1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3 * Copyright (c) 2016-2021, Linaro Limited
4 * Copyright (c) 2014, STMicroelectronics International N.V.
5 * Copyright (c) 2020-2021, Arm Limited
6 */
7
8 #include <platform_config.h>
9
10 #include <arm.h>
11 #include <assert.h>
12 #include <config.h>
13 #include <io.h>
14 #include <keep.h>
15 #include <kernel/asan.h>
16 #include <kernel/boot.h>
17 #include <kernel/linker.h>
18 #include <kernel/lockdep.h>
19 #include <kernel/misc.h>
20 #include <kernel/panic.h>
21 #include <kernel/spinlock.h>
22 #include <kernel/spmc_sp_handler.h>
23 #include <kernel/tee_ta_manager.h>
24 #include <kernel/thread_defs.h>
25 #include <kernel/thread.h>
26 #include <kernel/user_mode_ctx_struct.h>
27 #include <kernel/virtualization.h>
28 #include <mm/core_memprot.h>
29 #include <mm/mobj.h>
30 #include <mm/tee_mm.h>
31 #include <mm/tee_pager.h>
32 #include <mm/vm.h>
33 #include <smccc.h>
34 #include <sm/sm.h>
35 #include <trace.h>
36 #include <util.h>
37
38 #include "thread_private.h"
39
40 struct thread_ctx threads[CFG_NUM_THREADS];
41
42 struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE] __nex_bss;
43
44 /*
45 * Stacks
46 *
47 * [Lower addresses on the left]
48 *
49 * [ STACK_CANARY_SIZE/2 | STACK_CHECK_EXTRA | STACK_XXX_SIZE | STACK_CANARY_SIZE/2 ]
50 * ^ ^ ^ ^
51 * stack_xxx[n] "hard" top "soft" top bottom
52 */
53
54 #ifdef CFG_WITH_ARM_TRUSTED_FW
55 #define STACK_TMP_OFFS 0
56 #else
57 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE
58 #endif
59
60 #ifdef ARM32
61 #ifdef CFG_CORE_SANITIZE_KADDRESS
62 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS)
63 #else
64 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS)
65 #endif
66 #define STACK_THREAD_SIZE 8192
67
68 #if defined(CFG_CORE_SANITIZE_KADDRESS) || defined(__clang__) || \
69 !defined(CFG_CRYPTO_WITH_CE)
70 #define STACK_ABT_SIZE 3072
71 #else
72 #define STACK_ABT_SIZE 2048
73 #endif
74
75 #endif /*ARM32*/
76
77 #ifdef ARM64
78 #if defined(__clang__) && !defined(__OPTIMIZE_SIZE__)
79 #define STACK_TMP_SIZE (4096 + STACK_TMP_OFFS)
80 #else
81 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS)
82 #endif
83 #define STACK_THREAD_SIZE 8192
84
85 #if TRACE_LEVEL > 0
86 #define STACK_ABT_SIZE 3072
87 #else
88 #define STACK_ABT_SIZE 1024
89 #endif
90 #endif /*ARM64*/
91
92 #ifdef CFG_WITH_STACK_CANARIES
93 #ifdef ARM32
94 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t))
95 #endif
96 #ifdef ARM64
97 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t))
98 #endif
99 #define START_CANARY_VALUE 0xdededede
100 #define END_CANARY_VALUE 0xabababab
101 #define GET_START_CANARY(name, stack_num) name[stack_num][0]
102 #define GET_END_CANARY(name, stack_num) \
103 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1]
104 #else
105 #define STACK_CANARY_SIZE 0
106 #endif
107
108 #ifdef CFG_CORE_DEBUG_CHECK_STACKS
109 /*
110 * Extra space added to each stack in order to reliably detect and dump stack
111 * overflows. Should cover the maximum expected overflow size caused by any C
112 * function (say, 512 bytes; no function should have that much local variables),
113 * plus the maximum stack space needed by __cyg_profile_func_exit(): about 1 KB,
114 * a large part of which is used to print the call stack. Total: 1.5 KB.
115 */
116 #define STACK_CHECK_EXTRA 1536
117 #else
118 #define STACK_CHECK_EXTRA 0
119 #endif
120
121 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \
122 linkage uint32_t name[num_stacks] \
123 [ROUNDUP(stack_size + STACK_CANARY_SIZE + STACK_CHECK_EXTRA, \
124 STACK_ALIGNMENT) / sizeof(uint32_t)] \
125 __attribute__((section(".nozi_stack." # name), \
126 aligned(STACK_ALIGNMENT)))
127
128 #define GET_STACK(stack) ((vaddr_t)(stack) + STACK_SIZE(stack))
129
130 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE,
131 STACK_TMP_SIZE + CFG_STACK_TMP_EXTRA, static);
132 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static);
133 #ifndef CFG_WITH_PAGER
134 DECLARE_STACK(stack_thread, CFG_NUM_THREADS,
135 STACK_THREAD_SIZE + CFG_STACK_THREAD_EXTRA, static);
136 #endif
137
138 #define GET_STACK_TOP_HARD(stack, n) \
139 ((vaddr_t)&(stack)[n] + STACK_CANARY_SIZE / 2)
140 #define GET_STACK_TOP_SOFT(stack, n) \
141 (GET_STACK_TOP_HARD(stack, n) + STACK_CHECK_EXTRA)
142 #define GET_STACK_BOTTOM(stack, n) ((vaddr_t)&(stack)[n] + sizeof(stack[n]) - \
143 STACK_CANARY_SIZE / 2)
144
145 const void *stack_tmp_export __section(".identity_map.stack_tmp_export") =
146 (void *)(GET_STACK_BOTTOM(stack_tmp, 0) - STACK_TMP_OFFS);
147 const uint32_t stack_tmp_stride __section(".identity_map.stack_tmp_stride") =
148 sizeof(stack_tmp[0]);
149
150 /*
151 * These stack setup info are required by secondary boot cores before they
152 * each locally enable the pager (the mmu). Hence kept in pager sections.
