1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 
30 #include <asm/irq_regs.h>
31 
32 #include "tick-internal.h"
33 
34 #include <trace/events/timer.h>
35 
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 
tick_get_tick_sched(int cpu)41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48  * The time, when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
tick_do_update_jiffies64(ktime_t now)57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64bit can do a quick check without holding jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32bit cannot do that because the store of tick_next_period
68 	 * consists of two 32bit stores and the first store could move it
69 	 * to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on jiffies_lock and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Reevaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the jiffies_seq protected job */
118 	jiffies_64 += ticks;
119 
120 	/*
121 	 * Keep the tick_next_period variable up to date.
122 	 */
123 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124 
125 	if (IS_ENABLED(CONFIG_64BIT)) {
126 		/*
127 		 * Pairs with smp_load_acquire() in the lockless quick
128 		 * check above and ensures that the update to jiffies_64 is
129 		 * not reordered vs. the store to tick_next_period, neither
130 		 * by the compiler nor by the CPU.
131 		 */
132 		smp_store_release(&tick_next_period, nextp);
133 	} else {
134 		/*
135 		 * A plain store is good enough on 32bit as the quick check
136 		 * above is protected by the sequence count.
137 		 */
138 		tick_next_period = nextp;
139 	}
140 
141 	/*
142 	 * Release the sequence count. calc_global_load() below is not
143 	 * protected by it, but jiffies_lock needs to be held to prevent
144 	 * concurrent invocations.
145 	 */
146 	write_seqcount_end(&jiffies_seq);
147 
148 	calc_global_load();
149 
150 	raw_spin_unlock(&jiffies_lock);
151 	update_wall_time();
152 }
153 
154 /*
155  * Initialize and return retrieve the jiffies update.
156  */
tick_init_jiffy_update(void)157 static ktime_t tick_init_jiffy_update(void)
158 {
159 	ktime_t period;
160 
161 	raw_spin_lock(&jiffies_lock);
162 	write_seqcount_begin(&jiffies_seq);
163 	/* Did we start the jiffies update yet ? */
164 	if (last_jiffies_update == 0)
165 		last_jiffies_update = tick_next_period;
166 	period = last_jiffies_update;
167 	write_seqcount_end(&jiffies_seq);
168 	raw_spin_unlock(&jiffies_lock);
169 	return period;
170 }
171 
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)172 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
173 {
174 	int cpu = smp_processor_id();
175 
176 #ifdef CONFIG_NO_HZ_COMMON
177 	/*
178 	 * Check if the do_timer duty was dropped. We don't care about
179 	 * concurrency: This happens only when the CPU in charge went
180 	 * into a long sleep. If two CPUs happen to assign themselves to
181 	 * this duty, then the jiffies update is still serialized by
182 	 * jiffies_lock.
183 	 *
184 	 * If nohz_full is enabled, this should not happen because the
185 	 * tick_do_timer_cpu never relinquishes.
186 	 */
187 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
188 #ifdef CONFIG_NO_HZ_FULL
189 		WARN_ON(tick_nohz_full_running);
190 #endif
191 		tick_do_timer_cpu = cpu;
192 	}
193 #endif
194 
195 	/* Check, if the jiffies need an update */
196 	if (tick_do_timer_cpu == cpu)
197 		tick_do_update_jiffies64(now);
198 
199 	if (ts->inidle)
200 		ts->got_idle_tick = 1;
201 }
202 
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)203 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
204 {
205 #ifdef CONFIG_NO_HZ_COMMON
206 	/*
207 	 * When we are idle and the tick is stopped, we have to touch
208 	 * the watchdog as we might not schedule for a really long
209 	 * time. This happens on complete idle SMP systems while
210 	 * waiting on the login prompt. We also increment the "start of
211 	 * idle" jiffy stamp so the idle accounting adjustment we do
212 	 * when we go busy again does not account too much ticks.
213 	 */
214 	if (ts->tick_stopped) {
215 		touch_softlockup_watchdog_sched();
216 		if (is_idle_task(current))
217 			ts->idle_jiffies++;
218 		/*
219 		 * In case the current tick fired too early past its expected
220 		 * expiration, make sure we don't bypass the next clock reprogramming
221 		 * to the same deadline.
