1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_SIGNAL_H
3 #define _LINUX_SCHED_SIGNAL_H
4 
5 #include <linux/rculist.h>
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/sched/jobctl.h>
9 #include <linux/sched/task.h>
10 #include <linux/cred.h>
11 #include <linux/refcount.h>
12 #include <linux/posix-timers.h>
13 #include <linux/mm_types.h>
14 #include <asm/ptrace.h>
15 
16 /*
17  * Types defining task->signal and task->sighand and APIs using them:
18  */
19 
20 struct sighand_struct {
21 	spinlock_t		siglock;
22 	refcount_t		count;
23 	wait_queue_head_t	signalfd_wqh;
24 	struct k_sigaction	action[_NSIG];
25 };
26 
27 /*
28  * Per-process accounting stats:
29  */
30 struct pacct_struct {
31 	int			ac_flag;
32 	long			ac_exitcode;
33 	unsigned long		ac_mem;
34 	u64			ac_utime, ac_stime;
35 	unsigned long		ac_minflt, ac_majflt;
36 };
37 
38 struct cpu_itimer {
39 	u64 expires;
40 	u64 incr;
41 };
42 
43 /*
44  * This is the atomic variant of task_cputime, which can be used for
45  * storing and updating task_cputime statistics without locking.
46  */
47 struct task_cputime_atomic {
48 	atomic64_t utime;
49 	atomic64_t stime;
50 	atomic64_t sum_exec_runtime;
51 };
52 
53 #define INIT_CPUTIME_ATOMIC \
54 	(struct task_cputime_atomic) {				\
55 		.utime = ATOMIC64_INIT(0),			\
56 		.stime = ATOMIC64_INIT(0),			\
57 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
58 	}
59 /**
60  * struct thread_group_cputimer - thread group interval timer counts
61  * @cputime_atomic:	atomic thread group interval timers.
62  *
63  * This structure contains the version of task_cputime, above, that is
64  * used for thread group CPU timer calculations.
65  */
66 struct thread_group_cputimer {
67 	struct task_cputime_atomic cputime_atomic;
68 };
69 
70 struct multiprocess_signals {
71 	sigset_t signal;
72 	struct hlist_node node;
73 };
74 
75 struct core_thread {
76 	struct task_struct *task;
77 	struct core_thread *next;
78 };
79 
80 struct core_state {
81 	atomic_t nr_threads;
82 	struct core_thread dumper;
83 	struct completion startup;
84 };
85 
86 /*
87  * NOTE! "signal_struct" does not have its own
88  * locking, because a shared signal_struct always
89  * implies a shared sighand_struct, so locking
90  * sighand_struct is always a proper superset of
91  * the locking of signal_struct.
92  */
93 struct signal_struct {
94 	refcount_t		sigcnt;
95 	atomic_t		live;
96 	int			nr_threads;
97 	struct list_head	thread_head;
98 
99 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
100 
101 	/* current thread group signal load-balancing target: */
102 	struct task_struct	*curr_target;
103 
104 	/* shared signal handling: */
105 	struct sigpending	shared_pending;
106 
107 	/* For collecting multiprocess signals during fork */
108 	struct hlist_head	multiprocess;
109 
110 	/* thread group exit support */
111 	int			group_exit_code;
112 	/* overloaded:
113 	 * - notify group_exit_task when ->count is equal to notify_count
114 	 * - everyone except group_exit_task is stopped during signal delivery
115 	 *   of fatal signals, group_exit_task processes the signal.
116 	 */
117 	int			notify_count;
118 	struct task_struct	*group_exit_task;
119 
120 	/* thread group stop support, overloads group_exit_code too */
121 	int			group_stop_count;
122 	unsigned int		flags; /* see SIGNAL_* flags below */
123 
124 	struct core_state *core_state; /* coredumping support */
125 
126 	/*
127 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
128 	 * manager, to re-parent orphan (double-forking) child processes
129 	 * to this process instead of 'init'. The service manager is
130 	 * able to receive SIGCHLD signals and is able to investigate
131 	 * the process until it calls wait(). All children of this
132 	 * process will inherit a flag if they should look for a
133 	 * child_subreaper process at exit.