153 */
154 DECLARE_KEEP_PAGER(stack_tmp_export);
155 DECLARE_KEEP_PAGER(stack_tmp_stride);
156
157 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
158 static vaddr_t thread_user_kcode_va __nex_bss;
159 long thread_user_kcode_offset __nex_bss;
160 static size_t thread_user_kcode_size __nex_bss;
161 #endif
162
163 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
164 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
165 long thread_user_kdata_sp_offset __nex_bss;
166 static uint8_t thread_user_kdata_page[
167 ROUNDUP(sizeof(thread_core_local), SMALL_PAGE_SIZE)]
168 __aligned(SMALL_PAGE_SIZE)
169 #ifndef CFG_VIRTUALIZATION
170 __section(".nozi.kdata_page");
171 #else
172 __section(".nex_nozi.kdata_page");
173 #endif
174 #endif
175
176 static unsigned int thread_global_lock __nex_bss = SPINLOCK_UNLOCK;
177
init_canaries(void)178 static void init_canaries(void)
179 {
180 #ifdef CFG_WITH_STACK_CANARIES
181 size_t n;
182 #define INIT_CANARY(name) \
183 for (n = 0; n < ARRAY_SIZE(name); n++) { \
184 uint32_t *start_canary = &GET_START_CANARY(name, n); \
185 uint32_t *end_canary = &GET_END_CANARY(name, n); \
186 \
187 *start_canary = START_CANARY_VALUE; \
188 *end_canary = END_CANARY_VALUE; \
189 }
190
191 INIT_CANARY(stack_tmp);
192 INIT_CANARY(stack_abt);
193 #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION)
194 INIT_CANARY(stack_thread);
195 #endif
196 #endif/*CFG_WITH_STACK_CANARIES*/
197 }
198
199 #define CANARY_DIED(stack, loc, n, addr) \
200 do { \
201 EMSG_RAW("Dead canary at %s of '%s[%zu]' (%p)", #loc, #stack, \
202 n, (void *)addr); \
203 panic(); \
204 } while (0)
205
thread_check_canaries(void)206 void thread_check_canaries(void)
207 {
208 #ifdef CFG_WITH_STACK_CANARIES
209 uint32_t *canary = NULL;
210 size_t n = 0;
211
212 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) {
213 canary = &GET_START_CANARY(stack_tmp, n);
214 if (*canary != START_CANARY_VALUE)
215 CANARY_DIED(stack_tmp, start, n, canary);
216 canary = &GET_END_CANARY(stack_tmp, n);
217 if (*canary != END_CANARY_VALUE)
218 CANARY_DIED(stack_tmp, end, n, canary);
219 }
220
221 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) {
222 canary = &GET_START_CANARY(stack_abt, n);
223 if (*canary != START_CANARY_VALUE)
224 CANARY_DIED(stack_abt, start, n, canary);
225 canary = &GET_END_CANARY(stack_abt, n);
226 if (*canary != END_CANARY_VALUE)
227 CANARY_DIED(stack_abt, end, n, canary);
228
229 }
230 #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION)
231 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) {
232 canary = &GET_START_CANARY(stack_thread, n);
233 if (*canary != START_CANARY_VALUE)
234 CANARY_DIED(stack_thread, start, n, canary);
235 canary = &GET_END_CANARY(stack_thread, n);
236 if (*canary != END_CANARY_VALUE)
237 CANARY_DIED(stack_thread, end, n, canary);
238 }
239 #endif
240 #endif/*CFG_WITH_STACK_CANARIES*/
241 }
242
thread_lock_global(void)243 void thread_lock_global(void)
244 {
245 cpu_spin_lock(&thread_global_lock);
246 }
247
thread_unlock_global(void)248 void thread_unlock_global(void)
249 {
250 cpu_spin_unlock(&thread_global_lock);
251 }
252
253 #ifdef ARM32
thread_get_exceptions(void)254 uint32_t __nostackcheck thread_get_exceptions(void)
255 {
256 uint32_t cpsr = read_cpsr();
257
258 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
259 }
260
thread_set_exceptions(uint32_t exceptions)261 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
262 {
263 uint32_t cpsr = read_cpsr();
264
265 /* Foreign interrupts must not be unmasked while holding a spinlock */
266 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
267 assert_have_no_spinlock();
268
269 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
270 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
271
272 barrier();
273 write_cpsr(cpsr);
274 barrier();
275 }
276 #endif /*ARM32*/
277
278 #ifdef ARM64
thread_get_exceptions(void)279 uint32_t __nostackcheck thread_get_exceptions(void)
280 {
281 uint32_t daif = read_daif();
282
283 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
284 }
285
thread_set_exceptions(uint32_t exceptions)286 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
287 {
288 uint32_t daif = read_daif();
289
290 /* Foreign interrupts must not be unmasked while holding a spinlock */
291 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
292 assert_have_no_spinlock();
293
294 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
295 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
296
297 barrier();
298 write_daif(daif);
299 barrier();
300 }
301 #endif /*ARM64*/
302
thread_mask_exceptions(uint32_t exceptions)303 uint32_t __nostackcheck thread_mask_exceptions(uint32_t exceptions)
304 {
305 uint32_t state = thread_get_exceptions();
306
307 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
308 return state;
309 }
310
thread_unmask_exceptions(uint32_t state)311 void __nostackcheck thread_unmask_exceptions(uint32_t state)
312 {
313 thread_set_exceptions(state & THREAD_EXCP_ALL);
314 }
315
316
317 static struct thread_core_local * __nostackcheck
get_core_local(unsigned int pos)318 get_core_local(unsigned int pos)
319 {
320 /*
321 * Foreign interrupts must be disabled before playing with core_local
322 * since we otherwise may be rescheduled to a different core in the
323 * middle of this function.
324 */
325 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
326
327 assert(pos < CFG_TEE_CORE_NB_CORE);
328 return &thread_core_local[pos];
329 }
330
thread_get_core_local(void)331 struct thread_core_local * __nostackcheck thread_get_core_local(void)
332 {
333 unsigned int pos = get_core_pos();
334
335 return get_core_local(pos);
336 }
337
338 #ifdef CFG_CORE_DEBUG_CHECK_STACKS
print_stack_limits(void)339 static void print_stack_limits(void)
340 {
341 size_t n = 0;
342 vaddr_t __maybe_unused start = 0;
343 vaddr_t __maybe_unused end = 0;
344
345 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) {
346 start = GET_STACK_TOP_SOFT(stack_tmp, n);
347 end = GET_STACK_BOTTOM(stack_tmp, n);
348 DMSG("tmp [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end);
349 }
350 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) {
351 start = GET_STACK_TOP_SOFT(stack_abt, n);
352 end = GET_STACK_BOTTOM(stack_abt, n);
353 DMSG("abt [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end);
354 }
355 for (n = 0; n < CFG_NUM_THREADS; n++) {
356 end = threads[n].stack_va_end;
357 start = end - STACK_THREAD_SIZE;
358 DMSG("thr [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end);
359 }
360 }
361
check_stack_limits(void)362 static void check_stack_limits(void)
363 {
364 vaddr_t stack_start = 0;
365 vaddr_t stack_end = 0;
366 /* Any value in the current stack frame will do */
367 vaddr_t current_sp = (vaddr_t)&stack_start;
368
369 if (!get_stack_soft_limits(&stack_start, &stack_end))
370 panic("Unknown stack limits");
371 if (current_sp < stack_start || current_sp > stack_end) {
372 DMSG("Stack pointer out of range (0x%" PRIxVA ")", current_sp);
373 print_stack_limits();
374 panic();
375 }
376 }
377
get_stackcheck_recursion_flag(void)378 static bool * __nostackcheck get_stackcheck_recursion_flag(void)
379 {
380 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
381 unsigned int pos = get_core_pos();
382 struct thread_core_local *l = get_core_local(pos);
383 int ct = l->curr_thread;
384 bool *p = NULL;
385
386 if (l->flags & (THREAD_CLF_ABORT | THREAD_CLF_TMP))
387 p = &l->stackcheck_recursion;
388 else if (!l->flags)
389 p = &threads[ct].tsd.stackcheck_recursion;
390
391 thread_unmask_exceptions(exceptions);
392 return p;
393 }
394
395 void __cyg_profile_func_enter(void *this_fn, void *call_site);
__cyg_profile_func_enter(void * this_fn __unused,void * call_site __unused)396 void __nostackcheck __cyg_profile_func_enter(void *this_fn __unused,
397 void *call_site __unused)
398 {
399 bool *p = get_stackcheck_recursion_flag();
400
401 assert(p);
402 if (*p)
403 return;
404 *p = true;
405 check_stack_limits();
406 *p = false;
407 }
408
409 void __cyg_profile_func_exit(void *this_fn, void *call_site);
__cyg_profile_func_exit(void * this_fn __unused,void * call_site __unused)410 void __nostackcheck __cyg_profile_func_exit(void *this_fn __unused,
411 void *call_site __unused)
412 {
413 }
414 #else
print_stack_limits(void)415 static void print_stack_limits(void)
416 {
417 }
418 #endif
419
thread_lazy_save_ns_vfp(void)420 static void thread_lazy_save_ns_vfp(void)
421 {
422 #ifdef CFG_WITH_VFP
423 struct thread_ctx *thr = threads + thread_get_id();
424
425 thr->vfp_state.ns_saved = false;
426 vfp_lazy_save_state_init(&thr->vfp_state.ns);
427 #endif /*CFG_WITH_VFP*/
428 }
429
thread_lazy_restore_ns_vfp(void)430 static void thread_lazy_restore_ns_vfp(void)
431 {
432 #ifdef CFG_WITH_VFP
433 struct thread_ctx *thr = threads + thread_get_id();
434 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
435
436 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
437
438 if (tuv && tuv->lazy_saved && !tuv->saved) {
439 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
440 tuv->saved = true;
441 }
442
443 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
444 thr->vfp_state.ns_saved = false;
445 #endif /*CFG_WITH_VFP*/
446 }
447
448 #ifdef ARM32
init_regs(struct thread_ctx * thread,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc)449 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
450 uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
451 uint32_t a6, uint32_t a7, void *pc)
452 {
453 thread->regs.pc = (uint32_t)pc;
454
455 /*
456 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
457 * Asynchronous abort and unmasked native interrupts.
