1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_SIGNAL_H
3 #define _LINUX_SCHED_SIGNAL_H
4
5 #include <linux/rculist.h>
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/sched/jobctl.h>
9 #include <linux/sched/task.h>
10 #include <linux/cred.h>
11 #include <linux/refcount.h>
12 #include <linux/posix-timers.h>
13 #include <linux/mm_types.h>
14 #include <asm/ptrace.h>
15
16 /*
17 * Types defining task->signal and task->sighand and APIs using them:
18 */
19
20 struct sighand_struct {
21 spinlock_t siglock;
22 refcount_t count;
23 wait_queue_head_t signalfd_wqh;
24 struct k_sigaction action[_NSIG];
25 };
26
27 /*
28 * Per-process accounting stats:
29 */
30 struct pacct_struct {
31 int ac_flag;
32 long ac_exitcode;
33 unsigned long ac_mem;
34 u64 ac_utime, ac_stime;
35 unsigned long ac_minflt, ac_majflt;
36 };
37
38 struct cpu_itimer {
39 u64 expires;
40 u64 incr;
41 };
42
43 /*
44 * This is the atomic variant of task_cputime, which can be used for
45 * storing and updating task_cputime statistics without locking.
46 */
47 struct task_cputime_atomic {
48 atomic64_t utime;
49 atomic64_t stime;
50 atomic64_t sum_exec_runtime;
51 };
52
53 #define INIT_CPUTIME_ATOMIC \
54 (struct task_cputime_atomic) { \
55 .utime = ATOMIC64_INIT(0), \
56 .stime = ATOMIC64_INIT(0), \
57 .sum_exec_runtime = ATOMIC64_INIT(0), \
58 }
59 /**
60 * struct thread_group_cputimer - thread group interval timer counts
61 * @cputime_atomic: atomic thread group interval timers.
62 *
63 * This structure contains the version of task_cputime, above, that is
64 * used for thread group CPU timer calculations.
65 */
66 struct thread_group_cputimer {
67 struct task_cputime_atomic cputime_atomic;
68 };
69
70 struct multiprocess_signals {
71 sigset_t signal;
72 struct hlist_node node;
73 };
74
75 struct core_thread {
76 struct task_struct *task;
77 struct core_thread *next;
78 };
79
80 struct core_state {
81 atomic_t nr_threads;
82 struct core_thread dumper;
83 struct completion startup;
84 };
85
86 /*
87 * NOTE! "signal_struct" does not have its own
88 * locking, because a shared signal_struct always
89 * implies a shared sighand_struct, so locking
90 * sighand_struct is always a proper superset of
91 * the locking of signal_struct.
92 */
93 struct signal_struct {
94 refcount_t sigcnt;
95 atomic_t live;
96 int nr_threads;
97 struct list_head thread_head;
98
99 wait_queue_head_t wait_chldexit; /* for wait4() */
100
101 /* current thread group signal load-balancing target: */
102 struct task_struct *curr_target;
103
104 /* shared signal handling: */
105 struct sigpending shared_pending;
106
107 /* For collecting multiprocess signals during fork */
108 struct hlist_head multiprocess;
109
110 /* thread group exit support */
111 int group_exit_code;
112 /* overloaded:
113 * - notify group_exit_task when ->count is equal to notify_count
114 * - everyone except group_exit_task is stopped during signal delivery
115 * of fatal signals, group_exit_task processes the signal.
116 */
117 int notify_count;
118 struct task_struct *group_exit_task;
119
120 /* thread group stop support, overloads group_exit_code too */
121 int group_stop_count;
122 unsigned int flags; /* see SIGNAL_* flags below */
123
124 struct core_state *core_state; /* coredumping support */
125
126 /*
127 * PR_SET_CHILD_SUBREAPER marks a process, like a service
128 * manager, to re-parent orphan (double-forking) child processes
129 * to this process instead of 'init'. The service manager is
130 * able to receive SIGCHLD signals and is able to investigate
131 * the process until it calls wait(). All children of this
132 * process will inherit a flag if they should look for a
133 * child_subreaper process at exit.
