1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16 #include <linux/blkdev.h>
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26
27 #include "pelt.h"
28 #include "smp.h"
29
30 /*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 0;
60 #undef SCHED_FEAT
61
62 /*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69 __read_mostly int sysctl_resched_latency_warn_ms = 100;
70 __read_mostly int sysctl_resched_latency_warn_once = 1;
71 #endif /* CONFIG_SCHED_DEBUG */
72
73 /*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77 #ifdef CONFIG_PREEMPT_RT
78 const_debug unsigned int sysctl_sched_nr_migrate = 8;
79 #else
80 const_debug unsigned int sysctl_sched_nr_migrate = 32;
81 #endif
82
83 /*
84 * period over which we measure -rt task CPU usage in us.
85 * default: 1s
86 */
87 unsigned int sysctl_sched_rt_period = 1000000;
88
89 __read_mostly int scheduler_running;
90
91 #ifdef CONFIG_SCHED_CORE
92
93 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
94
95 /* kernel prio, less is more */
__task_prio(struct task_struct * p)96 static inline int __task_prio(struct task_struct *p)
97 {
98 if (p->sched_class == &stop_sched_class) /* trumps deadline */
99 return -2;
100
101 if (rt_prio(p->prio)) /* includes deadline */
102 return p->prio; /* [-1, 99] */
103
104 if (p->sched_class == &idle_sched_class)
105 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
106
107 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
108 }
109
110 /*
111 * l(a,b)
112 * le(a,b) := !l(b,a)
113 * g(a,b) := l(b,a)
114 * ge(a,b) := !l(a,b)
115 */
116
117 /* real prio, less is less */
prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)118 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
119 {
120
121 int pa = __task_prio(a), pb = __task_prio(b);
122
123 if (-pa < -pb)
124 return true;
125
126 if (-pb < -pa)
127 return false;
128
129 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
130 return !dl_time_before(a->dl.deadline, b->dl.deadline);
131
132 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
133 return cfs_prio_less(a, b, in_fi);
134
135 return false;
136 }
137
__sched_core_less(struct task_struct * a,struct task_struct * b)138 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
139 {
140 if (a->core_cookie < b->core_cookie)
141 return true;
142
143 if (a->core_cookie > b->core_cookie)
144 return false;
145
146 /* flip prio, so high prio is leftmost */
147 if (prio_less(b, a, task_rq(a)->core->core_forceidle))
148 return true;
149
150 return false;
151 }
152
153 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
154
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)155 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
156 {
157 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
158 }
159
rb_sched_core_cmp(const void * key,const struct rb_node * node)160 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
161 {
162 const struct task_struct *p = __node_2_sc(node);
163 unsigned long cookie = (unsigned long)key;
164
165 if (cookie < p->core_cookie)
166 return -1;
167
168 if (cookie > p->core_cookie)
169 return 1;
170
171 return 0;
172 }
173
sched_core_enqueue(struct rq * rq,struct task_struct * p)174 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
175 {
176 rq->core->core_task_seq++;
177
178 if (!p->core_cookie)
179 return;
180
181 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
182 }
183
sched_core_dequeue(struct rq * rq,struct task_struct * p)184 void sched_core_dequeue(struct rq *rq, struct task_struct *p)
185 {
186 rq->core->core_task_seq++;
187
188 if (!sched_core_enqueued(p))
189 return;
190
191 rb_erase(&p->core_node, &rq->core_tree);
192 RB_CLEAR_NODE(&p->core_node);
193 }
194
195 /*
196 * Find left-most (aka, highest priority) task matching @cookie.
197 */
sched_core_find(struct rq * rq,unsigned long cookie)198 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
199 {
200 struct rb_node *node;
201
202 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
203 /*
204 * The idle task always matches any cookie!
205 */
206 if (!node)
207 return idle_sched_class.pick_task(rq);
208
209 return __node_2_sc(node);
210 }
211
sched_core_next(struct task_struct * p,unsigned long cookie)212 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
213 {
214 struct rb_node *node = &p->core_node;
215
216 node = rb_next(node);
217 if (!node)
218 return NULL;
219
220 p = container_of(node, struct task_struct, core_node);
221 if (p->core_cookie != cookie)
222 return NULL;
223
224 return p;
225 }
226
227 /*
228 * Magic required such that:
229 *
230 * raw_spin_rq_lock(rq);
231 * ...
232 * raw_spin_rq_unlock(rq);
233 *
234 * ends up locking and unlocking the _same_ lock, and all CPUs
235 * always agree on what rq has what lock.
236 *
237 * XXX entirely possible to selectively enable cores, don't bother for now.
238 */
239
240 static DEFINE_MUTEX(sched_core_mutex);
241 static atomic_t sched_core_count;
242 static struct cpumask sched_core_mask;
243
sched_core_lock(int cpu,unsigned long * flags)244 static void sched_core_lock(int cpu, unsigned long *flags)
245 {
246 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
247 int t, i = 0;
248
249 local_irq_save(*flags);
250 for_each_cpu(t, smt_mask)
251 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
252 }
253
sched_core_unlock(int cpu,unsigned long * flags)254 static void sched_core_unlock(int cpu, unsigned long *flags)
255 {
256 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
257 int t;
258
259 for_each_cpu(t, smt_mask)
260 raw_spin_unlock(&cpu_rq(t)->__lock);
261 local_irq_restore(*flags);
262 }
263
__sched_core_flip(bool enabled)264 static void __sched_core_flip(bool enabled)
265 {
266 unsigned long flags;
267 int cpu, t;
268
269 cpus_read_lock();
270
271 /*
272 * Toggle the online cores, one by one.
273 */
274 cpumask_copy(&sched_core_mask, cpu_online_mask);
275 for_each_cpu(cpu, &sched_core_mask) {
276 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
277
278 sched_core_lock(cpu, &flags);
279
280 for_each_cpu(t, smt_mask)
281 cpu_rq(t)->core_enabled = enabled;
282
283 sched_core_unlock(cpu, &flags);
284
285 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
286 }
287
288 /*
289 * Toggle the offline CPUs.
290 */
291 cpumask_copy(&sched_core_mask, cpu_possible_mask);
292 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
293
294 for_each_cpu(cpu, &sched_core_mask)
295 cpu_rq(cpu)->core_enabled = enabled;
296
297 cpus_read_unlock();
298 }
299
sched_core_assert_empty(void)300 static void sched_core_assert_empty(void)
301 {
302 int cpu;
303
304 for_each_possible_cpu(cpu)
305 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
306 }
307
__sched_core_enable(void)308 static void __sched_core_enable(void)
309 {
310 static_branch_enable(&__sched_core_enabled);
311 /*
312 * Ensure all previous instances of raw_spin_rq_*lock() have finished
313 * and future ones will observe !sched_core_disabled().
314 */
315 synchronize_rcu();
316 __sched_core_flip(true);
317 sched_core_assert_empty();
318 }
319
__sched_core_disable(void)320 static void __sched_core_disable(void)
321 {
322 sched_core_assert_empty();
323 __sched_core_flip(false);
324 static_branch_disable(&__sched_core_enabled);
325 }
326
sched_core_get(void)327 void sched_core_get(void)
328 {
329 if (atomic_inc_not_zero(&sched_core_count))
330 return;
331
332 mutex_lock(&sched_core_mutex);
333 if (!atomic_read(&sched_core_count))
334 __sched_core_enable();
335
336 smp_mb__before_atomic();
337 atomic_inc(&sched_core_count);
338 mutex_unlock(&sched_core_mutex);
339 }
340
__sched_core_put(struct work_struct * work)341 static void __sched_core_put(struct work_struct *work)
342 {
343 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
344 __sched_core_disable();
345 mutex_unlock(&sched_core_mutex);
346 }
347 }
348
sched_core_put(void)349 void sched_core_put(void)
350 {
351 static DECLARE_WORK(_work, __sched_core_put);
352
353 /*
354 * "There can be only one"
355 *
356 * Either this is the last one, or we don't actually need to do any
357 * 'work'. If it is the last *again*, we rely on
358 * WORK_STRUCT_PENDING_BIT.
359 */
360 if (!atomic_add_unless(&sched_core_count, -1, 1))
361 schedule_work(&_work);
362 }
363
364 #else /* !CONFIG_SCHED_CORE */
365
sched_core_enqueue(struct rq * rq,struct task_struct * p)366 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
sched_core_dequeue(struct rq * rq,struct task_struct * p)367 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
368
369 #endif /* CONFIG_SCHED_CORE */
370
371 /*
372 * part of the period that we allow rt tasks to run in us.
373 * default: 0.95s
374 */
375 int sysctl_sched_rt_runtime = 950000;
376
377
378 /*
379 * Serialization rules:
380 *
381 * Lock order:
382 *
383 * p->pi_lock
384 * rq->lock
385 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
386 *
387 * rq1->lock
388 * rq2->lock where: rq1 < rq2
389 *
390 * Regular state:
391 *
392 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
393 * local CPU's rq->lock, it optionally removes the task from the runqueue and
394 * always looks at the local rq data structures to find the most eligible task
395 * to run next.
396 *
397 * Task enqueue is also under rq->lock, possibly taken from another CPU.
398 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
399 * the local CPU to avoid bouncing the runqueue state around [ see
400 * ttwu_queue_wakelist() ]
401 *
402 * Task wakeup, specifically wakeups that involve migration, are horribly
403 * complicated to avoid having to take two rq->locks.
404 *
405 * Special state:
406 *
407 * System-calls and anything external will use task_rq_lock() which acquires
408 * both p->pi_lock and rq->lock. As a consequence the state they change is
409 * stable while holding either lock:
410 *
411 * - sched_setaffinity()/
412 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
413 * - set_user_nice(): p->se.load, p->*prio
414 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
415 * p->se.load, p->rt_priority,
416 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
417 * - sched_setnuma(): p->numa_preferred_nid
418 * - sched_move_task()/
419 * cpu_cgroup_fork(): p->sched_task_group
420 * - uclamp_update_active() p->uclamp*
421 *
422 * p->state <- TASK_*:
423 *
424 * is changed locklessly using set_current_state(), __set_current_state() or
425 * set_special_state(), see their respective comments, or by
426 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
427 * concurrent self.
428 *
429 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
430 *
431 * is set by activate_task() and cleared by deactivate_task(), under
432 * rq->lock. Non-zero indicates the task is runnable, the special
433 * ON_RQ_MIGRATING state is used for migration without holding both
434 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
435 *
436 * p->on_cpu <- { 0, 1 }:
437 *
438 * is set by prepare_task() and cleared by finish_task() such that it will be
439 * set before p is scheduled-in and cleared after p is scheduled-out, both
440 * under rq->lock. Non-zero indicates the task is running on its CPU.
441 *
442 * [ The astute reader will observe that it is possible for two tasks on one
443 * CPU to have ->on_cpu = 1 at the same time. ]
444 *
445 * task_cpu(p): is changed by set_task_cpu(), the rules are:
446 *
447 * - Don't call set_task_cpu() on a blocked task:
448 *
449 * We don't care what CPU we're not running on, this simplifies hotplug,
450 * the CPU assignment of blocked tasks isn't required to be valid.
451 *
452 * - for try_to_wake_up(), called under p->pi_lock:
453 *
454 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
455 *
456 * - for migration called under rq->lock:
457 * [ see task_on_rq_migrating() in task_rq_lock() ]
458 *
459 * o move_queued_task()
460 * o detach_task()
461 *
462 * - for migration called under double_rq_lock():
463 *
464 * o __migrate_swap_task()
465 * o push_rt_task() / pull_rt_task()
466 * o push_dl_task() / pull_dl_task()
467 * o dl_task_offline_migration()
468 *
469 */
470
raw_spin_rq_lock_nested(struct rq * rq,int subclass)471 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
472 {
473 raw_spinlock_t *lock;
474
475 /* Matches synchronize_rcu() in __sched_core_enable() */
476 preempt_disable();
477 if (sched_core_disabled()) {
478 raw_spin_lock_nested(&rq->__lock, subclass);
479 /* preempt_count *MUST* be > 1 */
480 preempt_enable_no_resched();
481 return;
482 }
483
484 for (;;) {
485 lock = __rq_lockp(rq);
486 raw_spin_lock_nested(lock, subclass);
487 if (likely(lock == __rq_lockp(rq))) {
488 /* preempt_count *MUST* be > 1 */
489 preempt_enable_no_resched();
490 return;
491 }
492 raw_spin_unlock(lock);
493 }
494 }
495
raw_spin_rq_trylock(struct rq * rq)496 bool raw_spin_rq_trylock(struct rq *rq)
497 {
498 raw_spinlock_t *lock;
499 bool ret;
500
501 /* Matches synchronize_rcu() in __sched_core_enable() */
502 preempt_disable();
503 if (sched_core_disabled()) {
504 ret = raw_spin_trylock(&rq->__lock);
505 preempt_enable();
506 return ret;
507 }
508
509 for (;;) {
510 lock = __rq_lockp(rq);
511 ret = raw_spin_trylock(lock);
512 if (!ret || (likely(lock == __rq_lockp(rq)))) {
513 preempt_enable();
514 return ret;
515 }
516 raw_spin_unlock(lock);
517 }
518 }
519
raw_spin_rq_unlock(struct rq * rq)520 void raw_spin_rq_unlock(struct rq *rq)
521 {
522 raw_spin_unlock(rq_lockp(rq));
523 }
524
525 #ifdef CONFIG_SMP
526 /*
527 * double_rq_lock - safely lock two runqueues
528 */
double_rq_lock(struct rq * rq1,struct rq * rq2)529 void double_rq_lock(struct rq *rq1, struct rq *rq2)
530 {
531 lockdep_assert_irqs_disabled();
532
533 if (rq_order_less(rq2, rq1))
534 swap(rq1, rq2);
535
536 raw_spin_rq_lock(rq1);
537 if (__rq_lockp(rq1) == __rq_lockp(rq2))
538 return;
539
540 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
541 }
542 #endif
543
544 /*
545 * __task_rq_lock - lock the rq @p resides on.
546 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)547 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
548 __acquires(rq->lock)
549 {
550 struct rq *rq;
551
552 lockdep_assert_held(&p->pi_lock);
553
554 for (;;) {
555 rq = task_rq(p);
556 raw_spin_rq_lock(rq);
557 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
558 rq_pin_lock(rq, rf);
559 return rq;
560 }
561 raw_spin_rq_unlock(rq);
562
563 while (unlikely(task_on_rq_migrating(p)))
564 cpu_relax();
565 }
566 }
567
568 /*
569 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
570 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)571 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
572 __acquires(p->pi_lock)
573 __acquires(rq->lock)
574 {
575 struct rq *rq;
576
577 for (;;) {
578 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
579 rq = task_rq(p);
580 raw_spin_rq_lock(rq);
581 /*
582 * move_queued_task() task_rq_lock()
583 *
584 * ACQUIRE (rq->lock)
585 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
586 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
587 * [S] ->cpu = new_cpu [L] task_rq()
588 * [L] ->on_rq
589 * RELEASE (rq->lock)
590 *
591 * If we observe the old CPU in task_rq_lock(), the acquire of
592 * the old rq->lock will fully serialize against the stores.
593 *
594 * If we observe the new CPU in task_rq_lock(), the address
595 * dependency headed by '[L] rq = task_rq()' and the acquire
596 * will pair with the WMB to ensure we then also see migrating.
597 */
598 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
599 rq_pin_lock(rq, rf);
600 return rq;
601 }
602 raw_spin_rq_unlock(rq);
603 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
604
605 while (unlikely(task_on_rq_migrating(p)))
606 cpu_relax();
607 }
608 }
609
610 /*
611 * RQ-clock updating methods:
612 */
613
update_rq_clock_task(struct rq * rq,s64 delta)614 static void update_rq_clock_task(struct rq *rq, s64 delta)
615 {
616 /*
617 * In theory, the compile should just see 0 here, and optimize out the call
618 * to sched_rt_avg_update. But I don't trust it...
619 */
620 s64 __maybe_unused steal = 0, irq_delta = 0;
621
622 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
623 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
624
625 /*
626 * Since irq_time is only updated on {soft,}irq_exit, we might run into
627 * this case when a previous update_rq_clock() happened inside a
628 * {soft,}irq region.
629 *
630 * When this happens, we stop ->clock_task and only update the
631 * prev_irq_time stamp to account for the part that fit, so that a next
632 * update will consume the rest. This ensures ->clock_task is
633 * monotonic.
634 *
635 * It does however cause some slight miss-attribution of {soft,}irq
636 * time, a more accurate solution would be to update the irq_time using
637 * the current rq->clock timestamp, except that would require using
638 * atomic ops.
639 */
640 if (irq_delta > delta)
641 irq_delta = delta;
642
643 rq->prev_irq_time += irq_delta;
644 delta -= irq_delta;
645 #endif
646 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
647 if (static_key_false((¶virt_steal_rq_enabled))) {
648 steal = paravirt_steal_clock(cpu_of(rq));
649 steal -= rq->prev_steal_time_rq;
650
651 if (unlikely(steal > delta))
652 steal = delta;
653
654 rq->prev_steal_time_rq += steal;
655 delta -= steal;
656 }
657 #endif
658
659 rq->clock_task += delta;
660
661 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
662 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
663 update_irq_load_avg(rq, irq_delta + steal);
664 #endif
665 update_rq_clock_pelt(rq, delta);
666 }
667
update_rq_clock(struct rq * rq)668 void update_rq_clock(struct rq *rq)
669 {
670 s64 delta;
671
672 lockdep_assert_rq_held(rq);
673
674 if (rq->clock_update_flags & RQCF_ACT_SKIP)
675 return;
676
677 #ifdef CONFIG_SCHED_DEBUG
678 if (sched_feat(WARN_DOUBLE_CLOCK))
679 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
680 rq->clock_update_flags |= RQCF_UPDATED;
681 #endif
682
683 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
684 if (delta < 0)
685 return;
686 rq->clock += delta;
687 update_rq_clock_task(rq, delta);
688 }
689
690 #ifdef CONFIG_SCHED_HRTICK
691 /*
692 * Use HR-timers to deliver accurate preemption points.
693 */
694
hrtick_clear(struct rq * rq)695 static void hrtick_clear(struct rq *rq)
696 {
697 if (hrtimer_active(&rq->hrtick_timer))
698 hrtimer_cancel(&rq->hrtick_timer);
699 }
700
701 /*
702 * High-resolution timer tick.
703 * Runs from hardirq context with interrupts disabled.
704 */
hrtick(struct hrtimer * timer)705 static enum hrtimer_restart hrtick(struct hrtimer *timer)
706 {
707 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
708 struct rq_flags rf;
709
710 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
711
712 rq_lock(rq, &rf);
713 update_rq_clock(rq);
714 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
715 rq_unlock(rq, &rf);
716
717 return HRTIMER_NORESTART;
718 }
719
720 #ifdef CONFIG_SMP
721
__hrtick_restart(struct rq * rq)722 static void __hrtick_restart(struct rq *rq)
723 {
724 struct hrtimer *timer = &rq->hrtick_timer;
725 ktime_t time = rq->hrtick_time;
726
727 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
728 }
729
730 /*
731 * called from hardirq (IPI) context
732 */
__hrtick_start(void * arg)733 static void __hrtick_start(void *arg)
734 {
735 struct rq *rq = arg;
736 struct rq_flags rf;
737
738 rq_lock(rq, &rf);
739 __hrtick_restart(rq);
740 rq_unlock(rq, &rf);
741 }
742
743 /*
744 * Called to set the hrtick timer state.
745 *
746 * called with rq->lock held and irqs disabled
747 */
hrtick_start(struct rq * rq,u64 delay)748 void hrtick_start(struct rq *rq, u64 delay)
749 {
750 struct hrtimer *timer = &rq->hrtick_timer;
751 s64 delta;
752
753 /*
754 * Don't schedule slices shorter than 10000ns, that just
755 * doesn't make sense and can cause timer DoS.
756 */
757 delta = max_t(s64, delay, 10000LL);
758 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
759
760 if (rq == this_rq())
761 __hrtick_restart(rq);
762 else
763 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
764 }
765
766 #else
767 /*
768 * Called to set the hrtick timer state.
769 *
770 * called with rq->lock held and irqs disabled
771 */
hrtick_start(struct rq * rq,u64 delay)772 void hrtick_start(struct rq *rq, u64 delay)
773 {
774 /*
775 * Don't schedule slices shorter than 10000ns, that just
776 * doesn't make sense. Rely on vruntime for fairness.
777 */
778 delay = max_t(u64, delay, 10000LL);
779 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
780 HRTIMER_MODE_REL_PINNED_HARD);
781 }
782
783 #endif /* CONFIG_SMP */
784
hrtick_rq_init(struct rq * rq)785 static void hrtick_rq_init(struct rq *rq)
786 {
787 #ifdef CONFIG_SMP
788 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
789 #endif
790 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
791 rq->hrtick_timer.function = hrtick;
792 }
793 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)794 static inline void hrtick_clear(struct rq *rq)
795 {
796 }
797
hrtick_rq_init(struct rq * rq)798 static inline void hrtick_rq_init(struct rq *rq)
799 {
800 }
801 #endif /* CONFIG_SCHED_HRTICK */
802
803 /*
804 * cmpxchg based fetch_or, macro so it works for different integer types
805 */
806 #define fetch_or(ptr, mask) \
807 ({ \
808 typeof(ptr) _ptr = (ptr); \
809 typeof(mask) _mask = (mask); \
810 typeof(*_ptr) _old, _val = *_ptr; \
811 \
812 for (;;) { \
813 _old = cmpxchg(_ptr, _val, _val | _mask); \
814 if (_old == _val) \
815 break; \
816 _val = _old; \
817 } \
818 _old; \
819 })
820
821 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
822 /*
823 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
824 * this avoids any races wrt polling state changes and thereby avoids
825 * spurious IPIs.
826 */
set_nr_and_not_polling(struct task_struct * p)827 static bool set_nr_and_not_polling(struct task_struct *p)
828 {
829 struct thread_info *ti = task_thread_info(p);
830 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
831 }
832
833 /*
834 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
835 *
836 * If this returns true, then the idle task promises to call
837 * sched_ttwu_pending() and reschedule soon.
838 */
set_nr_if_polling(struct task_struct * p)839 static bool set_nr_if_polling(struct task_struct *p)
840 {
841 struct thread_info *ti = task_thread_info(p);
842 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
843
844 for (;;) {
845 if (!(val & _TIF_POLLING_NRFLAG))
846 return false;
847 if (val & _TIF_NEED_RESCHED)
848 return true;
849 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
850 if (old == val)
851 break;
852 val = old;
853 }
854 return true;
855 }
856
857 #else
set_nr_and_not_polling(struct task_struct * p)858 static bool set_nr_and_not_polling(struct task_struct *p)
859 {
860 set_tsk_need_resched(p);
861 return true;
862 }
863
864 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)865 static bool set_nr_if_polling(struct task_struct *p)
866 {
867 return false;
868 }
869 #endif
870 #endif
871
__wake_q_add(struct wake_q_head * head,struct task_struct * task)872 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
873 {
874 struct wake_q_node *node = &task->wake_q;
875
876 /*
877 * Atomically grab the task, if ->wake_q is !nil already it means
878 * it's already queued (either by us or someone else) and will get the
879 * wakeup due to that.
880 *
881 * In order to ensure that a pending wakeup will observe our pending
882 * state, even in the failed case, an explicit smp_mb() must be used.
883 */
884 smp_mb__before_atomic();
885 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
886 return false;
887
888 /*
889 * The head is context local, there can be no concurrency.
890 */
891 *head->lastp = node;
892 head->lastp = &node->next;
893 return true;
894 }
895
896 /**
897 * wake_q_add() - queue a wakeup for 'later' waking.
898 * @head: the wake_q_head to add @task to
899 * @task: the task to queue for 'later' wakeup
900 *
901 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
902 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
903 * instantly.
904 *
905 * This function must be used as-if it were wake_up_process(); IOW the task
906 * must be ready to be woken at this location.
907 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)908 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
909 {
910 if (__wake_q_add(head, task))
911 get_task_struct(task);
912 }
913
914 /**
915 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
916 * @head: the wake_q_head to add @task to
917 * @task: the task to queue for 'later' wakeup
918 *
919 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
920 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
921 * instantly.
922 *
923 * This function must be used as-if it were wake_up_process(); IOW the task
924 * must be ready to be woken at this location.
925 *
926 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
927 * that already hold reference to @task can call the 'safe' version and trust
928 * wake_q to do the right thing depending whether or not the @task is already
929 * queued for wakeup.
930 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)931 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
932 {
933 if (!__wake_q_add(head, task))
934 put_task_struct(task);
935 }
936
wake_up_q(struct wake_q_head * head)937 void wake_up_q(struct wake_q_head *head)
938 {
939 struct wake_q_node *node = head->first;
940
941 while (node != WAKE_Q_TAIL) {
942 struct task_struct *task;
943
944 task = container_of(node, struct task_struct, wake_q);
945 /* Task can safely be re-inserted now: */
946 node = node->next;
947 task->wake_q.next = NULL;
948
949 /*
950 * wake_up_process() executes a full barrier, which pairs with
951 * the queueing in wake_q_add() so as not to miss wakeups.
952 */
953 wake_up_process(task);
954 put_task_struct(task);
955 }
956 }
957
958 /*
959 * resched_curr - mark rq's current task 'to be rescheduled now'.
960 *
961 * On UP this means the setting of the need_resched flag, on SMP it
962 * might also involve a cross-CPU call to trigger the scheduler on
963 * the target CPU.
964 */
resched_curr(struct rq * rq)965 void resched_curr(struct rq *rq)
966 {
967 struct task_struct *curr = rq->curr;
968 int cpu;
969
970 lockdep_assert_rq_held(rq);
971
972 if (test_tsk_need_resched(curr))
973 return;
974
975 cpu = cpu_of(rq);
976
977 if (cpu == smp_processor_id()) {
978 set_tsk_need_resched(curr);
979 set_preempt_need_resched();
980 return;
981 }
982
983 if (set_nr_and_not_polling(curr))
984 smp_send_reschedule(cpu);
985 else
986 trace_sched_wake_idle_without_ipi(cpu);
987 }
988
resched_cpu(int cpu)989 void resched_cpu(int cpu)
990 {
991 struct rq *rq = cpu_rq(cpu);
992 unsigned long flags;
993
994 raw_spin_rq_lock_irqsave(rq, flags);
995 if (cpu_online(cpu) || cpu == smp_processor_id())
996 resched_curr(rq);
997 raw_spin_rq_unlock_irqrestore(rq, flags);
998 }
999
1000 #ifdef CONFIG_SMP
1001 #ifdef CONFIG_NO_HZ_COMMON
1002 /*
1003 * In the semi idle case, use the nearest busy CPU for migrating timers
1004 * from an idle CPU. This is good for power-savings.
1005 *
1006 * We don't do similar optimization for completely idle system, as
1007 * selecting an idle CPU will add more delays to the timers than intended
1008 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1009 */
get_nohz_timer_target(void)1010 int get_nohz_timer_target(void)
1011 {
1012 int i, cpu = smp_processor_id(), default_cpu = -1;
1013 struct sched_domain *sd;
1014 const struct cpumask *hk_mask;
1015
1016 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1017 if (!idle_cpu(cpu))
1018 return cpu;
1019 default_cpu = cpu;
1020 }
1021
1022 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1023
1024 rcu_read_lock();
1025 for_each_domain(cpu, sd) {
1026 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1027 if (cpu == i)
1028 continue;
1029
1030 if (!idle_cpu(i)) {
1031 cpu = i;
1032 goto unlock;
1033 }
1034 }
1035 }
1036
1037 if (default_cpu == -1)
1038 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1039 cpu = default_cpu;
1040 unlock:
1041 rcu_read_unlock();
1042 return cpu;
1043 }
1044
1045 /*
1046 * When add_timer_on() enqueues a timer into the timer wheel of an
1047 * idle CPU then this timer might expire before the next timer event
1048 * which is scheduled to wake up that CPU. In case of a completely
1049 * idle system the next event might even be infinite time into the
1050 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1051 * leaves the inner idle loop so the newly added timer is taken into
1052 * account when the CPU goes back to idle and evaluates the timer
1053 * wheel for the next timer event.
1054 */
wake_up_idle_cpu(int cpu)1055 static void wake_up_idle_cpu(int cpu)
1056 {
1057 struct rq *rq = cpu_rq(cpu);
1058
1059 if (cpu == smp_processor_id())
1060 return;
1061
1062 if (set_nr_and_not_polling(rq->idle))
1063 smp_send_reschedule(cpu);
1064 else
1065 trace_sched_wake_idle_without_ipi(cpu);
1066 }
1067
wake_up_full_nohz_cpu(int cpu)1068 static bool wake_up_full_nohz_cpu(int cpu)
1069 {
1070 /*
1071 * We just need the target to call irq_exit() and re-evaluate
1072 * the next tick. The nohz full kick at least implies that.
1073 * If needed we can still optimize that later with an
1074 * empty IRQ.
1075 */
1076 if (cpu_is_offline(cpu))
1077 return true; /* Don't try to wake offline CPUs. */
1078 if (tick_nohz_full_cpu(cpu)) {
1079 if (cpu != smp_processor_id() ||
1080 tick_nohz_tick_stopped())
1081 tick_nohz_full_kick_cpu(cpu);
1082 return true;
1083 }
1084
1085 return false;
1086 }
1087
1088 /*
1089 * Wake up the specified CPU. If the CPU is going offline, it is the
1090 * caller's responsibility to deal with the lost wakeup, for example,
1091 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1092 */
wake_up_nohz_cpu(int cpu)1093 void wake_up_nohz_cpu(int cpu)
1094 {
1095 if (!wake_up_full_nohz_cpu(cpu))
1096 wake_up_idle_cpu(cpu);
1097 }
1098
nohz_csd_func(void * info)1099 static void nohz_csd_func(void *info)
1100 {
1101 struct rq *rq = info;
1102 int cpu = cpu_of(rq);
1103 unsigned int flags;
1104
1105 /*
1106 * Release the rq::nohz_csd.
1107 */
1108 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1109 WARN_ON(!(flags & NOHZ_KICK_MASK));
1110
1111 rq->idle_balance = idle_cpu(cpu);
1112 if (rq->idle_balance && !need_resched()) {
1113 rq->nohz_idle_balance = flags;
1114 raise_softirq_irqoff(SCHED_SOFTIRQ);
1115 }
1116 }
1117
1118 #endif /* CONFIG_NO_HZ_COMMON */
1119
1120 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)1121 bool sched_can_stop_tick(struct rq *rq)
1122 {
1123 int fifo_nr_running;
1124
1125 /* Deadline tasks, even if single, need the tick */
1126 if (rq->dl.dl_nr_running)
1127 return false;
1128
1129 /*
1130 * If there are more than one RR tasks, we need the tick to affect the
1131 * actual RR behaviour.
1132 */
1133 if (rq->rt.rr_nr_running) {
1134 if (rq->rt.rr_nr_running == 1)
1135 return true;
1136 else
1137 return false;
1138 }
1139
1140 /*
1141 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1142 * forced preemption between FIFO tasks.
1143 */
1144 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1145 if (fifo_nr_running)
1146 return true;
1147
1148 /*
1149 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1150 * if there's more than one we need the tick for involuntary
1151 * preemption.
1152 */
1153 if (rq->nr_running > 1)
1154 return false;
1155
1156 return true;
1157 }
1158 #endif /* CONFIG_NO_HZ_FULL */
1159 #endif /* CONFIG_SMP */
1160
1161 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1162 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1163 /*
1164 * Iterate task_group tree rooted at *from, calling @down when first entering a
1165 * node and @up when leaving it for the final time.
1166 *
1167 * Caller must hold rcu_lock or sufficient equivalent.
1168 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1169 int walk_tg_tree_from(struct task_group *from,
1170 tg_visitor down, tg_visitor up, void *data)
1171 {
1172 struct task_group *parent, *child;
1173 int ret;
1174
1175 parent = from;
1176
1177 down:
1178 ret = (*down)(parent, data);
1179 if (ret)
1180 goto out;
1181 list_for_each_entry_rcu(child, &parent->children, siblings) {
1182 parent = child;
1183 goto down;
1184
1185 up:
1186 continue;
1187 }
1188 ret = (*up)(parent, data);
1189 if (ret || parent == from)
1190 goto out;
1191
1192 child = parent;
1193 parent = parent->parent;
1194 if (parent)
1195 goto up;
1196 out:
1197 return ret;
1198 }
1199
tg_nop(struct task_group * tg,void * data)1200 int tg_nop(struct task_group *tg, void *data)
1201 {
1202 return 0;
1203 }
1204 #endif
1205
set_load_weight(struct task_struct * p,bool update_load)1206 static void set_load_weight(struct task_struct *p, bool update_load)
1207 {
1208 int prio = p->static_prio - MAX_RT_PRIO;
1209 struct load_weight *load = &p->se.load;
1210
1211 /*
1212 * SCHED_IDLE tasks get minimal weight:
1213 */
1214 if (task_has_idle_policy(p)) {
1215 load->weight = scale_load(WEIGHT_IDLEPRIO);
1216 load->inv_weight = WMULT_IDLEPRIO;
1217 return;
1218 }
1219
1220 /*
1221 * SCHED_OTHER tasks have to update their load when changing their
1222 * weight
1223 */
1224 if (update_load && p->sched_class == &fair_sched_class) {
1225 reweight_task(p, prio);
1226 } else {
1227 load->weight = scale_load(sched_prio_to_weight[prio]);
1228 load->inv_weight = sched_prio_to_wmult[prio];
1229 }
1230 }
1231
1232 #ifdef CONFIG_UCLAMP_TASK
1233 /*
1234 * Serializes updates of utilization clamp values
1235 *
1236 * The (slow-path) user-space triggers utilization clamp value updates which
1237 * can require updates on (fast-path) scheduler's data structures used to
1238 * support enqueue/dequeue operations.
1239 * While the per-CPU rq lock protects fast-path update operations, user-space
1240 * requests are serialized using a mutex to reduce the risk of conflicting
1241 * updates or API abuses.
1242 */
1243 static DEFINE_MUTEX(uclamp_mutex);
1244
1245 /* Max allowed minimum utilization */
1246 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1247
1248 /* Max allowed maximum utilization */
1249 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1250
1251 /*
1252 * By default RT tasks run at the maximum performance point/capacity of the
1253 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1254 * SCHED_CAPACITY_SCALE.
1255 *
1256 * This knob allows admins to change the default behavior when uclamp is being
1257 * used. In battery powered devices, particularly, running at the maximum
1258 * capacity and frequency will increase energy consumption and shorten the
1259 * battery life.
1260 *
1261 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1262 *
1263 * This knob will not override the system default sched_util_clamp_min defined
1264 * above.
1265 */
1266 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1267
1268 /* All clamps are required to be less or equal than these values */
1269 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1270
1271 /*
1272 * This static key is used to reduce the uclamp overhead in the fast path. It
1273 * primarily disables the call to uclamp_rq_{inc, dec}() in
1274 * enqueue/dequeue_task().
1275 *
1276 * This allows users to continue to enable uclamp in their kernel config with
1277 * minimum uclamp overhead in the fast path.
1278 *
1279 * As soon as userspace modifies any of the uclamp knobs, the static key is
1280 * enabled, since we have an actual users that make use of uclamp
1281 * functionality.
1282 *
1283 * The knobs that would enable this static key are:
1284 *
1285 * * A task modifying its uclamp value with sched_setattr().
1286 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1287 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1288 */
1289 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1290
1291 /* Integer rounded range for each bucket */
1292 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1293
1294 #define for_each_clamp_id(clamp_id) \
1295 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1296
uclamp_bucket_id(unsigned int clamp_value)1297 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1298 {
1299 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1300 }
1301
uclamp_none(enum uclamp_id clamp_id)1302 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1303 {
1304 if (clamp_id == UCLAMP_MIN)
1305 return 0;
1306 return SCHED_CAPACITY_SCALE;
1307 }
1308
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1309 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1310 unsigned int value, bool user_defined)
1311 {
1312 uc_se->value = value;
1313 uc_se->bucket_id = uclamp_bucket_id(value);
1314 uc_se->user_defined = user_defined;
1315 }
1316
1317 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1318 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1319 unsigned int clamp_value)
1320 {
1321 /*
1322 * Avoid blocked utilization pushing up the frequency when we go
1323 * idle (which drops the max-clamp) by retaining the last known
1324 * max-clamp.
1325 */
1326 if (clamp_id == UCLAMP_MAX) {
1327 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1328 return clamp_value;
1329 }
1330
1331 return uclamp_none(UCLAMP_MIN);
1332 }
1333
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1334 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1335 unsigned int clamp_value)
1336 {
1337 /* Reset max-clamp retention only on idle exit */
1338 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1339 return;
1340
1341 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1342 }
1343
1344 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1345 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1346 unsigned int clamp_value)
1347 {
1348 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1349 int bucket_id = UCLAMP_BUCKETS - 1;
1350
1351 /*
1352 * Since both min and max clamps are max aggregated, find the
1353 * top most bucket with tasks in.
1354 */
1355 for ( ; bucket_id >= 0; bucket_id--) {
1356 if (!bucket[bucket_id].tasks)
1357 continue;
1358 return bucket[bucket_id].value;
1359 }
1360
1361 /* No tasks -- default clamp values */
1362 return uclamp_idle_value(rq, clamp_id, clamp_value);
1363 }
1364
__uclamp_update_util_min_rt_default(struct task_struct * p)1365 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1366 {
1367 unsigned int default_util_min;
1368 struct uclamp_se *uc_se;
1369
1370 lockdep_assert_held(&p->pi_lock);
1371
1372 uc_se = &p->uclamp_req[UCLAMP_MIN];
1373
1374 /* Only sync if user didn't override the default */
1375 if (uc_se->user_defined)
1376 return;
1377
1378 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1379 uclamp_se_set(uc_se, default_util_min, false);
1380 }
1381
uclamp_update_util_min_rt_default(struct task_struct * p)1382 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1383 {
1384 struct rq_flags rf;
1385 struct rq *rq;
1386
1387 if (!rt_task(p))
1388 return;
1389
1390 /* Protect updates to p->uclamp_* */
1391 rq = task_rq_lock(p, &rf);
1392 __uclamp_update_util_min_rt_default(p);
1393 task_rq_unlock(rq, p, &rf);
1394 }
1395
uclamp_sync_util_min_rt_default(void)1396 static void uclamp_sync_util_min_rt_default(void)
1397 {
1398 struct task_struct *g, *p;
1399
1400 /*
1401 * copy_process() sysctl_uclamp
1402 * uclamp_min_rt = X;
1403 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1404 * // link thread smp_mb__after_spinlock()
1405 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1406 * sched_post_fork() for_each_process_thread()
1407 * __uclamp_sync_rt() __uclamp_sync_rt()
1408 *
1409 * Ensures that either sched_post_fork() will observe the new
1410 * uclamp_min_rt or for_each_process_thread() will observe the new
1411 * task.
1412 */
1413 read_lock(&tasklist_lock);
1414 smp_mb__after_spinlock();
1415 read_unlock(&tasklist_lock);
1416
1417 rcu_read_lock();
1418 for_each_process_thread(g, p)
1419 uclamp_update_util_min_rt_default(p);
1420 rcu_read_unlock();
1421 }
1422
1423 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1424 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1425 {
1426 /* Copy by value as we could modify it */
1427 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1428 #ifdef CONFIG_UCLAMP_TASK_GROUP
1429 unsigned int tg_min, tg_max, value;
1430
1431 /*
1432 * Tasks in autogroups or root task group will be
1433 * restricted by system defaults.
1434 */
1435 if (task_group_is_autogroup(task_group(p)))
1436 return uc_req;
1437 if (task_group(p) == &root_task_group)
1438 return uc_req;
1439
1440 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1441 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1442 value = uc_req.value;
1443 value = clamp(value, tg_min, tg_max);
1444 uclamp_se_set(&uc_req, value, false);
1445 #endif
1446
1447 return uc_req;
1448 }
1449
1450 /*
1451 * The effective clamp bucket index of a task depends on, by increasing
1452 * priority:
1453 * - the task specific clamp value, when explicitly requested from userspace
1454 * - the task group effective clamp value, for tasks not either in the root
1455 * group or in an autogroup
1456 * - the system default clamp value, defined by the sysadmin
1457 */
1458 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1459 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1460 {
1461 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1462 struct uclamp_se uc_max = uclamp_default[clamp_id];
1463
1464 /* System default restrictions always apply */
1465 if (unlikely(uc_req.value > uc_max.value))
1466 return uc_max;
1467
1468 return uc_req;
1469 }
1470
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1471 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1472 {
1473 struct uclamp_se uc_eff;
1474
1475 /* Task currently refcounted: use back-annotated (effective) value */
1476 if (p->uclamp[clamp_id].active)
1477 return (unsigned long)p->uclamp[clamp_id].value;
1478
1479 uc_eff = uclamp_eff_get(p, clamp_id);
1480
1481 return (unsigned long)uc_eff.value;
1482 }
1483
1484 /*
1485 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1486 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1487 * updates the rq's clamp value if required.