134 	 */
135 	unsigned int		is_child_subreaper:1;
136 	unsigned int		has_child_subreaper:1;
137 
138 #ifdef CONFIG_POSIX_TIMERS
139 
140 	/* POSIX.1b Interval Timers */
141 	int			posix_timer_id;
142 	struct list_head	posix_timers;
143 
144 	/* ITIMER_REAL timer for the process */
145 	struct hrtimer real_timer;
146 	ktime_t it_real_incr;
147 
148 	/*
149 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
150 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
151 	 * values are defined to 0 and 1 respectively
152 	 */
153 	struct cpu_itimer it[2];
154 
155 	/*
156 	 * Thread group totals for process CPU timers.
157 	 * See thread_group_cputimer(), et al, for details.
158 	 */
159 	struct thread_group_cputimer cputimer;
160 
161 #endif
162 	/* Empty if CONFIG_POSIX_TIMERS=n */
163 	struct posix_cputimers posix_cputimers;
164 
165 	/* PID/PID hash table linkage. */
166 	struct pid *pids[PIDTYPE_MAX];
167 
168 #ifdef CONFIG_NO_HZ_FULL
169 	atomic_t tick_dep_mask;
170 #endif
171 
172 	struct pid *tty_old_pgrp;
173 
174 	/* boolean value for session group leader */
175 	int leader;
176 
177 	struct tty_struct *tty; /* NULL if no tty */
178 
179 #ifdef CONFIG_SCHED_AUTOGROUP
180 	struct autogroup *autogroup;
181 #endif
182 	/*
183 	 * Cumulative resource counters for dead threads in the group,
184 	 * and for reaped dead child processes forked by this group.
185 	 * Live threads maintain their own counters and add to these
186 	 * in __exit_signal, except for the group leader.
187 	 */
188 	seqlock_t stats_lock;
189 	u64 utime, stime, cutime, cstime;
190 	u64 gtime;
191 	u64 cgtime;
192 	struct prev_cputime prev_cputime;
193 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
194 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
195 	unsigned long inblock, oublock, cinblock, coublock;
196 	unsigned long maxrss, cmaxrss;
197 	struct task_io_accounting ioac;
198 
199 	/*
200 	 * Cumulative ns of schedule CPU time fo dead threads in the
201 	 * group, not including a zombie group leader, (This only differs
202 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
203 	 * other than jiffies.)
204 	 */
205 	unsigned long long sum_sched_runtime;
206 
207 	/*
208 	 * We don't bother to synchronize most readers of this at all,
209 	 * because there is no reader checking a limit that actually needs
210 	 * to get both rlim_cur and rlim_max atomically, and either one
211 	 * alone is a single word that can safely be read normally.
212 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
213 	 * protect this instead of the siglock, because they really
214 	 * have no need to disable irqs.
215 	 */
216 	struct rlimit rlim[RLIM_NLIMITS];
217 
218 #ifdef CONFIG_BSD_PROCESS_ACCT
219 	struct pacct_struct pacct;	/* per-process accounting information */
220 #endif
221 #ifdef CONFIG_TASKSTATS
222 	struct taskstats *stats;
223 #endif
224 #ifdef CONFIG_AUDIT
225 	unsigned audit_tty;
226 	struct tty_audit_buf *tty_audit_buf;
227 #endif
228 
229 	/*
230 	 * Thread is the potential origin of an oom condition; kill first on
231 	 * oom
232 	 */
233 	bool oom_flag_origin;
234 	short oom_score_adj;		/* OOM kill score adjustment */
235 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
236 					 * Only settable by CAP_SYS_RESOURCE. */
237 	struct mm_struct *oom_mm;	/* recorded mm when the thread group got
238 					 * killed by the oom killer */
239 
240 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
241 					 * credential calculations
242 					 * (notably. ptrace)
243 					 * Deprecated do not use in new code.
244 					 * Use exec_update_lock instead.
245 					 */
246 	struct rw_semaphore exec_update_lock;	/* Held while task_struct is
247 						 * being updated during exec,
248 						 * and may have inconsistent
249 						 * permissions.
250 						 */
251 } __randomize_layout;
252 
253 /*
254  * Bits in flags field of signal_struct.
255  */
256 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
257 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
258 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
259 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
260 /*
261  * Pending notifications to parent.