134 */
135 unsigned int is_child_subreaper:1;
136 unsigned int has_child_subreaper:1;
137
138 #ifdef CONFIG_POSIX_TIMERS
139
140 /* POSIX.1b Interval Timers */
141 int posix_timer_id;
142 struct list_head posix_timers;
143
144 /* ITIMER_REAL timer for the process */
145 struct hrtimer real_timer;
146 ktime_t it_real_incr;
147
148 /*
149 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
150 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
151 * values are defined to 0 and 1 respectively
152 */
153 struct cpu_itimer it[2];
154
155 /*
156 * Thread group totals for process CPU timers.
157 * See thread_group_cputimer(), et al, for details.
158 */
159 struct thread_group_cputimer cputimer;
160
161 #endif
162 /* Empty if CONFIG_POSIX_TIMERS=n */
163 struct posix_cputimers posix_cputimers;
164
165 /* PID/PID hash table linkage. */
166 struct pid *pids[PIDTYPE_MAX];
167
168 #ifdef CONFIG_NO_HZ_FULL
169 atomic_t tick_dep_mask;
170 #endif
171
172 struct pid *tty_old_pgrp;
173
174 /* boolean value for session group leader */
175 int leader;
176
177 struct tty_struct *tty; /* NULL if no tty */
178
179 #ifdef CONFIG_SCHED_AUTOGROUP
180 struct autogroup *autogroup;
181 #endif
182 /*
183 * Cumulative resource counters for dead threads in the group,
184 * and for reaped dead child processes forked by this group.
185 * Live threads maintain their own counters and add to these
186 * in __exit_signal, except for the group leader.
187 */
188 seqlock_t stats_lock;
189 u64 utime, stime, cutime, cstime;
190 u64 gtime;
191 u64 cgtime;
192 struct prev_cputime prev_cputime;
193 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
194 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
195 unsigned long inblock, oublock, cinblock, coublock;
196 unsigned long maxrss, cmaxrss;
197 struct task_io_accounting ioac;
198
199 /*
200 * Cumulative ns of schedule CPU time fo dead threads in the
201 * group, not including a zombie group leader, (This only differs
202 * from jiffies_to_ns(utime + stime) if sched_clock uses something
203 * other than jiffies.)
204 */
205 unsigned long long sum_sched_runtime;
206
207 /*
208 * We don't bother to synchronize most readers of this at all,
209 * because there is no reader checking a limit that actually needs
210 * to get both rlim_cur and rlim_max atomically, and either one
211 * alone is a single word that can safely be read normally.
212 * getrlimit/setrlimit use task_lock(current->group_leader) to
213 * protect this instead of the siglock, because they really
214 * have no need to disable irqs.
215 */
216 struct rlimit rlim[RLIM_NLIMITS];
217
218 #ifdef CONFIG_BSD_PROCESS_ACCT
219 struct pacct_struct pacct; /* per-process accounting information */
220 #endif
221 #ifdef CONFIG_TASKSTATS
222 struct taskstats *stats;
223 #endif
224 #ifdef CONFIG_AUDIT
225 unsigned audit_tty;
226 struct tty_audit_buf *tty_audit_buf;
227 #endif
228
229 /*
230 * Thread is the potential origin of an oom condition; kill first on
231 * oom
232 */
233 bool oom_flag_origin;
234 short oom_score_adj; /* OOM kill score adjustment */
235 short oom_score_adj_min; /* OOM kill score adjustment min value.
236 * Only settable by CAP_SYS_RESOURCE. */
237 struct mm_struct *oom_mm; /* recorded mm when the thread group got
238 * killed by the oom killer */
239
240 struct mutex cred_guard_mutex; /* guard against foreign influences on
241 * credential calculations
242 * (notably. ptrace)
243 * Deprecated do not use in new code.
244 * Use exec_update_lock instead.
245 */
246 struct rw_semaphore exec_update_lock; /* Held while task_struct is
247 * being updated during exec,
248 * and may have inconsistent
249 * permissions.
250 */
251 } __randomize_layout;
252
253 /*
254 * Bits in flags field of signal_struct.
255 */
256 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
257 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
258 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
259 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
260 /*
261 * Pending notifications to parent.