1488 *
1489 * Tasks can have a task-specific value requested from user-space, track
1490 * within each bucket the maximum value for tasks refcounted in it.
1491 * This "local max aggregation" allows to track the exact "requested" value
1492 * for each bucket when all its RUNNABLE tasks require the same clamp.
1493 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1494 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1495 enum uclamp_id clamp_id)
1496 {
1497 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1498 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1499 struct uclamp_bucket *bucket;
1500
1501 lockdep_assert_rq_held(rq);
1502
1503 /* Update task effective clamp */
1504 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1505
1506 bucket = &uc_rq->bucket[uc_se->bucket_id];
1507 bucket->tasks++;
1508 uc_se->active = true;
1509
1510 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1511
1512 /*
1513 * Local max aggregation: rq buckets always track the max
1514 * "requested" clamp value of its RUNNABLE tasks.
1515 */
1516 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1517 bucket->value = uc_se->value;
1518
1519 if (uc_se->value > READ_ONCE(uc_rq->value))
1520 WRITE_ONCE(uc_rq->value, uc_se->value);
1521 }
1522
1523 /*
1524 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1525 * is released. If this is the last task reference counting the rq's max
1526 * active clamp value, then the rq's clamp value is updated.
1527 *
1528 * Both refcounted tasks and rq's cached clamp values are expected to be
1529 * always valid. If it's detected they are not, as defensive programming,
1530 * enforce the expected state and warn.
1531 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1532 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1533 enum uclamp_id clamp_id)
1534 {
1535 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1536 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1537 struct uclamp_bucket *bucket;
1538 unsigned int bkt_clamp;
1539 unsigned int rq_clamp;
1540
1541 lockdep_assert_rq_held(rq);
1542
1543 /*
1544 * If sched_uclamp_used was enabled after task @p was enqueued,
1545 * we could end up with unbalanced call to uclamp_rq_dec_id().
1546 *
1547 * In this case the uc_se->active flag should be false since no uclamp
1548 * accounting was performed at enqueue time and we can just return
1549 * here.
1550 *
1551 * Need to be careful of the following enqueue/dequeue ordering
1552 * problem too
1553 *
1554 * enqueue(taskA)
1555 * // sched_uclamp_used gets enabled
1556 * enqueue(taskB)
1557 * dequeue(taskA)
1558 * // Must not decrement bucket->tasks here
1559 * dequeue(taskB)
1560 *
1561 * where we could end up with stale data in uc_se and
1562 * bucket[uc_se->bucket_id].
1563 *
1564 * The following check here eliminates the possibility of such race.
1565 */
1566 if (unlikely(!uc_se->active))
1567 return;
1568
1569 bucket = &uc_rq->bucket[uc_se->bucket_id];
1570
1571 SCHED_WARN_ON(!bucket->tasks);
1572 if (likely(bucket->tasks))
1573 bucket->tasks--;
1574
1575 uc_se->active = false;
1576
1577 /*
1578 * Keep "local max aggregation" simple and accept to (possibly)
1579 * overboost some RUNNABLE tasks in the same bucket.
1580 * The rq clamp bucket value is reset to its base value whenever
1581 * there are no more RUNNABLE tasks refcounting it.
1582 */
1583 if (likely(bucket->tasks))
1584 return;
1585
1586 rq_clamp = READ_ONCE(uc_rq->value);
1587 /*
1588 * Defensive programming: this should never happen. If it happens,
1589 * e.g. due to future modification, warn and fixup the expected value.
1590 */
1591 SCHED_WARN_ON(bucket->value > rq_clamp);
1592 if (bucket->value >= rq_clamp) {
1593 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1594 WRITE_ONCE(uc_rq->value, bkt_clamp);
1595 }
1596 }
1597
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1598 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1599 {
1600 enum uclamp_id clamp_id;
1601
1602 /*
1603 * Avoid any overhead until uclamp is actually used by the userspace.
1604 *
1605 * The condition is constructed such that a NOP is generated when
1606 * sched_uclamp_used is disabled.
1607 */
1608 if (!static_branch_unlikely(&sched_uclamp_used))
1609 return;
1610
1611 if (unlikely(!p->sched_class->uclamp_enabled))
1612 return;
1613
1614 for_each_clamp_id(clamp_id)
1615 uclamp_rq_inc_id(rq, p, clamp_id);
1616
1617 /* Reset clamp idle holding when there is one RUNNABLE task */
1618 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1619 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1620 }
1621
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1622 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1623 {
1624 enum uclamp_id clamp_id;
1625
1626 /*
1627 * Avoid any overhead until uclamp is actually used by the userspace.
1628 *
1629 * The condition is constructed such that a NOP is generated when
1630 * sched_uclamp_used is disabled.
1631 */
1632 if (!static_branch_unlikely(&sched_uclamp_used))
1633 return;
1634
1635 if (unlikely(!p->sched_class->uclamp_enabled))
1636 return;
1637
1638 for_each_clamp_id(clamp_id)
1639 uclamp_rq_dec_id(rq, p, clamp_id);
1640 }
1641
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1642 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1643 enum uclamp_id clamp_id)
1644 {
1645 if (!p->uclamp[clamp_id].active)
1646 return;
1647
1648 uclamp_rq_dec_id(rq, p, clamp_id);
1649 uclamp_rq_inc_id(rq, p, clamp_id);
1650
1651 /*
1652 * Make sure to clear the idle flag if we've transiently reached 0
1653 * active tasks on rq.
1654 */
1655 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1656 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1657 }
1658
1659 static inline void
uclamp_update_active(struct task_struct * p)1660 uclamp_update_active(struct task_struct *p)
1661 {
1662 enum uclamp_id clamp_id;
1663 struct rq_flags rf;
1664 struct rq *rq;
1665
1666 /*
1667 * Lock the task and the rq where the task is (or was) queued.
1668 *
1669 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1670 * price to pay to safely serialize util_{min,max} updates with
1671 * enqueues, dequeues and migration operations.
1672 * This is the same locking schema used by __set_cpus_allowed_ptr().
1673 */
1674 rq = task_rq_lock(p, &rf);
1675
1676 /*
1677 * Setting the clamp bucket is serialized by task_rq_lock().
1678 * If the task is not yet RUNNABLE and its task_struct is not
1679 * affecting a valid clamp bucket, the next time it's enqueued,
1680 * it will already see the updated clamp bucket value.
1681 */
1682 for_each_clamp_id(clamp_id)
1683 uclamp_rq_reinc_id(rq, p, clamp_id);
1684
1685 task_rq_unlock(rq, p, &rf);
1686 }
1687
1688 #ifdef CONFIG_UCLAMP_TASK_GROUP
1689 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1690 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1691 {
1692 struct css_task_iter it;
1693 struct task_struct *p;
1694
1695 css_task_iter_start(css, 0, &it);
1696 while ((p = css_task_iter_next(&it)))
1697 uclamp_update_active(p);
1698 css_task_iter_end(&it);
1699 }
1700
1701 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1702 static void uclamp_update_root_tg(void)
1703 {
1704 struct task_group *tg = &root_task_group;
1705
1706 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1707 sysctl_sched_uclamp_util_min, false);
1708 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1709 sysctl_sched_uclamp_util_max, false);
1710
1711 rcu_read_lock();
1712 cpu_util_update_eff(&root_task_group.css);
1713 rcu_read_unlock();
1714 }
1715 #else
uclamp_update_root_tg(void)1716 static void uclamp_update_root_tg(void) { }
1717 #endif
1718
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1719 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1720 void *buffer, size_t *lenp, loff_t *ppos)
1721 {
1722 bool update_root_tg = false;
1723 int old_min, old_max, old_min_rt;
1724 int result;
1725
1726 mutex_lock(&uclamp_mutex);
1727 old_min = sysctl_sched_uclamp_util_min;
1728 old_max = sysctl_sched_uclamp_util_max;
1729 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1730
1731 result = proc_dointvec(table, write, buffer, lenp, ppos);
1732 if (result)
1733 goto undo;
1734 if (!write)
1735 goto done;
1736
1737 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1738 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1739 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1740
1741 result = -EINVAL;
1742 goto undo;
1743 }
1744
1745 if (old_min != sysctl_sched_uclamp_util_min) {
1746 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1747 sysctl_sched_uclamp_util_min, false);
1748 update_root_tg = true;
1749 }
1750 if (old_max != sysctl_sched_uclamp_util_max) {
1751 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1752 sysctl_sched_uclamp_util_max, false);
1753 update_root_tg = true;
1754 }
1755
1756 if (update_root_tg) {
1757 static_branch_enable(&sched_uclamp_used);
1758 uclamp_update_root_tg();
1759 }
1760
1761 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1762 static_branch_enable(&sched_uclamp_used);
1763 uclamp_sync_util_min_rt_default();
1764 }
1765
1766 /*
1767 * We update all RUNNABLE tasks only when task groups are in use.
1768 * Otherwise, keep it simple and do just a lazy update at each next
1769 * task enqueue time.
1770 */
1771
1772 goto done;
1773
1774 undo:
1775 sysctl_sched_uclamp_util_min = old_min;
1776 sysctl_sched_uclamp_util_max = old_max;
1777 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1778 done:
1779 mutex_unlock(&uclamp_mutex);
1780
1781 return result;
1782 }
1783
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1784 static int uclamp_validate(struct task_struct *p,
1785 const struct sched_attr *attr)
1786 {
1787 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1788 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1789
1790 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1791 util_min = attr->sched_util_min;
1792
1793 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1794 return -EINVAL;
1795 }
1796
1797 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1798 util_max = attr->sched_util_max;
1799
1800 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1801 return -EINVAL;
1802 }
1803
1804 if (util_min != -1 && util_max != -1 && util_min > util_max)
1805 return -EINVAL;
1806
1807 /*
1808 * We have valid uclamp attributes; make sure uclamp is enabled.
1809 *
1810 * We need to do that here, because enabling static branches is a
1811 * blocking operation which obviously cannot be done while holding
1812 * scheduler locks.
1813 */
1814 static_branch_enable(&sched_uclamp_used);
1815
1816 return 0;
1817 }
1818
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1819 static bool uclamp_reset(const struct sched_attr *attr,
1820 enum uclamp_id clamp_id,
1821 struct uclamp_se *uc_se)
1822 {
1823 /* Reset on sched class change for a non user-defined clamp value. */
1824 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1825 !uc_se->user_defined)
1826 return true;
1827
1828 /* Reset on sched_util_{min,max} == -1. */
1829 if (clamp_id == UCLAMP_MIN &&
1830 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1831 attr->sched_util_min == -1) {
1832 return true;
1833 }
1834
1835 if (clamp_id == UCLAMP_MAX &&
1836 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1837 attr->sched_util_max == -1) {
1838 return true;
1839 }
1840
1841 return false;
1842 }
1843
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1844 static void __setscheduler_uclamp(struct task_struct *p,
1845 const struct sched_attr *attr)
1846 {
1847 enum uclamp_id clamp_id;
1848
1849 for_each_clamp_id(clamp_id) {
1850 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1851 unsigned int value;
1852
1853 if (!uclamp_reset(attr, clamp_id, uc_se))
1854 continue;
1855
1856 /*
1857 * RT by default have a 100% boost value that could be modified
1858 * at runtime.
1859 */
1860 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1861 value = sysctl_sched_uclamp_util_min_rt_default;
1862 else
1863 value = uclamp_none(clamp_id);
1864
1865 uclamp_se_set(uc_se, value, false);
1866
1867 }
1868
1869 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1870 return;
1871
1872 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1873 attr->sched_util_min != -1) {
1874 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1875 attr->sched_util_min, true);
1876 }
1877
1878 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1879 attr->sched_util_max != -1) {
1880 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1881 attr->sched_util_max, true);
1882 }
1883 }
1884
uclamp_fork(struct task_struct * p)1885 static void uclamp_fork(struct task_struct *p)
1886 {
1887 enum uclamp_id clamp_id;
1888
1889 /*
1890 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1891 * as the task is still at its early fork stages.
1892 */
1893 for_each_clamp_id(clamp_id)
1894 p->uclamp[clamp_id].active = false;
1895
1896 if (likely(!p->sched_reset_on_fork))
1897 return;
1898
1899 for_each_clamp_id(clamp_id) {
1900 uclamp_se_set(&p->uclamp_req[clamp_id],
1901 uclamp_none(clamp_id), false);
1902 }
1903 }
1904
uclamp_post_fork(struct task_struct * p)1905 static void uclamp_post_fork(struct task_struct *p)
1906 {
1907 uclamp_update_util_min_rt_default(p);
1908 }
1909
init_uclamp_rq(struct rq * rq)1910 static void __init init_uclamp_rq(struct rq *rq)
1911 {
1912 enum uclamp_id clamp_id;
1913 struct uclamp_rq *uc_rq = rq->uclamp;
1914
1915 for_each_clamp_id(clamp_id) {
1916 uc_rq[clamp_id] = (struct uclamp_rq) {
1917 .value = uclamp_none(clamp_id)
1918 };
1919 }
1920
1921 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1922 }
1923
init_uclamp(void)1924 static void __init init_uclamp(void)
1925 {
1926 struct uclamp_se uc_max = {};
1927 enum uclamp_id clamp_id;
1928 int cpu;
1929
1930 for_each_possible_cpu(cpu)
1931 init_uclamp_rq(cpu_rq(cpu));
1932
1933 for_each_clamp_id(clamp_id) {
1934 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1935 uclamp_none(clamp_id), false);
1936 }
1937
1938 /* System defaults allow max clamp values for both indexes */
1939 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1940 for_each_clamp_id(clamp_id) {
1941 uclamp_default[clamp_id] = uc_max;
1942 #ifdef CONFIG_UCLAMP_TASK_GROUP
1943 root_task_group.uclamp_req[clamp_id] = uc_max;
1944 root_task_group.uclamp[clamp_id] = uc_max;
1945 #endif
1946 }
1947 }
1948
1949 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1950 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1951 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1952 static inline int uclamp_validate(struct task_struct *p,
1953 const struct sched_attr *attr)
1954 {
1955 return -EOPNOTSUPP;
1956 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1957 static void __setscheduler_uclamp(struct task_struct *p,
1958 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1959 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)1960 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)1961 static inline void init_uclamp(void) { }
1962 #endif /* CONFIG_UCLAMP_TASK */
1963
sched_task_on_rq(struct task_struct * p)1964 bool sched_task_on_rq(struct task_struct *p)
1965 {
1966 return task_on_rq_queued(p);
1967 }
1968
get_wchan(struct task_struct * p)1969 unsigned long get_wchan(struct task_struct *p)
1970 {
1971 unsigned long ip = 0;
1972 unsigned int state;
1973
1974 if (!p || p == current)
1975 return 0;
1976
1977 /* Only get wchan if task is blocked and we can keep it that way. */
1978 raw_spin_lock_irq(&p->pi_lock);
1979 state = READ_ONCE(p->__state);
1980 smp_rmb(); /* see try_to_wake_up() */
1981 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
1982 ip = __get_wchan(p);
1983 raw_spin_unlock_irq(&p->pi_lock);
1984
1985 return ip;
1986 }
1987
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1988 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1989 {
1990 if (!(flags & ENQUEUE_NOCLOCK))
1991 update_rq_clock(rq);
1992
1993 if (!(flags & ENQUEUE_RESTORE)) {
1994 sched_info_enqueue(rq, p);
1995 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1996 }
1997
1998 uclamp_rq_inc(rq, p);
1999 p->sched_class->enqueue_task(rq, p, flags);
2000
2001 if (sched_core_enabled(rq))
2002 sched_core_enqueue(rq, p);
2003 }
2004
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2005 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2006 {
2007 if (sched_core_enabled(rq))
2008 sched_core_dequeue(rq, p);
2009
2010 if (!(flags & DEQUEUE_NOCLOCK))
2011 update_rq_clock(rq);
2012
2013 if (!(flags & DEQUEUE_SAVE)) {
2014 sched_info_dequeue(rq, p);
2015 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2016 }
2017
2018 uclamp_rq_dec(rq, p);
2019 p->sched_class->dequeue_task(rq, p, flags);
2020 }
2021
activate_task(struct rq * rq,struct task_struct * p,int flags)2022 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2023 {
2024 enqueue_task(rq, p, flags);
2025
2026 p->on_rq = TASK_ON_RQ_QUEUED;
2027 }
2028
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2029 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2030 {
2031 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2032
2033 dequeue_task(rq, p, flags);
2034 }
2035
__normal_prio(int policy,int rt_prio,int nice)2036 static inline int __normal_prio(int policy, int rt_prio, int nice)
2037 {
2038 int prio;
2039
2040 if (dl_policy(policy))
2041 prio = MAX_DL_PRIO - 1;
2042 else if (rt_policy(policy))
2043 prio = MAX_RT_PRIO - 1 - rt_prio;
2044 else
2045 prio = NICE_TO_PRIO(nice);
2046
2047 return prio;
2048 }
2049
2050 /*
2051 * Calculate the expected normal priority: i.e. priority
2052 * without taking RT-inheritance into account. Might be
2053 * boosted by interactivity modifiers. Changes upon fork,
2054 * setprio syscalls, and whenever the interactivity
2055 * estimator recalculates.
2056 */
normal_prio(struct task_struct * p)2057 static inline int normal_prio(struct task_struct *p)
2058 {
2059 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2060 }
2061
2062 /*
2063 * Calculate the current priority, i.e. the priority
2064 * taken into account by the scheduler. This value might
2065 * be boosted by RT tasks, or might be boosted by
2066 * interactivity modifiers. Will be RT if the task got
2067 * RT-boosted. If not then it returns p->normal_prio.
2068 */
effective_prio(struct task_struct * p)2069 static int effective_prio(struct task_struct *p)
2070 {
2071 p->normal_prio = normal_prio(p);
2072 /*
2073 * If we are RT tasks or we were boosted to RT priority,
2074 * keep the priority unchanged. Otherwise, update priority
2075 * to the normal priority:
2076 */
2077 if (!rt_prio(p->prio))
2078 return p->normal_prio;
2079 return p->prio;
2080 }
2081
2082 /**
2083 * task_curr - is this task currently executing on a CPU?
2084 * @p: the task in question.
2085 *
2086 * Return: 1 if the task is currently executing. 0 otherwise.
2087 */
task_curr(const struct task_struct * p)2088 inline int task_curr(const struct task_struct *p)
2089 {
2090 return cpu_curr(task_cpu(p)) == p;
2091 }
2092
2093 /*
2094 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2095 * use the balance_callback list if you want balancing.
2096 *
2097 * this means any call to check_class_changed() must be followed by a call to
2098 * balance_callback().
2099 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2100 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2101 const struct sched_class *prev_class,
2102 int oldprio)
2103 {
2104 if (prev_class != p->sched_class) {
2105 if (prev_class->switched_from)
2106 prev_class->switched_from(rq, p);
2107
2108 p->sched_class->switched_to(rq, p);
2109 } else if (oldprio != p->prio || dl_task(p))
2110 p->sched_class->prio_changed(rq, p, oldprio);
2111 }
2112
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)2113 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2114 {
2115 if (p->sched_class == rq->curr->sched_class)
2116 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2117 else if (p->sched_class > rq->curr->sched_class)
2118 resched_curr(rq);
2119
2120 /*
2121 * A queue event has occurred, and we're going to schedule. In
2122 * this case, we can save a useless back to back clock update.
2123 */
2124 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2125 rq_clock_skip_update(rq);
2126 }
2127
2128 #ifdef CONFIG_SMP
2129
2130 static void
2131 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2132
2133 static int __set_cpus_allowed_ptr(struct task_struct *p,
2134 const struct cpumask *new_mask,
2135 u32 flags);
2136
migrate_disable_switch(struct rq * rq,struct task_struct * p)2137 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2138 {
2139 if (likely(!p->migration_disabled))
2140 return;
2141
2142 if (p->cpus_ptr != &p->cpus_mask)
2143 return;
2144
2145 /*
2146 * Violates locking rules! see comment in __do_set_cpus_allowed().
2147 */
2148 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2149 }
2150
migrate_disable(void)2151 void migrate_disable(void)
2152 {
2153 struct task_struct *p = current;
2154
2155 if (p->migration_disabled) {
2156 p->migration_disabled++;
2157 return;
2158 }
2159
2160 preempt_disable();
2161 this_rq()->nr_pinned++;
2162 p->migration_disabled = 1;
2163 preempt_enable();
2164 }
2165 EXPORT_SYMBOL_GPL(migrate_disable);
2166
migrate_enable(void)2167 void migrate_enable(void)
2168 {
2169 struct task_struct *p = current;
2170
2171 if (p->migration_disabled > 1) {
2172 p->migration_disabled--;
2173 return;
2174 }
2175
2176 /*
2177 * Ensure stop_task runs either before or after this, and that
2178 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2179 */
2180 preempt_disable();
2181 if (p->cpus_ptr != &p->cpus_mask)
2182 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2183 /*
2184 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2185 * regular cpus_mask, otherwise things that race (eg.
2186 * select_fallback_rq) get confused.
2187 */
2188 barrier();
2189 p->migration_disabled = 0;
2190 this_rq()->nr_pinned--;
2191 preempt_enable();
2192 }
2193 EXPORT_SYMBOL_GPL(migrate_enable);
2194
rq_has_pinned_tasks(struct rq * rq)2195 static inline bool rq_has_pinned_tasks(struct rq *rq)
2196 {
2197 return rq->nr_pinned;
2198 }
2199
2200 /*
2201 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2202 * __set_cpus_allowed_ptr() and select_fallback_rq().
2203 */
is_cpu_allowed(struct task_struct * p,int cpu)2204 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2205 {
2206 /* When not in the task's cpumask, no point in looking further. */
2207 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2208 return false;
2209
2210 /* migrate_disabled() must be allowed to finish. */
2211 if (is_migration_disabled(p))
2212 return cpu_online(cpu);
2213
2214 /* Non kernel threads are not allowed during either online or offline. */
2215 if (!(p->flags & PF_KTHREAD))
2216 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2217
2218 /* KTHREAD_IS_PER_CPU is always allowed. */
2219 if (kthread_is_per_cpu(p))
2220 return cpu_online(cpu);
2221
2222 /* Regular kernel threads don't get to stay during offline. */
2223 if (cpu_dying(cpu))
2224 return false;
2225
2226 /* But are allowed during online. */
2227 return cpu_online(cpu);
2228 }
2229
2230 /*
2231 * This is how migration works:
2232 *
2233 * 1) we invoke migration_cpu_stop() on the target CPU using
2234 * stop_one_cpu().
2235 * 2) stopper starts to run (implicitly forcing the migrated thread
2236 * off the CPU)
2237 * 3) it checks whether the migrated task is still in the wrong runqueue.
2238 * 4) if it's in the wrong runqueue then the migration thread removes
2239 * it and puts it into the right queue.
2240 * 5) stopper completes and stop_one_cpu() returns and the migration
2241 * is done.
2242 */
2243
2244 /*
2245 * move_queued_task - move a queued task to new rq.
2246 *
2247 * Returns (locked) new rq. Old rq's lock is released.
2248 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2249 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2250 struct task_struct *p, int new_cpu)
2251 {
2252 lockdep_assert_rq_held(rq);
2253
2254 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2255 set_task_cpu(p, new_cpu);
2256 rq_unlock(rq, rf);
2257
2258 rq = cpu_rq(new_cpu);
2259
2260 rq_lock(rq, rf);
2261 BUG_ON(task_cpu(p) != new_cpu);
2262 activate_task(rq, p, 0);
2263 check_preempt_curr(rq, p, 0);
2264
2265 return rq;
2266 }
2267
2268 struct migration_arg {
2269 struct task_struct *task;
2270 int dest_cpu;
2271 struct set_affinity_pending *pending;
2272 };
2273
2274 /*
2275 * @refs: number of wait_for_completion()
2276 * @stop_pending: is @stop_work in use
2277 */
2278 struct set_affinity_pending {
2279 refcount_t refs;
2280 unsigned int stop_pending;
2281 struct completion done;
2282 struct cpu_stop_work stop_work;
2283 struct migration_arg arg;
2284 };
2285
2286 /*
2287 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2288 * this because either it can't run here any more (set_cpus_allowed()
2289 * away from this CPU, or CPU going down), or because we're
2290 * attempting to rebalance this task on exec (sched_exec).
2291 *
2292 * So we race with normal scheduler movements, but that's OK, as long
2293 * as the task is no longer on this CPU.
2294 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2295 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2296 struct task_struct *p, int dest_cpu)
2297 {
2298 /* Affinity changed (again). */
2299 if (!is_cpu_allowed(p, dest_cpu))
2300 return rq;
2301
2302 update_rq_clock(rq);
2303 rq = move_queued_task(rq, rf, p, dest_cpu);
2304
2305 return rq;
2306 }
2307
2308 /*
2309 * migration_cpu_stop - this will be executed by a highprio stopper thread
2310 * and performs thread migration by bumping thread off CPU then
2311 * 'pushing' onto another runqueue.
2312 */
migration_cpu_stop(void * data)2313 static int migration_cpu_stop(void *data)
2314 {
2315 struct migration_arg *arg = data;
2316 struct set_affinity_pending *pending = arg->pending;
2317 struct task_struct *p = arg->task;
2318 struct rq *rq = this_rq();
2319 bool complete = false;
2320 struct rq_flags rf;
2321
2322 /*
2323 * The original target CPU might have gone down and we might
2324 * be on another CPU but it doesn't matter.
2325 */
2326 local_irq_save(rf.flags);
2327 /*
2328 * We need to explicitly wake pending tasks before running
2329 * __migrate_task() such that we will not miss enforcing cpus_ptr
2330 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2331 */
2332 flush_smp_call_function_from_idle();
2333
2334 raw_spin_lock(&p->pi_lock);
2335 rq_lock(rq, &rf);
2336
2337 /*
2338 * If we were passed a pending, then ->stop_pending was set, thus
2339 * p->migration_pending must have remained stable.
2340 */
2341 WARN_ON_ONCE(pending && pending != p->migration_pending);
2342
2343 /*
2344 * If task_rq(p) != rq, it cannot be migrated here, because we're
2345 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2346 * we're holding p->pi_lock.
2347 */
2348 if (task_rq(p) == rq) {
2349 if (is_migration_disabled(p))
2350 goto out;
2351
2352 if (pending) {
2353 p->migration_pending = NULL;
2354 complete = true;
2355
2356 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2357 goto out;
2358 }
2359
2360 if (task_on_rq_queued(p))
2361 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2362 else
2363 p->wake_cpu = arg->dest_cpu;
2364
2365 /*
2366 * XXX __migrate_task() can fail, at which point we might end
2367 * up running on a dodgy CPU, AFAICT this can only happen
2368 * during CPU hotplug, at which point we'll get pushed out
2369 * anyway, so it's probably not a big deal.
2370 */
2371
2372 } else if (pending) {
2373 /*
2374 * This happens when we get migrated between migrate_enable()'s
2375 * preempt_enable() and scheduling the stopper task. At that
2376 * point we're a regular task again and not current anymore.
2377 *
2378 * A !PREEMPT kernel has a giant hole here, which makes it far
2379 * more likely.
2380 */
2381
2382 /*
2383 * The task moved before the stopper got to run. We're holding
2384 * ->pi_lock, so the allowed mask is stable - if it got
2385 * somewhere allowed, we're done.
2386 */
2387 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2388 p->migration_pending = NULL;
2389 complete = true;
2390 goto out;
2391 }
2392
2393 /*
2394 * When migrate_enable() hits a rq mis-match we can't reliably
2395 * determine is_migration_disabled() and so have to chase after
2396 * it.
2397 */
2398 WARN_ON_ONCE(!pending->stop_pending);
2399 task_rq_unlock(rq, p, &rf);
2400 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2401 &pending->arg, &pending->stop_work);
2402 return 0;
2403 }
2404 out:
2405 if (pending)
2406 pending->stop_pending = false;
2407 task_rq_unlock(rq, p, &rf);
2408
2409 if (complete)
2410 complete_all(&pending->done);
2411
2412 return 0;
2413 }
2414
push_cpu_stop(void * arg)2415 int push_cpu_stop(void *arg)
2416 {
2417 struct rq *lowest_rq = NULL, *rq = this_rq();
2418 struct task_struct *p = arg;
2419
2420 raw_spin_lock_irq(&p->pi_lock);
2421 raw_spin_rq_lock(rq);
2422
2423 if (task_rq(p) != rq)
2424 goto out_unlock;
2425
2426 if (is_migration_disabled(p)) {
2427 p->migration_flags |= MDF_PUSH;
2428 goto out_unlock;
2429 }
2430
2431 p->migration_flags &= ~MDF_PUSH;
2432
2433 if (p->sched_class->find_lock_rq)
2434 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2435
2436 if (!lowest_rq)
2437 goto out_unlock;
2438
2439 // XXX validate p is still the highest prio task
2440 if (task_rq(p) == rq) {
2441 deactivate_task(rq, p, 0);
2442 set_task_cpu(p, lowest_rq->cpu);
2443 activate_task(lowest_rq, p, 0);
2444 resched_curr(lowest_rq);
2445 }
2446
2447 double_unlock_balance(rq, lowest_rq);
2448
2449 out_unlock:
2450 rq->push_busy = false;
2451 raw_spin_rq_unlock(rq);
2452 raw_spin_unlock_irq(&p->pi_lock);
2453
2454 put_task_struct(p);
2455 return 0;
2456 }
2457
2458 /*
2459 * sched_class::set_cpus_allowed must do the below, but is not required to
2460 * actually call this function.
2461 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2462 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2463 {
2464 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2465 p->cpus_ptr = new_mask;
2466 return;
2467 }
2468
2469 cpumask_copy(&p->cpus_mask, new_mask);
2470 p->nr_cpus_allowed = cpumask_weight(new_mask);
2471 }
2472
2473 static void
__do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2474 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2475 {
2476 struct rq *rq = task_rq(p);
2477 bool queued, running;
2478
2479 /*
2480 * This here violates the locking rules for affinity, since we're only
2481 * supposed to change these variables while holding both rq->lock and
2482 * p->pi_lock.
2483 *
2484 * HOWEVER, it magically works, because ttwu() is the only code that
2485 * accesses these variables under p->pi_lock and only does so after
2486 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2487 * before finish_task().
2488 *
2489 * XXX do further audits, this smells like something putrid.
2490 */
2491 if (flags & SCA_MIGRATE_DISABLE)
2492 SCHED_WARN_ON(!p->on_cpu);
2493 else
2494 lockdep_assert_held(&p->pi_lock);
2495
2496 queued = task_on_rq_queued(p);
2497 running = task_current(rq, p);
2498
2499 if (queued) {
2500 /*
2501 * Because __kthread_bind() calls this on blocked tasks without
2502 * holding rq->lock.
2503 */
2504 lockdep_assert_rq_held(rq);
2505 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2506 }
2507 if (running)
2508 put_prev_task(rq, p);
2509
2510 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2511
2512 if (queued)
2513 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2514 if (running)
2515 set_next_task(rq, p);
2516 }
2517
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2518 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2519 {
2520 __do_set_cpus_allowed(p, new_mask, 0);
2521 }
2522
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2523 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2524 int node)
2525 {
2526 if (!src->user_cpus_ptr)
2527 return 0;
2528
2529 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2530 if (!dst->user_cpus_ptr)
2531 return -ENOMEM;
2532
2533 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2534 return 0;
2535 }
2536
clear_user_cpus_ptr(struct task_struct * p)2537 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2538 {
2539 struct cpumask *user_mask = NULL;
2540
2541 swap(p->user_cpus_ptr, user_mask);
2542
2543 return user_mask;
2544 }
2545
release_user_cpus_ptr(struct task_struct * p)2546 void release_user_cpus_ptr(struct task_struct *p)
2547 {
2548 kfree(clear_user_cpus_ptr(p));
2549 }
2550
2551 /*
2552 * This function is wildly self concurrent; here be dragons.
2553 *
2554 *
2555 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2556 * designated task is enqueued on an allowed CPU. If that task is currently
2557 * running, we have to kick it out using the CPU stopper.
2558 *
2559 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2560 * Consider:
2561 *
2562 * Initial conditions: P0->cpus_mask = [0, 1]
2563 *
2564 * P0@CPU0 P1
2565 *
2566 * migrate_disable();
2567 * <preempted>
2568 * set_cpus_allowed_ptr(P0, [1]);
2569 *
2570 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2571 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2572 * This means we need the following scheme:
2573 *
2574 * P0@CPU0 P1
2575 *
2576 * migrate_disable();
2577 * <preempted>
2578 * set_cpus_allowed_ptr(P0, [1]);
2579 * <blocks>
2580 * <resumes>
2581 * migrate_enable();
2582 * __set_cpus_allowed_ptr();
2583 * <wakes local stopper>
2584 * `--> <woken on migration completion>
2585 *
2586 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2587 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2588 * task p are serialized by p->pi_lock, which we can leverage: the one that
2589 * should come into effect at the end of the Migrate-Disable region is the last
2590 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2591 * but we still need to properly signal those waiting tasks at the appropriate
2592 * moment.
2593 *
2594 * This is implemented using struct set_affinity_pending. The first
2595 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2596 * setup an instance of that struct and install it on the targeted task_struct.
2597 * Any and all further callers will reuse that instance. Those then wait for
2598 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2599 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2600 *
2601 *
2602 * (1) In the cases covered above. There is one more where the completion is
2603 * signaled within affine_move_task() itself: when a subsequent affinity request
2604 * occurs after the stopper bailed out due to the targeted task still being
2605 * Migrate-Disable. Consider:
2606 *
2607 * Initial conditions: P0->cpus_mask = [0, 1]
2608 *
2609 * CPU0 P1 P2
2610 * <P0>
2611 * migrate_disable();
2612 * <preempted>
2613 * set_cpus_allowed_ptr(P0, [1]);
2614 * <blocks>
2615 * <migration/0>
2616 * migration_cpu_stop()
2617 * is_migration_disabled()
2618 * <bails>
2619 * set_cpus_allowed_ptr(P0, [0, 1]);
2620 * <signal completion>
2621 * <awakes>
2622 *
2623 * Note that the above is safe vs a concurrent migrate_enable(), as any
2624 * pending affinity completion is preceded by an uninstallation of
2625 * p->migration_pending done with p->pi_lock held.
2626 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2627 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2628 int dest_cpu, unsigned int flags)
2629 {
2630 struct set_affinity_pending my_pending = { }, *pending = NULL;
2631 bool stop_pending, complete = false;
2632
2633 /* Can the task run on the task's current CPU? If so, we're done */
2634 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2635 struct task_struct *push_task = NULL;
2636
2637 if ((flags & SCA_MIGRATE_ENABLE) &&
2638 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2639 rq->push_busy = true;
2640 push_task = get_task_struct(p);
2641 }
2642
2643 /*
2644 * If there are pending waiters, but no pending stop_work,
2645 * then complete now.
2646 */
2647 pending = p->migration_pending;
2648 if (pending && !pending->stop_pending) {
2649 p->migration_pending = NULL;
2650 complete = true;
2651 }
2652
2653 task_rq_unlock(rq, p, rf);
2654
2655 if (push_task) {
2656 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2657 p, &rq->push_work);
2658 }
2659
2660 if (complete)
2661 complete_all(&pending->done);
2662
2663 return 0;
2664 }
2665
2666 if (!(flags & SCA_MIGRATE_ENABLE)) {
2667 /* serialized by p->pi_lock */
2668 if (!p->migration_pending) {
2669 /* Install the request */
2670 refcount_set(&my_pending.refs, 1);
2671 init_completion(&my_pending.done);
2672 my_pending.arg = (struct migration_arg) {
2673 .task = p,
2674 .dest_cpu = dest_cpu,
2675 .pending = &my_pending,
2676 };
2677
2678 p->migration_pending = &my_pending;
2679 } else {
2680 pending = p->migration_pending;
2681 refcount_inc(&pending->refs);
2682 /*
2683 * Affinity has changed, but we've already installed a
2684 * pending. migration_cpu_stop() *must* see this, else
2685 * we risk a completion of the pending despite having a
2686 * task on a disallowed CPU.
2687 *
2688 * Serialized by p->pi_lock, so this is safe.
2689 */
2690 pending->arg.dest_cpu = dest_cpu;
2691 }
2692 }
2693 pending = p->migration_pending;
2694 /*
2695 * - !MIGRATE_ENABLE:
2696 * we'll have installed a pending if there wasn't one already.
2697 *
2698 * - MIGRATE_ENABLE:
2699 * we're here because the current CPU isn't matching anymore,
2700 * the only way that can happen is because of a concurrent
2701 * set_cpus_allowed_ptr() call, which should then still be
2702 * pending completion.
2703 *
2704 * Either way, we really should have a @pending here.
2705 */
2706 if (WARN_ON_ONCE(!pending)) {
2707 task_rq_unlock(rq, p, rf);
2708 return -EINVAL;
2709 }
2710
2711 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2712 /*
2713 * MIGRATE_ENABLE gets here because 'p == current', but for
2714 * anything else we cannot do is_migration_disabled(), punt
2715 * and have the stopper function handle it all race-free.
2716 */
2717 stop_pending = pending->stop_pending;
2718 if (!stop_pending)
2719 pending->stop_pending = true;
2720
2721 if (flags & SCA_MIGRATE_ENABLE)
2722 p->migration_flags &= ~MDF_PUSH;
2723
2724 task_rq_unlock(rq, p, rf);
2725
2726 if (!stop_pending) {
2727 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2728 &pending->arg, &pending->stop_work);
2729 }
2730
2731 if (flags & SCA_MIGRATE_ENABLE)
2732 return 0;
2733 } else {
2734
2735 if (!is_migration_disabled(p)) {
2736 if (task_on_rq_queued(p))
2737 rq = move_queued_task(rq, rf, p, dest_cpu);
2738
2739 if (!pending->stop_pending) {
2740 p->migration_pending = NULL;
2741 complete = true;
2742 }
2743 }
2744 task_rq_unlock(rq, p, rf);
2745
2746 if (complete)
2747 complete_all(&pending->done);
2748 }
2749
2750 wait_for_completion(&pending->done);
2751
2752 if (refcount_dec_and_test(&pending->refs))
2753 wake_up_var(&pending->refs); /* No UaF, just an address */
2754
2755 /*
2756 * Block the original owner of &pending until all subsequent callers
2757 * have seen the completion and decremented the refcount
2758 */
2759 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2760
2761 /* ARGH */
2762 WARN_ON_ONCE(my_pending.stop_pending);
2763
2764 return 0;
2765 }
2766
2767 /*
2768 * Called with both p->pi_lock and rq->lock held; drops both before returning.
2769 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,const struct cpumask * new_mask,u32 flags,struct rq * rq,struct rq_flags * rf)2770 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2771 const struct cpumask *new_mask,
2772 u32 flags,
2773 struct rq *rq,
2774 struct rq_flags *rf)
2775 __releases(rq->lock)
2776 __releases(p->pi_lock)
2777 {
2778 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2779 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2780 bool kthread = p->flags & PF_KTHREAD;
2781 struct cpumask *user_mask = NULL;
2782 unsigned int dest_cpu;
2783 int ret = 0;
2784
2785 update_rq_clock(rq);
2786
2787 if (kthread || is_migration_disabled(p)) {
2788 /*
2789 * Kernel threads are allowed on online && !active CPUs,
2790 * however, during cpu-hot-unplug, even these might get pushed
2791 * away if not KTHREAD_IS_PER_CPU.
2792 *
2793 * Specifically, migration_disabled() tasks must not fail the
2794 * cpumask_any_and_distribute() pick below, esp. so on
2795 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2796 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2797 */
2798 cpu_valid_mask = cpu_online_mask;
2799 }
2800
2801 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2802 ret = -EINVAL;
2803 goto out;
2804 }
2805
2806 /*
2807 * Must re-check here, to close a race against __kthread_bind(),
2808 * sched_setaffinity() is not guaranteed to observe the flag.
2809 */
2810 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2811 ret = -EINVAL;
2812 goto out;
2813 }
2814
2815 if (!(flags & SCA_MIGRATE_ENABLE)) {
2816 if (cpumask_equal(&p->cpus_mask, new_mask))
2817 goto out;
2818
2819 if (WARN_ON_ONCE(p == current &&
2820 is_migration_disabled(p) &&
2821 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2822 ret = -EBUSY;
2823 goto out;
2824 }
2825 }
2826
2827 /*
2828 * Picking a ~random cpu helps in cases where we are changing affinity
2829 * for groups of tasks (ie. cpuset), so that load balancing is not
2830 * immediately required to distribute the tasks within their new mask.
