1 /*
2  * Copyright (c) 2020, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <errno.h>
10 #include <stdbool.h>
11 
12 #include <arch_helpers.h>
13 #include <bpmp_ipc.h>
14 #include <common/debug.h>
15 #include <drivers/delay_timer.h>
16 #include <lib/mmio.h>
17 #include <lib/psci/psci.h>
18 #include <se.h>
19 #include <tegra_platform.h>
20 
21 #include "se_private.h"
22 
23 /*******************************************************************************
24  * Constants and Macros
25  ******************************************************************************/
26 #define ERR_STATUS_SW_CLEAR		U(0xFFFFFFFF)
27 #define INT_STATUS_SW_CLEAR		U(0xFFFFFFFF)
28 #define MAX_TIMEOUT_MS			U(1000)	/* Max. timeout of 1s */
29 #define NUM_SE_REGS_TO_SAVE		U(4)
30 
31 #define BYTES_IN_WORD			U(4)
32 #define SHA256_MAX_HASH_RESULT		U(7)
33 #define SHA256_DST_SIZE			U(32)
34 #define SHA_FIRST_OP			U(1)
35 #define MAX_SHA_ENGINE_CHUNK_SIZE	U(0xFFFFFF)
36 #define SHA256_MSG_LENGTH_ONETIME	U(0xFFFF)
37 
38 /*******************************************************************************
39  * Data structure and global variables
40  ******************************************************************************/
41 static uint32_t se_regs[NUM_SE_REGS_TO_SAVE];
42 
43 /*
44  * Check that SE operation has completed after kickoff.
45  *
46  * This function is invoked after an SE operation has been started,
47  * and it checks the following conditions:
48  *
49  * 1. SE_STATUS = IDLE
50  * 2. AHB bus data transfer is complete.
51  * 3. SE_ERR_STATUS is clean.
52  */
tegra_se_is_operation_complete(void)53 static bool tegra_se_is_operation_complete(void)
54 {
55 	uint32_t val = 0, timeout = 0, sha_status, aes_status;
56 	int32_t ret = 0;
57 	bool se_is_busy, txn_has_errors, txn_successful;
58 
59 	/*
60 	 * Poll the status register to check if the operation
61 	 * completed.
62 	 */
63 	do {
64 		val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
65 		se_is_busy = ((val & CTX_SAVE_AUTO_SE_BUSY) != 0U);
66 
67 		/* sleep until SE finishes */
68 		if (se_is_busy) {
69 			mdelay(1);
70 			timeout++;
71 		}
72 
73 	} while (se_is_busy && (timeout < MAX_TIMEOUT_MS));
74 
75 	/* any transaction errors? */
76 	txn_has_errors = (tegra_se_read_32(SHA_ERR_STATUS) != 0U) ||
77 			 (tegra_se_read_32(AES0_ERR_STATUS) != 0U);
78 
79 	/* transaction successful? */
80 	sha_status = tegra_se_read_32(SHA_INT_STATUS) & SHA_SE_OP_DONE;
81 	aes_status = tegra_se_read_32(AES0_INT_STATUS) & AES0_SE_OP_DONE;
82 	txn_successful = (sha_status == SHA_SE_OP_DONE) &&
83 			 (aes_status == AES0_SE_OP_DONE);
84 
85 	if ((timeout == MAX_TIMEOUT_MS) || txn_has_errors || !txn_successful) {
86 		ERROR("%s: Atomic context save operation failed!\n",
87 				__func__);
88 		ret = -ECANCELED;
89 	}
90 
91 	return (ret == 0);
92 }
93 
94 /*
95  * Wait for SE engine to be idle and clear any pending interrupts, before
96  * starting the next SE operation.