458 */
459 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
460 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A |
461 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT);
462 /* Enable thumb mode if it's a thumb instruction */
463 if (thread->regs.pc & 1)
464 thread->regs.cpsr |= CPSR_T;
465 /* Reinitialize stack pointer */
466 thread->regs.svc_sp = thread->stack_va_end;
467
468 /*
469 * Copy arguments into context. This will make the
470 * arguments appear in r0-r7 when thread is started.
471 */
472 thread->regs.r0 = a0;
473 thread->regs.r1 = a1;
474 thread->regs.r2 = a2;
475 thread->regs.r3 = a3;
476 thread->regs.r4 = a4;
477 thread->regs.r5 = a5;
478 thread->regs.r6 = a6;
479 thread->regs.r7 = a7;
480 }
481 #endif /*ARM32*/
482
483 #ifdef ARM64
init_regs(struct thread_ctx * thread,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc)484 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
485 uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
486 uint32_t a6, uint32_t a7, void *pc)
487 {
488 thread->regs.pc = (uint64_t)pc;
489
490 /*
491 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
492 * Asynchronous abort and unmasked native interrupts.
493 */
494 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
495 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT);
496 /* Reinitialize stack pointer */
497 thread->regs.sp = thread->stack_va_end;
498
499 /*
500 * Copy arguments into context. This will make the
501 * arguments appear in x0-x7 when thread is started.
502 */
503 thread->regs.x[0] = a0;
504 thread->regs.x[1] = a1;
505 thread->regs.x[2] = a2;
506 thread->regs.x[3] = a3;
507 thread->regs.x[4] = a4;
508 thread->regs.x[5] = a5;
509 thread->regs.x[6] = a6;
510 thread->regs.x[7] = a7;
511
512 /* Set up frame pointer as per the Aarch64 AAPCS */
513 thread->regs.x[29] = 0;
514 }
515 #endif /*ARM64*/
516
thread_init_boot_thread(void)517 void thread_init_boot_thread(void)
518 {
519 struct thread_core_local *l = thread_get_core_local();
520
521 thread_init_threads();
522
523 l->curr_thread = 0;
524 threads[0].state = THREAD_STATE_ACTIVE;
525 }
526
thread_clr_boot_thread(void)527 void __nostackcheck thread_clr_boot_thread(void)
528 {
529 struct thread_core_local *l = thread_get_core_local();
530
531 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS);
532 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE);
533 threads[l->curr_thread].state = THREAD_STATE_FREE;
534 l->curr_thread = THREAD_ID_INVALID;
535 }
536
__thread_alloc_and_run(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc)537 static void __thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2,
538 uint32_t a3, uint32_t a4, uint32_t a5,
539 uint32_t a6, uint32_t a7,
540 void *pc)
541 {
542 size_t n;
543 struct thread_core_local *l = thread_get_core_local();
544 bool found_thread = false;
545
546 assert(l->curr_thread == THREAD_ID_INVALID);
547
548 thread_lock_global();
549
550 for (n = 0; n < CFG_NUM_THREADS; n++) {
551 if (threads[n].state == THREAD_STATE_FREE) {
552 threads[n].state = THREAD_STATE_ACTIVE;
553 found_thread = true;
554 break;
555 }
556 }
557
558 thread_unlock_global();
559
560 if (!found_thread)
561 return;
562
563 l->curr_thread = n;
564
565 threads[n].flags = 0;
566 init_regs(threads + n, a0, a1, a2, a3, a4, a5, a6, a7, pc);
567
568 thread_lazy_save_ns_vfp();
569
570 l->flags &= ~THREAD_CLF_TMP;
571 thread_resume(&threads[n].regs);
572 /*NOTREACHED*/
573 panic();
574 }
575
thread_alloc_and_run(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5)576 void thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
577 uint32_t a4, uint32_t a5)
578 {
579 __thread_alloc_and_run(a0, a1, a2, a3, a4, a5, 0, 0,
580 thread_std_smc_entry);
581 }
582
583 #ifdef CFG_SECURE_PARTITION
thread_sp_alloc_and_run(struct thread_smc_args * args __maybe_unused)584 void thread_sp_alloc_and_run(struct thread_smc_args *args __maybe_unused)
585 {
586 __thread_alloc_and_run(args->a0, args->a1, args->a2, args->a3, args->a4,
587 args->a5, args->a6, args->a7,
588 spmc_sp_thread_entry);
589 }
590 #endif
591
592 #ifdef ARM32
copy_a0_to_a3(struct thread_ctx_regs * regs,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)593 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
594 uint32_t a1, uint32_t a2, uint32_t a3)
595 {
596 /*
597 * Update returned values from RPC, values will appear in
598 * r0-r3 when thread is resumed.
599 */
600 regs->r0 = a0;
601 regs->r1 = a1;
602 regs->r2 = a2;
603 regs->r3 = a3;
604 }
605 #endif /*ARM32*/
606
607 #ifdef ARM64
copy_a0_to_a3(struct thread_ctx_regs * regs,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)608 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
609 uint32_t a1, uint32_t a2, uint32_t a3)
610 {
611 /*
612 * Update returned values from RPC, values will appear in
613 * x0-x3 when thread is resumed.
614 */
615 regs->x[0] = a0;
616 regs->x[1] = a1;
617 regs->x[2] = a2;
618 regs->x[3] = a3;
619 }
620 #endif /*ARM64*/
621
622 #ifdef ARM32
is_from_user(uint32_t cpsr)623 static bool is_from_user(uint32_t cpsr)
624 {
625 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
626 }
627 #endif
628
629 #ifdef ARM64
is_from_user(uint32_t cpsr)630 static bool is_from_user(uint32_t cpsr)
631 {
632 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
633 return true;
634 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
635 SPSR_64_MODE_EL0)
636 return true;
637 return false;
638 }
639 #endif
640
641 #ifdef CFG_SYSCALL_FTRACE
ftrace_suspend(void)642 static void __noprof ftrace_suspend(void)
643 {
644 struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
645
646 if (s && s->fbuf)
647 s->fbuf->syscall_trace_suspended = true;
648 }
649
ftrace_resume(void)650 static void __noprof ftrace_resume(void)
651 {
652 struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
653
654 if (s && s->fbuf)
655 s->fbuf->syscall_trace_suspended = false;
656 }
657 #else
ftrace_suspend(void)658 static void __noprof ftrace_suspend(void)
659 {
660 }
661
ftrace_resume(void)662 static void __noprof ftrace_resume(void)
663 {
664 }
665 #endif
666
is_user_mode(struct thread_ctx_regs * regs)667 static bool is_user_mode(struct thread_ctx_regs *regs)
668 {
669 return is_from_user((uint32_t)regs->cpsr);
670 }
671
thread_resume_from_rpc(uint32_t thread_id,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)672 void thread_resume_from_rpc(uint32_t thread_id, uint32_t a0, uint32_t a1,
673 uint32_t a2, uint32_t a3)
674 {
675 size_t n = thread_id;
676 struct thread_core_local *l = thread_get_core_local();
677 bool found_thread = false;
678
679 assert(l->curr_thread == THREAD_ID_INVALID);
680
681 thread_lock_global();
682
683 if (n < CFG_NUM_THREADS && threads[n].state == THREAD_STATE_SUSPENDED) {
684 threads[n].state = THREAD_STATE_ACTIVE;
685 found_thread = true;
686 }
687
688 thread_unlock_global();
689
690 if (!found_thread)
691 return;
692
693 l->curr_thread = n;
694
695 if (threads[n].have_user_map) {
696 core_mmu_set_user_map(&threads[n].user_map);
697 if (threads[n].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
698 tee_ta_ftrace_update_times_resume();
699 }
700
701 if (is_user_mode(&threads[n].regs))
702 tee_ta_update_session_utime_resume();
703
704 /*
705 * Return from RPC to request service of a foreign interrupt must not
706 * get parameters from non-secure world.