2831 */
2832 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2833 if (dest_cpu >= nr_cpu_ids) {
2834 ret = -EINVAL;
2835 goto out;
2836 }
2837
2838 __do_set_cpus_allowed(p, new_mask, flags);
2839
2840 if (flags & SCA_USER)
2841 user_mask = clear_user_cpus_ptr(p);
2842
2843 ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2844
2845 kfree(user_mask);
2846
2847 return ret;
2848
2849 out:
2850 task_rq_unlock(rq, p, rf);
2851
2852 return ret;
2853 }
2854
2855 /*
2856 * Change a given task's CPU affinity. Migrate the thread to a
2857 * proper CPU and schedule it away if the CPU it's executing on
2858 * is removed from the allowed bitmask.
2859 *
2860 * NOTE: the caller must have a valid reference to the task, the
2861 * task must not exit() & deallocate itself prematurely. The
2862 * call is not atomic; no spinlocks may be held.
2863 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2864 static int __set_cpus_allowed_ptr(struct task_struct *p,
2865 const struct cpumask *new_mask, u32 flags)
2866 {
2867 struct rq_flags rf;
2868 struct rq *rq;
2869
2870 rq = task_rq_lock(p, &rf);
2871 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2872 }
2873
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2874 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2875 {
2876 return __set_cpus_allowed_ptr(p, new_mask, 0);
2877 }
2878 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2879
2880 /*
2881 * Change a given task's CPU affinity to the intersection of its current
2882 * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2883 * and pointing @p->user_cpus_ptr to a copy of the old mask.
2884 * If the resulting mask is empty, leave the affinity unchanged and return
2885 * -EINVAL.
2886 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)2887 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2888 struct cpumask *new_mask,
2889 const struct cpumask *subset_mask)
2890 {
2891 struct cpumask *user_mask = NULL;
2892 struct rq_flags rf;
2893 struct rq *rq;
2894 int err;
2895
2896 if (!p->user_cpus_ptr) {
2897 user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2898 if (!user_mask)
2899 return -ENOMEM;
2900 }
2901
2902 rq = task_rq_lock(p, &rf);
2903
2904 /*
2905 * Forcefully restricting the affinity of a deadline task is
2906 * likely to cause problems, so fail and noisily override the
2907 * mask entirely.
2908 */
2909 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2910 err = -EPERM;
2911 goto err_unlock;
2912 }
2913
2914 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2915 err = -EINVAL;
2916 goto err_unlock;
2917 }
2918
2919 /*
2920 * We're about to butcher the task affinity, so keep track of what
2921 * the user asked for in case we're able to restore it later on.
2922 */
2923 if (user_mask) {
2924 cpumask_copy(user_mask, p->cpus_ptr);
2925 p->user_cpus_ptr = user_mask;
2926 }
2927
2928 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2929
2930 err_unlock:
2931 task_rq_unlock(rq, p, &rf);
2932 kfree(user_mask);
2933 return err;
2934 }
2935
2936 /*
2937 * Restrict the CPU affinity of task @p so that it is a subset of
2938 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
2939 * old affinity mask. If the resulting mask is empty, we warn and walk
2940 * up the cpuset hierarchy until we find a suitable mask.
2941 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)2942 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2943 {
2944 cpumask_var_t new_mask;
2945 const struct cpumask *override_mask = task_cpu_possible_mask(p);
2946
2947 alloc_cpumask_var(&new_mask, GFP_KERNEL);
2948
2949 /*
2950 * __migrate_task() can fail silently in the face of concurrent
2951 * offlining of the chosen destination CPU, so take the hotplug
2952 * lock to ensure that the migration succeeds.
2953 */
2954 cpus_read_lock();
2955 if (!cpumask_available(new_mask))
2956 goto out_set_mask;
2957
2958 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2959 goto out_free_mask;
2960
2961 /*
2962 * We failed to find a valid subset of the affinity mask for the
2963 * task, so override it based on its cpuset hierarchy.
2964 */
2965 cpuset_cpus_allowed(p, new_mask);
2966 override_mask = new_mask;
2967
2968 out_set_mask:
2969 if (printk_ratelimit()) {
2970 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2971 task_pid_nr(p), p->comm,
2972 cpumask_pr_args(override_mask));
2973 }
2974
2975 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2976 out_free_mask:
2977 cpus_read_unlock();
2978 free_cpumask_var(new_mask);
2979 }
2980
2981 static int
2982 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
2983
2984 /*
2985 * Restore the affinity of a task @p which was previously restricted by a
2986 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
2987 * @p->user_cpus_ptr.
2988 *
2989 * It is the caller's responsibility to serialise this with any calls to
2990 * force_compatible_cpus_allowed_ptr(@p).
2991 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)2992 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
2993 {
2994 struct cpumask *user_mask = p->user_cpus_ptr;
2995 unsigned long flags;
2996
2997 /*
2998 * Try to restore the old affinity mask. If this fails, then
2999 * we free the mask explicitly to avoid it being inherited across
3000 * a subsequent fork().
3001 */
3002 if (!user_mask || !__sched_setaffinity(p, user_mask))
3003 return;
3004
3005 raw_spin_lock_irqsave(&p->pi_lock, flags);
3006 user_mask = clear_user_cpus_ptr(p);
3007 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3008
3009 kfree(user_mask);
3010 }
3011
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3012 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3013 {
3014 #ifdef CONFIG_SCHED_DEBUG
3015 unsigned int state = READ_ONCE(p->__state);
3016
3017 /*
3018 * We should never call set_task_cpu() on a blocked task,
3019 * ttwu() will sort out the placement.
3020 */
3021 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3022
3023 /*
3024 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3025 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3026 * time relying on p->on_rq.
3027 */
3028 WARN_ON_ONCE(state == TASK_RUNNING &&
3029 p->sched_class == &fair_sched_class &&
3030 (p->on_rq && !task_on_rq_migrating(p)));
3031
3032 #ifdef CONFIG_LOCKDEP
3033 /*
3034 * The caller should hold either p->pi_lock or rq->lock, when changing
3035 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3036 *
3037 * sched_move_task() holds both and thus holding either pins the cgroup,
3038 * see task_group().
3039 *
3040 * Furthermore, all task_rq users should acquire both locks, see
3041 * task_rq_lock().
3042 */
3043 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3044 lockdep_is_held(__rq_lockp(task_rq(p)))));
3045 #endif
3046 /*
3047 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3048 */
3049 WARN_ON_ONCE(!cpu_online(new_cpu));
3050
3051 WARN_ON_ONCE(is_migration_disabled(p));
3052 #endif
3053
3054 trace_sched_migrate_task(p, new_cpu);
3055
3056 if (task_cpu(p) != new_cpu) {
3057 if (p->sched_class->migrate_task_rq)
3058 p->sched_class->migrate_task_rq(p, new_cpu);
3059 p->se.nr_migrations++;
3060 rseq_migrate(p);
3061 perf_event_task_migrate(p);
3062 }
3063
3064 __set_task_cpu(p, new_cpu);
3065 }
3066
3067 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3068 static void __migrate_swap_task(struct task_struct *p, int cpu)
3069 {
3070 if (task_on_rq_queued(p)) {
3071 struct rq *src_rq, *dst_rq;
3072 struct rq_flags srf, drf;
3073
3074 src_rq = task_rq(p);
3075 dst_rq = cpu_rq(cpu);
3076
3077 rq_pin_lock(src_rq, &srf);
3078 rq_pin_lock(dst_rq, &drf);
3079
3080 deactivate_task(src_rq, p, 0);
3081 set_task_cpu(p, cpu);
3082 activate_task(dst_rq, p, 0);
3083 check_preempt_curr(dst_rq, p, 0);
3084
3085 rq_unpin_lock(dst_rq, &drf);
3086 rq_unpin_lock(src_rq, &srf);
3087
3088 } else {
3089 /*
3090 * Task isn't running anymore; make it appear like we migrated
3091 * it before it went to sleep. This means on wakeup we make the
3092 * previous CPU our target instead of where it really is.
3093 */
3094 p->wake_cpu = cpu;
3095 }
3096 }
3097
3098 struct migration_swap_arg {
3099 struct task_struct *src_task, *dst_task;
3100 int src_cpu, dst_cpu;
3101 };
3102
migrate_swap_stop(void * data)3103 static int migrate_swap_stop(void *data)
3104 {
3105 struct migration_swap_arg *arg = data;
3106 struct rq *src_rq, *dst_rq;
3107 int ret = -EAGAIN;
3108
3109 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3110 return -EAGAIN;
3111
3112 src_rq = cpu_rq(arg->src_cpu);
3113 dst_rq = cpu_rq(arg->dst_cpu);
3114
3115 double_raw_lock(&arg->src_task->pi_lock,
3116 &arg->dst_task->pi_lock);
3117 double_rq_lock(src_rq, dst_rq);
3118
3119 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3120 goto unlock;
3121
3122 if (task_cpu(arg->src_task) != arg->src_cpu)
3123 goto unlock;
3124
3125 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3126 goto unlock;
3127
3128 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3129 goto unlock;
3130
3131 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3132 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3133
3134 ret = 0;
3135
3136 unlock:
3137 double_rq_unlock(src_rq, dst_rq);
3138 raw_spin_unlock(&arg->dst_task->pi_lock);
3139 raw_spin_unlock(&arg->src_task->pi_lock);
3140
3141 return ret;
3142 }
3143
3144 /*
3145 * Cross migrate two tasks
3146 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3147 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3148 int target_cpu, int curr_cpu)
3149 {
3150 struct migration_swap_arg arg;
3151 int ret = -EINVAL;
3152
3153 arg = (struct migration_swap_arg){
3154 .src_task = cur,
3155 .src_cpu = curr_cpu,
3156 .dst_task = p,
3157 .dst_cpu = target_cpu,
3158 };
3159
3160 if (arg.src_cpu == arg.dst_cpu)
3161 goto out;
3162
3163 /*
3164 * These three tests are all lockless; this is OK since all of them
3165 * will be re-checked with proper locks held further down the line.
3166 */
3167 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3168 goto out;
3169
3170 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3171 goto out;
3172
3173 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3174 goto out;
3175
3176 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3177 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3178
3179 out:
3180 return ret;
3181 }
3182 #endif /* CONFIG_NUMA_BALANCING */
3183
3184 /*
3185 * wait_task_inactive - wait for a thread to unschedule.
3186 *
3187 * If @match_state is nonzero, it's the @p->state value just checked and
3188 * not expected to change. If it changes, i.e. @p might have woken up,
3189 * then return zero. When we succeed in waiting for @p to be off its CPU,
3190 * we return a positive number (its total switch count). If a second call
3191 * a short while later returns the same number, the caller can be sure that
3192 * @p has remained unscheduled the whole time.
3193 *
3194 * The caller must ensure that the task *will* unschedule sometime soon,
3195 * else this function might spin for a *long* time. This function can't
3196 * be called with interrupts off, or it may introduce deadlock with
3197 * smp_call_function() if an IPI is sent by the same process we are
3198 * waiting to become inactive.
3199 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)3200 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3201 {
3202 int running, queued;
3203 struct rq_flags rf;
3204 unsigned long ncsw;
3205 struct rq *rq;
3206
3207 for (;;) {
3208 /*
3209 * We do the initial early heuristics without holding
3210 * any task-queue locks at all. We'll only try to get
3211 * the runqueue lock when things look like they will
3212 * work out!
3213 */
3214 rq = task_rq(p);
3215
3216 /*
3217 * If the task is actively running on another CPU
3218 * still, just relax and busy-wait without holding
3219 * any locks.
3220 *
3221 * NOTE! Since we don't hold any locks, it's not
3222 * even sure that "rq" stays as the right runqueue!
3223 * But we don't care, since "task_running()" will
3224 * return false if the runqueue has changed and p
3225 * is actually now running somewhere else!
3226 */
3227 while (task_running(rq, p)) {
3228 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3229 return 0;
3230 cpu_relax();
3231 }
3232
3233 /*
3234 * Ok, time to look more closely! We need the rq
3235 * lock now, to be *sure*. If we're wrong, we'll
3236 * just go back and repeat.
3237 */
3238 rq = task_rq_lock(p, &rf);
3239 trace_sched_wait_task(p);
3240 running = task_running(rq, p);
3241 queued = task_on_rq_queued(p);
3242 ncsw = 0;
3243 if (!match_state || READ_ONCE(p->__state) == match_state)
3244 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3245 task_rq_unlock(rq, p, &rf);
3246
3247 /*
3248 * If it changed from the expected state, bail out now.
3249 */
3250 if (unlikely(!ncsw))
3251 break;
3252
3253 /*
3254 * Was it really running after all now that we
3255 * checked with the proper locks actually held?
3256 *
3257 * Oops. Go back and try again..
3258 */
3259 if (unlikely(running)) {
3260 cpu_relax();
3261 continue;
3262 }
3263
3264 /*
3265 * It's not enough that it's not actively running,
3266 * it must be off the runqueue _entirely_, and not
3267 * preempted!
3268 *
3269 * So if it was still runnable (but just not actively
3270 * running right now), it's preempted, and we should
3271 * yield - it could be a while.
3272 */
3273 if (unlikely(queued)) {
3274 ktime_t to = NSEC_PER_SEC / HZ;
3275
3276 set_current_state(TASK_UNINTERRUPTIBLE);
3277 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3278 continue;
3279 }
3280
3281 /*
3282 * Ahh, all good. It wasn't running, and it wasn't
3283 * runnable, which means that it will never become
3284 * running in the future either. We're all done!
3285 */
3286 break;
3287 }
3288
3289 return ncsw;
3290 }
3291
3292 /***
3293 * kick_process - kick a running thread to enter/exit the kernel
3294 * @p: the to-be-kicked thread
3295 *
3296 * Cause a process which is running on another CPU to enter
3297 * kernel-mode, without any delay. (to get signals handled.)
3298 *
3299 * NOTE: this function doesn't have to take the runqueue lock,
3300 * because all it wants to ensure is that the remote task enters
3301 * the kernel. If the IPI races and the task has been migrated
3302 * to another CPU then no harm is done and the purpose has been
3303 * achieved as well.
3304 */
kick_process(struct task_struct * p)3305 void kick_process(struct task_struct *p)
3306 {
3307 int cpu;
3308
3309 preempt_disable();
3310 cpu = task_cpu(p);
3311 if ((cpu != smp_processor_id()) && task_curr(p))
3312 smp_send_reschedule(cpu);
3313 preempt_enable();
3314 }
3315 EXPORT_SYMBOL_GPL(kick_process);
3316
3317 /*
3318 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3319 *
3320 * A few notes on cpu_active vs cpu_online:
3321 *
3322 * - cpu_active must be a subset of cpu_online
3323 *
3324 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3325 * see __set_cpus_allowed_ptr(). At this point the newly online
3326 * CPU isn't yet part of the sched domains, and balancing will not
3327 * see it.
3328 *
3329 * - on CPU-down we clear cpu_active() to mask the sched domains and
3330 * avoid the load balancer to place new tasks on the to be removed
3331 * CPU. Existing tasks will remain running there and will be taken
3332 * off.
3333 *
3334 * This means that fallback selection must not select !active CPUs.
3335 * And can assume that any active CPU must be online. Conversely
3336 * select_task_rq() below may allow selection of !active CPUs in order
3337 * to satisfy the above rules.
3338 */
select_fallback_rq(int cpu,struct task_struct * p)3339 static int select_fallback_rq(int cpu, struct task_struct *p)
3340 {
3341 int nid = cpu_to_node(cpu);
3342 const struct cpumask *nodemask = NULL;
3343 enum { cpuset, possible, fail } state = cpuset;
3344 int dest_cpu;
3345
3346 /*
3347 * If the node that the CPU is on has been offlined, cpu_to_node()
3348 * will return -1. There is no CPU on the node, and we should
3349 * select the CPU on the other node.
3350 */
3351 if (nid != -1) {
3352 nodemask = cpumask_of_node(nid);
3353
3354 /* Look for allowed, online CPU in same node. */
3355 for_each_cpu(dest_cpu, nodemask) {
3356 if (is_cpu_allowed(p, dest_cpu))
3357 return dest_cpu;
3358 }
3359 }
3360
3361 for (;;) {
3362 /* Any allowed, online CPU? */
3363 for_each_cpu(dest_cpu, p->cpus_ptr) {
3364 if (!is_cpu_allowed(p, dest_cpu))
3365 continue;
3366
3367 goto out;
3368 }
3369
3370 /* No more Mr. Nice Guy. */
3371 switch (state) {
3372 case cpuset:
3373 if (cpuset_cpus_allowed_fallback(p)) {
3374 state = possible;
3375 break;
3376 }
3377 fallthrough;
3378 case possible:
3379 /*
3380 * XXX When called from select_task_rq() we only
3381 * hold p->pi_lock and again violate locking order.
3382 *
3383 * More yuck to audit.
3384 */
3385 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3386 state = fail;
3387 break;
3388 case fail:
3389 BUG();
3390 break;
3391 }
3392 }
3393
3394 out:
3395 if (state != cpuset) {
3396 /*
3397 * Don't tell them about moving exiting tasks or
3398 * kernel threads (both mm NULL), since they never
3399 * leave kernel.
3400 */
3401 if (p->mm && printk_ratelimit()) {
3402 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3403 task_pid_nr(p), p->comm, cpu);
3404 }
3405 }
3406
3407 return dest_cpu;
3408 }
3409
3410 /*
3411 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3412 */
3413 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3414 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3415 {
3416 lockdep_assert_held(&p->pi_lock);
3417
3418 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3419 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3420 else
3421 cpu = cpumask_any(p->cpus_ptr);
3422
3423 /*
3424 * In order not to call set_task_cpu() on a blocking task we need
3425 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3426 * CPU.
3427 *
3428 * Since this is common to all placement strategies, this lives here.
3429 *
3430 * [ this allows ->select_task() to simply return task_cpu(p) and
3431 * not worry about this generic constraint ]
3432 */
3433 if (unlikely(!is_cpu_allowed(p, cpu)))
3434 cpu = select_fallback_rq(task_cpu(p), p);
3435
3436 return cpu;
3437 }
3438
sched_set_stop_task(int cpu,struct task_struct * stop)3439 void sched_set_stop_task(int cpu, struct task_struct *stop)
3440 {
3441 static struct lock_class_key stop_pi_lock;
3442 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3443 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3444
3445 if (stop) {
3446 /*
3447 * Make it appear like a SCHED_FIFO task, its something
3448 * userspace knows about and won't get confused about.
3449 *
3450 * Also, it will make PI more or less work without too
3451 * much confusion -- but then, stop work should not
3452 * rely on PI working anyway.
3453 */
3454 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3455
3456 stop->sched_class = &stop_sched_class;
3457
3458 /*
3459 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3460 * adjust the effective priority of a task. As a result,
3461 * rt_mutex_setprio() can trigger (RT) balancing operations,
3462 * which can then trigger wakeups of the stop thread to push
3463 * around the current task.
3464 *
3465 * The stop task itself will never be part of the PI-chain, it
3466 * never blocks, therefore that ->pi_lock recursion is safe.
3467 * Tell lockdep about this by placing the stop->pi_lock in its
3468 * own class.
3469 */
3470 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3471 }
3472
3473 cpu_rq(cpu)->stop = stop;
3474
3475 if (old_stop) {
3476 /*
3477 * Reset it back to a normal scheduling class so that
3478 * it can die in pieces.
3479 */
3480 old_stop->sched_class = &rt_sched_class;
3481 }
3482 }
3483
3484 #else /* CONFIG_SMP */
3485
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)3486 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3487 const struct cpumask *new_mask,
3488 u32 flags)
3489 {
3490 return set_cpus_allowed_ptr(p, new_mask);
3491 }
3492
migrate_disable_switch(struct rq * rq,struct task_struct * p)3493 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3494
rq_has_pinned_tasks(struct rq * rq)3495 static inline bool rq_has_pinned_tasks(struct rq *rq)
3496 {
3497 return false;
3498 }
3499
3500 #endif /* !CONFIG_SMP */
3501
3502 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3503 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3504 {
3505 struct rq *rq;
3506
3507 if (!schedstat_enabled())
3508 return;
3509
3510 rq = this_rq();
3511
3512 #ifdef CONFIG_SMP
3513 if (cpu == rq->cpu) {
3514 __schedstat_inc(rq->ttwu_local);
3515 __schedstat_inc(p->stats.nr_wakeups_local);
3516 } else {
3517 struct sched_domain *sd;
3518
3519 __schedstat_inc(p->stats.nr_wakeups_remote);
3520 rcu_read_lock();
3521 for_each_domain(rq->cpu, sd) {
3522 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3523 __schedstat_inc(sd->ttwu_wake_remote);
3524 break;
3525 }
3526 }
3527 rcu_read_unlock();
3528 }
3529
3530 if (wake_flags & WF_MIGRATED)
3531 __schedstat_inc(p->stats.nr_wakeups_migrate);
3532 #endif /* CONFIG_SMP */
3533
3534 __schedstat_inc(rq->ttwu_count);
3535 __schedstat_inc(p->stats.nr_wakeups);
3536
3537 if (wake_flags & WF_SYNC)
3538 __schedstat_inc(p->stats.nr_wakeups_sync);
3539 }
3540
3541 /*
3542 * Mark the task runnable and perform wakeup-preemption.
3543 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3544 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3545 struct rq_flags *rf)
3546 {
3547 check_preempt_curr(rq, p, wake_flags);
3548 WRITE_ONCE(p->__state, TASK_RUNNING);
3549 trace_sched_wakeup(p);
3550
3551 #ifdef CONFIG_SMP
3552 if (p->sched_class->task_woken) {
3553 /*
3554 * Our task @p is fully woken up and running; so it's safe to
3555 * drop the rq->lock, hereafter rq is only used for statistics.
3556 */
3557 rq_unpin_lock(rq, rf);
3558 p->sched_class->task_woken(rq, p);
3559 rq_repin_lock(rq, rf);
3560 }
3561
3562 if (rq->idle_stamp) {
3563 u64 delta = rq_clock(rq) - rq->idle_stamp;
3564 u64 max = 2*rq->max_idle_balance_cost;
3565
3566 update_avg(&rq->avg_idle, delta);
3567
3568 if (rq->avg_idle > max)
3569 rq->avg_idle = max;
3570
3571 rq->wake_stamp = jiffies;
3572 rq->wake_avg_idle = rq->avg_idle / 2;
3573
3574 rq->idle_stamp = 0;
3575 }
3576 #endif
3577 }
3578
3579 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3580 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3581 struct rq_flags *rf)
3582 {
3583 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3584
3585 lockdep_assert_rq_held(rq);
3586
3587 if (p->sched_contributes_to_load)
3588 rq->nr_uninterruptible--;
3589
3590 #ifdef CONFIG_SMP
3591 if (wake_flags & WF_MIGRATED)
3592 en_flags |= ENQUEUE_MIGRATED;
3593 else
3594 #endif
3595 if (p->in_iowait) {
3596 delayacct_blkio_end(p);
3597 atomic_dec(&task_rq(p)->nr_iowait);
3598 }
3599
3600 activate_task(rq, p, en_flags);
3601 ttwu_do_wakeup(rq, p, wake_flags, rf);
3602 }
3603
3604 /*
3605 * Consider @p being inside a wait loop:
3606 *
3607 * for (;;) {
3608 * set_current_state(TASK_UNINTERRUPTIBLE);
3609 *
3610 * if (CONDITION)
3611 * break;
3612 *
3613 * schedule();
3614 * }
3615 * __set_current_state(TASK_RUNNING);
3616 *
3617 * between set_current_state() and schedule(). In this case @p is still
3618 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3619 * an atomic manner.
3620 *
3621 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3622 * then schedule() must still happen and p->state can be changed to
3623 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3624 * need to do a full wakeup with enqueue.
3625 *
3626 * Returns: %true when the wakeup is done,
3627 * %false otherwise.
3628 */
ttwu_runnable(struct task_struct * p,int wake_flags)3629 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3630 {
3631 struct rq_flags rf;
3632 struct rq *rq;
3633 int ret = 0;
3634
3635 rq = __task_rq_lock(p, &rf);
3636 if (task_on_rq_queued(p)) {
3637 /* check_preempt_curr() may use rq clock */
3638 update_rq_clock(rq);
3639 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3640 ret = 1;
3641 }
3642 __task_rq_unlock(rq, &rf);
3643
3644 return ret;
3645 }
3646
3647 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3648 void sched_ttwu_pending(void *arg)
3649 {
3650 struct llist_node *llist = arg;
3651 struct rq *rq = this_rq();
3652 struct task_struct *p, *t;
3653 struct rq_flags rf;
3654
3655 if (!llist)
3656 return;
3657
3658 /*
3659 * rq::ttwu_pending racy indication of out-standing wakeups.
3660 * Races such that false-negatives are possible, since they
3661 * are shorter lived that false-positives would be.
3662 */
3663 WRITE_ONCE(rq->ttwu_pending, 0);
3664
3665 rq_lock_irqsave(rq, &rf);
3666 update_rq_clock(rq);
3667
3668 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3669 if (WARN_ON_ONCE(p->on_cpu))
3670 smp_cond_load_acquire(&p->on_cpu, !VAL);
3671
3672 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3673 set_task_cpu(p, cpu_of(rq));
3674
3675 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3676 }
3677
3678 rq_unlock_irqrestore(rq, &rf);
3679 }
3680
send_call_function_single_ipi(int cpu)3681 void send_call_function_single_ipi(int cpu)
3682 {
3683 struct rq *rq = cpu_rq(cpu);
3684
3685 if (!set_nr_if_polling(rq->idle))
3686 arch_send_call_function_single_ipi(cpu);
3687 else
3688 trace_sched_wake_idle_without_ipi(cpu);
3689 }
3690
3691 /*
3692 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3693 * necessary. The wakee CPU on receipt of the IPI will queue the task
3694 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3695 * of the wakeup instead of the waker.
3696 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3697 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3698 {
3699 struct rq *rq = cpu_rq(cpu);
3700
3701 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3702
3703 WRITE_ONCE(rq->ttwu_pending, 1);
3704 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3705 }
3706
wake_up_if_idle(int cpu)3707 void wake_up_if_idle(int cpu)
3708 {
3709 struct rq *rq = cpu_rq(cpu);
3710 struct rq_flags rf;
3711
3712 rcu_read_lock();
3713
3714 if (!is_idle_task(rcu_dereference(rq->curr)))
3715 goto out;
3716
3717 rq_lock_irqsave(rq, &rf);
3718 if (is_idle_task(rq->curr))
3719 resched_curr(rq);
3720 /* Else CPU is not idle, do nothing here: */
3721 rq_unlock_irqrestore(rq, &rf);
3722
3723 out:
3724 rcu_read_unlock();
3725 }
3726
cpus_share_cache(int this_cpu,int that_cpu)3727 bool cpus_share_cache(int this_cpu, int that_cpu)
3728 {
3729 if (this_cpu == that_cpu)
3730 return true;
3731
3732 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3733 }
3734
ttwu_queue_cond(int cpu,int wake_flags)3735 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3736 {
3737 /*
3738 * Do not complicate things with the async wake_list while the CPU is
3739 * in hotplug state.
3740 */
3741 if (!cpu_active(cpu))
3742 return false;
3743
3744 /*
3745 * If the CPU does not share cache, then queue the task on the
3746 * remote rqs wakelist to avoid accessing remote data.
3747 */
3748 if (!cpus_share_cache(smp_processor_id(), cpu))
3749 return true;
3750
3751 /*
3752 * If the task is descheduling and the only running task on the
3753 * CPU then use the wakelist to offload the task activation to
3754 * the soon-to-be-idle CPU as the current CPU is likely busy.
3755 * nr_running is checked to avoid unnecessary task stacking.
3756 */
3757 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3758 return true;
3759
3760 return false;
3761 }
3762
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3763 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3764 {
3765 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3766 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3767 return false;
3768
3769 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3770 __ttwu_queue_wakelist(p, cpu, wake_flags);
3771 return true;
3772 }
3773
3774 return false;
3775 }
3776
3777 #else /* !CONFIG_SMP */
3778
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3779 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3780 {
3781 return false;
3782 }
3783
3784 #endif /* CONFIG_SMP */
3785
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)3786 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3787 {
3788 struct rq *rq = cpu_rq(cpu);
3789 struct rq_flags rf;
3790
3791 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3792 return;
3793
3794 rq_lock(rq, &rf);
3795 update_rq_clock(rq);
3796 ttwu_do_activate(rq, p, wake_flags, &rf);
3797 rq_unlock(rq, &rf);
3798 }
3799
3800 /*
3801 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3802 *
3803 * The caller holds p::pi_lock if p != current or has preemption
3804 * disabled when p == current.
3805 *
3806 * The rules of PREEMPT_RT saved_state:
3807 *
3808 * The related locking code always holds p::pi_lock when updating
3809 * p::saved_state, which means the code is fully serialized in both cases.
3810 *
3811 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3812 * bits set. This allows to distinguish all wakeup scenarios.
3813 */
3814 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)3815 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3816 {
3817 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3818 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3819 state != TASK_RTLOCK_WAIT);
3820 }
3821
3822 if (READ_ONCE(p->__state) & state) {
3823 *success = 1;
3824 return true;
3825 }
3826
3827 #ifdef CONFIG_PREEMPT_RT
3828 /*
3829 * Saved state preserves the task state across blocking on
3830 * an RT lock. If the state matches, set p::saved_state to
3831 * TASK_RUNNING, but do not wake the task because it waits
3832 * for a lock wakeup. Also indicate success because from
3833 * the regular waker's point of view this has succeeded.
3834 *
3835 * After acquiring the lock the task will restore p::__state
3836 * from p::saved_state which ensures that the regular
3837 * wakeup is not lost. The restore will also set
3838 * p::saved_state to TASK_RUNNING so any further tests will
3839 * not result in false positives vs. @success
3840 */
3841 if (p->saved_state & state) {
3842 p->saved_state = TASK_RUNNING;
3843 *success = 1;
3844 }
3845 #endif
3846 return false;
3847 }
3848
3849 /*
3850 * Notes on Program-Order guarantees on SMP systems.
3851 *
3852 * MIGRATION
3853 *
3854 * The basic program-order guarantee on SMP systems is that when a task [t]
3855 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3856 * execution on its new CPU [c1].
3857 *
3858 * For migration (of runnable tasks) this is provided by the following means:
3859 *
3860 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3861 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3862 * rq(c1)->lock (if not at the same time, then in that order).
3863 * C) LOCK of the rq(c1)->lock scheduling in task
3864 *
3865 * Release/acquire chaining guarantees that B happens after A and C after B.
3866 * Note: the CPU doing B need not be c0 or c1
3867 *
3868 * Example:
3869 *
3870 * CPU0 CPU1 CPU2
3871 *
3872 * LOCK rq(0)->lock
3873 * sched-out X
3874 * sched-in Y
3875 * UNLOCK rq(0)->lock
3876 *
3877 * LOCK rq(0)->lock // orders against CPU0
3878 * dequeue X
3879 * UNLOCK rq(0)->lock
3880 *
3881 * LOCK rq(1)->lock
3882 * enqueue X
3883 * UNLOCK rq(1)->lock
3884 *
3885 * LOCK rq(1)->lock // orders against CPU2
3886 * sched-out Z
3887 * sched-in X
3888 * UNLOCK rq(1)->lock
3889 *
3890 *
3891 * BLOCKING -- aka. SLEEP + WAKEUP
3892 *
3893 * For blocking we (obviously) need to provide the same guarantee as for
3894 * migration. However the means are completely different as there is no lock
3895 * chain to provide order. Instead we do:
3896 *
3897 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3898 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3899 *
3900 * Example:
3901 *
3902 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3903 *
3904 * LOCK rq(0)->lock LOCK X->pi_lock
3905 * dequeue X
3906 * sched-out X
3907 * smp_store_release(X->on_cpu, 0);
3908 *
3909 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3910 * X->state = WAKING
3911 * set_task_cpu(X,2)
3912 *
3913 * LOCK rq(2)->lock
3914 * enqueue X
3915 * X->state = RUNNING
3916 * UNLOCK rq(2)->lock
3917 *
3918 * LOCK rq(2)->lock // orders against CPU1
3919 * sched-out Z
3920 * sched-in X
3921 * UNLOCK rq(2)->lock
3922 *
3923 * UNLOCK X->pi_lock
3924 * UNLOCK rq(0)->lock
3925 *
3926 *
3927 * However, for wakeups there is a second guarantee we must provide, namely we
3928 * must ensure that CONDITION=1 done by the caller can not be reordered with
3929 * accesses to the task state; see try_to_wake_up() and set_current_state().
3930 */
3931
3932 /**
3933 * try_to_wake_up - wake up a thread
3934 * @p: the thread to be awakened
3935 * @state: the mask of task states that can be woken
3936 * @wake_flags: wake modifier flags (WF_*)
3937 *
3938 * Conceptually does:
3939 *
3940 * If (@state & @p->state) @p->state = TASK_RUNNING.
3941 *
3942 * If the task was not queued/runnable, also place it back on a runqueue.
3943 *
3944 * This function is atomic against schedule() which would dequeue the task.
3945 *
3946 * It issues a full memory barrier before accessing @p->state, see the comment
3947 * with set_current_state().
3948 *
3949 * Uses p->pi_lock to serialize against concurrent wake-ups.
3950 *
3951 * Relies on p->pi_lock stabilizing:
3952 * - p->sched_class
3953 * - p->cpus_ptr
3954 * - p->sched_task_group
3955 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3956 *
3957 * Tries really hard to only take one task_rq(p)->lock for performance.
3958 * Takes rq->lock in:
3959 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3960 * - ttwu_queue() -- new rq, for enqueue of the task;
3961 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3962 *
3963 * As a consequence we race really badly with just about everything. See the
3964 * many memory barriers and their comments for details.
3965 *
3966 * Return: %true if @p->state changes (an actual wakeup was done),
3967 * %false otherwise.
3968 */
3969 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)3970 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3971 {
3972 unsigned long flags;
3973 int cpu, success = 0;
3974
3975 preempt_disable();
3976 if (p == current) {
3977 /*
3978 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3979 * == smp_processor_id()'. Together this means we can special
3980 * case the whole 'p->on_rq && ttwu_runnable()' case below
3981 * without taking any locks.
3982 *
3983 * In particular:
3984 * - we rely on Program-Order guarantees for all the ordering,
3985 * - we're serialized against set_special_state() by virtue of
3986 * it disabling IRQs (this allows not taking ->pi_lock).
3987 */
3988 if (!ttwu_state_match(p, state, &success))
3989 goto out;
3990
3991 trace_sched_waking(p);
3992 WRITE_ONCE(p->__state, TASK_RUNNING);
3993 trace_sched_wakeup(p);
3994 goto out;
3995 }
3996
3997 /*
3998 * If we are going to wake up a thread waiting for CONDITION we
3999 * need to ensure that CONDITION=1 done by the caller can not be
4000 * reordered with p->state check below. This pairs with smp_store_mb()
4001 * in set_current_state() that the waiting thread does.
4002 */
4003 raw_spin_lock_irqsave(&p->pi_lock, flags);
4004 smp_mb__after_spinlock();
4005 if (!ttwu_state_match(p, state, &success))
4006 goto unlock;
4007
4008 trace_sched_waking(p);
4009
4010 /*
4011 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4012 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4013 * in smp_cond_load_acquire() below.
4014 *
4015 * sched_ttwu_pending() try_to_wake_up()
4016 * STORE p->on_rq = 1 LOAD p->state
4017 * UNLOCK rq->lock
4018 *
4019 * __schedule() (switch to task 'p')
4020 * LOCK rq->lock smp_rmb();
4021 * smp_mb__after_spinlock();
4022 * UNLOCK rq->lock
4023 *
4024 * [task p]
4025 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4026 *
4027 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4028 * __schedule(). See the comment for smp_mb__after_spinlock().
4029 *
4030 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4031 */
4032 smp_rmb();
4033 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4034 goto unlock;
4035
4036 #ifdef CONFIG_SMP
4037 /*
4038 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4039 * possible to, falsely, observe p->on_cpu == 0.
4040 *
4041 * One must be running (->on_cpu == 1) in order to remove oneself
4042 * from the runqueue.
4043 *
4044 * __schedule() (switch to task 'p') try_to_wake_up()
4045 * STORE p->on_cpu = 1 LOAD p->on_rq
4046 * UNLOCK rq->lock
4047 *
4048 * __schedule() (put 'p' to sleep)
4049 * LOCK rq->lock smp_rmb();
4050 * smp_mb__after_spinlock();
4051 * STORE p->on_rq = 0 LOAD p->on_cpu
4052 *
4053 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4054 * __schedule(). See the comment for smp_mb__after_spinlock().
4055 *
4056 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4057 * schedule()'s deactivate_task() has 'happened' and p will no longer
4058 * care about it's own p->state. See the comment in __schedule().
4059 */
4060 smp_acquire__after_ctrl_dep();
4061
4062 /*
4063 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4064 * == 0), which means we need to do an enqueue, change p->state to
4065 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4066 * enqueue, such as ttwu_queue_wakelist().
4067 */
4068 WRITE_ONCE(p->__state, TASK_WAKING);
4069
4070 /*
4071 * If the owning (remote) CPU is still in the middle of schedule() with
4072 * this task as prev, considering queueing p on the remote CPUs wake_list
4073 * which potentially sends an IPI instead of spinning on p->on_cpu to
4074 * let the waker make forward progress. This is safe because IRQs are
4075 * disabled and the IPI will deliver after on_cpu is cleared.
4076 *
4077 * Ensure we load task_cpu(p) after p->on_cpu:
4078 *
4079 * set_task_cpu(p, cpu);
4080 * STORE p->cpu = @cpu
4081 * __schedule() (switch to task 'p')
4082 * LOCK rq->lock
4083 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4084 * STORE p->on_cpu = 1 LOAD p->cpu
4085 *
4086 * to ensure we observe the correct CPU on which the task is currently
4087 * scheduling.
4088 */
4089 if (smp_load_acquire(&p->on_cpu) &&
4090 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
4091 goto unlock;
4092
4093 /*
4094 * If the owning (remote) CPU is still in the middle of schedule() with
4095 * this task as prev, wait until it's done referencing the task.
4096 *
4097 * Pairs with the smp_store_release() in finish_task().
4098 *
4099 * This ensures that tasks getting woken will be fully ordered against
4100 * their previous state and preserve Program Order.
4101 */
4102 smp_cond_load_acquire(&p->on_cpu, !VAL);
4103
4104 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4105 if (task_cpu(p) != cpu) {
4106 if (p->in_iowait) {
4107 delayacct_blkio_end(p);
4108 atomic_dec(&task_rq(p)->nr_iowait);
4109 }
4110
4111 wake_flags |= WF_MIGRATED;
4112 psi_ttwu_dequeue(p);
4113 set_task_cpu(p, cpu);
4114 }
4115 #else
4116 cpu = task_cpu(p);
4117 #endif /* CONFIG_SMP */
4118
4119 ttwu_queue(p, cpu, wake_flags);
4120 unlock:
4121 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4122 out:
4123 if (success)
4124 ttwu_stat(p, task_cpu(p), wake_flags);
4125 preempt_enable();
4126
4127 return success;
4128 }
4129
4130 /**
4131 * task_call_func - Invoke a function on task in fixed state
4132 * @p: Process for which the function is to be invoked, can be @current.
4133 * @func: Function to invoke.
4134 * @arg: Argument to function.
4135 *
4136 * Fix the task in it's current state by avoiding wakeups and or rq operations
4137 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4138 * to work out what the state is, if required. Given that @func can be invoked
4139 * with a runqueue lock held, it had better be quite lightweight.
4140 *
4141 * Returns:
4142 * Whatever @func returns
4143 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4144 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4145 {
4146 struct rq *rq = NULL;
4147 unsigned int state;
4148 struct rq_flags rf;
4149 int ret;
4150
4151 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4152
4153 state = READ_ONCE(p->__state);
4154
4155 /*
4156 * Ensure we load p->on_rq after p->__state, otherwise it would be
4157 * possible to, falsely, observe p->on_rq == 0.
4158 *
4159 * See try_to_wake_up() for a longer comment.
4160 */
4161 smp_rmb();
4162
4163 /*
4164 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4165 * the task is blocked. Make sure to check @state since ttwu() can drop
4166 * locks at the end, see ttwu_queue_wakelist().
4167 */
4168 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4169 rq = __task_rq_lock(p, &rf);
4170
4171 /*
4172 * At this point the task is pinned; either:
4173 * - blocked and we're holding off wakeups (pi->lock)
4174 * - woken, and we're holding off enqueue (rq->lock)
4175 * - queued, and we're holding off schedule (rq->lock)
4176 * - running, and we're holding off de-schedule (rq->lock)
4177 *
4178 * The called function (@func) can use: task_curr(), p->on_rq and
4179 * p->__state to differentiate between these states.