262 */
263 #define SIGNAL_CLD_STOPPED 0x00000010
264 #define SIGNAL_CLD_CONTINUED 0x00000020
265 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
266
267 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
268
269 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
270 SIGNAL_STOP_CONTINUED)
271
signal_set_stop_flags(struct signal_struct * sig,unsigned int flags)272 static inline void signal_set_stop_flags(struct signal_struct *sig,
273 unsigned int flags)
274 {
275 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
276 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
277 }
278
279 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)280 static inline int signal_group_exit(const struct signal_struct *sig)
281 {
282 return (sig->flags & SIGNAL_GROUP_EXIT) ||
283 (sig->group_exit_task != NULL);
284 }
285
286 extern void flush_signals(struct task_struct *);
287 extern void ignore_signals(struct task_struct *);
288 extern void flush_signal_handlers(struct task_struct *, int force_default);
289 extern int dequeue_signal(struct task_struct *task,
290 sigset_t *mask, kernel_siginfo_t *info);
291
kernel_dequeue_signal(void)292 static inline int kernel_dequeue_signal(void)
293 {
294 struct task_struct *task = current;
295 kernel_siginfo_t __info;
296 int ret;
297
298 spin_lock_irq(&task->sighand->siglock);
299 ret = dequeue_signal(task, &task->blocked, &__info);
300 spin_unlock_irq(&task->sighand->siglock);
301
302 return ret;
303 }
304
kernel_signal_stop(void)305 static inline void kernel_signal_stop(void)
306 {
307 spin_lock_irq(¤t->sighand->siglock);
308 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
309 set_special_state(TASK_STOPPED);
310 spin_unlock_irq(¤t->sighand->siglock);
311
312 schedule();
313 }
314 #ifdef __ia64__
315 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
316 #else
317 # define ___ARCH_SI_IA64(_a1, _a2, _a3)
318 #endif
319
320 int force_sig_fault_to_task(int sig, int code, void __user *addr
321 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
322 , struct task_struct *t);
323 int force_sig_fault(int sig, int code, void __user *addr
324 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
325 int send_sig_fault(int sig, int code, void __user *addr
326 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
327 , struct task_struct *t);
328
329 int force_sig_mceerr(int code, void __user *, short);
330 int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
331
332 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
333 int force_sig_pkuerr(void __user *addr, u32 pkey);
334 int force_sig_perf(void __user *addr, u32 type, u64 sig_data);
335
336 int force_sig_ptrace_errno_trap(int errno, void __user *addr);
337 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno);
338 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
339 struct task_struct *t);
340 int force_sig_seccomp(int syscall, int reason, bool force_coredump);
341
342 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
343 extern void force_sigsegv(int sig);
344 extern int force_sig_info(struct kernel_siginfo *);
345 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
346 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
347 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
348 const struct cred *);
349 extern int kill_pgrp(struct pid *pid, int sig, int priv);
350 extern int kill_pid(struct pid *pid, int sig, int priv);
351 extern __must_check bool do_notify_parent(struct task_struct *, int);
352 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
353 extern void force_sig(int);
354 extern void force_fatal_sig(int);
355 extern void force_exit_sig(int);
356 extern int send_sig(int, struct task_struct *, int);
357 extern int zap_other_threads(struct task_struct *p);
358 extern struct sigqueue *sigqueue_alloc(void);
359 extern void sigqueue_free(struct sigqueue *);
360 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
361 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
362
restart_syscall(void)363 static inline int restart_syscall(void)
364 {
365 set_tsk_thread_flag(current, TIF_SIGPENDING);
366 return -ERESTARTNOINTR;
367 }
368
task_sigpending(struct task_struct * p)369 static inline int task_sigpending(struct task_struct *p)
370 {
371 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
372 }
373
signal_pending(struct task_struct * p)374 static inline int signal_pending(struct task_struct *p)
375 {
376 /*
377 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
378 * behavior in terms of ensuring that we break out of wait loops
379 * so that notify signal callbacks can be processed.