707 */
708 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
709 copy_a0_to_a3(&threads[n].regs, a0, a1, a2, a3);
710 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
711 }
712
713 thread_lazy_save_ns_vfp();
714
715 if (threads[n].have_user_map)
716 ftrace_resume();
717
718 l->flags &= ~THREAD_CLF_TMP;
719 thread_resume(&threads[n].regs);
720 /*NOTREACHED*/
721 panic();
722 }
723
thread_get_tmp_sp(void)724 void __nostackcheck *thread_get_tmp_sp(void)
725 {
726 struct thread_core_local *l = thread_get_core_local();
727
728 /*
729 * Called from assembly when switching to the temporary stack, so flags
730 * need updating
731 */
732 l->flags |= THREAD_CLF_TMP;
733
734 return (void *)l->tmp_stack_va_end;
735 }
736
737 #ifdef ARM64
thread_get_saved_thread_sp(void)738 vaddr_t thread_get_saved_thread_sp(void)
739 {
740 struct thread_core_local *l = thread_get_core_local();
741 int ct = l->curr_thread;
742
743 assert(ct != THREAD_ID_INVALID);
744 return threads[ct].kern_sp;
745 }
746 #endif /*ARM64*/
747
thread_stack_start(void)748 vaddr_t thread_stack_start(void)
749 {
750 struct thread_ctx *thr;
751 int ct = thread_get_id_may_fail();
752
753 if (ct == THREAD_ID_INVALID)
754 return 0;
755
756 thr = threads + ct;
757 return thr->stack_va_end - STACK_THREAD_SIZE;
758 }
759
thread_stack_size(void)760 size_t thread_stack_size(void)
761 {
762 return STACK_THREAD_SIZE;
763 }
764
get_stack_limits(vaddr_t * start,vaddr_t * end,bool hard)765 bool get_stack_limits(vaddr_t *start, vaddr_t *end, bool hard)
766 {
767 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
768 unsigned int pos = get_core_pos();
769 struct thread_core_local *l = get_core_local(pos);
770 int ct = l->curr_thread;
771 bool ret = false;
772
773 if (l->flags & THREAD_CLF_TMP) {
774 if (hard)
775 *start = GET_STACK_TOP_HARD(stack_tmp, pos);
776 else
777 *start = GET_STACK_TOP_SOFT(stack_tmp, pos);
778 *end = GET_STACK_BOTTOM(stack_tmp, pos);
779 ret = true;
780 } else if (l->flags & THREAD_CLF_ABORT) {
781 if (hard)
782 *start = GET_STACK_TOP_HARD(stack_abt, pos);
783 else
784 *start = GET_STACK_TOP_SOFT(stack_abt, pos);
785 *end = GET_STACK_BOTTOM(stack_abt, pos);
786 ret = true;
787 } else if (!l->flags) {
788 if (ct < 0 || ct >= CFG_NUM_THREADS)
789 goto out;
790
791 *end = threads[ct].stack_va_end;
792 *start = *end - STACK_THREAD_SIZE;
793 if (!hard)
794 *start += STACK_CHECK_EXTRA;
795 ret = true;
796 }
797 out:
798 thread_unmask_exceptions(exceptions);
799 return ret;
800 }
801
thread_is_from_abort_mode(void)802 bool thread_is_from_abort_mode(void)
803 {
804 struct thread_core_local *l = thread_get_core_local();
805
806 return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT;
807 }
808
809 #ifdef ARM32
thread_is_in_normal_mode(void)810 bool thread_is_in_normal_mode(void)
811 {
812 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC;
813 }
814 #endif
815
816 #ifdef ARM64
thread_is_in_normal_mode(void)817 bool thread_is_in_normal_mode(void)
818 {
819 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
820 struct thread_core_local *l = thread_get_core_local();
821 bool ret;
822
823 /*
824 * If any bit in l->flags is set aside from THREAD_CLF_TMP we're
825 * handling some exception.
826 */
827 ret = (l->curr_thread != THREAD_ID_INVALID) &&
828 !(l->flags & ~THREAD_CLF_TMP);
829 thread_unmask_exceptions(exceptions);
830
831 return ret;
832 }
833 #endif
834
thread_state_free(void)835 void thread_state_free(void)
836 {
837 struct thread_core_local *l = thread_get_core_local();
838 int ct = l->curr_thread;
839
840 assert(ct != THREAD_ID_INVALID);
841
842 thread_lazy_restore_ns_vfp();
843 tee_pager_release_phys(
844 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE),
845 STACK_THREAD_SIZE);
846
847 thread_lock_global();
848
849 assert(threads[ct].state == THREAD_STATE_ACTIVE);
850 threads[ct].state = THREAD_STATE_FREE;
851 threads[ct].flags = 0;
852 l->curr_thread = THREAD_ID_INVALID;
853
854 if (IS_ENABLED(CFG_VIRTUALIZATION))
855 virt_unset_guest();
856 thread_unlock_global();
857 }
858
859 #ifdef CFG_WITH_PAGER
release_unused_kernel_stack(struct thread_ctx * thr,uint32_t cpsr __maybe_unused)860 static void release_unused_kernel_stack(struct thread_ctx *thr,
861 uint32_t cpsr __maybe_unused)
862 {
863 #ifdef ARM64
864 /*
865 * If we're from user mode then thr->regs.sp is the saved user
866 * stack pointer and thr->kern_sp holds the last kernel stack
867 * pointer. But if we're from kernel mode then thr->kern_sp isn't
868 * up to date so we need to read from thr->regs.sp instead.
869 */
870 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp;
871 #else
872 vaddr_t sp = thr->regs.svc_sp;
873 #endif
874 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE;
875 size_t len = sp - base;
876
877 tee_pager_release_phys((void *)base, len);
878 }
879 #else
release_unused_kernel_stack(struct thread_ctx * thr __unused,uint32_t cpsr __unused)880 static void release_unused_kernel_stack(struct thread_ctx *thr __unused,
881 uint32_t cpsr __unused)
882 {
883 }
884 #endif
885
thread_state_suspend(uint32_t flags,uint32_t cpsr,vaddr_t pc)886 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
887 {
888 struct thread_core_local *l = thread_get_core_local();
889 int ct = l->curr_thread;
890
891 assert(ct != THREAD_ID_INVALID);
892
893 if (core_mmu_user_mapping_is_active())
894 ftrace_suspend();
895
896 thread_check_canaries();
897
898 release_unused_kernel_stack(threads + ct, cpsr);
899
900 if (is_from_user(cpsr)) {
901 thread_user_save_vfp();
902 tee_ta_update_session_utime_suspend();
903 tee_ta_gprof_sample_pc(pc);
904 }
905 thread_lazy_restore_ns_vfp();
906
907 thread_lock_global();
908
909 assert(threads[ct].state == THREAD_STATE_ACTIVE);
910 threads[ct].flags |= flags;
911 threads[ct].regs.cpsr = cpsr;
912 threads[ct].regs.pc = pc;
913 threads[ct].state = THREAD_STATE_SUSPENDED;
914
915 threads[ct].have_user_map = core_mmu_user_mapping_is_active();
916 if (threads[ct].have_user_map) {
917 if (threads[ct].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
918 tee_ta_ftrace_update_times_suspend();
919 core_mmu_get_user_map(&threads[ct].user_map);
920 core_mmu_set_user_map(NULL);
921 }
922
923 l->curr_thread = THREAD_ID_INVALID;
924
925 if (IS_ENABLED(CFG_VIRTUALIZATION))
926 virt_unset_guest();
927
928 thread_unlock_global();
929
930 return ct;
931 }
932
933 #ifdef ARM32
set_tmp_stack(struct thread_core_local * l,vaddr_t sp)934 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
935 {
936 l->tmp_stack_va_end = sp;
937 thread_set_irq_sp(sp);
938 thread_set_fiq_sp(sp);
939 }
940
set_abt_stack(struct thread_core_local * l,vaddr_t sp)941 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
942 {
943 l->abt_stack_va_end = sp;
944 thread_set_abt_sp((vaddr_t)l);
945 thread_set_und_sp((vaddr_t)l);
946 }
947 #endif /*ARM32*/
948
949 #ifdef ARM64
set_tmp_stack(struct thread_core_local * l,vaddr_t sp)950 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
951 {
952 /*
953 * We're already using the tmp stack when this function is called
954 * so there's no need to assign it to any stack pointer. However,
955 * we'll need to restore it at different times so store it here.