4180 */
4181 ret = func(p, arg);
4182
4183 if (rq)
4184 rq_unlock(rq, &rf);
4185
4186 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4187 return ret;
4188 }
4189
4190 /**
4191 * wake_up_process - Wake up a specific process
4192 * @p: The process to be woken up.
4193 *
4194 * Attempt to wake up the nominated process and move it to the set of runnable
4195 * processes.
4196 *
4197 * Return: 1 if the process was woken up, 0 if it was already running.
4198 *
4199 * This function executes a full memory barrier before accessing the task state.
4200 */
wake_up_process(struct task_struct * p)4201 int wake_up_process(struct task_struct *p)
4202 {
4203 return try_to_wake_up(p, TASK_NORMAL, 0);
4204 }
4205 EXPORT_SYMBOL(wake_up_process);
4206
wake_up_state(struct task_struct * p,unsigned int state)4207 int wake_up_state(struct task_struct *p, unsigned int state)
4208 {
4209 return try_to_wake_up(p, state, 0);
4210 }
4211
4212 /*
4213 * Perform scheduler related setup for a newly forked process p.
4214 * p is forked by current.
4215 *
4216 * __sched_fork() is basic setup used by init_idle() too:
4217 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4218 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4219 {
4220 p->on_rq = 0;
4221
4222 p->se.on_rq = 0;
4223 p->se.exec_start = 0;
4224 p->se.sum_exec_runtime = 0;
4225 p->se.prev_sum_exec_runtime = 0;
4226 p->se.nr_migrations = 0;
4227 p->se.vruntime = 0;
4228 INIT_LIST_HEAD(&p->se.group_node);
4229
4230 #ifdef CONFIG_FAIR_GROUP_SCHED
4231 p->se.cfs_rq = NULL;
4232 #endif
4233
4234 #ifdef CONFIG_SCHEDSTATS
4235 /* Even if schedstat is disabled, there should not be garbage */
4236 memset(&p->stats, 0, sizeof(p->stats));
4237 #endif
4238
4239 RB_CLEAR_NODE(&p->dl.rb_node);
4240 init_dl_task_timer(&p->dl);
4241 init_dl_inactive_task_timer(&p->dl);
4242 __dl_clear_params(p);
4243
4244 INIT_LIST_HEAD(&p->rt.run_list);
4245 p->rt.timeout = 0;
4246 p->rt.time_slice = sched_rr_timeslice;
4247 p->rt.on_rq = 0;
4248 p->rt.on_list = 0;
4249
4250 #ifdef CONFIG_PREEMPT_NOTIFIERS
4251 INIT_HLIST_HEAD(&p->preempt_notifiers);
4252 #endif
4253
4254 #ifdef CONFIG_COMPACTION
4255 p->capture_control = NULL;
4256 #endif
4257 init_numa_balancing(clone_flags, p);
4258 #ifdef CONFIG_SMP
4259 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4260 p->migration_pending = NULL;
4261 #endif
4262 }
4263
4264 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4265
4266 #ifdef CONFIG_NUMA_BALANCING
4267
set_numabalancing_state(bool enabled)4268 void set_numabalancing_state(bool enabled)
4269 {
4270 if (enabled)
4271 static_branch_enable(&sched_numa_balancing);
4272 else
4273 static_branch_disable(&sched_numa_balancing);
4274 }
4275
4276 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4277 int sysctl_numa_balancing(struct ctl_table *table, int write,
4278 void *buffer, size_t *lenp, loff_t *ppos)
4279 {
4280 struct ctl_table t;
4281 int err;
4282 int state = static_branch_likely(&sched_numa_balancing);
4283
4284 if (write && !capable(CAP_SYS_ADMIN))
4285 return -EPERM;
4286
4287 t = *table;
4288 t.data = &state;
4289 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4290 if (err < 0)
4291 return err;
4292 if (write)
4293 set_numabalancing_state(state);
4294 return err;
4295 }
4296 #endif
4297 #endif
4298
4299 #ifdef CONFIG_SCHEDSTATS
4300
4301 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4302
set_schedstats(bool enabled)4303 static void set_schedstats(bool enabled)
4304 {
4305 if (enabled)
4306 static_branch_enable(&sched_schedstats);
4307 else
4308 static_branch_disable(&sched_schedstats);
4309 }
4310
force_schedstat_enabled(void)4311 void force_schedstat_enabled(void)
4312 {
4313 if (!schedstat_enabled()) {
4314 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4315 static_branch_enable(&sched_schedstats);
4316 }
4317 }
4318
setup_schedstats(char * str)4319 static int __init setup_schedstats(char *str)
4320 {
4321 int ret = 0;
4322 if (!str)
4323 goto out;
4324
4325 if (!strcmp(str, "enable")) {
4326 set_schedstats(true);
4327 ret = 1;
4328 } else if (!strcmp(str, "disable")) {
4329 set_schedstats(false);
4330 ret = 1;
4331 }
4332 out:
4333 if (!ret)
4334 pr_warn("Unable to parse schedstats=\n");
4335
4336 return ret;
4337 }
4338 __setup("schedstats=", setup_schedstats);
4339
4340 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4341 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4342 size_t *lenp, loff_t *ppos)
4343 {
4344 struct ctl_table t;
4345 int err;
4346 int state = static_branch_likely(&sched_schedstats);
4347
4348 if (write && !capable(CAP_SYS_ADMIN))
4349 return -EPERM;
4350
4351 t = *table;
4352 t.data = &state;
4353 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4354 if (err < 0)
4355 return err;
4356 if (write)
4357 set_schedstats(state);
4358 return err;
4359 }
4360 #endif /* CONFIG_PROC_SYSCTL */
4361 #endif /* CONFIG_SCHEDSTATS */
4362
4363 /*
4364 * fork()/clone()-time setup:
4365 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4366 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4367 {
4368 __sched_fork(clone_flags, p);
4369 /*
4370 * We mark the process as NEW here. This guarantees that
4371 * nobody will actually run it, and a signal or other external
4372 * event cannot wake it up and insert it on the runqueue either.
4373 */
4374 p->__state = TASK_NEW;
4375
4376 /*
4377 * Make sure we do not leak PI boosting priority to the child.
4378 */
4379 p->prio = current->normal_prio;
4380
4381 uclamp_fork(p);
4382
4383 /*
4384 * Revert to default priority/policy on fork if requested.
4385 */
4386 if (unlikely(p->sched_reset_on_fork)) {
4387 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4388 p->policy = SCHED_NORMAL;
4389 p->static_prio = NICE_TO_PRIO(0);
4390 p->rt_priority = 0;
4391 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4392 p->static_prio = NICE_TO_PRIO(0);
4393
4394 p->prio = p->normal_prio = p->static_prio;
4395 set_load_weight(p, false);
4396
4397 /*
4398 * We don't need the reset flag anymore after the fork. It has
4399 * fulfilled its duty:
4400 */
4401 p->sched_reset_on_fork = 0;
4402 }
4403
4404 if (dl_prio(p->prio))
4405 return -EAGAIN;
4406 else if (rt_prio(p->prio))
4407 p->sched_class = &rt_sched_class;
4408 else
4409 p->sched_class = &fair_sched_class;
4410
4411 init_entity_runnable_average(&p->se);
4412
4413 #ifdef CONFIG_SCHED_INFO
4414 if (likely(sched_info_on()))
4415 memset(&p->sched_info, 0, sizeof(p->sched_info));
4416 #endif
4417 #if defined(CONFIG_SMP)
4418 p->on_cpu = 0;
4419 #endif
4420 init_task_preempt_count(p);
4421 #ifdef CONFIG_SMP
4422 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4423 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4424 #endif
4425 return 0;
4426 }
4427
sched_post_fork(struct task_struct * p,struct kernel_clone_args * kargs)4428 void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4429 {
4430 unsigned long flags;
4431 #ifdef CONFIG_CGROUP_SCHED
4432 struct task_group *tg;
4433 #endif
4434
4435 raw_spin_lock_irqsave(&p->pi_lock, flags);
4436 #ifdef CONFIG_CGROUP_SCHED
4437 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4438 struct task_group, css);
4439 p->sched_task_group = autogroup_task_group(p, tg);
4440 #endif
4441 rseq_migrate(p);
4442 /*
4443 * We're setting the CPU for the first time, we don't migrate,
4444 * so use __set_task_cpu().
4445 */
4446 __set_task_cpu(p, smp_processor_id());
4447 if (p->sched_class->task_fork)
4448 p->sched_class->task_fork(p);
4449 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4450
4451 uclamp_post_fork(p);
4452 }
4453
to_ratio(u64 period,u64 runtime)4454 unsigned long to_ratio(u64 period, u64 runtime)
4455 {
4456 if (runtime == RUNTIME_INF)
4457 return BW_UNIT;
4458
4459 /*
4460 * Doing this here saves a lot of checks in all
4461 * the calling paths, and returning zero seems
4462 * safe for them anyway.
4463 */
4464 if (period == 0)
4465 return 0;
4466
4467 return div64_u64(runtime << BW_SHIFT, period);
4468 }
4469
4470 /*
4471 * wake_up_new_task - wake up a newly created task for the first time.
4472 *
4473 * This function will do some initial scheduler statistics housekeeping
4474 * that must be done for every newly created context, then puts the task
4475 * on the runqueue and wakes it.
4476 */
wake_up_new_task(struct task_struct * p)4477 void wake_up_new_task(struct task_struct *p)
4478 {
4479 struct rq_flags rf;
4480 struct rq *rq;
4481
4482 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4483 WRITE_ONCE(p->__state, TASK_RUNNING);
4484 #ifdef CONFIG_SMP
4485 /*
4486 * Fork balancing, do it here and not earlier because:
4487 * - cpus_ptr can change in the fork path
4488 * - any previously selected CPU might disappear through hotplug
4489 *
4490 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4491 * as we're not fully set-up yet.
4492 */
4493 p->recent_used_cpu = task_cpu(p);
4494 rseq_migrate(p);
4495 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4496 #endif
4497 rq = __task_rq_lock(p, &rf);
4498 update_rq_clock(rq);
4499 post_init_entity_util_avg(p);
4500
4501 activate_task(rq, p, ENQUEUE_NOCLOCK);
4502 trace_sched_wakeup_new(p);
4503 check_preempt_curr(rq, p, WF_FORK);
4504 #ifdef CONFIG_SMP
4505 if (p->sched_class->task_woken) {
4506 /*
4507 * Nothing relies on rq->lock after this, so it's fine to
4508 * drop it.
4509 */
4510 rq_unpin_lock(rq, &rf);
4511 p->sched_class->task_woken(rq, p);
4512 rq_repin_lock(rq, &rf);
4513 }
4514 #endif
4515 task_rq_unlock(rq, p, &rf);
4516 }
4517
4518 #ifdef CONFIG_PREEMPT_NOTIFIERS
4519
4520 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4521
preempt_notifier_inc(void)4522 void preempt_notifier_inc(void)
4523 {
4524 static_branch_inc(&preempt_notifier_key);
4525 }
4526 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4527
preempt_notifier_dec(void)4528 void preempt_notifier_dec(void)
4529 {
4530 static_branch_dec(&preempt_notifier_key);
4531 }
4532 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4533
4534 /**
4535 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4536 * @notifier: notifier struct to register
4537 */
preempt_notifier_register(struct preempt_notifier * notifier)4538 void preempt_notifier_register(struct preempt_notifier *notifier)
4539 {
4540 if (!static_branch_unlikely(&preempt_notifier_key))
4541 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4542
4543 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4544 }
4545 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4546
4547 /**
4548 * preempt_notifier_unregister - no longer interested in preemption notifications
4549 * @notifier: notifier struct to unregister
4550 *
4551 * This is *not* safe to call from within a preemption notifier.
4552 */
preempt_notifier_unregister(struct preempt_notifier * notifier)4553 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4554 {
4555 hlist_del(¬ifier->link);
4556 }
4557 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4558
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4559 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4560 {
4561 struct preempt_notifier *notifier;
4562
4563 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4564 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4565 }
4566
fire_sched_in_preempt_notifiers(struct task_struct * curr)4567 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4568 {
4569 if (static_branch_unlikely(&preempt_notifier_key))
4570 __fire_sched_in_preempt_notifiers(curr);
4571 }
4572
4573 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4574 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4575 struct task_struct *next)
4576 {
4577 struct preempt_notifier *notifier;
4578
4579 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4580 notifier->ops->sched_out(notifier, next);
4581 }
4582
4583 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4584 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4585 struct task_struct *next)
4586 {
4587 if (static_branch_unlikely(&preempt_notifier_key))
4588 __fire_sched_out_preempt_notifiers(curr, next);
4589 }
4590
4591 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4592
fire_sched_in_preempt_notifiers(struct task_struct * curr)4593 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4594 {
4595 }
4596
4597 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4598 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4599 struct task_struct *next)
4600 {
4601 }
4602
4603 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4604
prepare_task(struct task_struct * next)4605 static inline void prepare_task(struct task_struct *next)
4606 {
4607 #ifdef CONFIG_SMP
4608 /*
4609 * Claim the task as running, we do this before switching to it
4610 * such that any running task will have this set.
4611 *
4612 * See the ttwu() WF_ON_CPU case and its ordering comment.
4613 */
4614 WRITE_ONCE(next->on_cpu, 1);
4615 #endif
4616 }
4617
finish_task(struct task_struct * prev)4618 static inline void finish_task(struct task_struct *prev)
4619 {
4620 #ifdef CONFIG_SMP
4621 /*
4622 * This must be the very last reference to @prev from this CPU. After
4623 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4624 * must ensure this doesn't happen until the switch is completely
4625 * finished.
4626 *
4627 * In particular, the load of prev->state in finish_task_switch() must
4628 * happen before this.
4629 *
4630 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4631 */
4632 smp_store_release(&prev->on_cpu, 0);
4633 #endif
4634 }
4635
4636 #ifdef CONFIG_SMP
4637
do_balance_callbacks(struct rq * rq,struct callback_head * head)4638 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4639 {
4640 void (*func)(struct rq *rq);
4641 struct callback_head *next;
4642
4643 lockdep_assert_rq_held(rq);
4644
4645 while (head) {
4646 func = (void (*)(struct rq *))head->func;
4647 next = head->next;
4648 head->next = NULL;
4649 head = next;
4650
4651 func(rq);
4652 }
4653 }
4654
4655 static void balance_push(struct rq *rq);
4656
4657 struct callback_head balance_push_callback = {
4658 .next = NULL,
4659 .func = (void (*)(struct callback_head *))balance_push,
4660 };
4661
splice_balance_callbacks(struct rq * rq)4662 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4663 {
4664 struct callback_head *head = rq->balance_callback;
4665
4666 lockdep_assert_rq_held(rq);
4667 if (head)
4668 rq->balance_callback = NULL;
4669
4670 return head;
4671 }
4672
__balance_callbacks(struct rq * rq)4673 static void __balance_callbacks(struct rq *rq)
4674 {
4675 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4676 }
4677
balance_callbacks(struct rq * rq,struct callback_head * head)4678 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4679 {
4680 unsigned long flags;
4681
4682 if (unlikely(head)) {
4683 raw_spin_rq_lock_irqsave(rq, flags);
4684 do_balance_callbacks(rq, head);
4685 raw_spin_rq_unlock_irqrestore(rq, flags);
4686 }
4687 }
4688
4689 #else
4690
__balance_callbacks(struct rq * rq)4691 static inline void __balance_callbacks(struct rq *rq)
4692 {
4693 }
4694
splice_balance_callbacks(struct rq * rq)4695 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4696 {
4697 return NULL;
4698 }
4699
balance_callbacks(struct rq * rq,struct callback_head * head)4700 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4701 {
4702 }
4703
4704 #endif
4705
4706 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)4707 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4708 {
4709 /*
4710 * Since the runqueue lock will be released by the next
4711 * task (which is an invalid locking op but in the case
4712 * of the scheduler it's an obvious special-case), so we
4713 * do an early lockdep release here:
4714 */
4715 rq_unpin_lock(rq, rf);
4716 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4717 #ifdef CONFIG_DEBUG_SPINLOCK
4718 /* this is a valid case when another task releases the spinlock */
4719 rq_lockp(rq)->owner = next;
4720 #endif
4721 }
4722
finish_lock_switch(struct rq * rq)4723 static inline void finish_lock_switch(struct rq *rq)
4724 {
4725 /*
4726 * If we are tracking spinlock dependencies then we have to
4727 * fix up the runqueue lock - which gets 'carried over' from
4728 * prev into current:
4729 */
4730 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4731 __balance_callbacks(rq);
4732 raw_spin_rq_unlock_irq(rq);
4733 }
4734
4735 /*
4736 * NOP if the arch has not defined these:
4737 */
4738
4739 #ifndef prepare_arch_switch
4740 # define prepare_arch_switch(next) do { } while (0)
4741 #endif
4742
4743 #ifndef finish_arch_post_lock_switch
4744 # define finish_arch_post_lock_switch() do { } while (0)
4745 #endif
4746
kmap_local_sched_out(void)4747 static inline void kmap_local_sched_out(void)
4748 {
4749 #ifdef CONFIG_KMAP_LOCAL
4750 if (unlikely(current->kmap_ctrl.idx))
4751 __kmap_local_sched_out();
4752 #endif
4753 }
4754
kmap_local_sched_in(void)4755 static inline void kmap_local_sched_in(void)
4756 {
4757 #ifdef CONFIG_KMAP_LOCAL
4758 if (unlikely(current->kmap_ctrl.idx))
4759 __kmap_local_sched_in();
4760 #endif
4761 }
4762
4763 /**
4764 * prepare_task_switch - prepare to switch tasks
4765 * @rq: the runqueue preparing to switch
4766 * @prev: the current task that is being switched out
4767 * @next: the task we are going to switch to.
4768 *
4769 * This is called with the rq lock held and interrupts off. It must
4770 * be paired with a subsequent finish_task_switch after the context
4771 * switch.
4772 *
4773 * prepare_task_switch sets up locking and calls architecture specific
4774 * hooks.
4775 */
4776 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)4777 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4778 struct task_struct *next)
4779 {
4780 kcov_prepare_switch(prev);
4781 sched_info_switch(rq, prev, next);
4782 perf_event_task_sched_out(prev, next);
4783 rseq_preempt(prev);
4784 fire_sched_out_preempt_notifiers(prev, next);
4785 kmap_local_sched_out();
4786 prepare_task(next);
4787 prepare_arch_switch(next);
4788 }
4789
4790 /**
4791 * finish_task_switch - clean up after a task-switch
4792 * @prev: the thread we just switched away from.
4793 *
4794 * finish_task_switch must be called after the context switch, paired
4795 * with a prepare_task_switch call before the context switch.
4796 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4797 * and do any other architecture-specific cleanup actions.
4798 *
4799 * Note that we may have delayed dropping an mm in context_switch(). If
4800 * so, we finish that here outside of the runqueue lock. (Doing it
4801 * with the lock held can cause deadlocks; see schedule() for
4802 * details.)
4803 *
4804 * The context switch have flipped the stack from under us and restored the
4805 * local variables which were saved when this task called schedule() in the
4806 * past. prev == current is still correct but we need to recalculate this_rq
4807 * because prev may have moved to another CPU.
4808 */
finish_task_switch(struct task_struct * prev)4809 static struct rq *finish_task_switch(struct task_struct *prev)
4810 __releases(rq->lock)
4811 {
4812 struct rq *rq = this_rq();
4813 struct mm_struct *mm = rq->prev_mm;
4814 long prev_state;
4815
4816 /*
4817 * The previous task will have left us with a preempt_count of 2
4818 * because it left us after:
4819 *
4820 * schedule()
4821 * preempt_disable(); // 1
4822 * __schedule()
4823 * raw_spin_lock_irq(&rq->lock) // 2
4824 *
4825 * Also, see FORK_PREEMPT_COUNT.
4826 */
4827 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4828 "corrupted preempt_count: %s/%d/0x%x\n",
4829 current->comm, current->pid, preempt_count()))
4830 preempt_count_set(FORK_PREEMPT_COUNT);
4831
4832 rq->prev_mm = NULL;
4833
4834 /*
4835 * A task struct has one reference for the use as "current".
4836 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4837 * schedule one last time. The schedule call will never return, and
4838 * the scheduled task must drop that reference.
4839 *
4840 * We must observe prev->state before clearing prev->on_cpu (in
4841 * finish_task), otherwise a concurrent wakeup can get prev
4842 * running on another CPU and we could rave with its RUNNING -> DEAD
4843 * transition, resulting in a double drop.
4844 */
4845 prev_state = READ_ONCE(prev->__state);
4846 vtime_task_switch(prev);
4847 perf_event_task_sched_in(prev, current);
4848 finish_task(prev);
4849 tick_nohz_task_switch();
4850 finish_lock_switch(rq);
4851 finish_arch_post_lock_switch();
4852 kcov_finish_switch(current);
4853 /*
4854 * kmap_local_sched_out() is invoked with rq::lock held and
4855 * interrupts disabled. There is no requirement for that, but the
4856 * sched out code does not have an interrupt enabled section.
4857 * Restoring the maps on sched in does not require interrupts being
4858 * disabled either.
4859 */
4860 kmap_local_sched_in();
4861
4862 fire_sched_in_preempt_notifiers(current);
4863 /*
4864 * When switching through a kernel thread, the loop in
4865 * membarrier_{private,global}_expedited() may have observed that
4866 * kernel thread and not issued an IPI. It is therefore possible to
4867 * schedule between user->kernel->user threads without passing though
4868 * switch_mm(). Membarrier requires a barrier after storing to
4869 * rq->curr, before returning to userspace, so provide them here:
4870 *
4871 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4872 * provided by mmdrop(),
4873 * - a sync_core for SYNC_CORE.
4874 */
4875 if (mm) {
4876 membarrier_mm_sync_core_before_usermode(mm);
4877 mmdrop_sched(mm);
4878 }
4879 if (unlikely(prev_state == TASK_DEAD)) {
4880 if (prev->sched_class->task_dead)
4881 prev->sched_class->task_dead(prev);
4882
4883 /* Task is done with its stack. */
4884 put_task_stack(prev);
4885
4886 put_task_struct_rcu_user(prev);
4887 }
4888
4889 return rq;
4890 }
4891
4892 /**
4893 * schedule_tail - first thing a freshly forked thread must call.
4894 * @prev: the thread we just switched away from.
4895 */
schedule_tail(struct task_struct * prev)4896 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4897 __releases(rq->lock)
4898 {
4899 /*
4900 * New tasks start with FORK_PREEMPT_COUNT, see there and
4901 * finish_task_switch() for details.
4902 *
4903 * finish_task_switch() will drop rq->lock() and lower preempt_count
4904 * and the preempt_enable() will end up enabling preemption (on
4905 * PREEMPT_COUNT kernels).
4906 */
4907
4908 finish_task_switch(prev);
4909 preempt_enable();
4910
4911 if (current->set_child_tid)
4912 put_user(task_pid_vnr(current), current->set_child_tid);
4913
4914 calculate_sigpending();
4915 }
4916
4917 /*
4918 * context_switch - switch to the new MM and the new thread's register state.
4919 */
4920 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)4921 context_switch(struct rq *rq, struct task_struct *prev,
4922 struct task_struct *next, struct rq_flags *rf)
4923 {
4924 prepare_task_switch(rq, prev, next);
4925
4926 /*
4927 * For paravirt, this is coupled with an exit in switch_to to
4928 * combine the page table reload and the switch backend into
4929 * one hypercall.
4930 */
4931 arch_start_context_switch(prev);
4932
4933 /*
4934 * kernel -> kernel lazy + transfer active
4935 * user -> kernel lazy + mmgrab() active
4936 *
4937 * kernel -> user switch + mmdrop() active
4938 * user -> user switch
4939 */
4940 if (!next->mm) { // to kernel
4941 enter_lazy_tlb(prev->active_mm, next);
4942
4943 next->active_mm = prev->active_mm;
4944 if (prev->mm) // from user
4945 mmgrab(prev->active_mm);
4946 else
4947 prev->active_mm = NULL;
4948 } else { // to user
4949 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4950 /*
4951 * sys_membarrier() requires an smp_mb() between setting
4952 * rq->curr / membarrier_switch_mm() and returning to userspace.
4953 *
4954 * The below provides this either through switch_mm(), or in
4955 * case 'prev->active_mm == next->mm' through
4956 * finish_task_switch()'s mmdrop().
4957 */
4958 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4959
4960 if (!prev->mm) { // from kernel
4961 /* will mmdrop() in finish_task_switch(). */
4962 rq->prev_mm = prev->active_mm;
4963 prev->active_mm = NULL;
4964 }
4965 }
4966
4967 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4968
4969 prepare_lock_switch(rq, next, rf);
4970
4971 /* Here we just switch the register state and the stack. */
4972 switch_to(prev, next, prev);
4973 barrier();
4974
4975 return finish_task_switch(prev);
4976 }
4977
4978 /*
4979 * nr_running and nr_context_switches:
4980 *
4981 * externally visible scheduler statistics: current number of runnable
4982 * threads, total number of context switches performed since bootup.
4983 */
nr_running(void)4984 unsigned int nr_running(void)
4985 {
4986 unsigned int i, sum = 0;
4987
4988 for_each_online_cpu(i)
4989 sum += cpu_rq(i)->nr_running;
4990
4991 return sum;
4992 }
4993
4994 /*
4995 * Check if only the current task is running on the CPU.
4996 *
4997 * Caution: this function does not check that the caller has disabled
4998 * preemption, thus the result might have a time-of-check-to-time-of-use
4999 * race. The caller is responsible to use it correctly, for example:
5000 *
5001 * - from a non-preemptible section (of course)
5002 *
5003 * - from a thread that is bound to a single CPU
5004 *
5005 * - in a loop with very short iterations (e.g. a polling loop)
5006 */
single_task_running(void)5007 bool single_task_running(void)
5008 {
5009 return raw_rq()->nr_running == 1;
5010 }
5011 EXPORT_SYMBOL(single_task_running);
5012
nr_context_switches(void)5013 unsigned long long nr_context_switches(void)
5014 {
5015 int i;
5016 unsigned long long sum = 0;
5017
5018 for_each_possible_cpu(i)
5019 sum += cpu_rq(i)->nr_switches;
5020
5021 return sum;
5022 }
5023
5024 /*
5025 * Consumers of these two interfaces, like for example the cpuidle menu
5026 * governor, are using nonsensical data. Preferring shallow idle state selection
5027 * for a CPU that has IO-wait which might not even end up running the task when
5028 * it does become runnable.
5029 */
5030
nr_iowait_cpu(int cpu)5031 unsigned int nr_iowait_cpu(int cpu)
5032 {
5033 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5034 }
5035
5036 /*
5037 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5038 *
5039 * The idea behind IO-wait account is to account the idle time that we could
5040 * have spend running if it were not for IO. That is, if we were to improve the
5041 * storage performance, we'd have a proportional reduction in IO-wait time.
5042 *
5043 * This all works nicely on UP, where, when a task blocks on IO, we account
5044 * idle time as IO-wait, because if the storage were faster, it could've been
5045 * running and we'd not be idle.
5046 *
5047 * This has been extended to SMP, by doing the same for each CPU. This however
5048 * is broken.
5049 *
5050 * Imagine for instance the case where two tasks block on one CPU, only the one
5051 * CPU will have IO-wait accounted, while the other has regular idle. Even
5052 * though, if the storage were faster, both could've ran at the same time,
5053 * utilising both CPUs.
5054 *
5055 * This means, that when looking globally, the current IO-wait accounting on
5056 * SMP is a lower bound, by reason of under accounting.
5057 *
5058 * Worse, since the numbers are provided per CPU, they are sometimes
5059 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5060 * associated with any one particular CPU, it can wake to another CPU than it
5061 * blocked on. This means the per CPU IO-wait number is meaningless.
5062 *
5063 * Task CPU affinities can make all that even more 'interesting'.
5064 */
5065
nr_iowait(void)5066 unsigned int nr_iowait(void)
5067 {
5068 unsigned int i, sum = 0;
5069
5070 for_each_possible_cpu(i)
5071 sum += nr_iowait_cpu(i);
5072
5073 return sum;
5074 }
5075
5076 #ifdef CONFIG_SMP
5077
5078 /*
5079 * sched_exec - execve() is a valuable balancing opportunity, because at
5080 * this point the task has the smallest effective memory and cache footprint.
5081 */
sched_exec(void)5082 void sched_exec(void)
5083 {
5084 struct task_struct *p = current;
5085 unsigned long flags;
5086 int dest_cpu;
5087
5088 raw_spin_lock_irqsave(&p->pi_lock, flags);
5089 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5090 if (dest_cpu == smp_processor_id())
5091 goto unlock;
5092
5093 if (likely(cpu_active(dest_cpu))) {
5094 struct migration_arg arg = { p, dest_cpu };
5095
5096 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5097 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5098 return;
5099 }
5100 unlock:
5101 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5102 }
5103
5104 #endif
5105
5106 DEFINE_PER_CPU(struct kernel_stat, kstat);
5107 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5108
5109 EXPORT_PER_CPU_SYMBOL(kstat);
5110 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5111
5112 /*
5113 * The function fair_sched_class.update_curr accesses the struct curr
5114 * and its field curr->exec_start; when called from task_sched_runtime(),
5115 * we observe a high rate of cache misses in practice.
5116 * Prefetching this data results in improved performance.
5117 */
prefetch_curr_exec_start(struct task_struct * p)5118 static inline void prefetch_curr_exec_start(struct task_struct *p)
5119 {
5120 #ifdef CONFIG_FAIR_GROUP_SCHED
5121 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5122 #else
5123 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5124 #endif
5125 prefetch(curr);
5126 prefetch(&curr->exec_start);
5127 }
5128
5129 /*
5130 * Return accounted runtime for the task.
5131 * In case the task is currently running, return the runtime plus current's
5132 * pending runtime that have not been accounted yet.
5133 */
task_sched_runtime(struct task_struct * p)5134 unsigned long long task_sched_runtime(struct task_struct *p)
5135 {
5136 struct rq_flags rf;
5137 struct rq *rq;
5138 u64 ns;
5139
5140 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5141 /*
5142 * 64-bit doesn't need locks to atomically read a 64-bit value.
5143 * So we have a optimization chance when the task's delta_exec is 0.
5144 * Reading ->on_cpu is racy, but this is ok.
5145 *
5146 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5147 * If we race with it entering CPU, unaccounted time is 0. This is
5148 * indistinguishable from the read occurring a few cycles earlier.
5149 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5150 * been accounted, so we're correct here as well.
5151 */
5152 if (!p->on_cpu || !task_on_rq_queued(p))
5153 return p->se.sum_exec_runtime;
5154 #endif
5155
5156 rq = task_rq_lock(p, &rf);
5157 /*
5158 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5159 * project cycles that may never be accounted to this
5160 * thread, breaking clock_gettime().
5161 */
5162 if (task_current(rq, p) && task_on_rq_queued(p)) {
5163 prefetch_curr_exec_start(p);
5164 update_rq_clock(rq);
5165 p->sched_class->update_curr(rq);
5166 }
5167 ns = p->se.sum_exec_runtime;
5168 task_rq_unlock(rq, p, &rf);
5169
5170 return ns;
5171 }
5172
5173 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5174 static u64 cpu_resched_latency(struct rq *rq)
5175 {
5176 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5177 u64 resched_latency, now = rq_clock(rq);
5178 static bool warned_once;
5179
5180 if (sysctl_resched_latency_warn_once && warned_once)
5181 return 0;
5182
5183 if (!need_resched() || !latency_warn_ms)
5184 return 0;
5185
5186 if (system_state == SYSTEM_BOOTING)
5187 return 0;
5188
5189 if (!rq->last_seen_need_resched_ns) {
5190 rq->last_seen_need_resched_ns = now;
5191 rq->ticks_without_resched = 0;
5192 return 0;
5193 }
5194
5195 rq->ticks_without_resched++;
5196 resched_latency = now - rq->last_seen_need_resched_ns;
5197 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5198 return 0;
5199
5200 warned_once = true;
5201
5202 return resched_latency;
5203 }
5204
setup_resched_latency_warn_ms(char * str)5205 static int __init setup_resched_latency_warn_ms(char *str)
5206 {
5207 long val;
5208
5209 if ((kstrtol(str, 0, &val))) {
5210 pr_warn("Unable to set resched_latency_warn_ms\n");
5211 return 1;
5212 }
5213
5214 sysctl_resched_latency_warn_ms = val;
5215 return 1;
5216 }
5217 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5218 #else
cpu_resched_latency(struct rq * rq)5219 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5220 #endif /* CONFIG_SCHED_DEBUG */
5221
5222 /*
5223 * This function gets called by the timer code, with HZ frequency.
5224 * We call it with interrupts disabled.
5225 */
scheduler_tick(void)5226 void scheduler_tick(void)
5227 {
5228 int cpu = smp_processor_id();
5229 struct rq *rq = cpu_rq(cpu);
5230 struct task_struct *curr = rq->curr;
5231 struct rq_flags rf;
5232 unsigned long thermal_pressure;
5233 u64 resched_latency;
5234
5235 arch_scale_freq_tick();
5236 sched_clock_tick();
5237
5238 rq_lock(rq, &rf);
5239
5240 update_rq_clock(rq);
5241 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5242 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5243 curr->sched_class->task_tick(rq, curr, 0);
5244 if (sched_feat(LATENCY_WARN))
5245 resched_latency = cpu_resched_latency(rq);
5246 calc_global_load_tick(rq);
5247
5248 rq_unlock(rq, &rf);
5249
5250 if (sched_feat(LATENCY_WARN) && resched_latency)
5251 resched_latency_warn(cpu, resched_latency);
5252
5253 perf_event_task_tick();
5254
5255 #ifdef CONFIG_SMP
5256 rq->idle_balance = idle_cpu(cpu);
5257 trigger_load_balance(rq);
5258 #endif
5259 }
5260
5261 #ifdef CONFIG_NO_HZ_FULL
5262
5263 struct tick_work {
5264 int cpu;
5265 atomic_t state;
5266 struct delayed_work work;
5267 };
5268 /* Values for ->state, see diagram below. */
5269 #define TICK_SCHED_REMOTE_OFFLINE 0
5270 #define TICK_SCHED_REMOTE_OFFLINING 1
5271 #define TICK_SCHED_REMOTE_RUNNING 2
5272
5273 /*
5274 * State diagram for ->state:
5275 *
5276 *
5277 * TICK_SCHED_REMOTE_OFFLINE
5278 * | ^
5279 * | |
5280 * | | sched_tick_remote()
5281 * | |
5282 * | |
5283 * +--TICK_SCHED_REMOTE_OFFLINING
5284 * | ^
5285 * | |
5286 * sched_tick_start() | | sched_tick_stop()
5287 * | |
5288 * V |
5289 * TICK_SCHED_REMOTE_RUNNING
5290 *
5291 *
5292 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5293 * and sched_tick_start() are happy to leave the state in RUNNING.
5294 */
5295
5296 static struct tick_work __percpu *tick_work_cpu;
5297
sched_tick_remote(struct work_struct * work)5298 static void sched_tick_remote(struct work_struct *work)
5299 {
5300 struct delayed_work *dwork = to_delayed_work(work);
5301 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5302 int cpu = twork->cpu;
5303 struct rq *rq = cpu_rq(cpu);
5304 struct task_struct *curr;
5305 struct rq_flags rf;
5306 u64 delta;
5307 int os;
5308
5309 /*
5310 * Handle the tick only if it appears the remote CPU is running in full
5311 * dynticks mode. The check is racy by nature, but missing a tick or
5312 * having one too much is no big deal because the scheduler tick updates
5313 * statistics and checks timeslices in a time-independent way, regardless
5314 * of when exactly it is running.
5315 */
5316 if (!tick_nohz_tick_stopped_cpu(cpu))
5317 goto out_requeue;
5318
5319 rq_lock_irq(rq, &rf);
5320 curr = rq->curr;
5321 if (cpu_is_offline(cpu))
5322 goto out_unlock;
5323
5324 update_rq_clock(rq);
5325
5326 if (!is_idle_task(curr)) {
5327 /*
5328 * Make sure the next tick runs within a reasonable
5329 * amount of time.
5330 */
5331 delta = rq_clock_task(rq) - curr->se.exec_start;
5332 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5333 }
5334 curr->sched_class->task_tick(rq, curr, 0);
5335
5336 calc_load_nohz_remote(rq);
5337 out_unlock:
5338 rq_unlock_irq(rq, &rf);
5339 out_requeue:
5340
5341 /*
5342 * Run the remote tick once per second (1Hz). This arbitrary
5343 * frequency is large enough to avoid overload but short enough
5344 * to keep scheduler internal stats reasonably up to date. But
5345 * first update state to reflect hotplug activity if required.
5346 */
5347 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5348 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5349 if (os == TICK_SCHED_REMOTE_RUNNING)
5350 queue_delayed_work(system_unbound_wq, dwork, HZ);
5351 }
5352
sched_tick_start(int cpu)5353 static void sched_tick_start(int cpu)
5354 {
5355 int os;
5356 struct tick_work *twork;
5357
5358 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5359 return;
5360
5361 WARN_ON_ONCE(!tick_work_cpu);
5362
5363 twork = per_cpu_ptr(tick_work_cpu, cpu);
5364 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5365 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5366 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5367 twork->cpu = cpu;
5368 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5369 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5370 }
5371 }
5372
5373 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5374 static void sched_tick_stop(int cpu)
5375 {
5376 struct tick_work *twork;
5377 int os;
5378
5379 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5380 return;
5381
5382 WARN_ON_ONCE(!tick_work_cpu);
5383
5384 twork = per_cpu_ptr(tick_work_cpu, cpu);
5385 /* There cannot be competing actions, but don't rely on stop-machine. */
5386 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5387 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5388 /* Don't cancel, as this would mess up the state machine. */
5389 }
5390 #endif /* CONFIG_HOTPLUG_CPU */
5391
sched_tick_offload_init(void)5392 int __init sched_tick_offload_init(void)
5393 {
5394 tick_work_cpu = alloc_percpu(struct tick_work);
5395 BUG_ON(!tick_work_cpu);
5396 return 0;
5397 }
5398
5399 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5400 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5401 static inline void sched_tick_stop(int cpu) { }
5402 #endif
5403
5404 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5405 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5406 /*
5407 * If the value passed in is equal to the current preempt count
5408 * then we just disabled preemption. Start timing the latency.
5409 */
preempt_latency_start(int val)5410 static inline void preempt_latency_start(int val)
5411 {
5412 if (preempt_count() == val) {
5413 unsigned long ip = get_lock_parent_ip();
5414 #ifdef CONFIG_DEBUG_PREEMPT
5415 current->preempt_disable_ip = ip;
5416 #endif
5417 trace_preempt_off(CALLER_ADDR0, ip);
5418 }
5419 }
5420
preempt_count_add(int val)5421 void preempt_count_add(int val)
5422 {
5423 #ifdef CONFIG_DEBUG_PREEMPT
5424 /*
5425 * Underflow?
5426 */
5427 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5428 return;
5429 #endif
5430 __preempt_count_add(val);
5431 #ifdef CONFIG_DEBUG_PREEMPT
5432 /*
5433 * Spinlock count overflowing soon?
5434 */
5435 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5436 PREEMPT_MASK - 10);
5437 #endif
5438 preempt_latency_start(val);
5439 }
5440 EXPORT_SYMBOL(preempt_count_add);
5441 NOKPROBE_SYMBOL(preempt_count_add);
5442
5443 /*
5444 * If the value passed in equals to the current preempt count
5445 * then we just enabled preemption. Stop timing the latency.
5446 */
preempt_latency_stop(int val)5447 static inline void preempt_latency_stop(int val)
5448 {
5449 if (preempt_count() == val)
5450 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5451 }
5452
preempt_count_sub(int val)5453 void preempt_count_sub(int val)
5454 {
5455 #ifdef CONFIG_DEBUG_PREEMPT
5456 /*
5457 * Underflow?
5458 */
5459 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5460 return;
5461 /*
5462 * Is the spinlock portion underflowing?