97  */
tegra_se_is_ready(void)98 static bool tegra_se_is_ready(void)
99 {
100 	int32_t ret = 0;
101 	uint32_t val = 0, timeout = 0;
102 	bool se_is_ready;
103 
104 	/* Wait for previous operation to finish */
105 	do {
106 		val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
107 		se_is_ready = (val == CTX_SAVE_AUTO_SE_READY);
108 
109 		/* sleep until SE is ready */
110 		if (!se_is_ready) {
111 			mdelay(1);
112 			timeout++;
113 		}
114 
115 	} while (!se_is_ready && (timeout < MAX_TIMEOUT_MS));
116 
117 	if (timeout == MAX_TIMEOUT_MS) {
118 		ERROR("%s: SE is not ready!\n", __func__);
119 		ret = -ETIMEDOUT;
120 	}
121 
122 	/* Clear any pending interrupts from previous operation */
123 	tegra_se_write_32(AES0_INT_STATUS, INT_STATUS_SW_CLEAR);
124 	tegra_se_write_32(AES1_INT_STATUS, INT_STATUS_SW_CLEAR);
125 	tegra_se_write_32(RSA_INT_STATUS, INT_STATUS_SW_CLEAR);
126 	tegra_se_write_32(SHA_INT_STATUS, INT_STATUS_SW_CLEAR);
127 
128 	/* Clear error status for each engine seen from current port */
129 	tegra_se_write_32(AES0_ERR_STATUS, ERR_STATUS_SW_CLEAR);
130 	tegra_se_write_32(AES1_ERR_STATUS, ERR_STATUS_SW_CLEAR);
131 	tegra_se_write_32(RSA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
132 	tegra_se_write_32(SHA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
133 
134 	return (ret == 0);
135 }
136 
137 /*
138  * During System Suspend, this handler triggers the hardware context
139  * save operation.
140  */
tegra_se_save_context(void)141 static int32_t tegra_se_save_context(void)
142 {
143 	int32_t ret = -ECANCELED;
144 
145 	/*
146 	 * 1. Ensure all SE Driver including RNG1/PKA1 are shut down.
147 	 *    TSEC/R5s are powergated/idle. All tasks on SE1~SE4, RNG1,
148 	 *    PKA1 are wrapped up. SE0 is ready for use.
149 	 * 2. Clear interrupt/error in SE0 status register.
150 	 * 3. Scrub SE0 register to avoid false failure for illegal
151 	 *    configuration. Probably not needed, dependent on HW
152 	 *    implementation.
153 	 * 4. Check SE is ready for HW CTX_SAVE by polling
154 	 *    SE_CTX_SAVE_AUTO_STATUS.SE_READY.
155 	 *
156 	 *    Steps 1-4 are executed by tegra_se_is_ready().
157 	 *
158 	 * 5. Issue context save command.
159 	 * 6. Check SE is busy with CTX_SAVE, the command in step5 was not
160 	 *    dropped for ongoing traffic in any of SE port/engine.
161 	 * 7. Poll SE register or wait for SE APB interrupt for task completion
162 	 *    a. Polling: Read SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE
163 	 *    b. Interrupt: After receiving interrupt from SE APB, read
164 	 *       SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE.
165 	 * 8. Check AES0 and SHA ERR_STATUS to ensure no error case.
166 	 * 9. Check AES0 and SHA INT_STATUS to ensure operation has successfully
167 	 *    completed.
168 	 *
169 	 *    Steps 6-9 are executed by tegra_se_is_operation_complete().
170 	 */
171 	if (tegra_se_is_ready()) {
172 
173 		/* Issue context save command */
174 		tegra_se_write_32(AES0_OPERATION, SE_OP_CTX_SAVE);
175 
176 		/* Wait for operation to finish */
177 		if (tegra_se_is_operation_complete()) {
178 			ret = 0;
179 		}
180 	}
181 
182 	return ret;
183 }
184 
185 /*
186  * Check that SE operation has completed after kickoff
187  * This function is invoked after an SE operation has been started,
188  * and it checks the following conditions:
189  * 1. SE0_INT_STATUS = SE0_OP_DONE
190  * 2. SE0_STATUS = IDLE
191  * 3. SE0_ERR_STATUS is clean.