262  */
263 #define SIGNAL_CLD_STOPPED	0x00000010
264 #define SIGNAL_CLD_CONTINUED	0x00000020
265 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
266 
267 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
268 
269 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
270 			  SIGNAL_STOP_CONTINUED)
271 
signal_set_stop_flags(struct signal_struct * sig,unsigned int flags)272 static inline void signal_set_stop_flags(struct signal_struct *sig,
273 					 unsigned int flags)
274 {
275 	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
276 	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
277 }
278 
279 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)280 static inline int signal_group_exit(const struct signal_struct *sig)
281 {
282 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
283 		(sig->group_exit_task != NULL);
284 }
285 
286 extern void flush_signals(struct task_struct *);
287 extern void ignore_signals(struct task_struct *);
288 extern void flush_signal_handlers(struct task_struct *, int force_default);
289 extern int dequeue_signal(struct task_struct *task,
290 			  sigset_t *mask, kernel_siginfo_t *info);
291 
kernel_dequeue_signal(void)292 static inline int kernel_dequeue_signal(void)
293 {
294 	struct task_struct *task = current;
295 	kernel_siginfo_t __info;
296 	int ret;
297 
298 	spin_lock_irq(&task->sighand->siglock);
299 	ret = dequeue_signal(task, &task->blocked, &__info);
300 	spin_unlock_irq(&task->sighand->siglock);
301 
302 	return ret;
303 }
304 
kernel_signal_stop(void)305 static inline void kernel_signal_stop(void)
306 {
307 	spin_lock_irq(&current->sighand->siglock);
308 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
309 		set_special_state(TASK_STOPPED);
310 	spin_unlock_irq(&current->sighand->siglock);
311 
312 	schedule();
313 }
314 #ifdef __ia64__
315 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
316 #else
317 # define ___ARCH_SI_IA64(_a1, _a2, _a3)
318 #endif
319 
320 int force_sig_fault_to_task(int sig, int code, void __user *addr
321 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
322 	, struct task_struct *t);
323 int force_sig_fault(int sig, int code, void __user *addr
324 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
325 int send_sig_fault(int sig, int code, void __user *addr
326 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
327 	, struct task_struct *t);
328 
329 int force_sig_mceerr(int code, void __user *, short);
330 int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
331 
332 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
333 int force_sig_pkuerr(void __user *addr, u32 pkey);
334 int force_sig_perf(void __user *addr, u32 type, u64 sig_data);
335 
336 int force_sig_ptrace_errno_trap(int errno, void __user *addr);
337 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno);
338 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
339 			struct task_struct *t);
340 int force_sig_seccomp(int syscall, int reason, bool force_coredump);
341 
342 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
343 extern void force_sigsegv(int sig);
344 extern int force_sig_info(struct kernel_siginfo *);
345 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
346 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
347 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
348 				const struct cred *);
349 extern int kill_pgrp(struct pid *pid, int sig, int priv);
350 extern int kill_pid(struct pid *pid, int sig, int priv);
351 extern __must_check bool do_notify_parent(struct task_struct *, int);
352 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
353 extern void force_sig(int);
354 extern void force_fatal_sig(int);
355 extern void force_exit_sig(int);
356 extern int send_sig(int, struct task_struct *, int);
357 extern int zap_other_threads(struct task_struct *p);
358 extern struct sigqueue *sigqueue_alloc(void);
359 extern void sigqueue_free(struct sigqueue *);
360 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
361 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
362 
restart_syscall(void)363 static inline int restart_syscall(void)
364 {
365 	set_tsk_thread_flag(current, TIF_SIGPENDING);
366 	return -ERESTARTNOINTR;
367 }
368 
task_sigpending(struct task_struct * p)369 static inline int task_sigpending(struct task_struct *p)
370 {
371 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
372 }
373 
signal_pending(struct task_struct * p)374 static inline int signal_pending(struct task_struct *p)
375 {
376 	/*
377 	 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
378 	 * behavior in terms of ensuring that we break out of wait loops
379 	 * so that notify signal callbacks can be processed.