380 */
381 if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
382 return 1;
383 return task_sigpending(p);
384 }
385
__fatal_signal_pending(struct task_struct * p)386 static inline int __fatal_signal_pending(struct task_struct *p)
387 {
388 return unlikely(sigismember(&p->pending.signal, SIGKILL));
389 }
390
fatal_signal_pending(struct task_struct * p)391 static inline int fatal_signal_pending(struct task_struct *p)
392 {
393 return task_sigpending(p) && __fatal_signal_pending(p);
394 }
395
signal_pending_state(unsigned int state,struct task_struct * p)396 static inline int signal_pending_state(unsigned int state, struct task_struct *p)
397 {
398 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
399 return 0;
400 if (!signal_pending(p))
401 return 0;
402
403 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
404 }
405
406 /*
407 * This should only be used in fault handlers to decide whether we
408 * should stop the current fault routine to handle the signals
409 * instead, especially with the case where we've got interrupted with
410 * a VM_FAULT_RETRY.
411 */
fault_signal_pending(vm_fault_t fault_flags,struct pt_regs * regs)412 static inline bool fault_signal_pending(vm_fault_t fault_flags,
413 struct pt_regs *regs)
414 {
415 return unlikely((fault_flags & VM_FAULT_RETRY) &&
416 (fatal_signal_pending(current) ||
417 (user_mode(regs) && signal_pending(current))));
418 }
419
420 /*
421 * Reevaluate whether the task has signals pending delivery.
422 * Wake the task if so.
423 * This is required every time the blocked sigset_t changes.
424 * callers must hold sighand->siglock.
425 */
426 extern void recalc_sigpending_and_wake(struct task_struct *t);
427 extern void recalc_sigpending(void);
428 extern void calculate_sigpending(void);
429
430 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
431
signal_wake_up(struct task_struct * t,bool resume)432 static inline void signal_wake_up(struct task_struct *t, bool resume)
433 {
434 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
435 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)436 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
437 {
438 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
439 }
440
441 void task_join_group_stop(struct task_struct *task);
442
443 #ifdef TIF_RESTORE_SIGMASK
444 /*
445 * Legacy restore_sigmask accessors. These are inefficient on
446 * SMP architectures because they require atomic operations.
447 */
448
449 /**
450 * set_restore_sigmask() - make sure saved_sigmask processing gets done
451 *
452 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
453 * will run before returning to user mode, to process the flag. For
454 * all callers, TIF_SIGPENDING is already set or it's no harm to set
455 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
456 * arch code will notice on return to user mode, in case those bits
457 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
458 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
459 */
set_restore_sigmask(void)460 static inline void set_restore_sigmask(void)
461 {
462 set_thread_flag(TIF_RESTORE_SIGMASK);
463 }
464
clear_tsk_restore_sigmask(struct task_struct * task)465 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
466 {
467 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
468 }
469
clear_restore_sigmask(void)470 static inline void clear_restore_sigmask(void)
471 {
472 clear_thread_flag(TIF_RESTORE_SIGMASK);
473 }
test_tsk_restore_sigmask(struct task_struct * task)474 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
475 {
476 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
477 }
test_restore_sigmask(void)478 static inline bool test_restore_sigmask(void)
479 {
480 return test_thread_flag(TIF_RESTORE_SIGMASK);
481 }
test_and_clear_restore_sigmask(void)482 static inline bool test_and_clear_restore_sigmask(void)
483 {
484 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
485 }
486
487 #else /* TIF_RESTORE_SIGMASK */
488
489 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
set_restore_sigmask(void)490 static inline void set_restore_sigmask(void)
491 {
492 current->restore_sigmask = true;