222 		 */
223 		ts->next_tick = 0;
224 	}
225 #endif
226 	update_process_times(user_mode(regs));
227 	profile_tick(CPU_PROFILING);
228 }
229 #endif
230 
231 #ifdef CONFIG_NO_HZ_FULL
232 cpumask_var_t tick_nohz_full_mask;
233 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
234 bool tick_nohz_full_running;
235 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
236 static atomic_t tick_dep_mask;
237 
check_tick_dependency(atomic_t * dep)238 static bool check_tick_dependency(atomic_t *dep)
239 {
240 	int val = atomic_read(dep);
241 
242 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
243 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
244 		return true;
245 	}
246 
247 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
248 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
249 		return true;
250 	}
251 
252 	if (val & TICK_DEP_MASK_SCHED) {
253 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
254 		return true;
255 	}
256 
257 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
258 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
259 		return true;
260 	}
261 
262 	if (val & TICK_DEP_MASK_RCU) {
263 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
264 		return true;
265 	}
266 
267 	return false;
268 }
269 
can_stop_full_tick(int cpu,struct tick_sched * ts)270 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
271 {
272 	lockdep_assert_irqs_disabled();
273 
274 	if (unlikely(!cpu_online(cpu)))
275 		return false;
276 
277 	if (check_tick_dependency(&tick_dep_mask))
278 		return false;
279 
280 	if (check_tick_dependency(&ts->tick_dep_mask))
281 		return false;
282 
283 	if (check_tick_dependency(&current->tick_dep_mask))
284 		return false;
285 
286 	if (check_tick_dependency(&current->signal->tick_dep_mask))
287 		return false;
288 
289 	return true;
290 }
291 
nohz_full_kick_func(struct irq_work * work)292 static void nohz_full_kick_func(struct irq_work *work)
293 {
294 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
295 }
296 
297 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
298 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
299 
300 /*
301  * Kick this CPU if it's full dynticks in order to force it to
302  * re-evaluate its dependency on the tick and restart it if necessary.
303  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
304  * is NMI safe.
305  */
tick_nohz_full_kick(void)306 static void tick_nohz_full_kick(void)
307 {
308 	if (!tick_nohz_full_cpu(smp_processor_id()))
309 		return;
310 
311 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
312 }
313 
314 /*
315  * Kick the CPU if it's full dynticks in order to force it to
316  * re-evaluate its dependency on the tick and restart it if necessary.
317  */
tick_nohz_full_kick_cpu(int cpu)318 void tick_nohz_full_kick_cpu(int cpu)
319 {
320 	if (!tick_nohz_full_cpu(cpu))
321 		return;
322 
323 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
324 }
325 
tick_nohz_kick_task(struct task_struct * tsk)326 static void tick_nohz_kick_task(struct task_struct *tsk)
327 {
328 	int cpu;
329 
330 	/*
331 	 * If the task is not running, run_posix_cpu_timers()
332 	 * has nothing to elapse, IPI can then be spared.
333 	 *
334 	 * activate_task()                      STORE p->tick_dep_mask
335 	 *   STORE p->on_rq
336 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
337 	 *   LOCK rq->lock                      LOAD p->on_rq
338 	 *   smp_mb__after_spin_lock()
339 	 *   tick_nohz_task_switch()
340 	 *     LOAD p->tick_dep_mask
341 	 */
342 	if (!sched_task_on_rq(tsk))
343 		return;
344 
345 	/*
346 	 * If the task concurrently migrates to another CPU,
347 	 * we guarantee it sees the new tick dependency upon
348 	 * schedule.
349 	 *
350 	 * set_task_cpu(p, cpu);
351 	 *   STORE p->cpu = @cpu
352 	 * __schedule() (switch to task 'p')
353 	 *   LOCK rq->lock
354 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
355 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
356 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
357 	 */
358 	cpu = task_cpu(tsk);
359 
360 	preempt_disable();
361 	if (cpu_online(cpu))
362 		tick_nohz_full_kick_cpu(cpu);
363 	preempt_enable();
364 }
365 
366 /*
367  * Kick all full dynticks CPUs in order to force these to re-evaluate
368  * their dependency on the tick and restart it if necessary.
369  */
tick_nohz_full_kick_all(void)370 static void tick_nohz_full_kick_all(void)
371 {
372 	int cpu;
373 
374 	if (!tick_nohz_full_running)
375 		return;
376 
377 	preempt_disable();
378 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
379 		tick_nohz_full_kick_cpu(cpu);
380 	preempt_enable();
381 }
382 
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)383 static void tick_nohz_dep_set_all(atomic_t *dep,
384 				  enum tick_dep_bits bit)
385 {
386 	int prev;
387 
388 	prev = atomic_fetch_or(BIT(bit), dep);
389 	if (!prev)
390 		tick_nohz_full_kick_all();
391 }
392 
393 /*
394  * Set a global tick dependency. Used by perf events that rely on freq and
395  * by unstable clock.