956 */
957 l->tmp_stack_va_end = sp;
958 }
959
set_abt_stack(struct thread_core_local * l,vaddr_t sp)960 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
961 {
962 l->abt_stack_va_end = sp;
963 }
964 #endif /*ARM64*/
965
thread_init_stack(uint32_t thread_id,vaddr_t sp)966 bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
967 {
968 if (thread_id >= CFG_NUM_THREADS)
969 return false;
970 threads[thread_id].stack_va_end = sp;
971 return true;
972 }
973
thread_get_id_may_fail(void)974 short int thread_get_id_may_fail(void)
975 {
976 /*
977 * thread_get_core_local() requires foreign interrupts to be disabled
978 */
979 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
980 struct thread_core_local *l = thread_get_core_local();
981 short int ct = l->curr_thread;
982
983 thread_unmask_exceptions(exceptions);
984 return ct;
985 }
986
thread_get_id(void)987 short int thread_get_id(void)
988 {
989 short int ct = thread_get_id_may_fail();
990
991 /* Thread ID has to fit in a short int */
992 COMPILE_TIME_ASSERT(CFG_NUM_THREADS <= SHRT_MAX);
993 assert(ct >= 0 && ct < CFG_NUM_THREADS);
994 return ct;
995 }
996
997 #ifdef CFG_WITH_PAGER
init_thread_stacks(void)998 static void init_thread_stacks(void)
999 {
1000 size_t n = 0;
1001
1002 /*
1003 * Allocate virtual memory for thread stacks.
1004 */
1005 for (n = 0; n < CFG_NUM_THREADS; n++) {
1006 tee_mm_entry_t *mm = NULL;
1007 vaddr_t sp = 0;
1008 size_t num_pages = 0;
1009 struct fobj *fobj = NULL;
1010
1011 /* Find vmem for thread stack and its protection gap */
1012 mm = tee_mm_alloc(&tee_mm_vcore,
1013 SMALL_PAGE_SIZE + STACK_THREAD_SIZE);
1014 assert(mm);
1015
1016 /* Claim eventual physical page */
1017 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
1018 true);
1019
1020 num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE - 1;
1021 fobj = fobj_locked_paged_alloc(num_pages);
1022
1023 /* Add the region to the pager */
1024 tee_pager_add_core_region(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE,
1025 PAGED_REGION_TYPE_LOCK, fobj);
1026 fobj_put(fobj);
1027
1028 /* init effective stack */
1029 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm);
1030 asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp);
1031 if (!thread_init_stack(n, sp))
1032 panic("init stack failed");
1033 }
1034 }
1035 #else
init_thread_stacks(void)1036 static void init_thread_stacks(void)
1037 {
1038 size_t n;
1039
1040 /* Assign the thread stacks */
1041 for (n = 0; n < CFG_NUM_THREADS; n++) {
1042 if (!thread_init_stack(n, GET_STACK_BOTTOM(stack_thread, n)))
1043 panic("thread_init_stack failed");
1044 }
1045 }
1046 #endif /*CFG_WITH_PAGER*/
1047
init_user_kcode(void)1048 static void init_user_kcode(void)
1049 {
1050 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
1051 vaddr_t v = (vaddr_t)thread_excp_vect;
1052 vaddr_t ve = (vaddr_t)thread_excp_vect_end;
1053
1054 thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE);
1055 ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE);
1056 thread_user_kcode_size = ve - thread_user_kcode_va;
1057
1058 core_mmu_get_user_va_range(&v, NULL);
1059 thread_user_kcode_offset = thread_user_kcode_va - v;
1060
1061 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
1062 /*
1063 * When transitioning to EL0 subtract SP with this much to point to
1064 * this special kdata page instead. SP is restored by add this much
1065 * while transitioning back to EL1.
1066 */
1067 v += thread_user_kcode_size;
1068 thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v;
1069 #endif
1070 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/
1071 }
1072
thread_init_threads(void)1073 void thread_init_threads(void)
1074 {
1075 size_t n = 0;
1076
1077 init_thread_stacks();
1078 print_stack_limits();
1079 pgt_init();
1080
1081 mutex_lockdep_init();
1082
1083 for (n = 0; n < CFG_NUM_THREADS; n++) {
1084 TAILQ_INIT(&threads[n].tsd.sess_stack);
1085 SLIST_INIT(&threads[n].tsd.pgt_cache);
1086 }
1087 }
1088
thread_init_thread_core_local(void)1089 void __nostackcheck thread_init_thread_core_local(void)
1090 {
1091 size_t n = 0;
1092 struct thread_core_local *tcl = thread_core_local;
1093
1094 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) {
1095 tcl[n].curr_thread = THREAD_ID_INVALID;
1096 tcl[n].flags = THREAD_CLF_TMP;
1097 }
1098
1099 tcl[0].tmp_stack_va_end = GET_STACK_BOTTOM(stack_tmp, 0);
1100 }
1101
thread_init_primary(void)1102 void thread_init_primary(void)
1103 {
1104 /* Initialize canaries around the stacks */
1105 init_canaries();
1106
1107 init_user_kcode();
1108 }
1109
init_sec_mon_stack(size_t pos __maybe_unused)1110 static void init_sec_mon_stack(size_t pos __maybe_unused)
1111 {
1112 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
1113 /* Initialize secure monitor */
1114 sm_init(GET_STACK_BOTTOM(stack_tmp, pos));
1115 #endif
1116 }
1117
get_midr_implementer(uint32_t midr)1118 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr)
1119 {
1120 return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK;
1121 }
1122
get_midr_primary_part(uint32_t midr)1123 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr)
1124 {
1125 return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) &
1126 MIDR_PRIMARY_PART_NUM_MASK;
1127 }
1128
1129 #ifdef ARM64
probe_workaround_available(void)1130 static bool probe_workaround_available(void)
1131 {
1132 int32_t r;
1133
1134 r = thread_smc(SMCCC_VERSION, 0, 0, 0);
1135 if (r < 0)
1136 return false;
1137 if (r < 0x10001) /* compare with version 1.1 */
1138 return false;
1139
1140 /* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */
1141 r = thread_smc(SMCCC_ARCH_FEATURES, SMCCC_ARCH_WORKAROUND_1, 0, 0);
1142 return r >= 0;
1143 }
1144
select_vector(vaddr_t a)1145 static vaddr_t __maybe_unused select_vector(vaddr_t a)
1146 {
1147 if (probe_workaround_available()) {
1148 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available",
1149 SMCCC_ARCH_WORKAROUND_1);
1150 DMSG("SMC Workaround for CVE-2017-5715 used");
1151 return a;
1152 }
1153
1154 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable",
1155 SMCCC_ARCH_WORKAROUND_1);
1156 DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)");
1157 return (vaddr_t)thread_excp_vect;
1158 }
1159 #else
select_vector(vaddr_t a)1160 static vaddr_t __maybe_unused select_vector(vaddr_t a)
1161 {
1162 return a;
1163 }
1164 #endif
1165
get_excp_vect(void)1166 static vaddr_t get_excp_vect(void)
1167 {
1168 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
1169 uint32_t midr = read_midr();
