret = 0;
250 goto out;
251 }
252 if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
253 /*
254 * Out to EOF
255 */
256 nbytes = 0;
257 }
258 }
259
260 if (nbytes == 0)
261 endbyte = LLONG_MAX;
262 else
263 endbyte--; /* inclusive */
264
265 i_mode = file_inode(file)->i_mode;
266 ret = -ESPIPE;
267 if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
268 !S_ISLNK(i_mode))
269 goto out;
270
271 mapping = file->f_mapping;
272 ret = 0;
273 if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
274 ret = file_fdatawait_range(file, offset, endbyte);
275 if (ret < 0)
276 goto out;
277 }
278
279 if (flags & SYNC_FILE_RANGE_WRITE) {
280 int sync_mode = WB_SYNC_NONE;
281
282 if ((flags & SYNC_FILE_RANGE_WRITE_AND_WAIT) ==
283 SYNC_FILE_RANGE_WRITE_AND_WAIT)
284 sync_mode = WB_SYNC_ALL;
285
286 ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
287 sync_mode);
288 if (ret < 0)
289 goto out;
290 }
291
292 if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
293 ret = file_fdatawait_range(file, offset, endbyte);
294
295 out:
296 return ret;
297 }
298
299 /*
300 * ksys_sync_file_range() permits finely controlled syncing over a segment of
301 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is
302 * zero then ksys_sync_file_range() will operate from offset out to EOF.
303 *
304 * The flag bits are:
305 *
306 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
307 * before performing the write.
308 *
309 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
310 * range which are not presently under writeback. Note that this may block for
311 * significant periods due to exhaustion of disk request structures.
312 *
313 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
314 * after performing the write.
315 *
316 * Useful combinations of the flag bits are:
317 *
318 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
319 * in the range which were dirty on entry to ksys_sync_file_range() are placed
320 * under writeout. This is a start-write-for-data-integrity operation.
321 *
322 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
323 * are not presently under writeout. This is an asynchronous flush-to-disk
324 * operation. Not suitable for data integrity operations.
325 *
326 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
327 * completion of writeout of all pages in the range. This will be used after an
328 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
329 * for that operation to complete and to return the result.
330 *
331 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER
332 * (a.k.a. SYNC_FILE_RANGE_WRITE_AND_WAIT):
333 * a traditional sync() operation. This is a write-for-data-integrity operation
334 * which will ensure that all pages in the range which were dirty on entry to
335 * ksys_sync_file_range() are written to disk. It should be noted that disk
336 * caches are not flushed by this call, so there are no guarantees here that the
337 * data will be available on disk after a crash.
338 *
339 *
340 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
341 * I/O errors or ENOSPC conditions and will return those to the caller, after
342 * clearing the EIO and ENOSPC flags in the address_space.
343 *
344 * It should be noted that none of these operations write out the file's
345 * metadata. So unless the application is strictly performing overwrites of
346 * already-instantiated disk blocks, there are no guarantees here that the data
347 * will be available after a crash.
348 */
ksys_sync_file_range(int fd,loff_t offset,loff_t nbytes,unsigned int flags)349 int ksys_sync_file_range(int fd, loff_t offset, loff_t nbytes,
350 unsigned int flags)
351 {
352 int ret;
353 struct fd f;
354
355 ret = -EBADF;
356 f = fdget(fd);
357 if (f.file)
358 ret = sync_file_range(f.file, offset, nbytes, flags);
359
360 fdput(f);
361 return ret;
362 }
363
SYSCALL_DEFINE4(sync_file_range,int,fd,loff_t,offset,loff_t,nbytes,unsigned int,flags)364 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
365 unsigned int, flags)
366 {
367 return ksys_sync_file_range(fd, offset, nbytes, flags);
368 }
369
370 /* It would be nice if people remember that not all the world's an i386
371 when they introduce new system calls */
SYSCALL_DEFINE4(sync_file_range2,int,fd,unsigned int,flags,loff_t,offset,loff_t,nbytes)372 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
373 loff_t, offset, loff_t, nbytes)
374 {
375 return ksys_sync_file_range(fd, offset, nbytes, flags);
376 }
377