5463 */
5464 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5465 !(preempt_count() & PREEMPT_MASK)))
5466 return;
5467 #endif
5468
5469 preempt_latency_stop(val);
5470 __preempt_count_sub(val);
5471 }
5472 EXPORT_SYMBOL(preempt_count_sub);
5473 NOKPROBE_SYMBOL(preempt_count_sub);
5474
5475 #else
preempt_latency_start(int val)5476 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5477 static inline void preempt_latency_stop(int val) { }
5478 #endif
5479
get_preempt_disable_ip(struct task_struct * p)5480 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5481 {
5482 #ifdef CONFIG_DEBUG_PREEMPT
5483 return p->preempt_disable_ip;
5484 #else
5485 return 0;
5486 #endif
5487 }
5488
5489 /*
5490 * Print scheduling while atomic bug:
5491 */
__schedule_bug(struct task_struct * prev)5492 static noinline void __schedule_bug(struct task_struct *prev)
5493 {
5494 /* Save this before calling printk(), since that will clobber it */
5495 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5496
5497 if (oops_in_progress)
5498 return;
5499
5500 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5501 prev->comm, prev->pid, preempt_count());
5502
5503 debug_show_held_locks(prev);
5504 print_modules();
5505 if (irqs_disabled())
5506 print_irqtrace_events(prev);
5507 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5508 && in_atomic_preempt_off()) {
5509 pr_err("Preemption disabled at:");
5510 print_ip_sym(KERN_ERR, preempt_disable_ip);
5511 }
5512 if (panic_on_warn)
5513 panic("scheduling while atomic\n");
5514
5515 dump_stack();
5516 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5517 }
5518
5519 /*
5520 * Various schedule()-time debugging checks and statistics:
5521 */
schedule_debug(struct task_struct * prev,bool preempt)5522 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5523 {
5524 #ifdef CONFIG_SCHED_STACK_END_CHECK
5525 if (task_stack_end_corrupted(prev))
5526 panic("corrupted stack end detected inside scheduler\n");
5527
5528 if (task_scs_end_corrupted(prev))
5529 panic("corrupted shadow stack detected inside scheduler\n");
5530 #endif
5531
5532 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5533 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5534 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5535 prev->comm, prev->pid, prev->non_block_count);
5536 dump_stack();
5537 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5538 }
5539 #endif
5540
5541 if (unlikely(in_atomic_preempt_off())) {
5542 __schedule_bug(prev);
5543 preempt_count_set(PREEMPT_DISABLED);
5544 }
5545 rcu_sleep_check();
5546 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5547
5548 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5549
5550 schedstat_inc(this_rq()->sched_count);
5551 }
5552
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5553 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5554 struct rq_flags *rf)
5555 {
5556 #ifdef CONFIG_SMP
5557 const struct sched_class *class;
5558 /*
5559 * We must do the balancing pass before put_prev_task(), such
5560 * that when we release the rq->lock the task is in the same
5561 * state as before we took rq->lock.
5562 *
5563 * We can terminate the balance pass as soon as we know there is
5564 * a runnable task of @class priority or higher.
5565 */
5566 for_class_range(class, prev->sched_class, &idle_sched_class) {
5567 if (class->balance(rq, prev, rf))
5568 break;
5569 }
5570 #endif
5571
5572 put_prev_task(rq, prev);
5573 }
5574
5575 /*
5576 * Pick up the highest-prio task:
5577 */
5578 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5579 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5580 {
5581 const struct sched_class *class;
5582 struct task_struct *p;
5583
5584 /*
5585 * Optimization: we know that if all tasks are in the fair class we can
5586 * call that function directly, but only if the @prev task wasn't of a
5587 * higher scheduling class, because otherwise those lose the
5588 * opportunity to pull in more work from other CPUs.
5589 */
5590 if (likely(prev->sched_class <= &fair_sched_class &&
5591 rq->nr_running == rq->cfs.h_nr_running)) {
5592
5593 p = pick_next_task_fair(rq, prev, rf);
5594 if (unlikely(p == RETRY_TASK))
5595 goto restart;
5596
5597 /* Assume the next prioritized class is idle_sched_class */
5598 if (!p) {
5599 put_prev_task(rq, prev);
5600 p = pick_next_task_idle(rq);
5601 }
5602
5603 return p;
5604 }
5605
5606 restart:
5607 put_prev_task_balance(rq, prev, rf);
5608
5609 for_each_class(class) {
5610 p = class->pick_next_task(rq);
5611 if (p)
5612 return p;
5613 }
5614
5615 BUG(); /* The idle class should always have a runnable task. */
5616 }
5617
5618 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)5619 static inline bool is_task_rq_idle(struct task_struct *t)
5620 {
5621 return (task_rq(t)->idle == t);
5622 }
5623
cookie_equals(struct task_struct * a,unsigned long cookie)5624 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5625 {
5626 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5627 }
5628
cookie_match(struct task_struct * a,struct task_struct * b)5629 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5630 {
5631 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5632 return true;
5633
5634 return a->core_cookie == b->core_cookie;
5635 }
5636
pick_task(struct rq * rq)5637 static inline struct task_struct *pick_task(struct rq *rq)
5638 {
5639 const struct sched_class *class;
5640 struct task_struct *p;
5641
5642 for_each_class(class) {
5643 p = class->pick_task(rq);
5644 if (p)
5645 return p;
5646 }
5647
5648 BUG(); /* The idle class should always have a runnable task. */
5649 }
5650
5651 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5652
5653 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5654 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5655 {
5656 struct task_struct *next, *p, *max = NULL;
5657 const struct cpumask *smt_mask;
5658 bool fi_before = false;
5659 unsigned long cookie;
5660 int i, cpu, occ = 0;
5661 struct rq *rq_i;
5662 bool need_sync;
5663
5664 if (!sched_core_enabled(rq))
5665 return __pick_next_task(rq, prev, rf);
5666
5667 cpu = cpu_of(rq);
5668
5669 /* Stopper task is switching into idle, no need core-wide selection. */
5670 if (cpu_is_offline(cpu)) {
5671 /*
5672 * Reset core_pick so that we don't enter the fastpath when
5673 * coming online. core_pick would already be migrated to
5674 * another cpu during offline.
5675 */
5676 rq->core_pick = NULL;
5677 return __pick_next_task(rq, prev, rf);
5678 }
5679
5680 /*
5681 * If there were no {en,de}queues since we picked (IOW, the task
5682 * pointers are all still valid), and we haven't scheduled the last
5683 * pick yet, do so now.
5684 *
5685 * rq->core_pick can be NULL if no selection was made for a CPU because
5686 * it was either offline or went offline during a sibling's core-wide
5687 * selection. In this case, do a core-wide selection.
5688 */
5689 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5690 rq->core->core_pick_seq != rq->core_sched_seq &&
5691 rq->core_pick) {
5692 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5693
5694 next = rq->core_pick;
5695 if (next != prev) {
5696 put_prev_task(rq, prev);
5697 set_next_task(rq, next);
5698 }
5699
5700 rq->core_pick = NULL;
5701 return next;
5702 }
5703
5704 put_prev_task_balance(rq, prev, rf);
5705
5706 smt_mask = cpu_smt_mask(cpu);
5707 need_sync = !!rq->core->core_cookie;
5708
5709 /* reset state */
5710 rq->core->core_cookie = 0UL;
5711 if (rq->core->core_forceidle) {
5712 need_sync = true;
5713 fi_before = true;
5714 rq->core->core_forceidle = false;
5715 }
5716
5717 /*
5718 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5719 *
5720 * @task_seq guards the task state ({en,de}queues)
5721 * @pick_seq is the @task_seq we did a selection on
5722 * @sched_seq is the @pick_seq we scheduled
5723 *
5724 * However, preemptions can cause multiple picks on the same task set.
5725 * 'Fix' this by also increasing @task_seq for every pick.
5726 */
5727 rq->core->core_task_seq++;
5728
5729 /*
5730 * Optimize for common case where this CPU has no cookies
5731 * and there are no cookied tasks running on siblings.
5732 */
5733 if (!need_sync) {
5734 next = pick_task(rq);
5735 if (!next->core_cookie) {
5736 rq->core_pick = NULL;
5737 /*
5738 * For robustness, update the min_vruntime_fi for
5739 * unconstrained picks as well.
5740 */
5741 WARN_ON_ONCE(fi_before);
5742 task_vruntime_update(rq, next, false);
5743 goto done;
5744 }
5745 }
5746
5747 /*
5748 * For each thread: do the regular task pick and find the max prio task
5749 * amongst them.
5750 *
5751 * Tie-break prio towards the current CPU
5752 */
5753 for_each_cpu_wrap(i, smt_mask, cpu) {
5754 rq_i = cpu_rq(i);
5755
5756 if (i != cpu)
5757 update_rq_clock(rq_i);
5758
5759 p = rq_i->core_pick = pick_task(rq_i);
5760 if (!max || prio_less(max, p, fi_before))
5761 max = p;
5762 }
5763
5764 cookie = rq->core->core_cookie = max->core_cookie;
5765
5766 /*
5767 * For each thread: try and find a runnable task that matches @max or
5768 * force idle.
5769 */
5770 for_each_cpu(i, smt_mask) {
5771 rq_i = cpu_rq(i);
5772 p = rq_i->core_pick;
5773
5774 if (!cookie_equals(p, cookie)) {
5775 p = NULL;
5776 if (cookie)
5777 p = sched_core_find(rq_i, cookie);
5778 if (!p)
5779 p = idle_sched_class.pick_task(rq_i);
5780 }
5781
5782 rq_i->core_pick = p;
5783
5784 if (p == rq_i->idle) {
5785 if (rq_i->nr_running) {
5786 rq->core->core_forceidle = true;
5787 if (!fi_before)
5788 rq->core->core_forceidle_seq++;
5789 }
5790 } else {
5791 occ++;
5792 }
5793 }
5794
5795 rq->core->core_pick_seq = rq->core->core_task_seq;
5796 next = rq->core_pick;
5797 rq->core_sched_seq = rq->core->core_pick_seq;
5798
5799 /* Something should have been selected for current CPU */
5800 WARN_ON_ONCE(!next);
5801
5802 /*
5803 * Reschedule siblings
5804 *
5805 * NOTE: L1TF -- at this point we're no longer running the old task and
5806 * sending an IPI (below) ensures the sibling will no longer be running
5807 * their task. This ensures there is no inter-sibling overlap between
5808 * non-matching user state.
5809 */
5810 for_each_cpu(i, smt_mask) {
5811 rq_i = cpu_rq(i);
5812
5813 /*
5814 * An online sibling might have gone offline before a task
5815 * could be picked for it, or it might be offline but later
5816 * happen to come online, but its too late and nothing was
5817 * picked for it. That's Ok - it will pick tasks for itself,
5818 * so ignore it.
5819 */
5820 if (!rq_i->core_pick)
5821 continue;
5822
5823 /*
5824 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5825 * fi_before fi update?
5826 * 0 0 1
5827 * 0 1 1
5828 * 1 0 1
5829 * 1 1 0
5830 */
5831 if (!(fi_before && rq->core->core_forceidle))
5832 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5833
5834 rq_i->core_pick->core_occupation = occ;
5835
5836 if (i == cpu) {
5837 rq_i->core_pick = NULL;
5838 continue;
5839 }
5840
5841 /* Did we break L1TF mitigation requirements? */
5842 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5843
5844 if (rq_i->curr == rq_i->core_pick) {
5845 rq_i->core_pick = NULL;
5846 continue;
5847 }
5848
5849 resched_curr(rq_i);
5850 }
5851
5852 done:
5853 set_next_task(rq, next);
5854 return next;
5855 }
5856
try_steal_cookie(int this,int that)5857 static bool try_steal_cookie(int this, int that)
5858 {
5859 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5860 struct task_struct *p;
5861 unsigned long cookie;
5862 bool success = false;
5863
5864 local_irq_disable();
5865 double_rq_lock(dst, src);
5866
5867 cookie = dst->core->core_cookie;
5868 if (!cookie)
5869 goto unlock;
5870
5871 if (dst->curr != dst->idle)
5872 goto unlock;
5873
5874 p = sched_core_find(src, cookie);
5875 if (p == src->idle)
5876 goto unlock;
5877
5878 do {
5879 if (p == src->core_pick || p == src->curr)
5880 goto next;
5881
5882 if (!cpumask_test_cpu(this, &p->cpus_mask))
5883 goto next;
5884
5885 if (p->core_occupation > dst->idle->core_occupation)
5886 goto next;
5887
5888 deactivate_task(src, p, 0);
5889 set_task_cpu(p, this);
5890 activate_task(dst, p, 0);
5891
5892 resched_curr(dst);
5893
5894 success = true;
5895 break;
5896
5897 next:
5898 p = sched_core_next(p, cookie);
5899 } while (p);
5900
5901 unlock:
5902 double_rq_unlock(dst, src);
5903 local_irq_enable();
5904
5905 return success;
5906 }
5907
steal_cookie_task(int cpu,struct sched_domain * sd)5908 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5909 {
5910 int i;
5911
5912 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5913 if (i == cpu)
5914 continue;
5915
5916 if (need_resched())
5917 break;
5918
5919 if (try_steal_cookie(cpu, i))
5920 return true;
5921 }
5922
5923 return false;
5924 }
5925
sched_core_balance(struct rq * rq)5926 static void sched_core_balance(struct rq *rq)
5927 {
5928 struct sched_domain *sd;
5929 int cpu = cpu_of(rq);
5930
5931 preempt_disable();
5932 rcu_read_lock();
5933 raw_spin_rq_unlock_irq(rq);
5934 for_each_domain(cpu, sd) {
5935 if (need_resched())
5936 break;
5937
5938 if (steal_cookie_task(cpu, sd))
5939 break;
5940 }
5941 raw_spin_rq_lock_irq(rq);
5942 rcu_read_unlock();
5943 preempt_enable();
5944 }
5945
5946 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5947
queue_core_balance(struct rq * rq)5948 void queue_core_balance(struct rq *rq)
5949 {
5950 if (!sched_core_enabled(rq))
5951 return;
5952
5953 if (!rq->core->core_cookie)
5954 return;
5955
5956 if (!rq->nr_running) /* not forced idle */
5957 return;
5958
5959 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5960 }
5961
sched_core_cpu_starting(unsigned int cpu)5962 static void sched_core_cpu_starting(unsigned int cpu)
5963 {
5964 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5965 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5966 unsigned long flags;
5967 int t;
5968
5969 sched_core_lock(cpu, &flags);
5970
5971 WARN_ON_ONCE(rq->core != rq);
5972
5973 /* if we're the first, we'll be our own leader */
5974 if (cpumask_weight(smt_mask) == 1)
5975 goto unlock;
5976
5977 /* find the leader */
5978 for_each_cpu(t, smt_mask) {
5979 if (t == cpu)
5980 continue;
5981 rq = cpu_rq(t);
5982 if (rq->core == rq) {
5983 core_rq = rq;
5984 break;
5985 }
5986 }
5987
5988 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
5989 goto unlock;
5990
5991 /* install and validate core_rq */
5992 for_each_cpu(t, smt_mask) {
5993 rq = cpu_rq(t);
5994
5995 if (t == cpu)
5996 rq->core = core_rq;
5997
5998 WARN_ON_ONCE(rq->core != core_rq);
5999 }
6000
6001 unlock:
6002 sched_core_unlock(cpu, &flags);
6003 }
6004
sched_core_cpu_deactivate(unsigned int cpu)6005 static void sched_core_cpu_deactivate(unsigned int cpu)
6006 {
6007 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6008 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6009 unsigned long flags;
6010 int t;
6011
6012 sched_core_lock(cpu, &flags);
6013
6014 /* if we're the last man standing, nothing to do */
6015 if (cpumask_weight(smt_mask) == 1) {
6016 WARN_ON_ONCE(rq->core != rq);
6017 goto unlock;
6018 }
6019
6020 /* if we're not the leader, nothing to do */
6021 if (rq->core != rq)
6022 goto unlock;
6023
6024 /* find a new leader */
6025 for_each_cpu(t, smt_mask) {
6026 if (t == cpu)
6027 continue;
6028 core_rq = cpu_rq(t);
6029 break;
6030 }
6031
6032 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6033 goto unlock;
6034
6035 /* copy the shared state to the new leader */
6036 core_rq->core_task_seq = rq->core_task_seq;
6037 core_rq->core_pick_seq = rq->core_pick_seq;
6038 core_rq->core_cookie = rq->core_cookie;
6039 core_rq->core_forceidle = rq->core_forceidle;
6040 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6041
6042 /* install new leader */
6043 for_each_cpu(t, smt_mask) {
6044 rq = cpu_rq(t);
6045 rq->core = core_rq;
6046 }
6047
6048 unlock:
6049 sched_core_unlock(cpu, &flags);
6050 }
6051
sched_core_cpu_dying(unsigned int cpu)6052 static inline void sched_core_cpu_dying(unsigned int cpu)
6053 {
6054 struct rq *rq = cpu_rq(cpu);
6055
6056 if (rq->core != rq)
6057 rq->core = rq;
6058 }
6059
6060 #else /* !CONFIG_SCHED_CORE */
6061
sched_core_cpu_starting(unsigned int cpu)6062 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6063 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6064 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6065
6066 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6067 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6068 {
6069 return __pick_next_task(rq, prev, rf);
6070 }
6071
6072 #endif /* CONFIG_SCHED_CORE */
6073
6074 /*
6075 * Constants for the sched_mode argument of __schedule().
6076 *
6077 * The mode argument allows RT enabled kernels to differentiate a
6078 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6079 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6080 * optimize the AND operation out and just check for zero.
6081 */
6082 #define SM_NONE 0x0
6083 #define SM_PREEMPT 0x1
6084 #define SM_RTLOCK_WAIT 0x2
6085
6086 #ifndef CONFIG_PREEMPT_RT
6087 # define SM_MASK_PREEMPT (~0U)
6088 #else
6089 # define SM_MASK_PREEMPT SM_PREEMPT
6090 #endif
6091
6092 /*
6093 * __schedule() is the main scheduler function.
6094 *
6095 * The main means of driving the scheduler and thus entering this function are:
6096 *
6097 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6098 *
6099 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6100 * paths. For example, see arch/x86/entry_64.S.
6101 *
6102 * To drive preemption between tasks, the scheduler sets the flag in timer
6103 * interrupt handler scheduler_tick().
6104 *
6105 * 3. Wakeups don't really cause entry into schedule(). They add a
6106 * task to the run-queue and that's it.
6107 *
6108 * Now, if the new task added to the run-queue preempts the current
6109 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6110 * called on the nearest possible occasion:
6111 *
6112 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6113 *
6114 * - in syscall or exception context, at the next outmost
6115 * preempt_enable(). (this might be as soon as the wake_up()'s
6116 * spin_unlock()!)
6117 *
6118 * - in IRQ context, return from interrupt-handler to
6119 * preemptible context
6120 *
6121 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6122 * then at the next:
6123 *
6124 * - cond_resched() call
6125 * - explicit schedule() call
6126 * - return from syscall or exception to user-space
6127 * - return from interrupt-handler to user-space
6128 *
6129 * WARNING: must be called with preemption disabled!
6130 */
__schedule(unsigned int sched_mode)6131 static void __sched notrace __schedule(unsigned int sched_mode)
6132 {
6133 struct task_struct *prev, *next;
6134 unsigned long *switch_count;
6135 unsigned long prev_state;
6136 struct rq_flags rf;
6137 struct rq *rq;
6138 int cpu;
6139
6140 cpu = smp_processor_id();
6141 rq = cpu_rq(cpu);
6142 prev = rq->curr;
6143
6144 schedule_debug(prev, !!sched_mode);
6145
6146 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6147 hrtick_clear(rq);
6148
6149 local_irq_disable();
6150 rcu_note_context_switch(!!sched_mode);
6151
6152 /*
6153 * Make sure that signal_pending_state()->signal_pending() below
6154 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6155 * done by the caller to avoid the race with signal_wake_up():
6156 *
6157 * __set_current_state(@state) signal_wake_up()
6158 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6159 * wake_up_state(p, state)
6160 * LOCK rq->lock LOCK p->pi_state
6161 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6162 * if (signal_pending_state()) if (p->state & @state)
6163 *
6164 * Also, the membarrier system call requires a full memory barrier
6165 * after coming from user-space, before storing to rq->curr.
6166 */
6167 rq_lock(rq, &rf);
6168 smp_mb__after_spinlock();
6169
6170 /* Promote REQ to ACT */
6171 rq->clock_update_flags <<= 1;
6172 update_rq_clock(rq);
6173
6174 switch_count = &prev->nivcsw;
6175
6176 /*
6177 * We must load prev->state once (task_struct::state is volatile), such
6178 * that:
6179 *
6180 * - we form a control dependency vs deactivate_task() below.
6181 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
6182 */
6183 prev_state = READ_ONCE(prev->__state);
6184 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6185 if (signal_pending_state(prev_state, prev)) {
6186 WRITE_ONCE(prev->__state, TASK_RUNNING);
6187 } else {
6188 prev->sched_contributes_to_load =
6189 (prev_state & TASK_UNINTERRUPTIBLE) &&
6190 !(prev_state & TASK_NOLOAD) &&
6191 !(prev->flags & PF_FROZEN);
6192
6193 if (prev->sched_contributes_to_load)
6194 rq->nr_uninterruptible++;
6195
6196 /*
6197 * __schedule() ttwu()
6198 * prev_state = prev->state; if (p->on_rq && ...)
6199 * if (prev_state) goto out;
6200 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6201 * p->state = TASK_WAKING
6202 *
6203 * Where __schedule() and ttwu() have matching control dependencies.
6204 *
6205 * After this, schedule() must not care about p->state any more.
6206 */
6207 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6208
6209 if (prev->in_iowait) {
6210 atomic_inc(&rq->nr_iowait);
6211 delayacct_blkio_start();
6212 }
6213 }
6214 switch_count = &prev->nvcsw;
6215 }
6216
6217 next = pick_next_task(rq, prev, &rf);
6218 clear_tsk_need_resched(prev);
6219 clear_preempt_need_resched();
6220 #ifdef CONFIG_SCHED_DEBUG
6221 rq->last_seen_need_resched_ns = 0;
6222 #endif
6223
6224 if (likely(prev != next)) {
6225 rq->nr_switches++;
6226 /*
6227 * RCU users of rcu_dereference(rq->curr) may not see
6228 * changes to task_struct made by pick_next_task().
6229 */
6230 RCU_INIT_POINTER(rq->curr, next);
6231 /*
6232 * The membarrier system call requires each architecture
6233 * to have a full memory barrier after updating
6234 * rq->curr, before returning to user-space.
6235 *
6236 * Here are the schemes providing that barrier on the
6237 * various architectures:
6238 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6239 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6240 * - finish_lock_switch() for weakly-ordered
6241 * architectures where spin_unlock is a full barrier,
6242 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6243 * is a RELEASE barrier),
6244 */
6245 ++*switch_count;
6246
6247 migrate_disable_switch(rq, prev);
6248 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6249
6250 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
6251
6252 /* Also unlocks the rq: */
6253 rq = context_switch(rq, prev, next, &rf);
6254 } else {
6255 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6256
6257 rq_unpin_lock(rq, &rf);
6258 __balance_callbacks(rq);
6259 raw_spin_rq_unlock_irq(rq);
6260 }
6261 }
6262
do_task_dead(void)6263 void __noreturn do_task_dead(void)
6264 {
6265 /* Causes final put_task_struct in finish_task_switch(): */
6266 set_special_state(TASK_DEAD);
6267
6268 /* Tell freezer to ignore us: */
6269 current->flags |= PF_NOFREEZE;
6270
6271 __schedule(SM_NONE);
6272 BUG();
6273
6274 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6275 for (;;)
6276 cpu_relax();
6277 }
6278
sched_submit_work(struct task_struct * tsk)6279 static inline void sched_submit_work(struct task_struct *tsk)
6280 {
6281 unsigned int task_flags;
6282
6283 if (task_is_running(tsk))
6284 return;
6285
6286 task_flags = tsk->flags;
6287 /*
6288 * If a worker goes to sleep, notify and ask workqueue whether it
6289 * wants to wake up a task to maintain concurrency.
6290 */
6291 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6292 if (task_flags & PF_WQ_WORKER)
6293 wq_worker_sleeping(tsk);
6294 else
6295 io_wq_worker_sleeping(tsk);
6296 }
6297
6298 if (tsk_is_pi_blocked(tsk))
6299 return;
6300
6301 /*
6302 * If we are going to sleep and we have plugged IO queued,
6303 * make sure to submit it to avoid deadlocks.
6304 */
6305 if (blk_needs_flush_plug(tsk))
6306 blk_flush_plug(tsk->plug, true);
6307 }
6308
sched_update_worker(struct task_struct * tsk)6309 static void sched_update_worker(struct task_struct *tsk)
6310 {
6311 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6312 if (tsk->flags & PF_WQ_WORKER)
6313 wq_worker_running(tsk);
6314 else
6315 io_wq_worker_running(tsk);
6316 }
6317 }
6318
schedule(void)6319 asmlinkage __visible void __sched schedule(void)
6320 {
6321 struct task_struct *tsk = current;
6322
6323 sched_submit_work(tsk);
6324 do {
6325 preempt_disable();
6326 __schedule(SM_NONE);
6327 sched_preempt_enable_no_resched();
6328 } while (need_resched());
6329 sched_update_worker(tsk);
6330 }
6331 EXPORT_SYMBOL(schedule);
6332
6333 /*
6334 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6335 * state (have scheduled out non-voluntarily) by making sure that all
6336 * tasks have either left the run queue or have gone into user space.
6337 * As idle tasks do not do either, they must not ever be preempted
6338 * (schedule out non-voluntarily).
6339 *
6340 * schedule_idle() is similar to schedule_preempt_disable() except that it
6341 * never enables preemption because it does not call sched_submit_work().
6342 */
schedule_idle(void)6343 void __sched schedule_idle(void)
6344 {
6345 /*
6346 * As this skips calling sched_submit_work(), which the idle task does
6347 * regardless because that function is a nop when the task is in a
6348 * TASK_RUNNING state, make sure this isn't used someplace that the
6349 * current task can be in any other state. Note, idle is always in the
6350 * TASK_RUNNING state.
6351 */
6352 WARN_ON_ONCE(current->__state);
6353 do {
6354 __schedule(SM_NONE);
6355 } while (need_resched());
6356 }
6357
6358 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
schedule_user(void)6359 asmlinkage __visible void __sched schedule_user(void)
6360 {
6361 /*
6362 * If we come here after a random call to set_need_resched(),
6363 * or we have been woken up remotely but the IPI has not yet arrived,
6364 * we haven't yet exited the RCU idle mode. Do it here manually until
6365 * we find a better solution.
6366 *
6367 * NB: There are buggy callers of this function. Ideally we
6368 * should warn if prev_state != CONTEXT_USER, but that will trigger
6369 * too frequently to make sense yet.
6370 */
6371 enum ctx_state prev_state = exception_enter();
6372 schedule();
6373 exception_exit(prev_state);
6374 }
6375 #endif
6376
6377 /**
6378 * schedule_preempt_disabled - called with preemption disabled
6379 *
6380 * Returns with preemption disabled. Note: preempt_count must be 1
6381 */
schedule_preempt_disabled(void)6382 void __sched schedule_preempt_disabled(void)
6383 {
6384 sched_preempt_enable_no_resched();
6385 schedule();
6386 preempt_disable();
6387 }
6388
6389 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6390 void __sched notrace schedule_rtlock(void)
6391 {
6392 do {
6393 preempt_disable();
6394 __schedule(SM_RTLOCK_WAIT);
6395 sched_preempt_enable_no_resched();
6396 } while (need_resched());
6397 }
6398 NOKPROBE_SYMBOL(schedule_rtlock);
6399 #endif
6400
preempt_schedule_common(void)6401 static void __sched notrace preempt_schedule_common(void)
6402 {
6403 do {
6404 /*
6405 * Because the function tracer can trace preempt_count_sub()
6406 * and it also uses preempt_enable/disable_notrace(), if
6407 * NEED_RESCHED is set, the preempt_enable_notrace() called
6408 * by the function tracer will call this function again and
6409 * cause infinite recursion.
6410 *
6411 * Preemption must be disabled here before the function
6412 * tracer can trace. Break up preempt_disable() into two
6413 * calls. One to disable preemption without fear of being
6414 * traced. The other to still record the preemption latency,
6415 * which can also be traced by the function tracer.
6416 */
6417 preempt_disable_notrace();
6418 preempt_latency_start(1);
6419 __schedule(SM_PREEMPT);
6420 preempt_latency_stop(1);
6421 preempt_enable_no_resched_notrace();
6422
6423 /*
6424 * Check again in case we missed a preemption opportunity
6425 * between schedule and now.
6426 */
6427 } while (need_resched());
6428 }
6429
6430 #ifdef CONFIG_PREEMPTION
6431 /*
6432 * This is the entry point to schedule() from in-kernel preemption
6433 * off of preempt_enable.
6434 */
preempt_schedule(void)6435 asmlinkage __visible void __sched notrace preempt_schedule(void)
6436 {
6437 /*
6438 * If there is a non-zero preempt_count or interrupts are disabled,
6439 * we do not want to preempt the current task. Just return..
6440 */
6441 if (likely(!preemptible()))
6442 return;
6443
6444 preempt_schedule_common();
6445 }
6446 NOKPROBE_SYMBOL(preempt_schedule);
6447 EXPORT_SYMBOL(preempt_schedule);
6448
6449 #ifdef CONFIG_PREEMPT_DYNAMIC
6450 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6451 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6452 #endif
6453
6454
6455 /**
6456 * preempt_schedule_notrace - preempt_schedule called by tracing
6457 *
6458 * The tracing infrastructure uses preempt_enable_notrace to prevent
6459 * recursion and tracing preempt enabling caused by the tracing
6460 * infrastructure itself. But as tracing can happen in areas coming
6461 * from userspace or just about to enter userspace, a preempt enable
6462 * can occur before user_exit() is called. This will cause the scheduler
6463 * to be called when the system is still in usermode.
6464 *
6465 * To prevent this, the preempt_enable_notrace will use this function
6466 * instead of preempt_schedule() to exit user context if needed before
6467 * calling the scheduler.
6468 */
preempt_schedule_notrace(void)6469 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6470 {
6471 enum ctx_state prev_ctx;
6472
6473 if (likely(!preemptible()))
6474 return;
6475
6476 do {
6477 /*
6478 * Because the function tracer can trace preempt_count_sub()
6479 * and it also uses preempt_enable/disable_notrace(), if
6480 * NEED_RESCHED is set, the preempt_enable_notrace() called
6481 * by the function tracer will call this function again and
6482 * cause infinite recursion.
6483 *
6484 * Preemption must be disabled here before the function
6485 * tracer can trace. Break up preempt_disable() into two
6486 * calls. One to disable preemption without fear of being
6487 * traced. The other to still record the preemption latency,
6488 * which can also be traced by the function tracer.
6489 */
6490 preempt_disable_notrace();
6491 preempt_latency_start(1);
6492 /*
6493 * Needs preempt disabled in case user_exit() is traced
6494 * and the tracer calls preempt_enable_notrace() causing
6495 * an infinite recursion.
6496 */
6497 prev_ctx = exception_enter();
6498 __schedule(SM_PREEMPT);
6499 exception_exit(prev_ctx);
6500
6501 preempt_latency_stop(1);
6502 preempt_enable_no_resched_notrace();
6503 } while (need_resched());
6504 }
6505 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6506
6507 #ifdef CONFIG_PREEMPT_DYNAMIC
6508 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6509 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6510 #endif
6511
6512 #endif /* CONFIG_PREEMPTION */
6513
6514 #ifdef CONFIG_PREEMPT_DYNAMIC
6515
6516 #include <linux/entry-common.h>
6517
6518 /*
6519 * SC:cond_resched
6520 * SC:might_resched
6521 * SC:preempt_schedule
6522 * SC:preempt_schedule_notrace
6523 * SC:irqentry_exit_cond_resched
6524 *
6525 *
6526 * NONE:
6527 * cond_resched <- __cond_resched
6528 * might_resched <- RET0
6529 * preempt_schedule <- NOP
6530 * preempt_schedule_notrace <- NOP
6531 * irqentry_exit_cond_resched <- NOP
6532 *
6533 * VOLUNTARY:
6534 * cond_resched <- __cond_resched
6535 * might_resched <- __cond_resched
6536 * preempt_schedule <- NOP
6537 * preempt_schedule_notrace <- NOP
6538 * irqentry_exit_cond_resched <- NOP
6539 *
6540 * FULL:
6541 * cond_resched <- RET0
6542 * might_resched <- RET0
6543 * preempt_schedule <- preempt_schedule
6544 * preempt_schedule_notrace <- preempt_schedule_notrace
6545 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6546 */
6547
6548 enum {
6549 preempt_dynamic_undefined = -1,
6550 preempt_dynamic_none,
6551 preempt_dynamic_voluntary,
6552 preempt_dynamic_full,
6553 };
6554
6555 int preempt_dynamic_mode = preempt_dynamic_undefined;
6556
sched_dynamic_mode(const char * str)6557 int sched_dynamic_mode(const char *str)
6558 {
6559 if (!strcmp(str, "none"))
6560 return preempt_dynamic_none;
6561
6562 if (!strcmp(str, "voluntary"))
6563 return preempt_dynamic_voluntary;
6564
6565 if (!strcmp(str, "full"))
6566 return preempt_dynamic_full;
6567
6568 return -EINVAL;
6569 }
6570
sched_dynamic_update(int mode)6571 void sched_dynamic_update(int mode)
6572 {
6573 /*
6574 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6575 * the ZERO state, which is invalid.
6576 */
6577 static_call_update(cond_resched, __cond_resched);
6578 static_call_update(might_resched, __cond_resched);
6579 static_call_update(preempt_schedule, __preempt_schedule_func);
6580 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6581 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6582
6583 switch (mode) {
6584 case preempt_dynamic_none:
6585 static_call_update(cond_resched, __cond_resched);
6586 static_call_update(might_resched, (void *)&__static_call_return0);
6587 static_call_update(preempt_schedule, NULL);
6588 static_call_update(preempt_schedule_notrace, NULL);
6589 static_call_update(irqentry_exit_cond_resched, NULL);
6590 pr_info("Dynamic Preempt: none\n");
6591 break;
6592
6593 case preempt_dynamic_voluntary:
6594 static_call_update(cond_resched, __cond_resched);
6595 static_call_update(might_resched, __cond_resched);
6596 static_call_update(preempt_schedule, NULL);
6597 static_call_update(preempt_schedule_notrace, NULL);
6598 static_call_update(irqentry_exit_cond_resched, NULL);
6599 pr_info("Dynamic Preempt: voluntary\n");
6600 break;
6601
6602 case preempt_dynamic_full:
6603 static_call_update(cond_resched, (void *)&__static_call_return0);
6604 static_call_update(might_resched, (void *)&__static_call_return0);
6605 static_call_update(preempt_schedule, __preempt_schedule_func);
6606 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6607 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6608 pr_info("Dynamic Preempt: full\n");
6609 break;
6610 }
6611
6612 preempt_dynamic_mode = mode;
6613 }
6614
setup_preempt_mode(char * str)6615 static int __init setup_preempt_mode(char *str)
6616 {
6617 int mode = sched_dynamic_mode(str);
6618 if (mode < 0) {
6619 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6620 return 0;
6621 }
6622
6623 sched_dynamic_update(mode);
6624 return 1;
6625 }
6626 __setup("preempt=", setup_preempt_mode);
6627
preempt_dynamic_init(void)6628 static void __init preempt_dynamic_init(void)
6629 {
6630 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
6631 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
6632 sched_dynamic_update(preempt_dynamic_none);
6633 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
6634 sched_dynamic_update(preempt_dynamic_voluntary);
6635 } else {
6636 /* Default static call setting, nothing to do */
6637 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
6638 preempt_dynamic_mode = preempt_dynamic_full;
6639 pr_info("Dynamic Preempt: full\n");
6640 }
6641 }
6642 }
6643
6644 #else /* !CONFIG_PREEMPT_DYNAMIC */
6645
preempt_dynamic_init(void)6646 static inline void preempt_dynamic_init(void) { }
6647
6648 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
6649
6650 /*
6651 * This is the entry point to schedule() from kernel preemption
6652 * off of irq context.
6653 * Note, that this is called and return with irqs disabled. This will
6654 * protect us against recursive calling from irq.
6655 */
preempt_schedule_irq(void)6656 asmlinkage __visible void __sched preempt_schedule_irq(void)
6657 {
6658 enum ctx_state prev_state;
6659
6660 /* Catch callers which need to be fixed */
6661 BUG_ON(preempt_count() || !irqs_disabled());
6662
6663 prev_state = exception_enter();
6664
6665 do {
6666 preempt_disable();
6667 local_irq_enable();
6668 __schedule(SM_PREEMPT);
6669 local_irq_disable();
6670 sched_preempt_enable_no_resched();
6671 } while (need_resched());
6672
6673 exception_exit(prev_state);
6674 }
6675
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)6676 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6677 void *key)
6678 {
6679 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6680 return try_to_wake_up(curr->private, mode, wake_flags);
6681 }
6682 EXPORT_SYMBOL(default_wake_function);
6683
__setscheduler_prio(struct task_struct * p,int prio)6684 static void __setscheduler_prio(struct task_struct *p, int prio)
6685 {
6686 if (dl_prio(prio))
6687 p->sched_class = &dl_sched_class;
6688 else if (rt_prio(prio))
6689 p->sched_class = &rt_sched_class;
6690 else
6691 p->sched_class = &fair_sched_class;
6692
6693 p->prio = prio;
6694 }
6695
6696 #ifdef CONFIG_RT_MUTEXES
6697
__rt_effective_prio(struct task_struct * pi_task,int prio)6698 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6699 {
6700 if (pi_task)
6701 prio = min(prio, pi_task->prio);
6702
6703 return prio;
6704 }
6705
rt_effective_prio(struct task_struct * p,int prio)6706 static inline int rt_effective_prio(struct task_struct *p, int prio)
6707 {
6708 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6709
6710 return __rt_effective_prio(pi_task, prio);
6711 }
6712
6713 /*
6714 * rt_mutex_setprio - set the current priority of a task
6715 * @p: task to boost
6716 * @pi_task: donor task
6717 *
6718 * This function changes the 'effective' priority of a task. It does
6719 * not touch ->normal_prio like __setscheduler().
6720 *
6721 * Used by the rt_mutex code to implement priority inheritance
6722 * logic. Call site only calls if the priority of the task changed.
6723 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)6724 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6725 {
6726 int prio, oldprio, queued, running, queue_flag =
6727 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6728 const struct sched_class *prev_class;
6729 struct rq_flags rf;
6730 struct rq *rq;
6731
6732 /* XXX used to be waiter->prio, not waiter->task->prio */
6733 prio = __rt_effective_prio(pi_task, p->normal_prio);
6734
6735 /*
6736 * If nothing changed; bail early.
6737 */
6738 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6739 return;
6740
6741 rq = __task_rq_lock(p, &rf);
6742 update_rq_clock(rq);
6743 /*
6744 * Set under pi_lock && rq->lock, such that the value can be used under
6745 * either lock.
6746 *
6747 * Note that there is loads of tricky to make this pointer cache work
6748 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6749 * ensure a task is de-boosted (pi_task is set to NULL) before the
6750 * task is allowed to run again (and can exit). This ensures the pointer
6751 * points to a blocked task -- which guarantees the task is present.
6752 */
6753 p->pi_top_task = pi_task;
6754
6755 /*
6756 * For FIFO/RR we only need to set prio, if that matches we're done.
6757 */
6758 if (prio == p->prio && !dl_prio(prio))
6759 goto out_unlock;
6760
6761 /*
6762 * Idle task boosting is a nono in general. There is one
6763 * exception, when PREEMPT_RT and NOHZ is active:
6764 *
6765 * The idle task calls get_next_timer_interrupt() and holds
6766 * the timer wheel base->lock on the CPU and another CPU wants
6767 * to access the timer (probably to cancel it). We can safely
6768 * ignore the boosting request, as the idle CPU runs this code
6769 * with interrupts disabled and will complete the lock
6770 * protected section without being interrupted. So there is no
6771 * real need to boost.