396  */
tick_nohz_dep_set(enum tick_dep_bits bit)397 void tick_nohz_dep_set(enum tick_dep_bits bit)
398 {
399 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
400 }
401 
tick_nohz_dep_clear(enum tick_dep_bits bit)402 void tick_nohz_dep_clear(enum tick_dep_bits bit)
403 {
404 	atomic_andnot(BIT(bit), &tick_dep_mask);
405 }
406 
407 /*
408  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
409  * manage events throttling.
410  */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)411 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
412 {
413 	int prev;
414 	struct tick_sched *ts;
415 
416 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
417 
418 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
419 	if (!prev) {
420 		preempt_disable();
421 		/* Perf needs local kick that is NMI safe */
422 		if (cpu == smp_processor_id()) {
423 			tick_nohz_full_kick();
424 		} else {
425 			/* Remote irq work not NMI-safe */
426 			if (!WARN_ON_ONCE(in_nmi()))
427 				tick_nohz_full_kick_cpu(cpu);
428 		}
429 		preempt_enable();
430 	}
431 }
432 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
433 
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)434 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
435 {
436 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
437 
438 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
439 }
440 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
441 
442 /*
443  * Set a per-task tick dependency. RCU need this. Also posix CPU timers
444  * in order to elapse per task timers.
445  */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)446 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
447 {
448 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
449 		tick_nohz_kick_task(tsk);
450 }
451 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
452 
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)453 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
454 {
455 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
456 }
457 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
458 
459 /*
460  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
461  * per process timers.
462  */
tick_nohz_dep_set_signal(struct task_struct * tsk,enum tick_dep_bits bit)463 void tick_nohz_dep_set_signal(struct task_struct *tsk,
464 			      enum tick_dep_bits bit)
465 {
466 	int prev;
467 	struct signal_struct *sig = tsk->signal;
468 
469 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
470 	if (!prev) {
471 		struct task_struct *t;
472 
473 		lockdep_assert_held(&tsk->sighand->siglock);
474 		__for_each_thread(sig, t)
475 			tick_nohz_kick_task(t);
476 	}
477 }
478 
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)479 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
480 {
481 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
482 }
483 
484 /*
485  * Re-evaluate the need for the tick as we switch the current task.
486  * It might need the tick due to per task/process properties:
487  * perf events, posix CPU timers, ...
488  */
__tick_nohz_task_switch(void)489 void __tick_nohz_task_switch(void)
490 {
491 	struct tick_sched *ts;
492 
493 	if (!tick_nohz_full_cpu(smp_processor_id()))
494 		return;
495 
496 	ts = this_cpu_ptr(&tick_cpu_sched);
497 
498 	if (ts->tick_stopped) {
499 		if (atomic_read(&current->tick_dep_mask) ||
500 		    atomic_read(&current->signal->tick_dep_mask))
501 			tick_nohz_full_kick();
502 	}
503 }
504 
505 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)506 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
507 {
508 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
509 	cpumask_copy(tick_nohz_full_mask, cpumask);
510 	tick_nohz_full_running = true;
511 }
512 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
513 
tick_nohz_cpu_down(unsigned int cpu)514 static int tick_nohz_cpu_down(unsigned int cpu)
515 {
516 	/*
517 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
518 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
519 	 * CPUs. It must remain online when nohz full is enabled.
520 	 */
521 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
522 		return -EBUSY;
523 	return 0;
524 }
525 
tick_nohz_init(void)526 void __init tick_nohz_init(void)
527 {
528 	int cpu, ret;
529 
530 	if (!tick_nohz_full_running)
531 		return;
532 
533 	/*
534 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
535 	 * locking contexts. But then we need irq work to raise its own
536 	 * interrupts to avoid circular dependency on the tick
537 	 */
538 	if (!arch_irq_work_has_interrupt()) {
539 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
540 		cpumask_clear(tick_nohz_full_mask);
541 		tick_nohz_full_running = false;
542 		return;
543 	}
544 
545 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
546 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
547 		cpu = smp_processor_id();
548 
549 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
550 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
551 				"for timekeeping\n", cpu);
552 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
553 		}
554 	}
555 
556 	for_each_cpu(cpu, tick_nohz_full_mask)
557 		context_tracking_cpu_set(cpu);
558 
559 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
560 					"kernel/nohz:predown", NULL,
561 					tick_nohz_cpu_down);
562 	WARN_ON(ret < 0);
563 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
564 		cpumask_pr_args(tick_nohz_full_mask));
565 }
566 #endif
567 
568 /*
569  * NOHZ - aka dynamic tick functionality
570  */
571 #ifdef CONFIG_NO_HZ_COMMON
572 /*
573  * NO HZ enabled ?