1170
1171 if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM)
1172 return (vaddr_t)thread_excp_vect;
1173
1174 switch (get_midr_primary_part(midr)) {
1175 #ifdef ARM32
1176 case CORTEX_A8_PART_NUM:
1177 case CORTEX_A9_PART_NUM:
1178 case CORTEX_A17_PART_NUM:
1179 #endif
1180 case CORTEX_A57_PART_NUM:
1181 case CORTEX_A72_PART_NUM:
1182 case CORTEX_A73_PART_NUM:
1183 case CORTEX_A75_PART_NUM:
1184 return select_vector((vaddr_t)thread_excp_vect_workaround);
1185 #ifdef ARM32
1186 case CORTEX_A15_PART_NUM:
1187 return select_vector((vaddr_t)thread_excp_vect_workaround_a15);
1188 #endif
1189 default:
1190 return (vaddr_t)thread_excp_vect;
1191 }
1192 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/
1193
1194 return (vaddr_t)thread_excp_vect;
1195 }
1196
thread_init_per_cpu(void)1197 void thread_init_per_cpu(void)
1198 {
1199 size_t pos = get_core_pos();
1200 struct thread_core_local *l = thread_get_core_local();
1201
1202 init_sec_mon_stack(pos);
1203
1204 set_tmp_stack(l, GET_STACK_BOTTOM(stack_tmp, pos) - STACK_TMP_OFFS);
1205 set_abt_stack(l, GET_STACK_BOTTOM(stack_abt, pos));
1206
1207 thread_init_vbar(get_excp_vect());
1208
1209 #ifdef CFG_FTRACE_SUPPORT
1210 /*
1211 * Enable accesses to frequency register and physical counter
1212 * register in EL0/PL0 required for timestamping during
1213 * function tracing.
1214 */
1215 write_cntkctl(read_cntkctl() | CNTKCTL_PL0PCTEN);
1216 #endif
1217 }
1218
thread_get_tsd(void)1219 struct thread_specific_data *thread_get_tsd(void)
1220 {
1221 return &threads[thread_get_id()].tsd;
1222 }
1223
thread_get_ctx_regs(void)1224 struct thread_ctx_regs * __nostackcheck thread_get_ctx_regs(void)
1225 {
1226 struct thread_core_local *l = thread_get_core_local();
1227
1228 assert(l->curr_thread != THREAD_ID_INVALID);
1229 return &threads[l->curr_thread].regs;
1230 }
1231
thread_set_foreign_intr(bool enable)1232 void thread_set_foreign_intr(bool enable)
1233 {
1234 /* thread_get_core_local() requires foreign interrupts to be disabled */
1235 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
1236 struct thread_core_local *l;
1237
1238 l = thread_get_core_local();
1239
1240 assert(l->curr_thread != THREAD_ID_INVALID);
1241
1242 if (enable) {
1243 threads[l->curr_thread].flags |=
1244 THREAD_FLAGS_FOREIGN_INTR_ENABLE;
1245 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR);
1246 } else {
1247 /*
1248 * No need to disable foreign interrupts here since they're
1249 * already disabled above.
1250 */
1251 threads[l->curr_thread].flags &=
1252 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE;
1253 }
1254 }
1255
thread_restore_foreign_intr(void)1256 void thread_restore_foreign_intr(void)
1257 {
1258 /* thread_get_core_local() requires foreign interrupts to be disabled */
1259 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
1260 struct thread_core_local *l;
1261
1262 l = thread_get_core_local();
1263
1264 assert(l->curr_thread != THREAD_ID_INVALID);
1265
1266 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE)
1267 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR);
1268 }
1269
1270 #ifdef CFG_WITH_VFP
thread_kernel_enable_vfp(void)1271 uint32_t thread_kernel_enable_vfp(void)
1272 {
1273 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
1274 struct thread_ctx *thr = threads + thread_get_id();
1275 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
1276
1277 assert(!vfp_is_enabled());
1278
1279 if (!thr->vfp_state.ns_saved) {
1280 vfp_lazy_save_state_final(&thr->vfp_state.ns,
1281 true /*force_save*/);
1282 thr->vfp_state.ns_saved = true;
1283 } else if (thr->vfp_state.sec_lazy_saved &&
1284 !thr->vfp_state.sec_saved) {
1285 /*
1286 * This happens when we're handling an abort while the
1287 * thread was using the VFP state.
1288 */
1289 vfp_lazy_save_state_final(&thr->vfp_state.sec,
1290 false /*!force_save*/);
1291 thr->vfp_state.sec_saved = true;
1292 } else if (tuv && tuv->lazy_saved && !tuv->saved) {
1293 /*
1294 * This can happen either during syscall or abort
1295 * processing (while processing a syscall).
1296 */
1297 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
1298 tuv->saved = true;
1299 }
1300
1301 vfp_enable();
1302 return exceptions;
1303 }
1304
thread_kernel_disable_vfp(uint32_t state)1305 void thread_kernel_disable_vfp(uint32_t state)
1306 {
1307 uint32_t exceptions;
1308
1309 assert(vfp_is_enabled());
1310
1311 vfp_disable();
1312 exceptions = thread_get_exceptions();
1313 assert(exceptions & THREAD_EXCP_FOREIGN_INTR);
1314 exceptions &= ~THREAD_EXCP_FOREIGN_INTR;
1315 exceptions |= state & THREAD_EXCP_FOREIGN_INTR;
1316 thread_set_exceptions(exceptions);
1317 }
1318
thread_kernel_save_vfp(void)1319 void thread_kernel_save_vfp(void)
1320 {
1321 struct thread_ctx *thr = threads + thread_get_id();
1322
1323 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
1324 if (vfp_is_enabled()) {
1325 vfp_lazy_save_state_init(&thr->vfp_state.sec);
1326 thr->vfp_state.sec_lazy_saved = true;
1327 }
1328 }
1329
thread_kernel_restore_vfp(void)1330 void thread_kernel_restore_vfp(void)
1331 {
1332 struct thread_ctx *thr = threads + thread_get_id();
1333
1334 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
1335 assert(!vfp_is_enabled());
1336 if (thr->vfp_state.sec_lazy_saved) {
1337 vfp_lazy_restore_state(&thr->vfp_state.sec,
1338 thr->vfp_state.sec_saved);
1339 thr->vfp_state.sec_saved = false;
1340 thr->vfp_state.sec_lazy_saved = false;
1341 }
1342 }
1343
thread_user_enable_vfp(struct thread_user_vfp_state * uvfp)1344 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
1345 {
1346 struct thread_ctx *thr = threads + thread_get_id();
1347 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
1348
1349 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
1350 assert(!vfp_is_enabled());
1351
1352 if (!thr->vfp_state.ns_saved) {
1353 vfp_lazy_save_state_final(&thr->vfp_state.ns,
1354 true /*force_save*/);
1355 thr->vfp_state.ns_saved = true;
1356 } else if (tuv && uvfp != tuv) {
1357 if (tuv->lazy_saved && !tuv->saved) {
1358 vfp_lazy_save_state_final(&tuv->vfp,
1359 false /*!force_save*/);
1360 tuv->saved = true;
1361 }
1362 }
1363
1364 if (uvfp->lazy_saved)
1365 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
1366 uvfp->lazy_saved = false;
1367 uvfp->saved = false;
1368
1369 thr->vfp_state.uvfp = uvfp;
1370 vfp_enable();
1371 }
1372
thread_user_save_vfp(void)1373 void thread_user_save_vfp(void)
1374 {
1375 struct thread_ctx *thr = threads + thread_get_id();