493 }
clear_tsk_restore_sigmask(struct task_struct * task)494 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
495 {
496 task->restore_sigmask = false;
497 }
clear_restore_sigmask(void)498 static inline void clear_restore_sigmask(void)
499 {
500 current->restore_sigmask = false;
501 }
test_restore_sigmask(void)502 static inline bool test_restore_sigmask(void)
503 {
504 return current->restore_sigmask;
505 }
test_tsk_restore_sigmask(struct task_struct * task)506 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
507 {
508 return task->restore_sigmask;
509 }
test_and_clear_restore_sigmask(void)510 static inline bool test_and_clear_restore_sigmask(void)
511 {
512 if (!current->restore_sigmask)
513 return false;
514 current->restore_sigmask = false;
515 return true;
516 }
517 #endif
518
restore_saved_sigmask(void)519 static inline void restore_saved_sigmask(void)
520 {
521 if (test_and_clear_restore_sigmask())
522 __set_current_blocked(¤t->saved_sigmask);
523 }
524
525 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
526
restore_saved_sigmask_unless(bool interrupted)527 static inline void restore_saved_sigmask_unless(bool interrupted)
528 {
529 if (interrupted)
530 WARN_ON(!signal_pending(current));
531 else
532 restore_saved_sigmask();
533 }
534
sigmask_to_save(void)535 static inline sigset_t *sigmask_to_save(void)
536 {
537 sigset_t *res = ¤t->blocked;
538 if (unlikely(test_restore_sigmask()))
539 res = ¤t->saved_sigmask;
540 return res;
541 }
542
kill_cad_pid(int sig,int priv)543 static inline int kill_cad_pid(int sig, int priv)
544 {
545 return kill_pid(cad_pid, sig, priv);
546 }
547
548 /* These can be the second arg to send_sig_info/send_group_sig_info. */
549 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
550 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1)
551
__on_sig_stack(unsigned long sp)552 static inline int __on_sig_stack(unsigned long sp)
553 {
554 #ifdef CONFIG_STACK_GROWSUP
555 return sp >= current->sas_ss_sp &&
556 sp - current->sas_ss_sp < current->sas_ss_size;
557 #else
558 return sp > current->sas_ss_sp &&
559 sp - current->sas_ss_sp <= current->sas_ss_size;
560 #endif
561 }
562
563 /*
564 * True if we are on the alternate signal stack.
565 */
on_sig_stack(unsigned long sp)566 static inline int on_sig_stack(unsigned long sp)
567 {
568 /*
569 * If the signal stack is SS_AUTODISARM then, by construction, we
570 * can't be on the signal stack unless user code deliberately set
571 * SS_AUTODISARM when we were already on it.
572 *
573 * This improves reliability: if user state gets corrupted such that
574 * the stack pointer points very close to the end of the signal stack,
575 * then this check will enable the signal to be handled anyway.
576 */
577 if (current->sas_ss_flags & SS_AUTODISARM)
578 return 0;
579
580 return __on_sig_stack(sp);
581 }
582
sas_ss_flags(unsigned long sp)583 static inline int sas_ss_flags(unsigned long sp)
584 {
585 if (!current->sas_ss_size)
586 return SS_DISABLE;
587
588 return on_sig_stack(sp) ? SS_ONSTACK : 0;
589 }
590
sas_ss_reset(struct task_struct * p)591 static inline void sas_ss_reset(struct task_struct *p)
592 {
593 p->sas_ss_sp = 0;
594 p->sas_ss_size = 0;
595 p->sas_ss_flags = SS_DISABLE;
596 }
597
sigsp(unsigned long sp,struct ksignal * ksig)598 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
599 {
600 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
601 #ifdef CONFIG_STACK_GROWSUP
602 return current->sas_ss_sp;
603 #else
604 return current->sas_ss_sp + current->sas_ss_size;
605 #endif
606 return sp;
607 }
608
609 extern void __cleanup_sighand(struct sighand_struct *);
610 extern void flush_itimer_signals(void);
611
612 #define tasklist_empty() \
613 list_empty(&init_task.tasks)
614
615 #define next_task(p) \
616 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
617
618 #define for_each_process(p) \
619 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
620
621 extern bool current_is_single_threaded(void);
622
623 /*
624 * Careful: do_each_thread/while_each_thread is a double loop so
625 * 'break' will not work as expected - use goto instead.