192  */
tegra_se_sha256_hash_operation_complete(void)193 static int32_t tegra_se_sha256_hash_operation_complete(void)
194 {
195 	uint32_t val = 0U;
196 
197 	/* Poll the SE interrupt register to ensure H/W operation complete */
198 	val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
199 	while (SE0_INT_OP_DONE(val) == SE0_INT_OP_DONE_CLEAR) {
200 		val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
201 		if (SE0_INT_OP_DONE(val) != SE0_INT_OP_DONE_CLEAR) {
202 			break;
203 		}
204 	}
205 
206 	/* Poll the SE status idle to ensure H/W operation complete */
207 	val = tegra_se_read_32(SE0_SHA_STATUS_0);
208 	while (val != SE0_SHA_STATUS_IDLE) {
209 		val = tegra_se_read_32(SE0_SHA_STATUS_0);
210 		if (val == SE0_SHA_STATUS_IDLE) {
211 			break;
212 		}
213 	}
214 
215 	/* Ensure that no errors are thrown during operation */
216 	val = tegra_se_read_32(SE0_ERR_STATUS_REG_OFFSET);
217 	if (val != 0U) {
218 		ERROR("%s: error during SE operation! 0x%x", __func__,
219 				val);
220 		return -ENOTSUP;
221 	}
222 
223 	return 0;
224 }
225 
226 /*
227  * Security engine primitive normal operations
228  */
tegra_se_start_normal_operation(uint64_t src_addr,uint32_t nbytes,uint32_t last_buf,uint32_t src_len_inbytes)229 static int32_t tegra_se_start_normal_operation(uint64_t src_addr,
230 		uint32_t nbytes, uint32_t last_buf, uint32_t src_len_inbytes)
231 {
232 	uint32_t val = 0U;
233 	uint32_t src_in_lo;
234 	uint32_t src_in_msb;
235 	uint32_t src_in_hi;
236 	int32_t ret = 0;
237 
238 	if ((src_addr == 0ULL) || (nbytes == 0U))
239 		return -EINVAL;
240 
241 	src_in_lo = (uint32_t)src_addr;
242 	src_in_msb = (uint32_t)((src_addr >> 32U) & 0xFFU);
243 	src_in_hi = ((src_in_msb << SE0_IN_HI_ADDR_HI_0_MSB_SHIFT) |
244 				(nbytes & MAX_SHA_ENGINE_CHUNK_SIZE));
245 
246 	/* set SRC_IN_ADDR_LO and SRC_IN_ADDR_HI*/
247 	tegra_se_write_32(SE0_IN_ADDR, src_in_lo);
248 	tegra_se_write_32(SE0_IN_HI_ADDR_HI, src_in_hi);
249 
250 	val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
251 	if (val > 0U) {
252 		tegra_se_write_32(SE0_INT_STATUS_REG_OFFSET, 0x0U);
253 	}
254 
255 	/* Enable SHA interrupt for SE0 Operation */
256 	tegra_se_write_32(SE0_SHA_INT_ENABLE, 0x1aU);
257 
258 	/* flush to DRAM for SE to use the updated contents */
259 	flush_dcache_range(src_addr, src_len_inbytes);
260 
261 	/* Start SHA256 operation */
262 	if (last_buf == 1U) {
263 		tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START |
264 				SE0_UNIT_OPERATION_PKT_LASTBUF_FIELD);
265 	} else {
266 		tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START);
267 	}
268 
269 	return ret;
270 }
271 
tegra_se_calculate_sha256_hash(uint64_t src_addr,uint32_t src_len_inbyte)272 static int32_t tegra_se_calculate_sha256_hash(uint64_t src_addr,
273 						uint32_t src_len_inbyte)
274 {
275 	uint32_t val, last_buf, i;
276 	int32_t ret = 0;
277 	uint32_t operations;
278 	uint64_t src_len_inbits;
279 	uint32_t len_bits_msb;
280 	uint32_t len_bits_lsb;
281 	uint32_t number_of_operations, max_bytes, bytes_left, remaining_bytes;
282 
283 	if (src_len_inbyte > MAX_SHA_ENGINE_CHUNK_SIZE) {
284 		ERROR("SHA input chunk size too big: 0x%x\n", src_len_inbyte);
285 		return -EINVAL;
286 	}
287 
288 	if (src_addr == 0ULL) {
289 		return -EINVAL;
290 	}
291 
292 	/* number of bytes per operation */
293 	max_bytes = (SHA256_HASH_SIZE_BYTES * SHA256_MSG_LENGTH_ONETIME);
294 
295 	src_len_inbits = (uint32_t)(src_len_inbyte * 8U);
296 	len_bits_msb = (uint32_t)(src_len_inbits >> 32U);
297 	len_bits_lsb = (uint32_t)src_len_inbits;
298 
299 	/* program SE0_CONFIG for SHA256 operation */
300 	val =  (uint32_t)(SE0_CONFIG_ENC_ALG_SHA | SE0_CONFIG_ENC_MODE_SHA256 |
301 		SE0_CONFIG_DEC_ALG_NOP | SE0_CONFIG_DST_HASHREG);
302 	tegra_se_write_32(SE0_SHA_CONFIG, val);
303 
304 	/* set SE0_SHA_MSG_LENGTH registers */
305 	tegra_se_write_32(SE0_SHA_MSG_LENGTH_0, len_bits_lsb);
306 	tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb);
307 	tegra_se_write_32(SE0_SHA_MSG_LENGTH_1, len_bits_msb);
308 
309 	/* zero out unused SE0_SHA_MSG_LENGTH and SE0_SHA_MSG_LEFT */
310 	tegra_se_write_32(SE0_SHA_MSG_LENGTH_2, 0U);
311 	tegra_se_write_32(SE0_SHA_MSG_LENGTH_3, 0U);
312 	tegra_se_write_32(SE0_SHA_MSG_LEFT_1, 0U);
313 	tegra_se_write_32(SE0_SHA_MSG_LEFT_2, 0U);
314 	tegra_se_write_32(SE0_SHA_MSG_LEFT_3, 0U);
315 
316 	number_of_operations = (src_len_inbyte / max_bytes);
317 	remaining_bytes = (src_len_inbyte % max_bytes);
318 	if (remaining_bytes > 0U) {
319 		number_of_operations += 1U;
320 	}
321 
322 	/*
323 	 * 1. Operations == 1:	program SE0_SHA_TASK register to initiate SHA256
324 	 *			hash generation by setting
325 	 *			1(SE0_SHA_CONFIG_HW_INIT_HASH) to SE0_SHA_TASK
326 	 *			and start SHA256-normal operation.