1376 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
1377
1378 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
1379 if (!vfp_is_enabled())
1380 return;
1381
1382 assert(tuv && !tuv->lazy_saved && !tuv->saved);
1383 vfp_lazy_save_state_init(&tuv->vfp);
1384 tuv->lazy_saved = true;
1385 }
1386
thread_user_clear_vfp(struct user_mode_ctx * uctx)1387 void thread_user_clear_vfp(struct user_mode_ctx *uctx)
1388 {
1389 struct thread_user_vfp_state *uvfp = &uctx->vfp;
1390 struct thread_ctx *thr = threads + thread_get_id();
1391
1392 if (uvfp == thr->vfp_state.uvfp)
1393 thr->vfp_state.uvfp = NULL;
1394 uvfp->lazy_saved = false;
1395 uvfp->saved = false;
1396 }
1397 #endif /*CFG_WITH_VFP*/
1398
1399 #ifdef ARM32
get_spsr(bool is_32bit,unsigned long entry_func,uint32_t * spsr)1400 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1401 {
1402 uint32_t s;
1403
1404 if (!is_32bit)
1405 return false;
1406
1407 s = read_cpsr();
1408 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
1409 s |= CPSR_MODE_USR;
1410 if (entry_func & 1)
1411 s |= CPSR_T;
1412 *spsr = s;
1413 return true;
1414 }
1415 #endif
1416
1417 #ifdef ARM64
get_spsr(bool is_32bit,unsigned long entry_func,uint32_t * spsr)1418 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1419 {
1420 uint32_t s;
1421
1422 if (is_32bit) {
1423 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
1424 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
1425 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
1426 } else {
1427 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
1428 }
1429
1430 *spsr = s;
1431 return true;
1432 }
1433 #endif
1434
set_ctx_regs(struct thread_ctx_regs * regs,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long user_sp,unsigned long entry_func,uint32_t spsr)1435 static void set_ctx_regs(struct thread_ctx_regs *regs, unsigned long a0,
1436 unsigned long a1, unsigned long a2, unsigned long a3,
1437 unsigned long user_sp, unsigned long entry_func,
1438 uint32_t spsr)
1439 {
1440 /*
1441 * First clear all registers to avoid leaking information from
1442 * other TAs or even the Core itself.
1443 */
1444 *regs = (struct thread_ctx_regs){ };
1445 #ifdef ARM32
1446 regs->r0 = a0;
1447 regs->r1 = a1;
1448 regs->r2 = a2;
1449 regs->r3 = a3;
1450 regs->usr_sp = user_sp;
1451 regs->pc = entry_func;
1452 regs->cpsr = spsr;
1453 #endif
1454 #ifdef ARM64
1455 regs->x[0] = a0;
1456 regs->x[1] = a1;
1457 regs->x[2] = a2;
1458 regs->x[3] = a3;
1459 regs->sp = user_sp;
1460 regs->pc = entry_func;
1461 regs->cpsr = spsr;
1462 regs->x[13] = user_sp; /* Used when running TA in Aarch32 */
1463 regs->sp = user_sp; /* Used when running TA in Aarch64 */
1464 /* Set frame pointer (user stack can't be unwound past this point) */
1465 regs->x[29] = 0;
1466 #endif
1467 }
1468
thread_enter_user_mode(unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long user_sp,unsigned long entry_func,bool is_32bit,uint32_t * exit_status0,uint32_t * exit_status1)1469 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
1470 unsigned long a2, unsigned long a3, unsigned long user_sp,
1471 unsigned long entry_func, bool is_32bit,
1472 uint32_t *exit_status0, uint32_t *exit_status1)
1473 {
1474 uint32_t spsr = 0;
1475 uint32_t exceptions = 0;
1476 uint32_t rc = 0;
1477 struct thread_ctx_regs *regs = NULL;
1478
1479 tee_ta_update_session_utime_resume();
1480
1481 /* Derive SPSR from current CPSR/PSTATE readout. */
1482 if (!get_spsr(is_32bit, entry_func, &spsr)) {
1483 *exit_status0 = 1; /* panic */
1484 *exit_status1 = 0xbadbadba;
1485 return 0;
1486 }
1487
1488 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1489 /*
1490 * We're using the per thread location of saved context registers
1491 * for temporary storage. Now that exceptions are masked they will
1492 * not be used for any thing else until they are eventually
1493 * unmasked when user mode has been entered.
1494 */
1495 regs = thread_get_ctx_regs();
1496 set_ctx_regs(regs, a0, a1, a2, a3, user_sp, entry_func, spsr);
1497 rc = __thread_enter_user_mode(regs, exit_status0, exit_status1);
1498 thread_unmask_exceptions(exceptions);
1499 return rc;
1500 }
1501
1502 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
thread_get_user_kcode(struct mobj ** mobj,size_t * offset,vaddr_t * va,size_t * sz)1503 void thread_get_user_kcode(struct mobj **mobj, size_t *offset,
1504 vaddr_t *va, size_t *sz)
1505 {
1506 core_mmu_get_user_va_range(va, NULL);
1507 *mobj = mobj_tee_ram_rx;
1508 *sz = thread_user_kcode_size;
1509 *offset = thread_user_kcode_va - (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1510 }
1511 #endif
1512
1513 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
1514 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
thread_get_user_kdata(struct mobj ** mobj,size_t * offset,vaddr_t * va,size_t * sz)1515 void thread_get_user_kdata(struct mobj **mobj, size_t *offset,
1516 vaddr_t *va, size_t *sz)
1517 {
1518 vaddr_t v;
1519
1520 core_mmu_get_user_va_range(&v, NULL);
1521 *va = v + thread_user_kcode_size;
1522 *mobj = mobj_tee_ram_rw;
1523 *sz = sizeof(thread_user_kdata_page);
1524 *offset = (vaddr_t)thread_user_kdata_page -
1525 (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1526 }
1527 #endif
1528
setup_unwind_user_mode(struct thread_svc_regs * regs)1529 static void setup_unwind_user_mode(struct thread_svc_regs *regs)
1530 {
1531 #ifdef ARM32
1532 regs->lr = (uintptr_t)thread_unwind_user_mode;
1533 regs->spsr = read_cpsr();
1534 #endif
1535 #ifdef ARM64
1536 regs->elr = (uintptr_t)thread_unwind_user_mode;
1537 regs->spsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 0);
1538 regs->spsr |= read_daif();
1539 /*
1540 * Regs is the value of stack pointer before calling the SVC
1541 * handler. By the addition matches for the reserved space at the
1542 * beginning of el0_sync_svc(). This prepares the stack when
1543 * returning to thread_unwind_user_mode instead of a normal
1544 * exception return.
1545 */
1546 regs->sp_el0 = (uint64_t)(regs + 1);
1547 #endif
1548 }
1549
gprof_set_status(struct ts_session * s __maybe_unused,enum ts_gprof_status status __maybe_unused)1550 static void gprof_set_status(struct ts_session *s __maybe_unused,
1551 enum ts_gprof_status status __maybe_unused)
1552 {
1553 #ifdef CFG_TA_GPROF_SUPPORT
1554 if (s->ctx->ops->gprof_set_status)
1555 s->ctx->ops->gprof_set_status(status);
1556 #endif
1557 }
1558
1559 /*
1560 * Note: this function is weak just to make it possible to exclude it from
1561 * the unpaged area.