6772 */
6773 if (unlikely(p == rq->idle)) {
6774 WARN_ON(p != rq->curr);
6775 WARN_ON(p->pi_blocked_on);
6776 goto out_unlock;
6777 }
6778
6779 trace_sched_pi_setprio(p, pi_task);
6780 oldprio = p->prio;
6781
6782 if (oldprio == prio)
6783 queue_flag &= ~DEQUEUE_MOVE;
6784
6785 prev_class = p->sched_class;
6786 queued = task_on_rq_queued(p);
6787 running = task_current(rq, p);
6788 if (queued)
6789 dequeue_task(rq, p, queue_flag);
6790 if (running)
6791 put_prev_task(rq, p);
6792
6793 /*
6794 * Boosting condition are:
6795 * 1. -rt task is running and holds mutex A
6796 * --> -dl task blocks on mutex A
6797 *
6798 * 2. -dl task is running and holds mutex A
6799 * --> -dl task blocks on mutex A and could preempt the
6800 * running task
6801 */
6802 if (dl_prio(prio)) {
6803 if (!dl_prio(p->normal_prio) ||
6804 (pi_task && dl_prio(pi_task->prio) &&
6805 dl_entity_preempt(&pi_task->dl, &p->dl))) {
6806 p->dl.pi_se = pi_task->dl.pi_se;
6807 queue_flag |= ENQUEUE_REPLENISH;
6808 } else {
6809 p->dl.pi_se = &p->dl;
6810 }
6811 } else if (rt_prio(prio)) {
6812 if (dl_prio(oldprio))
6813 p->dl.pi_se = &p->dl;
6814 if (oldprio < prio)
6815 queue_flag |= ENQUEUE_HEAD;
6816 } else {
6817 if (dl_prio(oldprio))
6818 p->dl.pi_se = &p->dl;
6819 if (rt_prio(oldprio))
6820 p->rt.timeout = 0;
6821 }
6822
6823 __setscheduler_prio(p, prio);
6824
6825 if (queued)
6826 enqueue_task(rq, p, queue_flag);
6827 if (running)
6828 set_next_task(rq, p);
6829
6830 check_class_changed(rq, p, prev_class, oldprio);
6831 out_unlock:
6832 /* Avoid rq from going away on us: */
6833 preempt_disable();
6834
6835 rq_unpin_lock(rq, &rf);
6836 __balance_callbacks(rq);
6837 raw_spin_rq_unlock(rq);
6838
6839 preempt_enable();
6840 }
6841 #else
rt_effective_prio(struct task_struct * p,int prio)6842 static inline int rt_effective_prio(struct task_struct *p, int prio)
6843 {
6844 return prio;
6845 }
6846 #endif
6847
set_user_nice(struct task_struct * p,long nice)6848 void set_user_nice(struct task_struct *p, long nice)
6849 {
6850 bool queued, running;
6851 int old_prio;
6852 struct rq_flags rf;
6853 struct rq *rq;
6854
6855 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6856 return;
6857 /*
6858 * We have to be careful, if called from sys_setpriority(),
6859 * the task might be in the middle of scheduling on another CPU.
6860 */
6861 rq = task_rq_lock(p, &rf);
6862 update_rq_clock(rq);
6863
6864 /*
6865 * The RT priorities are set via sched_setscheduler(), but we still
6866 * allow the 'normal' nice value to be set - but as expected
6867 * it won't have any effect on scheduling until the task is
6868 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6869 */
6870 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6871 p->static_prio = NICE_TO_PRIO(nice);
6872 goto out_unlock;
6873 }
6874 queued = task_on_rq_queued(p);
6875 running = task_current(rq, p);
6876 if (queued)
6877 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6878 if (running)
6879 put_prev_task(rq, p);
6880
6881 p->static_prio = NICE_TO_PRIO(nice);
6882 set_load_weight(p, true);
6883 old_prio = p->prio;
6884 p->prio = effective_prio(p);
6885
6886 if (queued)
6887 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6888 if (running)
6889 set_next_task(rq, p);
6890
6891 /*
6892 * If the task increased its priority or is running and
6893 * lowered its priority, then reschedule its CPU:
6894 */
6895 p->sched_class->prio_changed(rq, p, old_prio);
6896
6897 out_unlock:
6898 task_rq_unlock(rq, p, &rf);
6899 }
6900 EXPORT_SYMBOL(set_user_nice);
6901
6902 /*
6903 * can_nice - check if a task can reduce its nice value
6904 * @p: task
6905 * @nice: nice value
6906 */
can_nice(const struct task_struct * p,const int nice)6907 int can_nice(const struct task_struct *p, const int nice)
6908 {
6909 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
6910 int nice_rlim = nice_to_rlimit(nice);
6911
6912 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6913 capable(CAP_SYS_NICE));
6914 }
6915
6916 #ifdef __ARCH_WANT_SYS_NICE
6917
6918 /*
6919 * sys_nice - change the priority of the current process.
6920 * @increment: priority increment
6921 *
6922 * sys_setpriority is a more generic, but much slower function that
6923 * does similar things.
6924 */
SYSCALL_DEFINE1(nice,int,increment)6925 SYSCALL_DEFINE1(nice, int, increment)
6926 {
6927 long nice, retval;
6928
6929 /*
6930 * Setpriority might change our priority at the same moment.
6931 * We don't have to worry. Conceptually one call occurs first
6932 * and we have a single winner.
6933 */
6934 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6935 nice = task_nice(current) + increment;
6936
6937 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6938 if (increment < 0 && !can_nice(current, nice))
6939 return -EPERM;
6940
6941 retval = security_task_setnice(current, nice);
6942 if (retval)
6943 return retval;
6944
6945 set_user_nice(current, nice);
6946 return 0;
6947 }
6948
6949 #endif
6950
6951 /**
6952 * task_prio - return the priority value of a given task.
6953 * @p: the task in question.
6954 *
6955 * Return: The priority value as seen by users in /proc.
6956 *
6957 * sched policy return value kernel prio user prio/nice
6958 *
6959 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
6960 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
6961 * deadline -101 -1 0
6962 */
task_prio(const struct task_struct * p)6963 int task_prio(const struct task_struct *p)
6964 {
6965 return p->prio - MAX_RT_PRIO;
6966 }
6967
6968 /**
6969 * idle_cpu - is a given CPU idle currently?
6970 * @cpu: the processor in question.
6971 *
6972 * Return: 1 if the CPU is currently idle. 0 otherwise.
6973 */
idle_cpu(int cpu)6974 int idle_cpu(int cpu)
6975 {
6976 struct rq *rq = cpu_rq(cpu);
6977
6978 if (rq->curr != rq->idle)
6979 return 0;
6980
6981 if (rq->nr_running)
6982 return 0;
6983
6984 #ifdef CONFIG_SMP
6985 if (rq->ttwu_pending)
6986 return 0;
6987 #endif
6988
6989 return 1;
6990 }
6991
6992 /**
6993 * available_idle_cpu - is a given CPU idle for enqueuing work.
6994 * @cpu: the CPU in question.
6995 *
6996 * Return: 1 if the CPU is currently idle. 0 otherwise.
6997 */
available_idle_cpu(int cpu)6998 int available_idle_cpu(int cpu)
6999 {
7000 if (!idle_cpu(cpu))
7001 return 0;
7002
7003 if (vcpu_is_preempted(cpu))
7004 return 0;
7005
7006 return 1;
7007 }
7008
7009 /**
7010 * idle_task - return the idle task for a given CPU.
7011 * @cpu: the processor in question.
7012 *
7013 * Return: The idle task for the CPU @cpu.
7014 */
idle_task(int cpu)7015 struct task_struct *idle_task(int cpu)
7016 {
7017 return cpu_rq(cpu)->idle;
7018 }
7019
7020 #ifdef CONFIG_SMP
7021 /*
7022 * This function computes an effective utilization for the given CPU, to be
7023 * used for frequency selection given the linear relation: f = u * f_max.
7024 *
7025 * The scheduler tracks the following metrics:
7026 *
7027 * cpu_util_{cfs,rt,dl,irq}()
7028 * cpu_bw_dl()
7029 *
7030 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7031 * synchronized windows and are thus directly comparable.
7032 *
7033 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7034 * which excludes things like IRQ and steal-time. These latter are then accrued
7035 * in the irq utilization.
7036 *
7037 * The DL bandwidth number otoh is not a measured metric but a value computed
7038 * based on the task model parameters and gives the minimal utilization
7039 * required to meet deadlines.
7040 */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum cpu_util_type type,struct task_struct * p)7041 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7042 unsigned long max, enum cpu_util_type type,
7043 struct task_struct *p)
7044 {
7045 unsigned long dl_util, util, irq;
7046 struct rq *rq = cpu_rq(cpu);
7047
7048 if (!uclamp_is_used() &&
7049 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7050 return max;
7051 }
7052
7053 /*
7054 * Early check to see if IRQ/steal time saturates the CPU, can be
7055 * because of inaccuracies in how we track these -- see
7056 * update_irq_load_avg().
7057 */
7058 irq = cpu_util_irq(rq);
7059 if (unlikely(irq >= max))
7060 return max;
7061
7062 /*
7063 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7064 * CFS tasks and we use the same metric to track the effective
7065 * utilization (PELT windows are synchronized) we can directly add them
7066 * to obtain the CPU's actual utilization.
7067 *
7068 * CFS and RT utilization can be boosted or capped, depending on
7069 * utilization clamp constraints requested by currently RUNNABLE
7070 * tasks.
7071 * When there are no CFS RUNNABLE tasks, clamps are released and
7072 * frequency will be gracefully reduced with the utilization decay.
7073 */
7074 util = util_cfs + cpu_util_rt(rq);
7075 if (type == FREQUENCY_UTIL)
7076 util = uclamp_rq_util_with(rq, util, p);
7077
7078 dl_util = cpu_util_dl(rq);
7079
7080 /*
7081 * For frequency selection we do not make cpu_util_dl() a permanent part
7082 * of this sum because we want to use cpu_bw_dl() later on, but we need
7083 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7084 * that we select f_max when there is no idle time.
7085 *
7086 * NOTE: numerical errors or stop class might cause us to not quite hit
7087 * saturation when we should -- something for later.
7088 */
7089 if (util + dl_util >= max)
7090 return max;
7091
7092 /*
7093 * OTOH, for energy computation we need the estimated running time, so
7094 * include util_dl and ignore dl_bw.
7095 */
7096 if (type == ENERGY_UTIL)
7097 util += dl_util;
7098
7099 /*
7100 * There is still idle time; further improve the number by using the
7101 * irq metric. Because IRQ/steal time is hidden from the task clock we
7102 * need to scale the task numbers:
7103 *
7104 * max - irq
7105 * U' = irq + --------- * U
7106 * max
7107 */
7108 util = scale_irq_capacity(util, irq, max);
7109 util += irq;
7110
7111 /*
7112 * Bandwidth required by DEADLINE must always be granted while, for
7113 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7114 * to gracefully reduce the frequency when no tasks show up for longer
7115 * periods of time.
7116 *
7117 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7118 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7119 * an interface. So, we only do the latter for now.
7120 */
7121 if (type == FREQUENCY_UTIL)
7122 util += cpu_bw_dl(rq);
7123
7124 return min(max, util);
7125 }
7126
sched_cpu_util(int cpu,unsigned long max)7127 unsigned long sched_cpu_util(int cpu, unsigned long max)
7128 {
7129 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
7130 ENERGY_UTIL, NULL);
7131 }
7132 #endif /* CONFIG_SMP */
7133
7134 /**
7135 * find_process_by_pid - find a process with a matching PID value.
7136 * @pid: the pid in question.
7137 *
7138 * The task of @pid, if found. %NULL otherwise.
7139 */
find_process_by_pid(pid_t pid)7140 static struct task_struct *find_process_by_pid(pid_t pid)
7141 {
7142 return pid ? find_task_by_vpid(pid) : current;
7143 }
7144
7145 /*
7146 * sched_setparam() passes in -1 for its policy, to let the functions
7147 * it calls know not to change it.
7148 */
7149 #define SETPARAM_POLICY -1
7150
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7151 static void __setscheduler_params(struct task_struct *p,
7152 const struct sched_attr *attr)
7153 {
7154 int policy = attr->sched_policy;
7155
7156 if (policy == SETPARAM_POLICY)
7157 policy = p->policy;
7158
7159 p->policy = policy;
7160
7161 if (dl_policy(policy))
7162 __setparam_dl(p, attr);
7163 else if (fair_policy(policy))
7164 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7165
7166 /*
7167 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7168 * !rt_policy. Always setting this ensures that things like
7169 * getparam()/getattr() don't report silly values for !rt tasks.
7170 */
7171 p->rt_priority = attr->sched_priority;
7172 p->normal_prio = normal_prio(p);
7173 set_load_weight(p, true);
7174 }
7175
7176 /*
7177 * Check the target process has a UID that matches the current process's:
7178 */
check_same_owner(struct task_struct * p)7179 static bool check_same_owner(struct task_struct *p)
7180 {
7181 const struct cred *cred = current_cred(), *pcred;
7182 bool match;
7183
7184 rcu_read_lock();
7185 pcred = __task_cred(p);
7186 match = (uid_eq(cred->euid, pcred->euid) ||
7187 uid_eq(cred->euid, pcred->uid));
7188 rcu_read_unlock();
7189 return match;
7190 }
7191
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7192 static int __sched_setscheduler(struct task_struct *p,
7193 const struct sched_attr *attr,
7194 bool user, bool pi)
7195 {
7196 int oldpolicy = -1, policy = attr->sched_policy;
7197 int retval, oldprio, newprio, queued, running;
7198 const struct sched_class *prev_class;
7199 struct callback_head *head;
7200 struct rq_flags rf;
7201 int reset_on_fork;
7202 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7203 struct rq *rq;
7204
7205 /* The pi code expects interrupts enabled */
7206 BUG_ON(pi && in_interrupt());
7207 recheck:
7208 /* Double check policy once rq lock held: */
7209 if (policy < 0) {
7210 reset_on_fork = p->sched_reset_on_fork;
7211 policy = oldpolicy = p->policy;
7212 } else {
7213 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7214
7215 if (!valid_policy(policy))
7216 return -EINVAL;
7217 }
7218
7219 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7220 return -EINVAL;
7221
7222 /*
7223 * Valid priorities for SCHED_FIFO and SCHED_RR are
7224 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7225 * SCHED_BATCH and SCHED_IDLE is 0.
7226 */
7227 if (attr->sched_priority > MAX_RT_PRIO-1)
7228 return -EINVAL;
7229 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7230 (rt_policy(policy) != (attr->sched_priority != 0)))
7231 return -EINVAL;
7232
7233 /*
7234 * Allow unprivileged RT tasks to decrease priority:
7235 */
7236 if (user && !capable(CAP_SYS_NICE)) {
7237 if (fair_policy(policy)) {
7238 if (attr->sched_nice < task_nice(p) &&
7239 !can_nice(p, attr->sched_nice))
7240 return -EPERM;
7241 }
7242
7243 if (rt_policy(policy)) {
7244 unsigned long rlim_rtprio =
7245 task_rlimit(p, RLIMIT_RTPRIO);
7246
7247 /* Can't set/change the rt policy: */
7248 if (policy != p->policy && !rlim_rtprio)
7249 return -EPERM;
7250
7251 /* Can't increase priority: */
7252 if (attr->sched_priority > p->rt_priority &&
7253 attr->sched_priority > rlim_rtprio)
7254 return -EPERM;
7255 }
7256
7257 /*
7258 * Can't set/change SCHED_DEADLINE policy at all for now
7259 * (safest behavior); in the future we would like to allow
7260 * unprivileged DL tasks to increase their relative deadline
7261 * or reduce their runtime (both ways reducing utilization)
7262 */
7263 if (dl_policy(policy))
7264 return -EPERM;
7265
7266 /*
7267 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7268 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7269 */
7270 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7271 if (!can_nice(p, task_nice(p)))
7272 return -EPERM;
7273 }
7274
7275 /* Can't change other user's priorities: */
7276 if (!check_same_owner(p))
7277 return -EPERM;
7278
7279 /* Normal users shall not reset the sched_reset_on_fork flag: */
7280 if (p->sched_reset_on_fork && !reset_on_fork)
7281 return -EPERM;
7282 }
7283
7284 if (user) {
7285 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7286 return -EINVAL;
7287
7288 retval = security_task_setscheduler(p);
7289 if (retval)
7290 return retval;
7291 }
7292
7293 /* Update task specific "requested" clamps */
7294 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7295 retval = uclamp_validate(p, attr);
7296 if (retval)
7297 return retval;
7298 }
7299
7300 if (pi)
7301 cpuset_read_lock();
7302
7303 /*
7304 * Make sure no PI-waiters arrive (or leave) while we are
7305 * changing the priority of the task:
7306 *
7307 * To be able to change p->policy safely, the appropriate
7308 * runqueue lock must be held.
7309 */
7310 rq = task_rq_lock(p, &rf);
7311 update_rq_clock(rq);
7312
7313 /*
7314 * Changing the policy of the stop threads its a very bad idea:
7315 */
7316 if (p == rq->stop) {
7317 retval = -EINVAL;
7318 goto unlock;
7319 }
7320
7321 /*
7322 * If not changing anything there's no need to proceed further,
7323 * but store a possible modification of reset_on_fork.
7324 */
7325 if (unlikely(policy == p->policy)) {
7326 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7327 goto change;
7328 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7329 goto change;
7330 if (dl_policy(policy) && dl_param_changed(p, attr))
7331 goto change;
7332 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7333 goto change;
7334
7335 p->sched_reset_on_fork = reset_on_fork;
7336 retval = 0;
7337 goto unlock;
7338 }
7339 change:
7340
7341 if (user) {
7342 #ifdef CONFIG_RT_GROUP_SCHED
7343 /*
7344 * Do not allow realtime tasks into groups that have no runtime
7345 * assigned.
7346 */
7347 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7348 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7349 !task_group_is_autogroup(task_group(p))) {
7350 retval = -EPERM;
7351 goto unlock;
7352 }
7353 #endif
7354 #ifdef CONFIG_SMP
7355 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7356 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7357 cpumask_t *span = rq->rd->span;
7358
7359 /*
7360 * Don't allow tasks with an affinity mask smaller than
7361 * the entire root_domain to become SCHED_DEADLINE. We
7362 * will also fail if there's no bandwidth available.
7363 */
7364 if (!cpumask_subset(span, p->cpus_ptr) ||
7365 rq->rd->dl_bw.bw == 0) {
7366 retval = -EPERM;
7367 goto unlock;
7368 }
7369 }
7370 #endif
7371 }
7372
7373 /* Re-check policy now with rq lock held: */
7374 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7375 policy = oldpolicy = -1;
7376 task_rq_unlock(rq, p, &rf);
7377 if (pi)
7378 cpuset_read_unlock();
7379 goto recheck;
7380 }
7381
7382 /*
7383 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7384 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7385 * is available.
7386 */
7387 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7388 retval = -EBUSY;
7389 goto unlock;
7390 }
7391
7392 p->sched_reset_on_fork = reset_on_fork;
7393 oldprio = p->prio;
7394
7395 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7396 if (pi) {
7397 /*
7398 * Take priority boosted tasks into account. If the new
7399 * effective priority is unchanged, we just store the new
7400 * normal parameters and do not touch the scheduler class and
7401 * the runqueue. This will be done when the task deboost
7402 * itself.
7403 */
7404 newprio = rt_effective_prio(p, newprio);
7405 if (newprio == oldprio)
7406 queue_flags &= ~DEQUEUE_MOVE;
7407 }
7408
7409 queued = task_on_rq_queued(p);
7410 running = task_current(rq, p);
7411 if (queued)
7412 dequeue_task(rq, p, queue_flags);
7413 if (running)
7414 put_prev_task(rq, p);
7415
7416 prev_class = p->sched_class;
7417
7418 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7419 __setscheduler_params(p, attr);
7420 __setscheduler_prio(p, newprio);
7421 }
7422 __setscheduler_uclamp(p, attr);
7423
7424 if (queued) {
7425 /*
7426 * We enqueue to tail when the priority of a task is
7427 * increased (user space view).
7428 */
7429 if (oldprio < p->prio)
7430 queue_flags |= ENQUEUE_HEAD;
7431
7432 enqueue_task(rq, p, queue_flags);
7433 }
7434 if (running)
7435 set_next_task(rq, p);
7436
7437 check_class_changed(rq, p, prev_class, oldprio);
7438
7439 /* Avoid rq from going away on us: */
7440 preempt_disable();
7441 head = splice_balance_callbacks(rq);
7442 task_rq_unlock(rq, p, &rf);
7443
7444 if (pi) {
7445 cpuset_read_unlock();
7446 rt_mutex_adjust_pi(p);
7447 }
7448
7449 /* Run balance callbacks after we've adjusted the PI chain: */
7450 balance_callbacks(rq, head);
7451 preempt_enable();
7452
7453 return 0;
7454
7455 unlock:
7456 task_rq_unlock(rq, p, &rf);
7457 if (pi)
7458 cpuset_read_unlock();
7459 return retval;
7460 }
7461
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7462 static int _sched_setscheduler(struct task_struct *p, int policy,
7463 const struct sched_param *param, bool check)
7464 {
7465 struct sched_attr attr = {
7466 .sched_policy = policy,
7467 .sched_priority = param->sched_priority,
7468 .sched_nice = PRIO_TO_NICE(p->static_prio),
7469 };
7470
7471 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7472 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7473 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7474 policy &= ~SCHED_RESET_ON_FORK;
7475 attr.sched_policy = policy;
7476 }
7477
7478 return __sched_setscheduler(p, &attr, check, true);
7479 }
7480 /**
7481 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7482 * @p: the task in question.
7483 * @policy: new policy.
7484 * @param: structure containing the new RT priority.
7485 *
7486 * Use sched_set_fifo(), read its comment.
7487 *
7488 * Return: 0 on success. An error code otherwise.
7489 *
7490 * NOTE that the task may be already dead.
7491 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7492 int sched_setscheduler(struct task_struct *p, int policy,
7493 const struct sched_param *param)
7494 {
7495 return _sched_setscheduler(p, policy, param, true);
7496 }
7497
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7498 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7499 {
7500 return __sched_setscheduler(p, attr, true, true);
7501 }
7502
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7503 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7504 {
7505 return __sched_setscheduler(p, attr, false, true);
7506 }
7507 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7508
7509 /**
7510 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7511 * @p: the task in question.
7512 * @policy: new policy.
7513 * @param: structure containing the new RT priority.
7514 *
7515 * Just like sched_setscheduler, only don't bother checking if the
7516 * current context has permission. For example, this is needed in
7517 * stop_machine(): we create temporary high priority worker threads,
7518 * but our caller might not have that capability.
7519 *
7520 * Return: 0 on success. An error code otherwise.
7521 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7522 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7523 const struct sched_param *param)
7524 {
7525 return _sched_setscheduler(p, policy, param, false);
7526 }
7527
7528 /*
7529 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7530 * incapable of resource management, which is the one thing an OS really should
7531 * be doing.
7532 *
7533 * This is of course the reason it is limited to privileged users only.
7534 *
7535 * Worse still; it is fundamentally impossible to compose static priority
7536 * workloads. You cannot take two correctly working static prio workloads
7537 * and smash them together and still expect them to work.
7538 *
7539 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7540 *
7541 * MAX_RT_PRIO / 2
7542 *
7543 * The administrator _MUST_ configure the system, the kernel simply doesn't
7544 * know enough information to make a sensible choice.
7545 */
sched_set_fifo(struct task_struct * p)7546 void sched_set_fifo(struct task_struct *p)
7547 {
7548 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7549 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7550 }
7551 EXPORT_SYMBOL_GPL(sched_set_fifo);
7552
7553 /*
7554 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7555 */
sched_set_fifo_low(struct task_struct * p)7556 void sched_set_fifo_low(struct task_struct *p)
7557 {
7558 struct sched_param sp = { .sched_priority = 1 };
7559 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7560 }
7561 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7562
sched_set_normal(struct task_struct * p,int nice)7563 void sched_set_normal(struct task_struct *p, int nice)
7564 {
7565 struct sched_attr attr = {
7566 .sched_policy = SCHED_NORMAL,
7567 .sched_nice = nice,
7568 };
7569 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7570 }
7571 EXPORT_SYMBOL_GPL(sched_set_normal);
7572
7573 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)7574 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7575 {
7576 struct sched_param lparam;
7577 struct task_struct *p;
7578 int retval;
7579
7580 if (!param || pid < 0)
7581 return -EINVAL;
7582 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7583 return -EFAULT;
7584
7585 rcu_read_lock();
7586 retval = -ESRCH;
7587 p = find_process_by_pid(pid);
7588 if (likely(p))
7589 get_task_struct(p);
7590 rcu_read_unlock();
7591
7592 if (likely(p)) {
7593 retval = sched_setscheduler(p, policy, &lparam);
7594 put_task_struct(p);
7595 }
7596
7597 return retval;
7598 }
7599
7600 /*
7601 * Mimics kernel/events/core.c perf_copy_attr().
7602 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)7603 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7604 {
7605 u32 size;
7606 int ret;
7607
7608 /* Zero the full structure, so that a short copy will be nice: */
7609 memset(attr, 0, sizeof(*attr));
7610
7611 ret = get_user(size, &uattr->size);
7612 if (ret)
7613 return ret;
7614
7615 /* ABI compatibility quirk: */
7616 if (!size)
7617 size = SCHED_ATTR_SIZE_VER0;
7618 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7619 goto err_size;
7620
7621 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7622 if (ret) {
7623 if (ret == -E2BIG)
7624 goto err_size;
7625 return ret;
7626 }
7627
7628 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7629 size < SCHED_ATTR_SIZE_VER1)
7630 return -EINVAL;
7631
7632 /*
7633 * XXX: Do we want to be lenient like existing syscalls; or do we want
7634 * to be strict and return an error on out-of-bounds values?
7635 */
7636 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7637
7638 return 0;
7639
7640 err_size:
7641 put_user(sizeof(*attr), &uattr->size);
7642 return -E2BIG;
7643 }
7644
get_params(struct task_struct * p,struct sched_attr * attr)7645 static void get_params(struct task_struct *p, struct sched_attr *attr)
7646 {
7647 if (task_has_dl_policy(p))
7648 __getparam_dl(p, attr);
7649 else if (task_has_rt_policy(p))
7650 attr->sched_priority = p->rt_priority;
7651 else
7652 attr->sched_nice = task_nice(p);
7653 }
7654
7655 /**
7656 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7657 * @pid: the pid in question.
7658 * @policy: new policy.
7659 * @param: structure containing the new RT priority.
7660 *
7661 * Return: 0 on success. An error code otherwise.
7662 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)7663 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7664 {
7665 if (policy < 0)
7666 return -EINVAL;
7667
7668 return do_sched_setscheduler(pid, policy, param);
7669 }
7670
7671 /**
7672 * sys_sched_setparam - set/change the RT priority of a thread
7673 * @pid: the pid in question.
7674 * @param: structure containing the new RT priority.
7675 *
7676 * Return: 0 on success. An error code otherwise.
7677 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)7678 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7679 {
7680 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7681 }
7682
7683 /**
7684 * sys_sched_setattr - same as above, but with extended sched_attr
7685 * @pid: the pid in question.
7686 * @uattr: structure containing the extended parameters.
7687 * @flags: for future extension.
7688 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)7689 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7690 unsigned int, flags)
7691 {
7692 struct sched_attr attr;
7693 struct task_struct *p;
7694 int retval;
7695
7696 if (!uattr || pid < 0 || flags)
7697 return -EINVAL;
7698
7699 retval = sched_copy_attr(uattr, &attr);
7700 if (retval)
7701 return retval;
7702
7703 if ((int)attr.sched_policy < 0)
7704 return -EINVAL;
7705 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7706 attr.sched_policy = SETPARAM_POLICY;
7707
7708 rcu_read_lock();
7709 retval = -ESRCH;
7710 p = find_process_by_pid(pid);
7711 if (likely(p))
7712 get_task_struct(p);
7713 rcu_read_unlock();
7714
7715 if (likely(p)) {
7716 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7717 get_params(p, &attr);
7718 retval = sched_setattr(p, &attr);
7719 put_task_struct(p);
7720 }
7721
7722 return retval;
7723 }
7724
7725 /**
7726 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7727 * @pid: the pid in question.
7728 *
7729 * Return: On success, the policy of the thread. Otherwise, a negative error
7730 * code.
7731 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)7732 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7733 {
7734 struct task_struct *p;
7735 int retval;
7736
7737 if (pid < 0)
7738 return -EINVAL;
7739
7740 retval = -ESRCH;
7741 rcu_read_lock();
7742 p = find_process_by_pid(pid);
7743 if (p) {
7744 retval = security_task_getscheduler(p);
7745 if (!retval)
7746 retval = p->policy
7747 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7748 }
7749 rcu_read_unlock();
7750 return retval;
7751 }
7752
7753 /**
7754 * sys_sched_getparam - get the RT priority of a thread
7755 * @pid: the pid in question.
7756 * @param: structure containing the RT priority.
7757 *
7758 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7759 * code.
7760 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)7761 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7762 {
7763 struct sched_param lp = { .sched_priority = 0 };
7764 struct task_struct *p;
7765 int retval;
7766
7767 if (!param || pid < 0)
7768 return -EINVAL;
7769
7770 rcu_read_lock();
7771 p = find_process_by_pid(pid);
7772 retval = -ESRCH;
7773 if (!p)
7774 goto out_unlock;
7775
7776 retval = security_task_getscheduler(p);
7777 if (retval)
7778 goto out_unlock;
7779
7780 if (task_has_rt_policy(p))
7781 lp.sched_priority = p->rt_priority;
7782 rcu_read_unlock();
7783
7784 /*
7785 * This one might sleep, we cannot do it with a spinlock held ...
7786 */
7787 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7788
7789 return retval;
7790
7791 out_unlock:
7792 rcu_read_unlock();
7793 return retval;
7794 }
7795
7796 /*
7797 * Copy the kernel size attribute structure (which might be larger
7798 * than what user-space knows about) to user-space.
7799 *
7800 * Note that all cases are valid: user-space buffer can be larger or
7801 * smaller than the kernel-space buffer. The usual case is that both
7802 * have the same size.
7803 */
7804 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)7805 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7806 struct sched_attr *kattr,
7807 unsigned int usize)
7808 {
7809 unsigned int ksize = sizeof(*kattr);
7810
7811 if (!access_ok(uattr, usize))
7812 return -EFAULT;
7813
7814 /*
7815 * sched_getattr() ABI forwards and backwards compatibility:
7816 *
7817 * If usize == ksize then we just copy everything to user-space and all is good.
7818 *
7819 * If usize < ksize then we only copy as much as user-space has space for,
7820 * this keeps ABI compatibility as well. We skip the rest.
7821 *
7822 * If usize > ksize then user-space is using a newer version of the ABI,
7823 * which part the kernel doesn't know about. Just ignore it - tooling can
7824 * detect the kernel's knowledge of attributes from the attr->size value
7825 * which is set to ksize in this case.
7826 */
7827 kattr->size = min(usize, ksize);
7828
7829 if (copy_to_user(uattr, kattr, kattr->size))
7830 return -EFAULT;
7831
7832 return 0;
7833 }
7834
7835 /**
7836 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7837 * @pid: the pid in question.
7838 * @uattr: structure containing the extended parameters.
7839 * @usize: sizeof(attr) for fwd/bwd comp.
7840 * @flags: for future extension.
7841 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)7842 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7843 unsigned int, usize, unsigned int, flags)
7844 {
7845 struct sched_attr kattr = { };
7846 struct task_struct *p;
7847 int retval;
7848
7849 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7850 usize < SCHED_ATTR_SIZE_VER0 || flags)
7851 return -EINVAL;
7852
7853 rcu_read_lock();
7854 p = find_process_by_pid(pid);
7855 retval = -ESRCH;
7856 if (!p)
7857 goto out_unlock;
7858
7859 retval = security_task_getscheduler(p);
7860 if (retval)
7861 goto out_unlock;
7862
7863 kattr.sched_policy = p->policy;
7864 if (p->sched_reset_on_fork)
7865 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7866 get_params(p, &kattr);
7867 kattr.sched_flags &= SCHED_FLAG_ALL;
7868
7869 #ifdef CONFIG_UCLAMP_TASK
7870 /*
7871 * This could race with another potential updater, but this is fine
7872 * because it'll correctly read the old or the new value. We don't need
7873 * to guarantee who wins the race as long as it doesn't return garbage.
7874 */
7875 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7876 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7877 #endif
7878
7879 rcu_read_unlock();
7880
7881 return sched_attr_copy_to_user(uattr, &kattr, usize);
7882
7883 out_unlock:
7884 rcu_read_unlock();
7885 return retval;
7886 }
7887
7888 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)7889 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
7890 {
7891 int ret = 0;
7892
7893 /*
7894 * If the task isn't a deadline task or admission control is
7895 * disabled then we don't care about affinity changes.
7896 */
7897 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7898 return 0;
7899
7900 /*
7901 * Since bandwidth control happens on root_domain basis,
7902 * if admission test is enabled, we only admit -deadline
7903 * tasks allowed to run on all the CPUs in the task's
7904 * root_domain.
7905 */
7906 rcu_read_lock();
7907 if (!cpumask_subset(task_rq(p)->rd->span, mask))
7908 ret = -EBUSY;
7909 rcu_read_unlock();
7910 return ret;
7911 }
7912 #endif
7913
7914 static int
__sched_setaffinity(struct task_struct * p,const struct cpumask * mask)7915 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
7916 {
7917 int retval;
7918 cpumask_var_t cpus_allowed, new_mask;
7919
7920 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7921 return -ENOMEM;
7922
7923 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7924 retval = -ENOMEM;
7925 goto out_free_cpus_allowed;
7926 }
7927
7928 cpuset_cpus_allowed(p, cpus_allowed);
7929 cpumask_and(new_mask, mask, cpus_allowed);
7930
7931 retval = dl_task_check_affinity(p, new_mask);
7932 if (retval)
7933 goto out_free_new_mask;
7934 again:
7935 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
7936 if (retval)
7937 goto out_free_new_mask;
7938
7939 cpuset_cpus_allowed(p, cpus_allowed);
7940 if (!cpumask_subset(new_mask, cpus_allowed)) {
7941 /*
7942 * We must have raced with a concurrent cpuset update.
7943 * Just reset the cpumask to the cpuset's cpus_allowed.
7944 */
7945 cpumask_copy(new_mask, cpus_allowed);
7946 goto again;
7947 }
7948
7949 out_free_new_mask:
7950 free_cpumask_var(new_mask);
7951 out_free_cpus_allowed:
7952 free_cpumask_var(cpus_allowed);
7953 return retval;
7954 }
7955
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)7956 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7957 {
7958 struct task_struct *p;
7959 int retval;
7960
7961 rcu_read_lock();
7962
7963 p = find_process_by_pid(pid);
7964 if (!p) {
7965 rcu_read_unlock();
7966 return -ESRCH;
7967 }
7968
7969 /* Prevent p going away */
7970 get_task_struct(p);
7971 rcu_read_unlock();
7972
7973 if (p->flags & PF_NO_SETAFFINITY) {
7974 retval = -EINVAL;
7975 goto out_put_task;
7976 }
7977
7978 if (!check_same_owner(p)) {
7979 rcu_read_lock();
7980 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7981 rcu_read_unlock();
7982 retval = -EPERM;
7983 goto out_put_task;
7984 }
7985 rcu_read_unlock();
7986 }
7987
7988 retval = security_task_setscheduler(p);
7989 if (retval)
7990 goto out_put_task;
7991
7992 retval = __sched_setaffinity(p, in_mask);
7993 out_put_task:
7994 put_task_struct(p);
7995 return retval;
7996 }
7997
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)7998 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
7999 struct cpumask *new_mask)
8000 {
8001 if (len < cpumask_size())
8002 cpumask_clear(new_mask);
8003 else if (len > cpumask_size())
8004 len = cpumask_size();
8005
8006 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8007 }
8008
8009 /**
8010 * sys_sched_setaffinity - set the CPU affinity of a process
8011 * @pid: pid of the process
8012 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8013 * @user_mask_ptr: user-space pointer to the new CPU mask
8014 *
8015 * Return: 0 on success. An error code otherwise.
8016 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8017 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8018 unsigned long __user *, user_mask_ptr)
8019 {
8020 cpumask_var_t new_mask;
8021 int retval;
8022
8023 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8024 return -ENOMEM;
8025
8026 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8027 if (retval == 0)
8028 retval = sched_setaffinity(pid, new_mask);
8029 free_cpumask_var(new_mask);
8030 return retval;
8031 }
8032
sched_getaffinity(pid_t pid,struct cpumask * mask)8033 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8034 {
8035 struct task_struct *p;
8036 unsigned long flags;
8037 int retval;
8038
8039 rcu_read_lock();
8040
8041 retval = -ESRCH;
8042 p = find_process_by_pid(pid);
8043 if (!p)
8044 goto out_unlock;
8045
8046 retval = security_task_getscheduler(p);
8047 if (retval)
8048 goto out_unlock;
8049
8050 raw_spin_lock_irqsave(&p->pi_lock, flags);
8051 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8052 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8053
8054 out_unlock:
8055 rcu_read_unlock();
8056
8057 return retval;
8058 }
8059
8060 /**
8061 * sys_sched_getaffinity - get the CPU affinity of a process
8062 * @pid: pid of the process
8063 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8064 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8065 *
8066 * Return: size of CPU mask copied to user_mask_ptr on success. An
8067 * error code otherwise.
8068 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8069 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8070 unsigned long __user *, user_mask_ptr)
8071 {
8072 int ret;
8073 cpumask_var_t mask;
8074
8075 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8076 return -EINVAL;
8077 if (len & (sizeof(unsigned long)-1))
8078 return -EINVAL;
8079
8080 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8081 return -ENOMEM;
8082
8083 ret = sched_getaffinity(pid, mask);
8084 if (ret == 0) {
8085 unsigned int retlen = min(len, cpumask_size());
8086
8087 if (copy_to_user(user_mask_ptr, mask, retlen))
8088 ret = -EFAULT;
8089 else
8090 ret = retlen;
8091 }
8092 free_cpumask_var(mask);
8093
8094 return ret;
8095 }
8096
do_sched_yield(void)8097 static void do_sched_yield(void)
8098 {
8099 struct rq_flags rf;
8100 struct rq *rq;
8101
8102 rq = this_rq_lock_irq(&rf);
8103
8104 schedstat_inc(rq->yld_count);
8105 current->sched_class->yield_task(rq);
8106
8107 preempt_disable();
8108 rq_unlock_irq(rq, &rf);
8109 sched_preempt_enable_no_resched();
8110
8111 schedule();
8112 }
8113
8114 /**
8115 * sys_sched_yield - yield the current processor to other threads.
8116 *
8117 * This function yields the current CPU to other tasks. If there are no
8118 * other threads running on this CPU then this function will return.
8119 *
8120 * Return: 0.
8121 */
SYSCALL_DEFINE0(sched_yield)8122 SYSCALL_DEFINE0(sched_yield)
8123 {
8124 do_sched_yield();
8125 return 0;
8126 }
8127
8128 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8129 int __sched __cond_resched(void)
8130 {
8131 if (should_resched(0)) {
8132 preempt_schedule_common();
8133 return 1;
8134 }
8135 /*
8136 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8137 * whether the current CPU is in an RCU read-side critical section,
8138 * so the tick can report quiescent states even for CPUs looping
8139 * in kernel context. In contrast, in non-preemptible kernels,
8140 * RCU readers leave no in-memory hints, which means that CPU-bound
8141 * processes executing in kernel context might never report an
8142 * RCU quiescent state. Therefore, the following code causes
8143 * cond_resched() to report a quiescent state, but only when RCU
8144 * is in urgent need of one.
8145 */
8146 #ifndef CONFIG_PREEMPT_RCU
8147 rcu_all_qs();
8148 #endif
8149 return 0;
8150 }
8151 EXPORT_SYMBOL(__cond_resched);
8152 #endif
8153
8154 #ifdef CONFIG_PREEMPT_DYNAMIC
8155 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8156 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8157
8158 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8159 EXPORT_STATIC_CALL_TRAMP(might_resched);
8160 #endif
8161
8162 /*
8163 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8164 * call schedule, and on return reacquire the lock.
8165 *
8166 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8167 * operations here to prevent schedule() from being called twice (once via
8168 * spin_unlock(), once by hand).
8169 */
__cond_resched_lock(spinlock_t * lock)8170 int __cond_resched_lock(spinlock_t *lock)
8171 {
8172 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8173 int ret = 0;
8174
8175 lockdep_assert_held(lock);
8176
8177 if (spin_needbreak(lock) || resched) {
8178 spin_unlock(lock);
8179 if (resched)
8180 preempt_schedule_common();
8181 else
8182 cpu_relax();
8183 ret = 1;
8184 spin_lock(lock);
8185 }
8186 return ret;
8187 }
8188 EXPORT_SYMBOL(__cond_resched_lock);
8189
__cond_resched_rwlock_read(rwlock_t * lock)8190 int __cond_resched_rwlock_read(rwlock_t *lock)
8191 {
8192 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8193 int ret = 0;
8194
8195 lockdep_assert_held_read(lock);
8196
8197 if (rwlock_needbreak(lock) || resched) {
8198 read_unlock(lock);
8199 if (resched)
8200 preempt_schedule_common();
8201 else
8202 cpu_relax();
8203 ret = 1;
8204 read_lock(lock);
8205 }
8206 return ret;
8207 }
8208 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8209
__cond_resched_rwlock_write(rwlock_t * lock)8210 int __cond_resched_rwlock_write(rwlock_t *lock)
8211 {
8212 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8213 int ret = 0;
8214
8215 lockdep_assert_held_write(lock);
8216
8217 if (rwlock_needbreak(lock) || resched) {
8218 write_unlock(lock);
8219 if (resched)
8220 preempt_schedule_common();
8221 else
8222 cpu_relax();
8223 ret = 1;
8224 write_lock(lock);
8225 }
8226 return ret;
8227 }
8228 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8229
8230 /**
8231 * yield - yield the current processor to other threads.