380 	 */
381 	if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
382 		return 1;
383 	return task_sigpending(p);
384 }
385 
__fatal_signal_pending(struct task_struct * p)386 static inline int __fatal_signal_pending(struct task_struct *p)
387 {
388 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
389 }
390 
fatal_signal_pending(struct task_struct * p)391 static inline int fatal_signal_pending(struct task_struct *p)
392 {
393 	return task_sigpending(p) && __fatal_signal_pending(p);
394 }
395 
signal_pending_state(unsigned int state,struct task_struct * p)396 static inline int signal_pending_state(unsigned int state, struct task_struct *p)
397 {
398 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
399 		return 0;
400 	if (!signal_pending(p))
401 		return 0;
402 
403 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
404 }
405 
406 /*
407  * This should only be used in fault handlers to decide whether we
408  * should stop the current fault routine to handle the signals
409  * instead, especially with the case where we've got interrupted with
410  * a VM_FAULT_RETRY.
411  */
fault_signal_pending(vm_fault_t fault_flags,struct pt_regs * regs)412 static inline bool fault_signal_pending(vm_fault_t fault_flags,
413 					struct pt_regs *regs)
414 {
415 	return unlikely((fault_flags & VM_FAULT_RETRY) &&
416 			(fatal_signal_pending(current) ||
417 			 (user_mode(regs) && signal_pending(current))));
418 }
419 
420 /*
421  * Reevaluate whether the task has signals pending delivery.
422  * Wake the task if so.
423  * This is required every time the blocked sigset_t changes.
424  * callers must hold sighand->siglock.
425  */
426 extern void recalc_sigpending_and_wake(struct task_struct *t);
427 extern void recalc_sigpending(void);
428 extern void calculate_sigpending(void);
429 
430 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
431 
signal_wake_up(struct task_struct * t,bool resume)432 static inline void signal_wake_up(struct task_struct *t, bool resume)
433 {
434 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
435 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)436 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
437 {
438 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
439 }
440 
441 void task_join_group_stop(struct task_struct *task);
442 
443 #ifdef TIF_RESTORE_SIGMASK
444 /*
445  * Legacy restore_sigmask accessors.  These are inefficient on
446  * SMP architectures because they require atomic operations.
447  */
448 
449 /**
450  * set_restore_sigmask() - make sure saved_sigmask processing gets done
451  *
452  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
453  * will run before returning to user mode, to process the flag.  For
454  * all callers, TIF_SIGPENDING is already set or it's no harm to set
455  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
456  * arch code will notice on return to user mode, in case those bits
457  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
458  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
459  */
set_restore_sigmask(void)460 static inline void set_restore_sigmask(void)
461 {
462 	set_thread_flag(TIF_RESTORE_SIGMASK);
463 }
464 
clear_tsk_restore_sigmask(struct task_struct * task)465 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
466 {
467 	clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
468 }
469 
clear_restore_sigmask(void)470 static inline void clear_restore_sigmask(void)
471 {
472 	clear_thread_flag(TIF_RESTORE_SIGMASK);
473 }
test_tsk_restore_sigmask(struct task_struct * task)474 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
475 {
476 	return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
477 }
test_restore_sigmask(void)478 static inline bool test_restore_sigmask(void)
479 {
480 	return test_thread_flag(TIF_RESTORE_SIGMASK);
481 }
test_and_clear_restore_sigmask(void)482 static inline bool test_and_clear_restore_sigmask(void)
483 {
484 	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
485 }
486 
487 #else	/* TIF_RESTORE_SIGMASK */
488 
489 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
set_restore_sigmask(void)490 static inline void set_restore_sigmask(void)
491 {
492 	current->restore_sigmask = true;