1562 */
thread_svc_handler(struct thread_svc_regs * regs)1563 void __weak thread_svc_handler(struct thread_svc_regs *regs)
1564 {
1565 struct ts_session *sess = NULL;
1566 uint32_t state = 0;
1567
1568 /* Enable native interrupts */
1569 state = thread_get_exceptions();
1570 thread_unmask_exceptions(state & ~THREAD_EXCP_NATIVE_INTR);
1571
1572 thread_user_save_vfp();
1573
1574 sess = ts_get_current_session();
1575 /*
1576 * User mode service has just entered kernel mode, suspend gprof
1577 * collection until we're about to switch back again.
1578 */
1579 gprof_set_status(sess, TS_GPROF_SUSPEND);
1580
1581 /* Restore foreign interrupts which are disabled on exception entry */
1582 thread_restore_foreign_intr();
1583
1584 assert(sess && sess->handle_svc);
1585 if (sess->handle_svc(regs)) {
1586 /* We're about to switch back to user mode */
1587 gprof_set_status(sess, TS_GPROF_RESUME);
1588 } else {
1589 /* We're returning from __thread_enter_user_mode() */
1590 setup_unwind_user_mode(regs);
1591 }
1592 }
1593
alloc_shm(enum thread_shm_type shm_type,size_t size)1594 static struct mobj *alloc_shm(enum thread_shm_type shm_type, size_t size)
1595 {
1596 switch (shm_type) {
1597 case THREAD_SHM_TYPE_APPLICATION:
1598 return thread_rpc_alloc_payload(size);
1599 case THREAD_SHM_TYPE_KERNEL_PRIVATE:
1600 return thread_rpc_alloc_kernel_payload(size);
1601 case THREAD_SHM_TYPE_GLOBAL:
1602 return thread_rpc_alloc_global_payload(size);
1603 default:
1604 return NULL;
1605 }
1606 }
1607
clear_shm_cache_entry(struct thread_shm_cache_entry * ce)1608 static void clear_shm_cache_entry(struct thread_shm_cache_entry *ce)
1609 {
1610 if (ce->mobj) {
1611 switch (ce->type) {
1612 case THREAD_SHM_TYPE_APPLICATION:
1613 thread_rpc_free_payload(ce->mobj);
1614 break;
1615 case THREAD_SHM_TYPE_KERNEL_PRIVATE:
1616 thread_rpc_free_kernel_payload(ce->mobj);
1617 break;
1618 case THREAD_SHM_TYPE_GLOBAL:
1619 thread_rpc_free_global_payload(ce->mobj);
1620 break;
1621 default:
1622 assert(0); /* "can't happen" */
1623 break;
1624 }
1625 }
1626 ce->mobj = NULL;
1627 ce->size = 0;
1628 }
1629
1630 static struct thread_shm_cache_entry *
get_shm_cache_entry(enum thread_shm_cache_user user)1631 get_shm_cache_entry(enum thread_shm_cache_user user)
1632 {
1633 struct thread_shm_cache *cache = &threads[thread_get_id()].shm_cache;
1634 struct thread_shm_cache_entry *ce = NULL;
1635
1636 SLIST_FOREACH(ce, cache, link)
1637 if (ce->user == user)
1638 return ce;
1639
1640 ce = calloc(1, sizeof(*ce));
1641 if (ce) {
1642 ce->user = user;
1643 SLIST_INSERT_HEAD(cache, ce, link);
1644 }
1645
1646 return ce;
1647 }
1648
thread_rpc_shm_cache_alloc(enum thread_shm_cache_user user,enum thread_shm_type shm_type,size_t size,struct mobj ** mobj)1649 void *thread_rpc_shm_cache_alloc(enum thread_shm_cache_user user,
1650 enum thread_shm_type shm_type,
1651 size_t size, struct mobj **mobj)
1652 {
1653 struct thread_shm_cache_entry *ce = NULL;
1654 size_t sz = size;
1655 paddr_t p = 0;
1656 void *va = NULL;
1657
1658 if (!size)
1659 return NULL;
1660
1661 ce = get_shm_cache_entry(user);
1662 if (!ce)
1663 return NULL;
1664
1665 /*
1666 * Always allocate in page chunks as normal world allocates payload
1667 * memory as complete pages.
1668 */
1669 sz = ROUNDUP(size, SMALL_PAGE_SIZE);
1670
1671 if (ce->type != shm_type || sz > ce->size) {
1672 clear_shm_cache_entry(ce);
1673
1674 ce->mobj = alloc_shm(shm_type, sz);
1675 if (!ce->mobj)
1676 return NULL;
1677
1678 if (mobj_get_pa(ce->mobj, 0, 0, &p))
1679 goto err;
1680
1681 if (!IS_ALIGNED_WITH_TYPE(p, uint64_t))
1682 goto err;
1683
1684 va = mobj_get_va(ce->mobj, 0, sz);
1685 if (!va)
1686 goto err;
1687
1688 ce->size = sz;
1689 ce->type = shm_type;
1690 } else {
1691 va = mobj_get_va(ce->mobj, 0, sz);
1692 if (!va)
1693 goto err;
1694 }
1695 *mobj = ce->mobj;
1696
1697 return va;
1698 err:
1699 clear_shm_cache_entry(ce);
1700 return NULL;
1701 }
1702
thread_rpc_shm_cache_clear(struct thread_shm_cache * cache)1703 void thread_rpc_shm_cache_clear(struct thread_shm_cache *cache)
1704 {
1705 while (true) {
1706 struct thread_shm_cache_entry *ce = SLIST_FIRST(cache);
1707
1708 if (!ce)
1709 break;
1710 SLIST_REMOVE_HEAD(cache, link);
1711 clear_shm_cache_entry(ce);
1712 free(ce);
1713 }
1714 }
1715
1716 #ifdef CFG_WITH_ARM_TRUSTED_FW
1717 /*
1718 * These five functions are __weak to allow platforms to override them if
1719 * needed.
1720 */
thread_cpu_off_handler(unsigned long a0 __unused,unsigned long a1 __unused)1721 unsigned long __weak thread_cpu_off_handler(unsigned long a0 __unused,
1722 unsigned long a1 __unused)
1723 {
1724 return 0;
1725 }
1726 DECLARE_KEEP_PAGER(thread_cpu_off_handler);
1727
thread_cpu_suspend_handler(unsigned long a0 __unused,unsigned long a1 __unused)1728 unsigned long __weak thread_cpu_suspend_handler(unsigned long a0 __unused,
1729 unsigned long a1 __unused)
1730 {
1731 return 0;
1732 }
1733 DECLARE_KEEP_PAGER(thread_cpu_suspend_handler);
1734
thread_cpu_resume_handler(unsigned long a0 __unused,unsigned long a1 __unused)1735 unsigned long __weak thread_cpu_resume_handler(unsigned long a0 __unused,
1736 unsigned long a1 __unused)
1737 {
1738 return 0;
1739 }
1740 DECLARE_KEEP_PAGER(thread_cpu_resume_handler);
1741
thread_system_off_handler(unsigned long a0 __unused,unsigned long a1 __unused)1742 unsigned long __weak thread_system_off_handler(unsigned long a0 __unused,
1743 unsigned long a1 __unused)
1744 {
1745 return 0;
1746 }
1747 DECLARE_KEEP_PAGER(thread_system_off_handler);
1748
thread_system_reset_handler(unsigned long a0 __unused,unsigned long a1 __unused)1749 unsigned long __weak thread_system_reset_handler(unsigned long a0 __unused,
1750 unsigned long a1 __unused)
1751 {
1752 return 0;
1753 }
1754 DECLARE_KEEP_PAGER(thread_system_reset_handler);
1755 #endif /*CFG_WITH_ARM_TRUSTED_FW*/
1756