8232 *
8233 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8234 *
8235 * The scheduler is at all times free to pick the calling task as the most
8236 * eligible task to run, if removing the yield() call from your code breaks
8237 * it, it's already broken.
8238 *
8239 * Typical broken usage is:
8240 *
8241 * while (!event)
8242 * yield();
8243 *
8244 * where one assumes that yield() will let 'the other' process run that will
8245 * make event true. If the current task is a SCHED_FIFO task that will never
8246 * happen. Never use yield() as a progress guarantee!!
8247 *
8248 * If you want to use yield() to wait for something, use wait_event().
8249 * If you want to use yield() to be 'nice' for others, use cond_resched().
8250 * If you still want to use yield(), do not!
8251 */
yield(void)8252 void __sched yield(void)
8253 {
8254 set_current_state(TASK_RUNNING);
8255 do_sched_yield();
8256 }
8257 EXPORT_SYMBOL(yield);
8258
8259 /**
8260 * yield_to - yield the current processor to another thread in
8261 * your thread group, or accelerate that thread toward the
8262 * processor it's on.
8263 * @p: target task
8264 * @preempt: whether task preemption is allowed or not
8265 *
8266 * It's the caller's job to ensure that the target task struct
8267 * can't go away on us before we can do any checks.
8268 *
8269 * Return:
8270 * true (>0) if we indeed boosted the target task.
8271 * false (0) if we failed to boost the target.
8272 * -ESRCH if there's no task to yield to.
8273 */
yield_to(struct task_struct * p,bool preempt)8274 int __sched yield_to(struct task_struct *p, bool preempt)
8275 {
8276 struct task_struct *curr = current;
8277 struct rq *rq, *p_rq;
8278 unsigned long flags;
8279 int yielded = 0;
8280
8281 local_irq_save(flags);
8282 rq = this_rq();
8283
8284 again:
8285 p_rq = task_rq(p);
8286 /*
8287 * If we're the only runnable task on the rq and target rq also
8288 * has only one task, there's absolutely no point in yielding.
8289 */
8290 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8291 yielded = -ESRCH;
8292 goto out_irq;
8293 }
8294
8295 double_rq_lock(rq, p_rq);
8296 if (task_rq(p) != p_rq) {
8297 double_rq_unlock(rq, p_rq);
8298 goto again;
8299 }
8300
8301 if (!curr->sched_class->yield_to_task)
8302 goto out_unlock;
8303
8304 if (curr->sched_class != p->sched_class)
8305 goto out_unlock;
8306
8307 if (task_running(p_rq, p) || !task_is_running(p))
8308 goto out_unlock;
8309
8310 yielded = curr->sched_class->yield_to_task(rq, p);
8311 if (yielded) {
8312 schedstat_inc(rq->yld_count);
8313 /*
8314 * Make p's CPU reschedule; pick_next_entity takes care of
8315 * fairness.
8316 */
8317 if (preempt && rq != p_rq)
8318 resched_curr(p_rq);
8319 }
8320
8321 out_unlock:
8322 double_rq_unlock(rq, p_rq);
8323 out_irq:
8324 local_irq_restore(flags);
8325
8326 if (yielded > 0)
8327 schedule();
8328
8329 return yielded;
8330 }
8331 EXPORT_SYMBOL_GPL(yield_to);
8332
io_schedule_prepare(void)8333 int io_schedule_prepare(void)
8334 {
8335 int old_iowait = current->in_iowait;
8336
8337 current->in_iowait = 1;
8338 if (current->plug)
8339 blk_flush_plug(current->plug, true);
8340
8341 return old_iowait;
8342 }
8343
io_schedule_finish(int token)8344 void io_schedule_finish(int token)
8345 {
8346 current->in_iowait = token;
8347 }
8348
8349 /*
8350 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8351 * that process accounting knows that this is a task in IO wait state.
8352 */
io_schedule_timeout(long timeout)8353 long __sched io_schedule_timeout(long timeout)
8354 {
8355 int token;
8356 long ret;
8357
8358 token = io_schedule_prepare();
8359 ret = schedule_timeout(timeout);
8360 io_schedule_finish(token);
8361
8362 return ret;
8363 }
8364 EXPORT_SYMBOL(io_schedule_timeout);
8365
io_schedule(void)8366 void __sched io_schedule(void)
8367 {
8368 int token;
8369
8370 token = io_schedule_prepare();
8371 schedule();
8372 io_schedule_finish(token);
8373 }
8374 EXPORT_SYMBOL(io_schedule);
8375
8376 /**
8377 * sys_sched_get_priority_max - return maximum RT priority.
8378 * @policy: scheduling class.
8379 *
8380 * Return: On success, this syscall returns the maximum
8381 * rt_priority that can be used by a given scheduling class.
8382 * On failure, a negative error code is returned.
8383 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)8384 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8385 {
8386 int ret = -EINVAL;
8387
8388 switch (policy) {
8389 case SCHED_FIFO:
8390 case SCHED_RR:
8391 ret = MAX_RT_PRIO-1;
8392 break;
8393 case SCHED_DEADLINE:
8394 case SCHED_NORMAL:
8395 case SCHED_BATCH:
8396 case SCHED_IDLE:
8397 ret = 0;
8398 break;
8399 }
8400 return ret;
8401 }
8402
8403 /**
8404 * sys_sched_get_priority_min - return minimum RT priority.
8405 * @policy: scheduling class.
8406 *
8407 * Return: On success, this syscall returns the minimum
8408 * rt_priority that can be used by a given scheduling class.
8409 * On failure, a negative error code is returned.
8410 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)8411 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8412 {
8413 int ret = -EINVAL;
8414
8415 switch (policy) {
8416 case SCHED_FIFO:
8417 case SCHED_RR:
8418 ret = 1;
8419 break;
8420 case SCHED_DEADLINE:
8421 case SCHED_NORMAL:
8422 case SCHED_BATCH:
8423 case SCHED_IDLE:
8424 ret = 0;
8425 }
8426 return ret;
8427 }
8428
sched_rr_get_interval(pid_t pid,struct timespec64 * t)8429 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8430 {
8431 struct task_struct *p;
8432 unsigned int time_slice;
8433 struct rq_flags rf;
8434 struct rq *rq;
8435 int retval;
8436
8437 if (pid < 0)
8438 return -EINVAL;
8439
8440 retval = -ESRCH;
8441 rcu_read_lock();
8442 p = find_process_by_pid(pid);
8443 if (!p)
8444 goto out_unlock;
8445
8446 retval = security_task_getscheduler(p);
8447 if (retval)
8448 goto out_unlock;
8449
8450 rq = task_rq_lock(p, &rf);
8451 time_slice = 0;
8452 if (p->sched_class->get_rr_interval)
8453 time_slice = p->sched_class->get_rr_interval(rq, p);
8454 task_rq_unlock(rq, p, &rf);
8455
8456 rcu_read_unlock();
8457 jiffies_to_timespec64(time_slice, t);
8458 return 0;
8459
8460 out_unlock:
8461 rcu_read_unlock();
8462 return retval;
8463 }
8464
8465 /**
8466 * sys_sched_rr_get_interval - return the default timeslice of a process.
8467 * @pid: pid of the process.
8468 * @interval: userspace pointer to the timeslice value.
8469 *
8470 * this syscall writes the default timeslice value of a given process
8471 * into the user-space timespec buffer. A value of '0' means infinity.
8472 *
8473 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8474 * an error code.
8475 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)8476 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8477 struct __kernel_timespec __user *, interval)
8478 {
8479 struct timespec64 t;
8480 int retval = sched_rr_get_interval(pid, &t);
8481
8482 if (retval == 0)
8483 retval = put_timespec64(&t, interval);
8484
8485 return retval;
8486 }
8487
8488 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)8489 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8490 struct old_timespec32 __user *, interval)
8491 {
8492 struct timespec64 t;
8493 int retval = sched_rr_get_interval(pid, &t);
8494
8495 if (retval == 0)
8496 retval = put_old_timespec32(&t, interval);
8497 return retval;
8498 }
8499 #endif
8500
sched_show_task(struct task_struct * p)8501 void sched_show_task(struct task_struct *p)
8502 {
8503 unsigned long free = 0;
8504 int ppid;
8505
8506 if (!try_get_task_stack(p))
8507 return;
8508
8509 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8510
8511 if (task_is_running(p))
8512 pr_cont(" running task ");
8513 #ifdef CONFIG_DEBUG_STACK_USAGE
8514 free = stack_not_used(p);
8515 #endif
8516 ppid = 0;
8517 rcu_read_lock();
8518 if (pid_alive(p))
8519 ppid = task_pid_nr(rcu_dereference(p->real_parent));
8520 rcu_read_unlock();
8521 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8522 free, task_pid_nr(p), ppid,
8523 (unsigned long)task_thread_info(p)->flags);
8524
8525 print_worker_info(KERN_INFO, p);
8526 print_stop_info(KERN_INFO, p);
8527 show_stack(p, NULL, KERN_INFO);
8528 put_task_stack(p);
8529 }
8530 EXPORT_SYMBOL_GPL(sched_show_task);
8531
8532 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)8533 state_filter_match(unsigned long state_filter, struct task_struct *p)
8534 {
8535 unsigned int state = READ_ONCE(p->__state);
8536
8537 /* no filter, everything matches */
8538 if (!state_filter)
8539 return true;
8540
8541 /* filter, but doesn't match */
8542 if (!(state & state_filter))
8543 return false;
8544
8545 /*
8546 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8547 * TASK_KILLABLE).
8548 */
8549 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8550 return false;
8551
8552 return true;
8553 }
8554
8555
show_state_filter(unsigned int state_filter)8556 void show_state_filter(unsigned int state_filter)
8557 {
8558 struct task_struct *g, *p;
8559
8560 rcu_read_lock();
8561 for_each_process_thread(g, p) {
8562 /*
8563 * reset the NMI-timeout, listing all files on a slow
8564 * console might take a lot of time:
8565 * Also, reset softlockup watchdogs on all CPUs, because
8566 * another CPU might be blocked waiting for us to process
8567 * an IPI.
8568 */
8569 touch_nmi_watchdog();
8570 touch_all_softlockup_watchdogs();
8571 if (state_filter_match(state_filter, p))
8572 sched_show_task(p);
8573 }
8574
8575 #ifdef CONFIG_SCHED_DEBUG
8576 if (!state_filter)
8577 sysrq_sched_debug_show();
8578 #endif
8579 rcu_read_unlock();
8580 /*
8581 * Only show locks if all tasks are dumped:
8582 */
8583 if (!state_filter)
8584 debug_show_all_locks();
8585 }
8586
8587 /**
8588 * init_idle - set up an idle thread for a given CPU
8589 * @idle: task in question
8590 * @cpu: CPU the idle task belongs to
8591 *
8592 * NOTE: this function does not set the idle thread's NEED_RESCHED
8593 * flag, to make booting more robust.
8594 */
init_idle(struct task_struct * idle,int cpu)8595 void __init init_idle(struct task_struct *idle, int cpu)
8596 {
8597 struct rq *rq = cpu_rq(cpu);
8598 unsigned long flags;
8599
8600 __sched_fork(0, idle);
8601
8602 /*
8603 * The idle task doesn't need the kthread struct to function, but it
8604 * is dressed up as a per-CPU kthread and thus needs to play the part
8605 * if we want to avoid special-casing it in code that deals with per-CPU
8606 * kthreads.
8607 */
8608 set_kthread_struct(idle);
8609
8610 raw_spin_lock_irqsave(&idle->pi_lock, flags);
8611 raw_spin_rq_lock(rq);
8612
8613 idle->__state = TASK_RUNNING;
8614 idle->se.exec_start = sched_clock();
8615 /*
8616 * PF_KTHREAD should already be set at this point; regardless, make it
8617 * look like a proper per-CPU kthread.
8618 */
8619 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8620 kthread_set_per_cpu(idle, cpu);
8621
8622 #ifdef CONFIG_SMP
8623 /*
8624 * It's possible that init_idle() gets called multiple times on a task,
8625 * in that case do_set_cpus_allowed() will not do the right thing.
8626 *
8627 * And since this is boot we can forgo the serialization.
8628 */
8629 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8630 #endif
8631 /*
8632 * We're having a chicken and egg problem, even though we are
8633 * holding rq->lock, the CPU isn't yet set to this CPU so the
8634 * lockdep check in task_group() will fail.
8635 *
8636 * Similar case to sched_fork(). / Alternatively we could
8637 * use task_rq_lock() here and obtain the other rq->lock.
8638 *
8639 * Silence PROVE_RCU
8640 */
8641 rcu_read_lock();
8642 __set_task_cpu(idle, cpu);
8643 rcu_read_unlock();
8644
8645 rq->idle = idle;
8646 rcu_assign_pointer(rq->curr, idle);
8647 idle->on_rq = TASK_ON_RQ_QUEUED;
8648 #ifdef CONFIG_SMP
8649 idle->on_cpu = 1;
8650 #endif
8651 raw_spin_rq_unlock(rq);
8652 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8653
8654 /* Set the preempt count _outside_ the spinlocks! */
8655 init_idle_preempt_count(idle, cpu);
8656
8657 /*
8658 * The idle tasks have their own, simple scheduling class:
8659 */
8660 idle->sched_class = &idle_sched_class;
8661 ftrace_graph_init_idle_task(idle, cpu);
8662 vtime_init_idle(idle, cpu);
8663 #ifdef CONFIG_SMP
8664 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8665 #endif
8666 }
8667
8668 #ifdef CONFIG_SMP
8669
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)8670 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8671 const struct cpumask *trial)
8672 {
8673 int ret = 1;
8674
8675 if (!cpumask_weight(cur))
8676 return ret;
8677
8678 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8679
8680 return ret;
8681 }
8682
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)8683 int task_can_attach(struct task_struct *p,
8684 const struct cpumask *cs_cpus_allowed)
8685 {
8686 int ret = 0;
8687
8688 /*
8689 * Kthreads which disallow setaffinity shouldn't be moved
8690 * to a new cpuset; we don't want to change their CPU
8691 * affinity and isolating such threads by their set of
8692 * allowed nodes is unnecessary. Thus, cpusets are not
8693 * applicable for such threads. This prevents checking for
8694 * success of set_cpus_allowed_ptr() on all attached tasks
8695 * before cpus_mask may be changed.
8696 */
8697 if (p->flags & PF_NO_SETAFFINITY) {
8698 ret = -EINVAL;
8699 goto out;
8700 }
8701
8702 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8703 cs_cpus_allowed))
8704 ret = dl_task_can_attach(p, cs_cpus_allowed);
8705
8706 out:
8707 return ret;
8708 }
8709
8710 bool sched_smp_initialized __read_mostly;
8711
8712 #ifdef CONFIG_NUMA_BALANCING
8713 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)8714 int migrate_task_to(struct task_struct *p, int target_cpu)
8715 {
8716 struct migration_arg arg = { p, target_cpu };
8717 int curr_cpu = task_cpu(p);
8718
8719 if (curr_cpu == target_cpu)
8720 return 0;
8721
8722 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8723 return -EINVAL;
8724
8725 /* TODO: This is not properly updating schedstats */
8726
8727 trace_sched_move_numa(p, curr_cpu, target_cpu);
8728 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8729 }
8730
8731 /*
8732 * Requeue a task on a given node and accurately track the number of NUMA
8733 * tasks on the runqueues
8734 */
sched_setnuma(struct task_struct * p,int nid)8735 void sched_setnuma(struct task_struct *p, int nid)
8736 {
8737 bool queued, running;
8738 struct rq_flags rf;
8739 struct rq *rq;
8740
8741 rq = task_rq_lock(p, &rf);
8742 queued = task_on_rq_queued(p);
8743 running = task_current(rq, p);
8744
8745 if (queued)
8746 dequeue_task(rq, p, DEQUEUE_SAVE);
8747 if (running)
8748 put_prev_task(rq, p);
8749
8750 p->numa_preferred_nid = nid;
8751
8752 if (queued)
8753 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8754 if (running)
8755 set_next_task(rq, p);
8756 task_rq_unlock(rq, p, &rf);
8757 }
8758 #endif /* CONFIG_NUMA_BALANCING */
8759
8760 #ifdef CONFIG_HOTPLUG_CPU
8761 /*
8762 * Ensure that the idle task is using init_mm right before its CPU goes
8763 * offline.
8764 */
idle_task_exit(void)8765 void idle_task_exit(void)
8766 {
8767 struct mm_struct *mm = current->active_mm;
8768
8769 BUG_ON(cpu_online(smp_processor_id()));
8770 BUG_ON(current != this_rq()->idle);
8771
8772 if (mm != &init_mm) {
8773 switch_mm(mm, &init_mm, current);
8774 finish_arch_post_lock_switch();
8775 }
8776
8777 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8778 }
8779
__balance_push_cpu_stop(void * arg)8780 static int __balance_push_cpu_stop(void *arg)
8781 {
8782 struct task_struct *p = arg;
8783 struct rq *rq = this_rq();
8784 struct rq_flags rf;
8785 int cpu;
8786
8787 raw_spin_lock_irq(&p->pi_lock);
8788 rq_lock(rq, &rf);
8789
8790 update_rq_clock(rq);
8791
8792 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8793 cpu = select_fallback_rq(rq->cpu, p);
8794 rq = __migrate_task(rq, &rf, p, cpu);
8795 }
8796
8797 rq_unlock(rq, &rf);
8798 raw_spin_unlock_irq(&p->pi_lock);
8799
8800 put_task_struct(p);
8801
8802 return 0;
8803 }
8804
8805 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8806
8807 /*
8808 * Ensure we only run per-cpu kthreads once the CPU goes !active.
8809 *
8810 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8811 * effective when the hotplug motion is down.
8812 */
balance_push(struct rq * rq)8813 static void balance_push(struct rq *rq)
8814 {
8815 struct task_struct *push_task = rq->curr;
8816
8817 lockdep_assert_rq_held(rq);
8818
8819 /*
8820 * Ensure the thing is persistent until balance_push_set(.on = false);
8821 */
8822 rq->balance_callback = &balance_push_callback;
8823
8824 /*
8825 * Only active while going offline and when invoked on the outgoing
8826 * CPU.
8827 */
8828 if (!cpu_dying(rq->cpu) || rq != this_rq())
8829 return;
8830
8831 /*
8832 * Both the cpu-hotplug and stop task are in this case and are
8833 * required to complete the hotplug process.
8834 */
8835 if (kthread_is_per_cpu(push_task) ||
8836 is_migration_disabled(push_task)) {
8837
8838 /*
8839 * If this is the idle task on the outgoing CPU try to wake
8840 * up the hotplug control thread which might wait for the
8841 * last task to vanish. The rcuwait_active() check is
8842 * accurate here because the waiter is pinned on this CPU
8843 * and can't obviously be running in parallel.
8844 *
8845 * On RT kernels this also has to check whether there are
8846 * pinned and scheduled out tasks on the runqueue. They
8847 * need to leave the migrate disabled section first.
8848 */
8849 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8850 rcuwait_active(&rq->hotplug_wait)) {
8851 raw_spin_rq_unlock(rq);
8852 rcuwait_wake_up(&rq->hotplug_wait);
8853 raw_spin_rq_lock(rq);
8854 }
8855 return;
8856 }
8857
8858 get_task_struct(push_task);
8859 /*
8860 * Temporarily drop rq->lock such that we can wake-up the stop task.
8861 * Both preemption and IRQs are still disabled.
8862 */
8863 raw_spin_rq_unlock(rq);
8864 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8865 this_cpu_ptr(&push_work));
8866 /*
8867 * At this point need_resched() is true and we'll take the loop in
8868 * schedule(). The next pick is obviously going to be the stop task
8869 * which kthread_is_per_cpu() and will push this task away.
8870 */
8871 raw_spin_rq_lock(rq);
8872 }
8873
balance_push_set(int cpu,bool on)8874 static void balance_push_set(int cpu, bool on)
8875 {
8876 struct rq *rq = cpu_rq(cpu);
8877 struct rq_flags rf;
8878
8879 rq_lock_irqsave(rq, &rf);
8880 if (on) {
8881 WARN_ON_ONCE(rq->balance_callback);
8882 rq->balance_callback = &balance_push_callback;
8883 } else if (rq->balance_callback == &balance_push_callback) {
8884 rq->balance_callback = NULL;
8885 }
8886 rq_unlock_irqrestore(rq, &rf);
8887 }
8888
8889 /*
8890 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8891 * inactive. All tasks which are not per CPU kernel threads are either
8892 * pushed off this CPU now via balance_push() or placed on a different CPU
8893 * during wakeup. Wait until the CPU is quiescent.
8894 */
balance_hotplug_wait(void)8895 static void balance_hotplug_wait(void)
8896 {
8897 struct rq *rq = this_rq();
8898
8899 rcuwait_wait_event(&rq->hotplug_wait,
8900 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8901 TASK_UNINTERRUPTIBLE);
8902 }
8903
8904 #else
8905
balance_push(struct rq * rq)8906 static inline void balance_push(struct rq *rq)
8907 {
8908 }
8909
balance_push_set(int cpu,bool on)8910 static inline void balance_push_set(int cpu, bool on)
8911 {
8912 }
8913
balance_hotplug_wait(void)8914 static inline void balance_hotplug_wait(void)
8915 {
8916 }
8917
8918 #endif /* CONFIG_HOTPLUG_CPU */
8919
set_rq_online(struct rq * rq)8920 void set_rq_online(struct rq *rq)
8921 {
8922 if (!rq->online) {
8923 const struct sched_class *class;
8924
8925 cpumask_set_cpu(rq->cpu, rq->rd->online);
8926 rq->online = 1;
8927
8928 for_each_class(class) {
8929 if (class->rq_online)
8930 class->rq_online(rq);
8931 }
8932 }
8933 }
8934
set_rq_offline(struct rq * rq)8935 void set_rq_offline(struct rq *rq)
8936 {
8937 if (rq->online) {
8938 const struct sched_class *class;
8939
8940 for_each_class(class) {
8941 if (class->rq_offline)
8942 class->rq_offline(rq);
8943 }
8944
8945 cpumask_clear_cpu(rq->cpu, rq->rd->online);
8946 rq->online = 0;
8947 }
8948 }
8949
8950 /*
8951 * used to mark begin/end of suspend/resume:
8952 */
8953 static int num_cpus_frozen;
8954
8955 /*
8956 * Update cpusets according to cpu_active mask. If cpusets are
8957 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8958 * around partition_sched_domains().
8959 *
8960 * If we come here as part of a suspend/resume, don't touch cpusets because we
8961 * want to restore it back to its original state upon resume anyway.
8962 */
cpuset_cpu_active(void)8963 static void cpuset_cpu_active(void)
8964 {
8965 if (cpuhp_tasks_frozen) {
8966 /*
8967 * num_cpus_frozen tracks how many CPUs are involved in suspend
8968 * resume sequence. As long as this is not the last online
8969 * operation in the resume sequence, just build a single sched
8970 * domain, ignoring cpusets.
8971 */
8972 partition_sched_domains(1, NULL, NULL);
8973 if (--num_cpus_frozen)
8974 return;
8975 /*
8976 * This is the last CPU online operation. So fall through and
8977 * restore the original sched domains by considering the
8978 * cpuset configurations.
8979 */
8980 cpuset_force_rebuild();
8981 }
8982 cpuset_update_active_cpus();
8983 }
8984
cpuset_cpu_inactive(unsigned int cpu)8985 static int cpuset_cpu_inactive(unsigned int cpu)
8986 {
8987 if (!cpuhp_tasks_frozen) {
8988 if (dl_cpu_busy(cpu))
8989 return -EBUSY;
8990 cpuset_update_active_cpus();
8991 } else {
8992 num_cpus_frozen++;
8993 partition_sched_domains(1, NULL, NULL);
8994 }
8995 return 0;
8996 }
8997
sched_cpu_activate(unsigned int cpu)8998 int sched_cpu_activate(unsigned int cpu)
8999 {
9000 struct rq *rq = cpu_rq(cpu);
9001 struct rq_flags rf;
9002
9003 /*
9004 * Clear the balance_push callback and prepare to schedule
9005 * regular tasks.
9006 */
9007 balance_push_set(cpu, false);
9008
9009 #ifdef CONFIG_SCHED_SMT
9010 /*
9011 * When going up, increment the number of cores with SMT present.
9012 */
9013 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9014 static_branch_inc_cpuslocked(&sched_smt_present);
9015 #endif
9016 set_cpu_active(cpu, true);
9017
9018 if (sched_smp_initialized) {
9019 sched_domains_numa_masks_set(cpu);
9020 cpuset_cpu_active();
9021 }
9022
9023 /*
9024 * Put the rq online, if not already. This happens:
9025 *
9026 * 1) In the early boot process, because we build the real domains
9027 * after all CPUs have been brought up.
9028 *
9029 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9030 * domains.
9031 */
9032 rq_lock_irqsave(rq, &rf);
9033 if (rq->rd) {
9034 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9035 set_rq_online(rq);
9036 }
9037 rq_unlock_irqrestore(rq, &rf);
9038
9039 return 0;
9040 }
9041
sched_cpu_deactivate(unsigned int cpu)9042 int sched_cpu_deactivate(unsigned int cpu)
9043 {
9044 struct rq *rq = cpu_rq(cpu);
9045 struct rq_flags rf;
9046 int ret;
9047
9048 /*
9049 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9050 * load balancing when not active
9051 */
9052 nohz_balance_exit_idle(rq);
9053
9054 set_cpu_active(cpu, false);
9055
9056 /*
9057 * From this point forward, this CPU will refuse to run any task that
9058 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9059 * push those tasks away until this gets cleared, see
9060 * sched_cpu_dying().
9061 */
9062 balance_push_set(cpu, true);
9063
9064 /*
9065 * We've cleared cpu_active_mask / set balance_push, wait for all
9066 * preempt-disabled and RCU users of this state to go away such that
9067 * all new such users will observe it.
9068 *
9069 * Specifically, we rely on ttwu to no longer target this CPU, see
9070 * ttwu_queue_cond() and is_cpu_allowed().
9071 *
9072 * Do sync before park smpboot threads to take care the rcu boost case.
9073 */
9074 synchronize_rcu();
9075
9076 rq_lock_irqsave(rq, &rf);
9077 if (rq->rd) {
9078 update_rq_clock(rq);
9079 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9080 set_rq_offline(rq);
9081 }
9082 rq_unlock_irqrestore(rq, &rf);
9083
9084 #ifdef CONFIG_SCHED_SMT
9085 /*
9086 * When going down, decrement the number of cores with SMT present.
9087 */
9088 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9089 static_branch_dec_cpuslocked(&sched_smt_present);
9090
9091 sched_core_cpu_deactivate(cpu);
9092 #endif
9093
9094 if (!sched_smp_initialized)
9095 return 0;
9096
9097 ret = cpuset_cpu_inactive(cpu);
9098 if (ret) {
9099 balance_push_set(cpu, false);
9100 set_cpu_active(cpu, true);
9101 return ret;
9102 }
9103 sched_domains_numa_masks_clear(cpu);
9104 return 0;
9105 }
9106
sched_rq_cpu_starting(unsigned int cpu)9107 static void sched_rq_cpu_starting(unsigned int cpu)
9108 {
9109 struct rq *rq = cpu_rq(cpu);
9110
9111 rq->calc_load_update = calc_load_update;
9112 update_max_interval();
9113 }
9114
sched_cpu_starting(unsigned int cpu)9115 int sched_cpu_starting(unsigned int cpu)
9116 {
9117 sched_core_cpu_starting(cpu);
9118 sched_rq_cpu_starting(cpu);
9119 sched_tick_start(cpu);
9120 return 0;
9121 }
9122
9123 #ifdef CONFIG_HOTPLUG_CPU
9124
9125 /*
9126 * Invoked immediately before the stopper thread is invoked to bring the
9127 * CPU down completely. At this point all per CPU kthreads except the
9128 * hotplug thread (current) and the stopper thread (inactive) have been
9129 * either parked or have been unbound from the outgoing CPU. Ensure that
9130 * any of those which might be on the way out are gone.
9131 *
9132 * If after this point a bound task is being woken on this CPU then the
9133 * responsible hotplug callback has failed to do it's job.
9134 * sched_cpu_dying() will catch it with the appropriate fireworks.
9135 */
sched_cpu_wait_empty(unsigned int cpu)9136 int sched_cpu_wait_empty(unsigned int cpu)
9137 {
9138 balance_hotplug_wait();
9139 return 0;
9140 }
9141
9142 /*
9143 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9144 * might have. Called from the CPU stopper task after ensuring that the
9145 * stopper is the last running task on the CPU, so nr_active count is
9146 * stable. We need to take the teardown thread which is calling this into
9147 * account, so we hand in adjust = 1 to the load calculation.
9148 *
9149 * Also see the comment "Global load-average calculations".
9150 */
calc_load_migrate(struct rq * rq)9151 static void calc_load_migrate(struct rq *rq)
9152 {
9153 long delta = calc_load_fold_active(rq, 1);
9154
9155 if (delta)
9156 atomic_long_add(delta, &calc_load_tasks);
9157 }
9158
dump_rq_tasks(struct rq * rq,const char * loglvl)9159 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9160 {
9161 struct task_struct *g, *p;
9162 int cpu = cpu_of(rq);
9163
9164 lockdep_assert_rq_held(rq);
9165
9166 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9167 for_each_process_thread(g, p) {
9168 if (task_cpu(p) != cpu)
9169 continue;
9170
9171 if (!task_on_rq_queued(p))
9172 continue;
9173
9174 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9175 }
9176 }
9177
sched_cpu_dying(unsigned int cpu)9178 int sched_cpu_dying(unsigned int cpu)
9179 {
9180 struct rq *rq = cpu_rq(cpu);
9181 struct rq_flags rf;
9182
9183 /* Handle pending wakeups and then migrate everything off */
9184 sched_tick_stop(cpu);
9185
9186 rq_lock_irqsave(rq, &rf);
9187 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9188 WARN(true, "Dying CPU not properly vacated!");
9189 dump_rq_tasks(rq, KERN_WARNING);
9190 }
9191 rq_unlock_irqrestore(rq, &rf);
9192
9193 calc_load_migrate(rq);
9194 update_max_interval();
9195 hrtick_clear(rq);
9196 sched_core_cpu_dying(cpu);
9197 return 0;
9198 }
9199 #endif
9200
sched_init_smp(void)9201 void __init sched_init_smp(void)
9202 {
9203 sched_init_numa();
9204
9205 /*
9206 * There's no userspace yet to cause hotplug operations; hence all the
9207 * CPU masks are stable and all blatant races in the below code cannot
9208 * happen.
9209 */
9210 mutex_lock(&sched_domains_mutex);
9211 sched_init_domains(cpu_active_mask);
9212 mutex_unlock(&sched_domains_mutex);
9213
9214 /* Move init over to a non-isolated CPU */
9215 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
9216 BUG();
9217 current->flags &= ~PF_NO_SETAFFINITY;
9218 sched_init_granularity();
9219
9220 init_sched_rt_class();
9221 init_sched_dl_class();
9222
9223 sched_smp_initialized = true;
9224 }
9225
migration_init(void)9226 static int __init migration_init(void)
9227 {
9228 sched_cpu_starting(smp_processor_id());
9229 return 0;
9230 }
9231 early_initcall(migration_init);
9232
9233 #else
sched_init_smp(void)9234 void __init sched_init_smp(void)
9235 {
9236 sched_init_granularity();
9237 }
9238 #endif /* CONFIG_SMP */
9239
in_sched_functions(unsigned long addr)9240 int in_sched_functions(unsigned long addr)
9241 {
9242 return in_lock_functions(addr) ||
9243 (addr >= (unsigned long)__sched_text_start
9244 && addr < (unsigned long)__sched_text_end);
9245 }
9246
9247 #ifdef CONFIG_CGROUP_SCHED
9248 /*
9249 * Default task group.
9250 * Every task in system belongs to this group at bootup.
9251 */
9252 struct task_group root_task_group;
9253 LIST_HEAD(task_groups);
9254
9255 /* Cacheline aligned slab cache for task_group */
9256 static struct kmem_cache *task_group_cache __read_mostly;
9257 #endif
9258
9259 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9260 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9261
sched_init(void)9262 void __init sched_init(void)
9263 {
9264 unsigned long ptr = 0;
9265 int i;
9266
9267 /* Make sure the linker didn't screw up */
9268 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9269 &fair_sched_class + 1 != &rt_sched_class ||
9270 &rt_sched_class + 1 != &dl_sched_class);
9271 #ifdef CONFIG_SMP
9272 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9273 #endif
9274
9275 wait_bit_init();
9276
9277 #ifdef CONFIG_FAIR_GROUP_SCHED
9278 ptr += 2 * nr_cpu_ids * sizeof(void **);
9279 #endif
9280 #ifdef CONFIG_RT_GROUP_SCHED
9281 ptr += 2 * nr_cpu_ids * sizeof(void **);
9282 #endif
9283 if (ptr) {
9284 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9285
9286 #ifdef CONFIG_FAIR_GROUP_SCHED
9287 root_task_group.se = (struct sched_entity **)ptr;
9288 ptr += nr_cpu_ids * sizeof(void **);
9289
9290 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9291 ptr += nr_cpu_ids * sizeof(void **);
9292
9293 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9294 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9295 #endif /* CONFIG_FAIR_GROUP_SCHED */
9296 #ifdef CONFIG_RT_GROUP_SCHED
9297 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9298 ptr += nr_cpu_ids * sizeof(void **);
9299
9300 root_task_group.rt_rq = (struct rt_rq **)ptr;
9301 ptr += nr_cpu_ids * sizeof(void **);
9302
9303 #endif /* CONFIG_RT_GROUP_SCHED */
9304 }
9305 #ifdef CONFIG_CPUMASK_OFFSTACK
9306 for_each_possible_cpu(i) {
9307 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9308 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9309 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9310 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9311 }
9312 #endif /* CONFIG_CPUMASK_OFFSTACK */
9313
9314 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9315 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9316
9317 #ifdef CONFIG_SMP
9318 init_defrootdomain();
9319 #endif
9320
9321 #ifdef CONFIG_RT_GROUP_SCHED
9322 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9323 global_rt_period(), global_rt_runtime());
9324 #endif /* CONFIG_RT_GROUP_SCHED */
9325
9326 #ifdef CONFIG_CGROUP_SCHED
9327 task_group_cache = KMEM_CACHE(task_group, 0);
9328
9329 list_add(&root_task_group.list, &task_groups);
9330 INIT_LIST_HEAD(&root_task_group.children);
9331 INIT_LIST_HEAD(&root_task_group.siblings);
9332 autogroup_init(&init_task);
9333 #endif /* CONFIG_CGROUP_SCHED */
9334
9335 for_each_possible_cpu(i) {
9336 struct rq *rq;
9337
9338 rq = cpu_rq(i);
9339 raw_spin_lock_init(&rq->__lock);
9340 rq->nr_running = 0;
9341 rq->calc_load_active = 0;
9342 rq->calc_load_update = jiffies + LOAD_FREQ;
9343 init_cfs_rq(&rq->cfs);
9344 init_rt_rq(&rq->rt);
9345 init_dl_rq(&rq->dl);
9346 #ifdef CONFIG_FAIR_GROUP_SCHED
9347 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9348 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9349 /*
9350 * How much CPU bandwidth does root_task_group get?
9351 *
9352 * In case of task-groups formed thr' the cgroup filesystem, it
9353 * gets 100% of the CPU resources in the system. This overall
9354 * system CPU resource is divided among the tasks of
9355 * root_task_group and its child task-groups in a fair manner,
9356 * based on each entity's (task or task-group's) weight
9357 * (se->load.weight).
9358 *
9359 * In other words, if root_task_group has 10 tasks of weight
9360 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9361 * then A0's share of the CPU resource is:
9362 *
9363 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9364 *
9365 * We achieve this by letting root_task_group's tasks sit
9366 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9367 */
9368 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9369 #endif /* CONFIG_FAIR_GROUP_SCHED */
9370
9371 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9372 #ifdef CONFIG_RT_GROUP_SCHED
9373 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9374 #endif
9375 #ifdef CONFIG_SMP
9376 rq->sd = NULL;
9377 rq->rd = NULL;
9378 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9379 rq->balance_callback = &balance_push_callback;
9380 rq->active_balance = 0;
9381 rq->next_balance = jiffies;
9382 rq->push_cpu = 0;
9383 rq->cpu = i;
9384 rq->online = 0;
9385 rq->idle_stamp = 0;
9386 rq->avg_idle = 2*sysctl_sched_migration_cost;
9387 rq->wake_stamp = jiffies;
9388 rq->wake_avg_idle = rq->avg_idle;
9389 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9390
9391 INIT_LIST_HEAD(&rq->cfs_tasks);
9392
9393 rq_attach_root(rq, &def_root_domain);
9394 #ifdef CONFIG_NO_HZ_COMMON
9395 rq->last_blocked_load_update_tick = jiffies;
9396 atomic_set(&rq->nohz_flags, 0);
9397
9398 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9399 #endif
9400 #ifdef CONFIG_HOTPLUG_CPU
9401 rcuwait_init(&rq->hotplug_wait);
9402 #endif
9403 #endif /* CONFIG_SMP */
9404 hrtick_rq_init(rq);
9405 atomic_set(&rq->nr_iowait, 0);
9406
9407 #ifdef CONFIG_SCHED_CORE
9408 rq->core = rq;
9409 rq->core_pick = NULL;
9410 rq->core_enabled = 0;
9411 rq->core_tree = RB_ROOT;
9412 rq->core_forceidle = false;
9413
9414 rq->core_cookie = 0UL;
9415 #endif
9416 }
9417
9418 set_load_weight(&init_task, false);
9419
9420 /*
9421 * The boot idle thread does lazy MMU switching as well:
9422 */
9423 mmgrab(&init_mm);
9424 enter_lazy_tlb(&init_mm, current);
9425
9426 /*
9427 * Make us the idle thread. Technically, schedule() should not be
9428 * called from this thread, however somewhere below it might be,
9429 * but because we are the idle thread, we just pick up running again
9430 * when this runqueue becomes "idle".
9431 */
9432 init_idle(current, smp_processor_id());
9433
9434 calc_load_update = jiffies + LOAD_FREQ;
9435
9436 #ifdef CONFIG_SMP
9437 idle_thread_set_boot_cpu();
9438 balance_push_set(smp_processor_id(), false);
9439 #endif
9440 init_sched_fair_class();
9441
9442 psi_init();
9443
9444 init_uclamp();
9445
9446 preempt_dynamic_init();
9447
9448 scheduler_running = 1;
9449 }
9450
9451 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9452
__might_sleep(const char * file,int line)9453 void __might_sleep(const char *file, int line)
9454 {
9455 unsigned int state = get_current_state();
9456 /*
9457 * Blocking primitives will set (and therefore destroy) current->state,
9458 * since we will exit with TASK_RUNNING make sure we enter with it,
9459 * otherwise we will destroy state.