493 }
clear_tsk_restore_sigmask(struct task_struct * task)494 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
495 {
496 	task->restore_sigmask = false;
497 }
clear_restore_sigmask(void)498 static inline void clear_restore_sigmask(void)
499 {
500 	current->restore_sigmask = false;
501 }
test_restore_sigmask(void)502 static inline bool test_restore_sigmask(void)
503 {
504 	return current->restore_sigmask;
505 }
test_tsk_restore_sigmask(struct task_struct * task)506 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
507 {
508 	return task->restore_sigmask;
509 }
test_and_clear_restore_sigmask(void)510 static inline bool test_and_clear_restore_sigmask(void)
511 {
512 	if (!current->restore_sigmask)
513 		return false;
514 	current->restore_sigmask = false;
515 	return true;
516 }
517 #endif
518 
restore_saved_sigmask(void)519 static inline void restore_saved_sigmask(void)
520 {
521 	if (test_and_clear_restore_sigmask())
522 		__set_current_blocked(&current->saved_sigmask);
523 }
524 
525 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
526 
restore_saved_sigmask_unless(bool interrupted)527 static inline void restore_saved_sigmask_unless(bool interrupted)
528 {
529 	if (interrupted)
530 		WARN_ON(!signal_pending(current));
531 	else
532 		restore_saved_sigmask();
533 }
534 
sigmask_to_save(void)535 static inline sigset_t *sigmask_to_save(void)
536 {
537 	sigset_t *res = &current->blocked;
538 	if (unlikely(test_restore_sigmask()))
539 		res = &current->saved_sigmask;
540 	return res;
541 }
542 
kill_cad_pid(int sig,int priv)543 static inline int kill_cad_pid(int sig, int priv)
544 {
545 	return kill_pid(cad_pid, sig, priv);
546 }
547 
548 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
549 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
550 #define SEND_SIG_PRIV	((struct kernel_siginfo *) 1)
551 
__on_sig_stack(unsigned long sp)552 static inline int __on_sig_stack(unsigned long sp)
553 {
554 #ifdef CONFIG_STACK_GROWSUP
555 	return sp >= current->sas_ss_sp &&
556 		sp - current->sas_ss_sp < current->sas_ss_size;
557 #else
558 	return sp > current->sas_ss_sp &&
559 		sp - current->sas_ss_sp <= current->sas_ss_size;
560 #endif
561 }
562 
563 /*
564  * True if we are on the alternate signal stack.
565  */
on_sig_stack(unsigned long sp)566 static inline int on_sig_stack(unsigned long sp)
567 {
568 	/*
569 	 * If the signal stack is SS_AUTODISARM then, by construction, we
570 	 * can't be on the signal stack unless user code deliberately set
571 	 * SS_AUTODISARM when we were already on it.
572 	 *
573 	 * This improves reliability: if user state gets corrupted such that
574 	 * the stack pointer points very close to the end of the signal stack,
575 	 * then this check will enable the signal to be handled anyway.
576 	 */
577 	if (current->sas_ss_flags & SS_AUTODISARM)
578 		return 0;
579 
580 	return __on_sig_stack(sp);
581 }
582 
sas_ss_flags(unsigned long sp)583 static inline int sas_ss_flags(unsigned long sp)
584 {
585 	if (!current->sas_ss_size)
586 		return SS_DISABLE;
587 
588 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
589 }
590 
sas_ss_reset(struct task_struct * p)591 static inline void sas_ss_reset(struct task_struct *p)
592 {
593 	p->sas_ss_sp = 0;
594 	p->sas_ss_size = 0;
595 	p->sas_ss_flags = SS_DISABLE;
596 }
597 
sigsp(unsigned long sp,struct ksignal * ksig)598 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
599 {
600 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
601 #ifdef CONFIG_STACK_GROWSUP
602 		return current->sas_ss_sp;
603 #else
604 		return current->sas_ss_sp + current->sas_ss_size;
605 #endif
606 	return sp;
607 }
608 
609 extern void __cleanup_sighand(struct sighand_struct *);
610 extern void flush_itimer_signals(void);
611 
612 #define tasklist_empty() \
613 	list_empty(&init_task.tasks)
614 
615 #define next_task(p) \
616 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
617 
618 #define for_each_process(p) \
619 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
620 
621 extern bool current_is_single_threaded(void);
622 
623 /*
624  * Careful: do_each_thread/while_each_thread is a double loop so
625  *          'break' will not work as expected - use goto instead.