327 	 * 2. 1 < Operations < number_of_operations: program SE0_SHA_TASK to
328 	 *			0(SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE) to load
329 	 *			intermediate SHA256 digest result from
330 	 *			HASH_RESULT register to continue SHA256
331 	 *			generation and start SHA256-normal operation.
332 	 * 3. Operations == number_of_operations: continue with step 2 and set
333 	 *			max_bytes to bytes_left to process final
334 	 *			hash-result generation and start SHA256-normal
335 	 *			operation.
336 	 */
337 	bytes_left = src_len_inbyte;
338 	for (operations = 1U; operations <= number_of_operations;
339 								operations++) {
340 		if (operations == SHA_FIRST_OP) {
341 			val = SE0_SHA_CONFIG_HW_INIT_HASH;
342 		} else {
343 			/* Load intermediate SHA digest result to
344 			 * SHA:HASH_RESULT(0..7) to continue the SHA
345 			 * calculation and tell the SHA engine to use it.
346 			 */
347 			for (i = 0U; (i / BYTES_IN_WORD) <=
348 				SHA256_MAX_HASH_RESULT; i += BYTES_IN_WORD) {
349 				val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 +
350 									i);
351 				tegra_se_write_32(SE0_SHA_HASH_RESULT_0 + i,
352 									val);
353 			}
354 			val = SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE;
355 			if (len_bits_lsb <= (max_bytes * 8U)) {
356 				len_bits_lsb = (remaining_bytes * 8U);
357 			} else {
358 				len_bits_lsb -= (max_bytes * 8U);
359 			}
360 			tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb);
361 		}
362 		tegra_se_write_32(SE0_SHA_TASK_CONFIG, val);
363 
364 		max_bytes = (SHA256_HASH_SIZE_BYTES *
365 						SHA256_MSG_LENGTH_ONETIME);
366 		if (bytes_left < max_bytes) {
367 			max_bytes = bytes_left;
368 			last_buf = 1U;
369 		} else {
370 			bytes_left = bytes_left - max_bytes;
371 			last_buf = 0U;
372 		}
373 		/* start operation */
374 		ret = tegra_se_start_normal_operation(src_addr, max_bytes,
375 					last_buf, src_len_inbyte);
376 		if (ret != 0) {
377 			ERROR("Error during SE operation! 0x%x", ret);
378 			return -EINVAL;
379 		}
380 	}
381 
382 	return ret;
383 }
384 
tegra_se_save_sha256_pmc_scratch(void)385 static int32_t tegra_se_save_sha256_pmc_scratch(void)
386 {
387 	uint32_t val = 0U, hash_offset = 0U, scratch_offset = 0U;
388 	int32_t ret;
389 
390 	/* Check SE0 operation status */
391 	ret = tegra_se_sha256_hash_operation_complete();
392 	if (ret != 0) {
393 		ERROR("SE operation complete Failed! 0x%x", ret);
394 		return ret;
395 	}
396 
397 	for (scratch_offset = SECURE_SCRATCH_TZDRAM_SHA256_HASH_START;
398 			scratch_offset <= SECURE_SCRATCH_TZDRAM_SHA256_HASH_END;
399 					scratch_offset += BYTES_IN_WORD) {
400 		val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 + hash_offset);
401 		mmio_write_32((uint32_t)(TEGRA_SCRATCH_BASE + scratch_offset),
402 									val);
403 		hash_offset += BYTES_IN_WORD;
404 	}
405 	return 0;
406 }
407 
408 /*
409  * Handler to generate SHA256 and save HASH-result to pmc-scratch register
410  */
tegra_se_calculate_save_sha256(uint64_t src_addr,uint32_t src_len_inbyte)411 int32_t tegra_se_calculate_save_sha256(uint64_t src_addr,
412 						uint32_t src_len_inbyte)
413 {
414 	uint32_t security;
415 	int32_t val = 0;
416 
417 	/* Set SE_SOFT_SETTINGS=SE_SECURE to prevent NS process to change SE
418 	 * registers.