626 */
627 #define do_each_thread(g, t) \
628 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
629
630 #define while_each_thread(g, t) \
631 while ((t = next_thread(t)) != g)
632
633 #define __for_each_thread(signal, t) \
634 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
635
636 #define for_each_thread(p, t) \
637 __for_each_thread((p)->signal, t)
638
639 /* Careful: this is a double loop, 'break' won't work as expected. */
640 #define for_each_process_thread(p, t) \
641 for_each_process(p) for_each_thread(p, t)
642
643 typedef int (*proc_visitor)(struct task_struct *p, void *data);
644 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
645
646 static inline
task_pid_type(struct task_struct * task,enum pid_type type)647 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
648 {
649 struct pid *pid;
650 if (type == PIDTYPE_PID)
651 pid = task_pid(task);
652 else
653 pid = task->signal->pids[type];
654 return pid;
655 }
656
task_tgid(struct task_struct * task)657 static inline struct pid *task_tgid(struct task_struct *task)
658 {
659 return task->signal->pids[PIDTYPE_TGID];
660 }
661
662 /*
663 * Without tasklist or RCU lock it is not safe to dereference
664 * the result of task_pgrp/task_session even if task == current,
665 * we can race with another thread doing sys_setsid/sys_setpgid.
666 */
task_pgrp(struct task_struct * task)667 static inline struct pid *task_pgrp(struct task_struct *task)
668 {
669 return task->signal->pids[PIDTYPE_PGID];
670 }
671
task_session(struct task_struct * task)672 static inline struct pid *task_session(struct task_struct *task)
673 {
674 return task->signal->pids[PIDTYPE_SID];
675 }
676
get_nr_threads(struct task_struct * task)677 static inline int get_nr_threads(struct task_struct *task)
678 {
679 return task->signal->nr_threads;
680 }
681
thread_group_leader(struct task_struct * p)682 static inline bool thread_group_leader(struct task_struct *p)
683 {
684 return p->exit_signal >= 0;
685 }
686
687 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)688 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
689 {
690 return p1->signal == p2->signal;
691 }
692
next_thread(const struct task_struct * p)693 static inline struct task_struct *next_thread(const struct task_struct *p)
694 {
695 return list_entry_rcu(p->thread_group.next,
696 struct task_struct, thread_group);
697 }
698
thread_group_empty(struct task_struct * p)699 static inline int thread_group_empty(struct task_struct *p)
700 {
701 return list_empty(&p->thread_group);
702 }
703
704 #define delay_group_leader(p) \
705 (thread_group_leader(p) && !thread_group_empty(p))
706
707 extern bool thread_group_exited(struct pid *pid);
708
709 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
710 unsigned long *flags);
711
lock_task_sighand(struct task_struct * task,unsigned long * flags)712 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
713 unsigned long *flags)
714 {
715 struct sighand_struct *ret;
716
717 ret = __lock_task_sighand(task, flags);
718 (void)__cond_lock(&task->sighand->siglock, ret);
719 return ret;
720 }
721
unlock_task_sighand(struct task_struct * task,unsigned long * flags)722 static inline void unlock_task_sighand(struct task_struct *task,
723 unsigned long *flags)
724 {
725 spin_unlock_irqrestore(&task->sighand->siglock, *flags);
726 }
727
728 #ifdef CONFIG_LOCKDEP
729 extern void lockdep_assert_task_sighand_held(struct task_struct *task);
730 #else
lockdep_assert_task_sighand_held(struct task_struct * task)731 static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { }
732 #endif
733
task_rlimit(const struct task_struct * task,unsigned int limit)734 static inline unsigned long task_rlimit(const struct task_struct *task,
735 unsigned int limit)
736 {
737 return READ_ONCE(task->signal->rlim[limit].rlim_cur);
738 }
739
task_rlimit_max(const struct task_struct * task,unsigned int limit)740 static inline unsigned long task_rlimit_max(const struct task_struct *task,
741 unsigned int limit)
742 {
743 return READ_ONCE(task->signal->rlim[limit].rlim_max);
744 }
745
rlimit(unsigned int limit)746 static inline unsigned long rlimit(unsigned int limit)
747 {
748 return task_rlimit(current, limit);
749 }
750
rlimit_max(unsigned int limit)751 static inline unsigned long rlimit_max(unsigned int limit)
752 {
753 return task_rlimit_max(current, limit);
754 }
755
756 #endif /* _LINUX_SCHED_SIGNAL_H */
757