626  */
627 #define do_each_thread(g, t) \
628 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
629 
630 #define while_each_thread(g, t) \
631 	while ((t = next_thread(t)) != g)
632 
633 #define __for_each_thread(signal, t)	\
634 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
635 
636 #define for_each_thread(p, t)		\
637 	__for_each_thread((p)->signal, t)
638 
639 /* Careful: this is a double loop, 'break' won't work as expected. */
640 #define for_each_process_thread(p, t)	\
641 	for_each_process(p) for_each_thread(p, t)
642 
643 typedef int (*proc_visitor)(struct task_struct *p, void *data);
644 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
645 
646 static inline
task_pid_type(struct task_struct * task,enum pid_type type)647 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
648 {
649 	struct pid *pid;
650 	if (type == PIDTYPE_PID)
651 		pid = task_pid(task);
652 	else
653 		pid = task->signal->pids[type];
654 	return pid;
655 }
656 
task_tgid(struct task_struct * task)657 static inline struct pid *task_tgid(struct task_struct *task)
658 {
659 	return task->signal->pids[PIDTYPE_TGID];
660 }
661 
662 /*
663  * Without tasklist or RCU lock it is not safe to dereference
664  * the result of task_pgrp/task_session even if task == current,
665  * we can race with another thread doing sys_setsid/sys_setpgid.
666  */
task_pgrp(struct task_struct * task)667 static inline struct pid *task_pgrp(struct task_struct *task)
668 {
669 	return task->signal->pids[PIDTYPE_PGID];
670 }
671 
task_session(struct task_struct * task)672 static inline struct pid *task_session(struct task_struct *task)
673 {
674 	return task->signal->pids[PIDTYPE_SID];
675 }
676 
get_nr_threads(struct task_struct * task)677 static inline int get_nr_threads(struct task_struct *task)
678 {
679 	return task->signal->nr_threads;
680 }
681 
thread_group_leader(struct task_struct * p)682 static inline bool thread_group_leader(struct task_struct *p)
683 {
684 	return p->exit_signal >= 0;
685 }
686 
687 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)688 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
689 {
690 	return p1->signal == p2->signal;
691 }
692 
next_thread(const struct task_struct * p)693 static inline struct task_struct *next_thread(const struct task_struct *p)
694 {
695 	return list_entry_rcu(p->thread_group.next,
696 			      struct task_struct, thread_group);
697 }
698 
thread_group_empty(struct task_struct * p)699 static inline int thread_group_empty(struct task_struct *p)
700 {
701 	return list_empty(&p->thread_group);
702 }
703 
704 #define delay_group_leader(p) \
705 		(thread_group_leader(p) && !thread_group_empty(p))
706 
707 extern bool thread_group_exited(struct pid *pid);
708 
709 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
710 							unsigned long *flags);
711 
lock_task_sighand(struct task_struct * task,unsigned long * flags)712 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
713 						       unsigned long *flags)
714 {
715 	struct sighand_struct *ret;
716 
717 	ret = __lock_task_sighand(task, flags);
718 	(void)__cond_lock(&task->sighand->siglock, ret);
719 	return ret;
720 }
721 
unlock_task_sighand(struct task_struct * task,unsigned long * flags)722 static inline void unlock_task_sighand(struct task_struct *task,
723 						unsigned long *flags)
724 {
725 	spin_unlock_irqrestore(&task->sighand->siglock, *flags);
726 }
727 
728 #ifdef CONFIG_LOCKDEP
729 extern void lockdep_assert_task_sighand_held(struct task_struct *task);
730 #else
lockdep_assert_task_sighand_held(struct task_struct * task)731 static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { }
732 #endif
733 
task_rlimit(const struct task_struct * task,unsigned int limit)734 static inline unsigned long task_rlimit(const struct task_struct *task,
735 		unsigned int limit)
736 {
737 	return READ_ONCE(task->signal->rlim[limit].rlim_cur);
738 }
739 
task_rlimit_max(const struct task_struct * task,unsigned int limit)740 static inline unsigned long task_rlimit_max(const struct task_struct *task,
741 		unsigned int limit)
742 {
743 	return READ_ONCE(task->signal->rlim[limit].rlim_max);
744 }
745 
rlimit(unsigned int limit)746 static inline unsigned long rlimit(unsigned int limit)
747 {
748 	return task_rlimit(current, limit);
749 }
750 
rlimit_max(unsigned int limit)751 static inline unsigned long rlimit_max(unsigned int limit)
752 {
753 	return task_rlimit_max(current, limit);
754 }
755 
756 #endif /* _LINUX_SCHED_SIGNAL_H */
757