419 	 */
420 	security = tegra_se_read_32(SE0_SECURITY);
421 	tegra_se_write_32(SE0_SECURITY, security | SE0_SECURITY_SE_SOFT_SETTING);
422 
423 	/* Bootrom enable IN_ID bit in SE0_SHA_GSCID_0 register during SC7-exit, causing
424 	 * SE0 ignores SE0 operation, and therefore failure of 2nd iteration of SC7 cycle.
425 	 */
426 	tegra_se_write_32(SE0_SHA_GSCID_0, 0x0U);
427 
428 	/* Calculate SHA256 of BL31 */
429 	val = tegra_se_calculate_sha256_hash(src_addr, src_len_inbyte);
430 	if (val != 0) {
431 		ERROR("%s: SHA256 generation failed\n", __func__);
432 		return val;
433 	}
434 
435 	/*
436 	 * Reset SE_SECURE to previous value.
437 	 */
438 	tegra_se_write_32(SE0_SECURITY, security);
439 
440 	/* copy sha256_dst to PMC Scratch register */
441 	val = tegra_se_save_sha256_pmc_scratch();
442 	if (val != 0) {
443 		ERROR("%s: SE0 status Error.\n", __func__);
444 	}
445 
446 	return val;
447 }
448 
449 /*
450  * Handler to power down the SE hardware blocks - SE, RNG1 and PKA1. This
451  * needs to be called only during System Suspend.
452  */
tegra_se_suspend(void)453 int32_t tegra_se_suspend(void)
454 {
455 	int32_t ret = 0;
456 
457 	/* initialise communication channel with BPMP */
458 	assert(tegra_bpmp_ipc_init() == 0);
459 
460 	/* Enable SE clock before SE context save */
461 	ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE);
462 	assert(ret == 0);
463 
464 	/* save SE registers */
465 	se_regs[0] = mmio_read_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT);
466 	se_regs[1] = mmio_read_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL);
467 	se_regs[2] = mmio_read_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT);
468 	se_regs[3] = mmio_read_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT);
469 
470 	/* Save SE context. The BootROM restores it during System Resume */
471 	ret = tegra_se_save_context();
472 	if (ret != 0) {
473 		ERROR("%s: context save failed (%d)\n", __func__, ret);
474 	}
475 
476 	/* Disable SE clock after SE context save */
477 	ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE);
478 	assert(ret == 0);
479 
480 	return ret;
481 }
482 
483 /*
484  * Handler to power up the SE hardware block(s) during System Resume.
485  */
tegra_se_resume(void)486 void tegra_se_resume(void)
487 {
488 	int32_t ret = 0;
489 
490 	/* initialise communication channel with BPMP */
491 	assert(tegra_bpmp_ipc_init() == 0);
492 
493 	/* Enable SE clock before SE context restore */
494 	ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE);
495 	assert(ret == 0);
496 
497 	/*
498 	 * When TZ takes over after System Resume, TZ should first reconfigure
499 	 * SE_MUTEX_WATCHDOG_NS_LIMIT, PKA1_MUTEX_WATCHDOG_NS_LIMIT,
500 	 * RNG1_MUTEX_WATCHDOG_NS_LIMIT and SE_ENTROPY_SRC_AGE_CTRL before
501 	 * other operations.
502 	 */
503 	mmio_write_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT, se_regs[0]);
504 	mmio_write_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL, se_regs[1]);
505 	mmio_write_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[2]);
506 	mmio_write_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[3]);
507 
508 	/* Disable SE clock after SE context restore */
509 	ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE);
510 	assert(ret == 0);
511 }
512