9460 */
9461 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9462 "do not call blocking ops when !TASK_RUNNING; "
9463 "state=%x set at [<%p>] %pS\n", state,
9464 (void *)current->task_state_change,
9465 (void *)current->task_state_change);
9466
9467 __might_resched(file, line, 0);
9468 }
9469 EXPORT_SYMBOL(__might_sleep);
9470
print_preempt_disable_ip(int preempt_offset,unsigned long ip)9471 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9472 {
9473 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9474 return;
9475
9476 if (preempt_count() == preempt_offset)
9477 return;
9478
9479 pr_err("Preemption disabled at:");
9480 print_ip_sym(KERN_ERR, ip);
9481 }
9482
resched_offsets_ok(unsigned int offsets)9483 static inline bool resched_offsets_ok(unsigned int offsets)
9484 {
9485 unsigned int nested = preempt_count();
9486
9487 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9488
9489 return nested == offsets;
9490 }
9491
__might_resched(const char * file,int line,unsigned int offsets)9492 void __might_resched(const char *file, int line, unsigned int offsets)
9493 {
9494 /* Ratelimiting timestamp: */
9495 static unsigned long prev_jiffy;
9496
9497 unsigned long preempt_disable_ip;
9498
9499 /* WARN_ON_ONCE() by default, no rate limit required: */
9500 rcu_sleep_check();
9501
9502 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9503 !is_idle_task(current) && !current->non_block_count) ||
9504 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9505 oops_in_progress)
9506 return;
9507
9508 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9509 return;
9510 prev_jiffy = jiffies;
9511
9512 /* Save this before calling printk(), since that will clobber it: */
9513 preempt_disable_ip = get_preempt_disable_ip(current);
9514
9515 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9516 file, line);
9517 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9518 in_atomic(), irqs_disabled(), current->non_block_count,
9519 current->pid, current->comm);
9520 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9521 offsets & MIGHT_RESCHED_PREEMPT_MASK);
9522
9523 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9524 pr_err("RCU nest depth: %d, expected: %u\n",
9525 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9526 }
9527
9528 if (task_stack_end_corrupted(current))
9529 pr_emerg("Thread overran stack, or stack corrupted\n");
9530
9531 debug_show_held_locks(current);
9532 if (irqs_disabled())
9533 print_irqtrace_events(current);
9534
9535 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9536 preempt_disable_ip);
9537
9538 dump_stack();
9539 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9540 }
9541 EXPORT_SYMBOL(__might_resched);
9542
__cant_sleep(const char * file,int line,int preempt_offset)9543 void __cant_sleep(const char *file, int line, int preempt_offset)
9544 {
9545 static unsigned long prev_jiffy;
9546
9547 if (irqs_disabled())
9548 return;
9549
9550 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9551 return;
9552
9553 if (preempt_count() > preempt_offset)
9554 return;
9555
9556 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9557 return;
9558 prev_jiffy = jiffies;
9559
9560 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9561 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9562 in_atomic(), irqs_disabled(),
9563 current->pid, current->comm);
9564
9565 debug_show_held_locks(current);
9566 dump_stack();
9567 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9568 }
9569 EXPORT_SYMBOL_GPL(__cant_sleep);
9570
9571 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)9572 void __cant_migrate(const char *file, int line)
9573 {
9574 static unsigned long prev_jiffy;
9575
9576 if (irqs_disabled())
9577 return;
9578
9579 if (is_migration_disabled(current))
9580 return;
9581
9582 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9583 return;
9584
9585 if (preempt_count() > 0)
9586 return;
9587
9588 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9589 return;
9590 prev_jiffy = jiffies;
9591
9592 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9593 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9594 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9595 current->pid, current->comm);
9596
9597 debug_show_held_locks(current);
9598 dump_stack();
9599 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9600 }
9601 EXPORT_SYMBOL_GPL(__cant_migrate);
9602 #endif
9603 #endif
9604
9605 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)9606 void normalize_rt_tasks(void)
9607 {
9608 struct task_struct *g, *p;
9609 struct sched_attr attr = {
9610 .sched_policy = SCHED_NORMAL,
9611 };
9612
9613 read_lock(&tasklist_lock);
9614 for_each_process_thread(g, p) {
9615 /*
9616 * Only normalize user tasks:
9617 */
9618 if (p->flags & PF_KTHREAD)
9619 continue;
9620
9621 p->se.exec_start = 0;
9622 schedstat_set(p->stats.wait_start, 0);
9623 schedstat_set(p->stats.sleep_start, 0);
9624 schedstat_set(p->stats.block_start, 0);
9625
9626 if (!dl_task(p) && !rt_task(p)) {
9627 /*
9628 * Renice negative nice level userspace
9629 * tasks back to 0:
9630 */
9631 if (task_nice(p) < 0)
9632 set_user_nice(p, 0);
9633 continue;
9634 }
9635
9636 __sched_setscheduler(p, &attr, false, false);
9637 }
9638 read_unlock(&tasklist_lock);
9639 }
9640
9641 #endif /* CONFIG_MAGIC_SYSRQ */
9642
9643 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9644 /*
9645 * These functions are only useful for the IA64 MCA handling, or kdb.
9646 *
9647 * They can only be called when the whole system has been
9648 * stopped - every CPU needs to be quiescent, and no scheduling
9649 * activity can take place. Using them for anything else would
9650 * be a serious bug, and as a result, they aren't even visible
9651 * under any other configuration.
9652 */
9653
9654 /**
9655 * curr_task - return the current task for a given CPU.
9656 * @cpu: the processor in question.
9657 *
9658 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9659 *
9660 * Return: The current task for @cpu.
9661 */
curr_task(int cpu)9662 struct task_struct *curr_task(int cpu)
9663 {
9664 return cpu_curr(cpu);
9665 }
9666
9667 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9668
9669 #ifdef CONFIG_IA64
9670 /**
9671 * ia64_set_curr_task - set the current task for a given CPU.
9672 * @cpu: the processor in question.
9673 * @p: the task pointer to set.
9674 *
9675 * Description: This function must only be used when non-maskable interrupts
9676 * are serviced on a separate stack. It allows the architecture to switch the
9677 * notion of the current task on a CPU in a non-blocking manner. This function
9678 * must be called with all CPU's synchronized, and interrupts disabled, the
9679 * and caller must save the original value of the current task (see
9680 * curr_task() above) and restore that value before reenabling interrupts and
9681 * re-starting the system.
9682 *
9683 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9684 */
ia64_set_curr_task(int cpu,struct task_struct * p)9685 void ia64_set_curr_task(int cpu, struct task_struct *p)
9686 {
9687 cpu_curr(cpu) = p;
9688 }
9689
9690 #endif
9691
9692 #ifdef CONFIG_CGROUP_SCHED
9693 /* task_group_lock serializes the addition/removal of task groups */
9694 static DEFINE_SPINLOCK(task_group_lock);
9695
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)9696 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9697 struct task_group *parent)
9698 {
9699 #ifdef CONFIG_UCLAMP_TASK_GROUP
9700 enum uclamp_id clamp_id;
9701
9702 for_each_clamp_id(clamp_id) {
9703 uclamp_se_set(&tg->uclamp_req[clamp_id],
9704 uclamp_none(clamp_id), false);
9705 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9706 }
9707 #endif
9708 }
9709
sched_free_group(struct task_group * tg)9710 static void sched_free_group(struct task_group *tg)
9711 {
9712 free_fair_sched_group(tg);
9713 free_rt_sched_group(tg);
9714 autogroup_free(tg);
9715 kmem_cache_free(task_group_cache, tg);
9716 }
9717
sched_free_group_rcu(struct rcu_head * rcu)9718 static void sched_free_group_rcu(struct rcu_head *rcu)
9719 {
9720 sched_free_group(container_of(rcu, struct task_group, rcu));
9721 }
9722
sched_unregister_group(struct task_group * tg)9723 static void sched_unregister_group(struct task_group *tg)
9724 {
9725 unregister_fair_sched_group(tg);
9726 unregister_rt_sched_group(tg);
9727 /*
9728 * We have to wait for yet another RCU grace period to expire, as
9729 * print_cfs_stats() might run concurrently.
9730 */
9731 call_rcu(&tg->rcu, sched_free_group_rcu);
9732 }
9733
9734 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)9735 struct task_group *sched_create_group(struct task_group *parent)
9736 {
9737 struct task_group *tg;
9738
9739 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9740 if (!tg)
9741 return ERR_PTR(-ENOMEM);
9742
9743 if (!alloc_fair_sched_group(tg, parent))
9744 goto err;
9745
9746 if (!alloc_rt_sched_group(tg, parent))
9747 goto err;
9748
9749 alloc_uclamp_sched_group(tg, parent);
9750
9751 return tg;
9752
9753 err:
9754 sched_free_group(tg);
9755 return ERR_PTR(-ENOMEM);
9756 }
9757
sched_online_group(struct task_group * tg,struct task_group * parent)9758 void sched_online_group(struct task_group *tg, struct task_group *parent)
9759 {
9760 unsigned long flags;
9761
9762 spin_lock_irqsave(&task_group_lock, flags);
9763 list_add_rcu(&tg->list, &task_groups);
9764
9765 /* Root should already exist: */
9766 WARN_ON(!parent);
9767
9768 tg->parent = parent;
9769 INIT_LIST_HEAD(&tg->children);
9770 list_add_rcu(&tg->siblings, &parent->children);
9771 spin_unlock_irqrestore(&task_group_lock, flags);
9772
9773 online_fair_sched_group(tg);
9774 }
9775
9776 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)9777 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9778 {
9779 /* Now it should be safe to free those cfs_rqs: */
9780 sched_unregister_group(container_of(rhp, struct task_group, rcu));
9781 }
9782
sched_destroy_group(struct task_group * tg)9783 void sched_destroy_group(struct task_group *tg)
9784 {
9785 /* Wait for possible concurrent references to cfs_rqs complete: */
9786 call_rcu(&tg->rcu, sched_unregister_group_rcu);
9787 }
9788
sched_release_group(struct task_group * tg)9789 void sched_release_group(struct task_group *tg)
9790 {
9791 unsigned long flags;
9792
9793 /*
9794 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9795 * sched_cfs_period_timer()).
9796 *
9797 * For this to be effective, we have to wait for all pending users of
9798 * this task group to leave their RCU critical section to ensure no new
9799 * user will see our dying task group any more. Specifically ensure
9800 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9801 *
9802 * We therefore defer calling unregister_fair_sched_group() to
9803 * sched_unregister_group() which is guarantied to get called only after the
9804 * current RCU grace period has expired.
9805 */
9806 spin_lock_irqsave(&task_group_lock, flags);
9807 list_del_rcu(&tg->list);
9808 list_del_rcu(&tg->siblings);
9809 spin_unlock_irqrestore(&task_group_lock, flags);
9810 }
9811
sched_change_group(struct task_struct * tsk,int type)9812 static void sched_change_group(struct task_struct *tsk, int type)
9813 {
9814 struct task_group *tg;
9815
9816 /*
9817 * All callers are synchronized by task_rq_lock(); we do not use RCU
9818 * which is pointless here. Thus, we pass "true" to task_css_check()
9819 * to prevent lockdep warnings.
9820 */
9821 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9822 struct task_group, css);
9823 tg = autogroup_task_group(tsk, tg);
9824 tsk->sched_task_group = tg;
9825
9826 #ifdef CONFIG_FAIR_GROUP_SCHED
9827 if (tsk->sched_class->task_change_group)
9828 tsk->sched_class->task_change_group(tsk, type);
9829 else
9830 #endif
9831 set_task_rq(tsk, task_cpu(tsk));
9832 }
9833
9834 /*
9835 * Change task's runqueue when it moves between groups.
9836 *
9837 * The caller of this function should have put the task in its new group by
9838 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9839 * its new group.
9840 */
sched_move_task(struct task_struct * tsk)9841 void sched_move_task(struct task_struct *tsk)
9842 {
9843 int queued, running, queue_flags =
9844 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9845 struct rq_flags rf;
9846 struct rq *rq;
9847
9848 rq = task_rq_lock(tsk, &rf);
9849 update_rq_clock(rq);
9850
9851 running = task_current(rq, tsk);
9852 queued = task_on_rq_queued(tsk);
9853
9854 if (queued)
9855 dequeue_task(rq, tsk, queue_flags);
9856 if (running)
9857 put_prev_task(rq, tsk);
9858
9859 sched_change_group(tsk, TASK_MOVE_GROUP);
9860
9861 if (queued)
9862 enqueue_task(rq, tsk, queue_flags);
9863 if (running) {
9864 set_next_task(rq, tsk);
9865 /*
9866 * After changing group, the running task may have joined a
9867 * throttled one but it's still the running task. Trigger a
9868 * resched to make sure that task can still run.
9869 */
9870 resched_curr(rq);
9871 }
9872
9873 task_rq_unlock(rq, tsk, &rf);
9874 }
9875
css_tg(struct cgroup_subsys_state * css)9876 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9877 {
9878 return css ? container_of(css, struct task_group, css) : NULL;
9879 }
9880
9881 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)9882 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9883 {
9884 struct task_group *parent = css_tg(parent_css);
9885 struct task_group *tg;
9886
9887 if (!parent) {
9888 /* This is early initialization for the top cgroup */
9889 return &root_task_group.css;
9890 }
9891
9892 tg = sched_create_group(parent);
9893 if (IS_ERR(tg))
9894 return ERR_PTR(-ENOMEM);
9895
9896 return &tg->css;
9897 }
9898
9899 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)9900 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9901 {
9902 struct task_group *tg = css_tg(css);
9903 struct task_group *parent = css_tg(css->parent);
9904
9905 if (parent)
9906 sched_online_group(tg, parent);
9907
9908 #ifdef CONFIG_UCLAMP_TASK_GROUP
9909 /* Propagate the effective uclamp value for the new group */
9910 mutex_lock(&uclamp_mutex);
9911 rcu_read_lock();
9912 cpu_util_update_eff(css);
9913 rcu_read_unlock();
9914 mutex_unlock(&uclamp_mutex);
9915 #endif
9916
9917 return 0;
9918 }
9919
cpu_cgroup_css_released(struct cgroup_subsys_state * css)9920 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9921 {
9922 struct task_group *tg = css_tg(css);
9923
9924 sched_release_group(tg);
9925 }
9926
cpu_cgroup_css_free(struct cgroup_subsys_state * css)9927 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9928 {
9929 struct task_group *tg = css_tg(css);
9930
9931 /*
9932 * Relies on the RCU grace period between css_released() and this.
9933 */
9934 sched_unregister_group(tg);
9935 }
9936
9937 /*
9938 * This is called before wake_up_new_task(), therefore we really only
9939 * have to set its group bits, all the other stuff does not apply.
9940 */
cpu_cgroup_fork(struct task_struct * task)9941 static void cpu_cgroup_fork(struct task_struct *task)
9942 {
9943 struct rq_flags rf;
9944 struct rq *rq;
9945
9946 rq = task_rq_lock(task, &rf);
9947
9948 update_rq_clock(rq);
9949 sched_change_group(task, TASK_SET_GROUP);
9950
9951 task_rq_unlock(rq, task, &rf);
9952 }
9953
cpu_cgroup_can_attach(struct cgroup_taskset * tset)9954 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9955 {
9956 struct task_struct *task;
9957 struct cgroup_subsys_state *css;
9958 int ret = 0;
9959
9960 cgroup_taskset_for_each(task, css, tset) {
9961 #ifdef CONFIG_RT_GROUP_SCHED
9962 if (!sched_rt_can_attach(css_tg(css), task))
9963 return -EINVAL;
9964 #endif
9965 /*
9966 * Serialize against wake_up_new_task() such that if it's
9967 * running, we're sure to observe its full state.
9968 */
9969 raw_spin_lock_irq(&task->pi_lock);
9970 /*
9971 * Avoid calling sched_move_task() before wake_up_new_task()
9972 * has happened. This would lead to problems with PELT, due to
9973 * move wanting to detach+attach while we're not attached yet.
9974 */
9975 if (READ_ONCE(task->__state) == TASK_NEW)
9976 ret = -EINVAL;
9977 raw_spin_unlock_irq(&task->pi_lock);
9978
9979 if (ret)
9980 break;
9981 }
9982 return ret;
9983 }
9984
cpu_cgroup_attach(struct cgroup_taskset * tset)9985 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9986 {
9987 struct task_struct *task;
9988 struct cgroup_subsys_state *css;
9989
9990 cgroup_taskset_for_each(task, css, tset)
9991 sched_move_task(task);
9992 }
9993
9994 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)9995 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9996 {
9997 struct cgroup_subsys_state *top_css = css;
9998 struct uclamp_se *uc_parent = NULL;
9999 struct uclamp_se *uc_se = NULL;
10000 unsigned int eff[UCLAMP_CNT];
10001 enum uclamp_id clamp_id;
10002 unsigned int clamps;
10003
10004 lockdep_assert_held(&uclamp_mutex);
10005 SCHED_WARN_ON(!rcu_read_lock_held());
10006
10007 css_for_each_descendant_pre(css, top_css) {
10008 uc_parent = css_tg(css)->parent
10009 ? css_tg(css)->parent->uclamp : NULL;
10010
10011 for_each_clamp_id(clamp_id) {
10012 /* Assume effective clamps matches requested clamps */
10013 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10014 /* Cap effective clamps with parent's effective clamps */
10015 if (uc_parent &&
10016 eff[clamp_id] > uc_parent[clamp_id].value) {
10017 eff[clamp_id] = uc_parent[clamp_id].value;
10018 }
10019 }
10020 /* Ensure protection is always capped by limit */
10021 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10022
10023 /* Propagate most restrictive effective clamps */
10024 clamps = 0x0;
10025 uc_se = css_tg(css)->uclamp;
10026 for_each_clamp_id(clamp_id) {
10027 if (eff[clamp_id] == uc_se[clamp_id].value)
10028 continue;
10029 uc_se[clamp_id].value = eff[clamp_id];
10030 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10031 clamps |= (0x1 << clamp_id);
10032 }
10033 if (!clamps) {
10034 css = css_rightmost_descendant(css);
10035 continue;
10036 }
10037
10038 /* Immediately update descendants RUNNABLE tasks */
10039 uclamp_update_active_tasks(css);
10040 }
10041 }
10042
10043 /*
10044 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10045 * C expression. Since there is no way to convert a macro argument (N) into a
10046 * character constant, use two levels of macros.
10047 */
10048 #define _POW10(exp) ((unsigned int)1e##exp)
10049 #define POW10(exp) _POW10(exp)
10050
10051 struct uclamp_request {
10052 #define UCLAMP_PERCENT_SHIFT 2
10053 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10054 s64 percent;
10055 u64 util;
10056 int ret;
10057 };
10058
10059 static inline struct uclamp_request
capacity_from_percent(char * buf)10060 capacity_from_percent(char *buf)
10061 {
10062 struct uclamp_request req = {
10063 .percent = UCLAMP_PERCENT_SCALE,
10064 .util = SCHED_CAPACITY_SCALE,
10065 .ret = 0,
10066 };
10067
10068 buf = strim(buf);
10069 if (strcmp(buf, "max")) {
10070 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10071 &req.percent);
10072 if (req.ret)
10073 return req;
10074 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10075 req.ret = -ERANGE;
10076 return req;
10077 }
10078
10079 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10080 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10081 }
10082
10083 return req;
10084 }
10085
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10086 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10087 size_t nbytes, loff_t off,
10088 enum uclamp_id clamp_id)
10089 {
10090 struct uclamp_request req;
10091 struct task_group *tg;
10092
10093 req = capacity_from_percent(buf);
10094 if (req.ret)
10095 return req.ret;
10096
10097 static_branch_enable(&sched_uclamp_used);
10098
10099 mutex_lock(&uclamp_mutex);
10100 rcu_read_lock();
10101
10102 tg = css_tg(of_css(of));
10103 if (tg->uclamp_req[clamp_id].value != req.util)
10104 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10105
10106 /*
10107 * Because of not recoverable conversion rounding we keep track of the
10108 * exact requested value
10109 */
10110 tg->uclamp_pct[clamp_id] = req.percent;
10111
10112 /* Update effective clamps to track the most restrictive value */
10113 cpu_util_update_eff(of_css(of));
10114
10115 rcu_read_unlock();
10116 mutex_unlock(&uclamp_mutex);
10117
10118 return nbytes;
10119 }
10120
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10121 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10122 char *buf, size_t nbytes,
10123 loff_t off)
10124 {
10125 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10126 }
10127
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10128 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10129 char *buf, size_t nbytes,
10130 loff_t off)
10131 {
10132 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10133 }
10134
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10135 static inline void cpu_uclamp_print(struct seq_file *sf,
10136 enum uclamp_id clamp_id)
10137 {
10138 struct task_group *tg;
10139 u64 util_clamp;
10140 u64 percent;
10141 u32 rem;
10142
10143 rcu_read_lock();
10144 tg = css_tg(seq_css(sf));
10145 util_clamp = tg->uclamp_req[clamp_id].value;
10146 rcu_read_unlock();
10147
10148 if (util_clamp == SCHED_CAPACITY_SCALE) {
10149 seq_puts(sf, "max\n");
10150 return;
10151 }
10152
10153 percent = tg->uclamp_pct[clamp_id];
10154 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10155 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10156 }
10157
cpu_uclamp_min_show(struct seq_file * sf,void * v)10158 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10159 {
10160 cpu_uclamp_print(sf, UCLAMP_MIN);
10161 return 0;
10162 }
10163
cpu_uclamp_max_show(struct seq_file * sf,void * v)10164 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10165 {
10166 cpu_uclamp_print(sf, UCLAMP_MAX);
10167 return 0;
10168 }
10169 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10170
10171 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10172 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10173 struct cftype *cftype, u64 shareval)
10174 {
10175 if (shareval > scale_load_down(ULONG_MAX))
10176 shareval = MAX_SHARES;
10177 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10178 }
10179
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10180 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10181 struct cftype *cft)
10182 {
10183 struct task_group *tg = css_tg(css);
10184
10185 return (u64) scale_load_down(tg->shares);
10186 }
10187
10188 #ifdef CONFIG_CFS_BANDWIDTH
10189 static DEFINE_MUTEX(cfs_constraints_mutex);
10190
10191 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10192 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10193 /* More than 203 days if BW_SHIFT equals 20. */
10194 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10195
10196 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10197
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10198 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10199 u64 burst)
10200 {
10201 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10202 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10203
10204 if (tg == &root_task_group)
10205 return -EINVAL;
10206
10207 /*
10208 * Ensure we have at some amount of bandwidth every period. This is
10209 * to prevent reaching a state of large arrears when throttled via
10210 * entity_tick() resulting in prolonged exit starvation.
10211 */
10212 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10213 return -EINVAL;
10214
10215 /*
10216 * Likewise, bound things on the other side by preventing insane quota
10217 * periods. This also allows us to normalize in computing quota
10218 * feasibility.
10219 */
10220 if (period > max_cfs_quota_period)
10221 return -EINVAL;
10222
10223 /*
10224 * Bound quota to defend quota against overflow during bandwidth shift.
10225 */
10226 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10227 return -EINVAL;
10228
10229 if (quota != RUNTIME_INF && (burst > quota ||
10230 burst + quota > max_cfs_runtime))
10231 return -EINVAL;
10232
10233 /*
10234 * Prevent race between setting of cfs_rq->runtime_enabled and
10235 * unthrottle_offline_cfs_rqs().
10236 */
10237 cpus_read_lock();
10238 mutex_lock(&cfs_constraints_mutex);
10239 ret = __cfs_schedulable(tg, period, quota);
10240 if (ret)
10241 goto out_unlock;
10242
10243 runtime_enabled = quota != RUNTIME_INF;
10244 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10245 /*
10246 * If we need to toggle cfs_bandwidth_used, off->on must occur
10247 * before making related changes, and on->off must occur afterwards
10248 */
10249 if (runtime_enabled && !runtime_was_enabled)
10250 cfs_bandwidth_usage_inc();
10251 raw_spin_lock_irq(&cfs_b->lock);
10252 cfs_b->period = ns_to_ktime(period);
10253 cfs_b->quota = quota;
10254 cfs_b->burst = burst;
10255
10256 __refill_cfs_bandwidth_runtime(cfs_b);
10257
10258 /* Restart the period timer (if active) to handle new period expiry: */
10259 if (runtime_enabled)
10260 start_cfs_bandwidth(cfs_b);
10261
10262 raw_spin_unlock_irq(&cfs_b->lock);
10263
10264 for_each_online_cpu(i) {
10265 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10266 struct rq *rq = cfs_rq->rq;
10267 struct rq_flags rf;
10268
10269 rq_lock_irq(rq, &rf);
10270 cfs_rq->runtime_enabled = runtime_enabled;
10271 cfs_rq->runtime_remaining = 0;
10272
10273 if (cfs_rq->throttled)
10274 unthrottle_cfs_rq(cfs_rq);
10275 rq_unlock_irq(rq, &rf);
10276 }
10277 if (runtime_was_enabled && !runtime_enabled)
10278 cfs_bandwidth_usage_dec();
10279 out_unlock:
10280 mutex_unlock(&cfs_constraints_mutex);
10281 cpus_read_unlock();
10282
10283 return ret;
10284 }
10285
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10286 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10287 {
10288 u64 quota, period, burst;
10289
10290 period = ktime_to_ns(tg->cfs_bandwidth.period);
10291 burst = tg->cfs_bandwidth.burst;
10292 if (cfs_quota_us < 0)
10293 quota = RUNTIME_INF;
10294 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10295 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10296 else
10297 return -EINVAL;
10298
10299 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10300 }
10301
tg_get_cfs_quota(struct task_group * tg)10302 static long tg_get_cfs_quota(struct task_group *tg)
10303 {
10304 u64 quota_us;
10305
10306 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10307 return -1;
10308
10309 quota_us = tg->cfs_bandwidth.quota;
10310 do_div(quota_us, NSEC_PER_USEC);
10311
10312 return quota_us;
10313 }
10314
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10315 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10316 {
10317 u64 quota, period, burst;
10318
10319 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10320 return -EINVAL;
10321
10322 period = (u64)cfs_period_us * NSEC_PER_USEC;
10323 quota = tg->cfs_bandwidth.quota;
10324 burst = tg->cfs_bandwidth.burst;
10325
10326 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10327 }
10328
tg_get_cfs_period(struct task_group * tg)10329 static long tg_get_cfs_period(struct task_group *tg)
10330 {
10331 u64 cfs_period_us;
10332
10333 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10334 do_div(cfs_period_us, NSEC_PER_USEC);
10335
10336 return cfs_period_us;
10337 }
10338
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)10339 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10340 {
10341 u64 quota, period, burst;
10342
10343 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10344 return -EINVAL;
10345
10346 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10347 period = ktime_to_ns(tg->cfs_bandwidth.period);
10348 quota = tg->cfs_bandwidth.quota;
10349
10350 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10351 }
10352
tg_get_cfs_burst(struct task_group * tg)10353 static long tg_get_cfs_burst(struct task_group *tg)
10354 {
10355 u64 burst_us;
10356
10357 burst_us = tg->cfs_bandwidth.burst;
10358 do_div(burst_us, NSEC_PER_USEC);
10359
10360 return burst_us;
10361 }
10362
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10363 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10364 struct cftype *cft)
10365 {
10366 return tg_get_cfs_quota(css_tg(css));
10367 }
10368
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)10369 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10370 struct cftype *cftype, s64 cfs_quota_us)
10371 {
10372 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10373 }
10374
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10375 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10376 struct cftype *cft)
10377 {
10378 return tg_get_cfs_period(css_tg(css));
10379 }
10380
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)10381 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10382 struct cftype *cftype, u64 cfs_period_us)
10383 {
10384 return tg_set_cfs_period(css_tg(css), cfs_period_us);
10385 }
10386
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10387 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10388 struct cftype *cft)
10389 {
10390 return tg_get_cfs_burst(css_tg(css));
10391 }
10392
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)10393 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10394 struct cftype *cftype, u64 cfs_burst_us)
10395 {
10396 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10397 }
10398
10399 struct cfs_schedulable_data {
10400 struct task_group *tg;
10401 u64 period, quota;
10402 };
10403
10404 /*
10405 * normalize group quota/period to be quota/max_period
10406 * note: units are usecs
10407 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)10408 static u64 normalize_cfs_quota(struct task_group *tg,
10409 struct cfs_schedulable_data *d)
10410 {
10411 u64 quota, period;
10412
10413 if (tg == d->tg) {
10414 period = d->period;
10415 quota = d->quota;
10416 } else {
10417 period = tg_get_cfs_period(tg);
10418 quota = tg_get_cfs_quota(tg);
10419 }
10420
10421 /* note: these should typically be equivalent */
10422 if (quota == RUNTIME_INF || quota == -1)
10423 return RUNTIME_INF;
10424
10425 return to_ratio(period, quota);
10426 }
10427
tg_cfs_schedulable_down(struct task_group * tg,void * data)10428 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10429 {
10430 struct cfs_schedulable_data *d = data;
10431 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10432 s64 quota = 0, parent_quota = -1;
10433
10434 if (!tg->parent) {
10435 quota = RUNTIME_INF;
10436 } else {
10437 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10438
10439 quota = normalize_cfs_quota(tg, d);
10440 parent_quota = parent_b->hierarchical_quota;
10441
10442 /*
10443 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10444 * always take the min. On cgroup1, only inherit when no
10445 * limit is set:
10446 */
10447 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10448 quota = min(quota, parent_quota);
10449 } else {
10450 if (quota == RUNTIME_INF)
10451 quota = parent_quota;
10452 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10453 return -EINVAL;
10454 }
10455 }
10456 cfs_b->hierarchical_quota = quota;
10457
10458 return 0;
10459 }
10460
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)10461 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10462 {
10463 int ret;
10464 struct cfs_schedulable_data data = {
10465 .tg = tg,
10466 .period = period,
10467 .quota = quota,
10468 };
10469
10470 if (quota != RUNTIME_INF) {
10471 do_div(data.period, NSEC_PER_USEC);
10472 do_div(data.quota, NSEC_PER_USEC);
10473 }
10474
10475 rcu_read_lock();
10476 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10477 rcu_read_unlock();
10478
10479 return ret;
10480 }
10481
cpu_cfs_stat_show(struct seq_file * sf,void * v)10482 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10483 {
10484 struct task_group *tg = css_tg(seq_css(sf));
10485 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10486
10487 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10488 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10489 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10490
10491 if (schedstat_enabled() && tg != &root_task_group) {
10492 struct sched_statistics *stats;
10493 u64 ws = 0;
10494 int i;
10495
10496 for_each_possible_cpu(i) {
10497 stats = __schedstats_from_se(tg->se[i]);
10498 ws += schedstat_val(stats->wait_sum);
10499 }
10500
10501 seq_printf(sf, "wait_sum %llu\n", ws);
10502 }
10503
10504 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10505 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10506
10507 return 0;
10508 }
10509 #endif /* CONFIG_CFS_BANDWIDTH */
10510 #endif /* CONFIG_FAIR_GROUP_SCHED */
10511
10512 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)10513 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10514 struct cftype *cft, s64 val)
10515 {
10516 return sched_group_set_rt_runtime(css_tg(css), val);
10517 }
10518
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)10519 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10520 struct cftype *cft)
10521 {
10522 return sched_group_rt_runtime(css_tg(css));
10523 }
10524
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)10525 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10526 struct cftype *cftype, u64 rt_period_us)
10527 {
10528 return sched_group_set_rt_period(css_tg(css), rt_period_us);
10529 }
10530
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)10531 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10532 struct cftype *cft)
10533 {
10534 return sched_group_rt_period(css_tg(css));
10535 }
10536 #endif /* CONFIG_RT_GROUP_SCHED */
10537
10538 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10539 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10540 struct cftype *cft)
10541 {
10542 return css_tg(css)->idle;
10543 }
10544
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)10545 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10546 struct cftype *cft, s64 idle)
10547 {
10548 return sched_group_set_idle(css_tg(css), idle);
10549 }
10550 #endif
10551
10552 static struct cftype cpu_legacy_files[] = {
10553 #ifdef CONFIG_FAIR_GROUP_SCHED
10554 {
10555 .name = "shares",
10556 .read_u64 = cpu_shares_read_u64,
10557 .write_u64 = cpu_shares_write_u64,
10558 },
10559 {
10560 .name = "idle",
10561 .read_s64 = cpu_idle_read_s64,
10562 .write_s64 = cpu_idle_write_s64,
10563 },
10564 #endif
10565 #ifdef CONFIG_CFS_BANDWIDTH
10566 {
10567 .name = "cfs_quota_us",
10568 .read_s64 = cpu_cfs_quota_read_s64,
10569 .write_s64 = cpu_cfs_quota_write_s64,
10570 },
10571 {
10572 .name = "cfs_period_us",
10573 .read_u64 = cpu_cfs_period_read_u64,
10574 .write_u64 = cpu_cfs_period_write_u64,
10575 },
10576 {
10577 .name = "cfs_burst_us",
10578 .read_u64 = cpu_cfs_burst_read_u64,
10579 .write_u64 = cpu_cfs_burst_write_u64,
10580 },
10581 {
10582 .name = "stat",
10583 .seq_show = cpu_cfs_stat_show,
10584 },
10585 #endif
10586 #ifdef CONFIG_RT_GROUP_SCHED
10587 {
10588 .name = "rt_runtime_us",
10589 .read_s64 = cpu_rt_runtime_read,
10590 .write_s64 = cpu_rt_runtime_write,
10591 },
10592 {
10593 .name = "rt_period_us",
10594 .read_u64 = cpu_rt_period_read_uint,
10595 .write_u64 = cpu_rt_period_write_uint,
10596 },
10597 #endif
10598 #ifdef CONFIG_UCLAMP_TASK_GROUP
10599 {
10600 .name = "uclamp.min",
10601 .flags = CFTYPE_NOT_ON_ROOT,
10602 .seq_show = cpu_uclamp_min_show,
10603 .write = cpu_uclamp_min_write,
10604 },
10605 {
10606 .name = "uclamp.max",
10607 .flags = CFTYPE_NOT_ON_ROOT,
10608 .seq_show = cpu_uclamp_max_show,
10609 .write = cpu_uclamp_max_write,
10610 },
10611 #endif
10612 { } /* Terminate */
10613 };
10614
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)10615 static int cpu_extra_stat_show(struct seq_file *sf,
10616 struct cgroup_subsys_state *css)
10617 {
10618 #ifdef CONFIG_CFS_BANDWIDTH
10619 {
10620 struct task_group *tg = css_tg(css);
10621 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10622 u64 throttled_usec, burst_usec;
10623
10624 throttled_usec = cfs_b->throttled_time;
10625 do_div(throttled_usec, NSEC_PER_USEC);
10626 burst_usec = cfs_b->burst_time;
10627 do_div(burst_usec, NSEC_PER_USEC);
10628
10629 seq_printf(sf, "nr_periods %d\n"
10630 "nr_throttled %d\n"
10631 "throttled_usec %llu\n"
10632 "nr_bursts %d\n"
10633 "burst_usec %llu\n",
10634 cfs_b->nr_periods, cfs_b->nr_throttled,
10635 throttled_usec, cfs_b->nr_burst, burst_usec);
10636 }
10637 #endif
10638 return 0;
10639 }
10640
10641 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10642 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10643 struct cftype *cft)
10644 {
10645 struct task_group *tg = css_tg(css);
10646 u64 weight = scale_load_down(tg->shares);
10647
10648 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10649 }
10650
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)10651 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10652 struct cftype *cft, u64 weight)
10653 {
10654 /*
10655 * cgroup weight knobs should use the common MIN, DFL and MAX
10656 * values which are 1, 100 and 10000 respectively. While it loses
10657 * a bit of range on both ends, it maps pretty well onto the shares
10658 * value used by scheduler and the round-trip conversions preserve
10659 * the original value over the entire range.
10660 */
10661 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10662 return -ERANGE;
10663
10664 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10665
10666 return sched_group_set_shares(css_tg(css), scale_load(weight));
10667 }
10668
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10669 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10670 struct cftype *cft)
10671 {
10672 unsigned long weight = scale_load_down(css_tg(css)->shares);
10673 int last_delta = INT_MAX;
10674 int prio, delta;
10675
10676 /* find the closest nice value to the current weight */
10677 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10678 delta = abs(sched_prio_to_weight[prio] - weight);
10679 if (delta >= last_delta)
10680 break;
10681 last_delta = delta;
10682 }
10683
10684 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10685 }
10686
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)10687 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10688 struct cftype *cft, s64 nice)
10689 {
10690 unsigned long weight;
10691 int idx;
10692
10693 if (nice < MIN_NICE || nice > MAX_NICE)
10694 return -ERANGE;
10695
10696 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10697 idx = array_index_nospec(idx, 40);
10698 weight = sched_prio_to_weight[idx];
10699
10700 return sched_group_set_shares(css_tg(css), scale_load(weight));
10701 }
10702 #endif
10703
cpu_period_quota_print(struct seq_file * sf,long period,long quota)10704 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10705 long period, long quota)
10706 {
10707 if (quota < 0)
10708 seq_puts(sf, "max");
10709 else
10710 seq_printf(sf, "%ld", quota);
10711
10712 seq_printf(sf, " %ld\n", period);
10713 }
10714
10715 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)10716 static int __maybe_unused cpu_period_quota_parse(char *buf,
10717 u64 *periodp, u64 *quotap)
10718 {
10719 char tok[21]; /* U64_MAX */
10720
10721 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10722 return -EINVAL;
10723
10724 *periodp *= NSEC_PER_USEC;
10725
10726 if (sscanf(tok, "%llu", quotap))
10727 *quotap *= NSEC_PER_USEC;
10728 else if (!strcmp(tok, "max"))
10729 *quotap = RUNTIME_INF;
10730 else
10731 return -EINVAL;
10732
10733 return 0;
10734 }
10735
10736 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)10737 static int cpu_max_show(struct seq_file *sf, void *v)
10738 {
10739 struct task_group *tg = css_tg(seq_css(sf));
10740
10741 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10742 return 0;
10743 }
10744
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10745 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10746 char *buf, size_t nbytes, loff_t off)
10747 {
10748 struct task_group *tg = css_tg(of_css(of));
10749 u64 period = tg_get_cfs_period(tg);
10750 u64 burst = tg_get_cfs_burst(tg);
10751 u64 quota;
10752 int ret;
10753
10754 ret = cpu_period_quota_parse(buf, &period, "a);
10755 if (!ret)
10756 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10757 return ret ?: nbytes;
10758 }
10759 #endif
10760
10761 static struct cftype cpu_files[] = {
10762 #ifdef CONFIG_FAIR_GROUP_SCHED
10763 {
10764 .name = "weight",
10765 .flags = CFTYPE_NOT_ON_ROOT,
10766 .read_u64 = cpu_weight_read_u64,
10767 .write_u64 = cpu_weight_write_u64,
10768 },
10769 {
10770 .name = "weight.nice",
10771 .flags = CFTYPE_NOT_ON_ROOT,
10772 .read_s64 = cpu_weight_nice_read_s64,
10773 .write_s64 = cpu_weight_nice_write_s64,
10774 },
10775 {
10776 .name = "idle",
10777 .flags = CFTYPE_NOT_ON_ROOT,
10778 .read_s64 = cpu_idle_read_s64,
10779 .write_s64 = cpu_idle_write_s64,
10780 },
10781 #endif
10782 #ifdef CONFIG_CFS_BANDWIDTH
10783 {
10784 .name = "max",
10785 .flags = CFTYPE_NOT_ON_ROOT,
10786 .seq_show = cpu_max_show,
10787 .write = cpu_max_write,
10788 },
10789 {
10790 .name = "max.burst",
10791 .flags = CFTYPE_NOT_ON_ROOT,
10792 .read_u64 = cpu_cfs_burst_read_u64,
10793 .write_u64 = cpu_cfs_burst_write_u64,
10794 },
10795 #endif
10796 #ifdef CONFIG_UCLAMP_TASK_GROUP
10797 {
10798 .name = "uclamp.min",
10799 .flags = CFTYPE_NOT_ON_ROOT,
10800 .seq_show = cpu_uclamp_min_show,
10801 .write = cpu_uclamp_min_write,
10802 },
10803 {
10804 .name = "uclamp.max",
10805 .flags = CFTYPE_NOT_ON_ROOT,
10806 .seq_show = cpu_uclamp_max_show,
10807 .write = cpu_uclamp_max_write,
10808 },
10809 #endif
10810 { } /* terminate */
10811 };
10812
10813 struct cgroup_subsys cpu_cgrp_subsys = {
10814 .css_alloc = cpu_cgroup_css_alloc,
10815 .css_online = cpu_cgroup_css_online,
10816 .css_released = cpu_cgroup_css_released,
10817 .css_free = cpu_cgroup_css_free,
10818 .css_extra_stat_show = cpu_extra_stat_show,
10819 .fork = cpu_cgroup_fork,
10820 .can_attach = cpu_cgroup_can_attach,
10821 .attach = cpu_cgroup_attach,
10822 .legacy_cftypes = cpu_legacy_files,
10823 .dfl_cftypes = cpu_files,
10824 .early_init = true,
10825 .threaded = true,
10826 };
10827
10828 #endif /* CONFIG_CGROUP_SCHED */
10829
dump_cpu_task(int cpu)10830 void dump_cpu_task(int cpu)
10831 {
10832 pr_info("Task dump for CPU %d:\n", cpu);
10833 sched_show_task(cpu_curr(cpu));
10834 }
10835
10836 /*
10837 * Nice levels are multiplicative, with a gentle 10% change for every
10838 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10839 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10840 * that remained on nice 0.
10841 *
10842 * The "10% effect" is relative and cumulative: from _any_ nice level,
10843 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10844 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10845 * If a task goes up by ~10% and another task goes down by ~10% then
10846 * the relative distance between them is ~25%.)
10847 */
10848 const int sched_prio_to_weight[40] = {
10849 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10850 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10851 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10852 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10853 /* 0 */ 1024, 820, 655, 526, 423,
10854 /* 5 */ 335, 272, 215, 172, 137,
10855 /* 10 */ 110, 87, 70, 56, 45,
10856 /* 15 */ 36, 29, 23, 18, 15,
10857 };
10858
10859 /*
10860 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10861 *
10862 * In cases where the weight does not change often, we can use the
10863 * precalculated inverse to speed up arithmetics by turning divisions
10864 * into multiplications:
10865 */
10866 const u32 sched_prio_to_wmult[40] = {
10867 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10868 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10869 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10870 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10871 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10872 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10873 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10874 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10875 };
10876
call_trace_sched_update_nr_running(struct rq * rq,int count)10877 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10878 {
10879 trace_sched_update_nr_running_tp(rq, count);
10880 }
10881