574  */
575 bool tick_nohz_enabled __read_mostly  = true;
576 unsigned long tick_nohz_active  __read_mostly;
577 /*
578  * Enable / Disable tickless mode
579  */
setup_tick_nohz(char * str)580 static int __init setup_tick_nohz(char *str)
581 {
582 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
583 }
584 
585 __setup("nohz=", setup_tick_nohz);
586 
tick_nohz_tick_stopped(void)587 bool tick_nohz_tick_stopped(void)
588 {
589 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
590 
591 	return ts->tick_stopped;
592 }
593 
tick_nohz_tick_stopped_cpu(int cpu)594 bool tick_nohz_tick_stopped_cpu(int cpu)
595 {
596 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
597 
598 	return ts->tick_stopped;
599 }
600 
601 /**
602  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
603  *
604  * Called from interrupt entry when the CPU was idle
605  *
606  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
607  * must be updated. Otherwise an interrupt handler could use a stale jiffy
608  * value. We do this unconditionally on any CPU, as we don't know whether the
609  * CPU, which has the update task assigned is in a long sleep.
610  */
tick_nohz_update_jiffies(ktime_t now)611 static void tick_nohz_update_jiffies(ktime_t now)
612 {
613 	unsigned long flags;
614 
615 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
616 
617 	local_irq_save(flags);
618 	tick_do_update_jiffies64(now);
619 	local_irq_restore(flags);
620 
621 	touch_softlockup_watchdog_sched();
622 }
623 
624 /*
625  * Updates the per-CPU time idle statistics counters
626  */
627 static void
update_ts_time_stats(int cpu,struct tick_sched * ts,ktime_t now,u64 * last_update_time)628 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
629 {
630 	ktime_t delta;
631 
632 	if (ts->idle_active) {
633 		delta = ktime_sub(now, ts->idle_entrytime);
634 		if (nr_iowait_cpu(cpu) > 0)
635 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
636 		else
637 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
638 		ts->idle_entrytime = now;
639 	}
640 
641 	if (last_update_time)
642 		*last_update_time = ktime_to_us(now);
643 
644 }
645 
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)646 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
647 {
648 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
649 	ts->idle_active = 0;
650 
651 	sched_clock_idle_wakeup_event();
652 }
653 
tick_nohz_start_idle(struct tick_sched * ts)654 static void tick_nohz_start_idle(struct tick_sched *ts)
655 {
656 	ts->idle_entrytime = ktime_get();
657 	ts->idle_active = 1;
658 	sched_clock_idle_sleep_event();
659 }
660 
661 /**
662  * get_cpu_idle_time_us - get the total idle time of a CPU
663  * @cpu: CPU number to query
664  * @last_update_time: variable to store update time in. Do not update
665  * counters if NULL.
666  *
667  * Return the cumulative idle time (since boot) for a given
668  * CPU, in microseconds.
669  *
670  * This time is measured via accounting rather than sampling,
671  * and is as accurate as ktime_get() is.
672  *
673  * This function returns -1 if NOHZ is not enabled.
674  */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)675 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
676 {
677 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
678 	ktime_t now, idle;
679 
680 	if (!tick_nohz_active)
681 		return -1;
682 
683 	now = ktime_get();
684 	if (last_update_time) {
685 		update_ts_time_stats(cpu, ts, now, last_update_time);
686 		idle = ts->idle_sleeptime;
687 	} else {
688 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
689 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
690 
691 			idle = ktime_add(ts->idle_sleeptime, delta);
692 		} else {
693 			idle = ts->idle_sleeptime;
694 		}
695 	}
696 
697 	return ktime_to_us(idle);
698 
699 }
700 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
701 
702 /**
703  * get_cpu_iowait_time_us - get the total iowait time of a CPU
704  * @cpu: CPU number to query
705  * @last_update_time: variable to store update time in. Do not update
706  * counters if NULL.
707  *
708  * Return the cumulative iowait time (since boot) for a given
709  * CPU, in microseconds.
710  *
711  * This time is measured via accounting rather than sampling,
712  * and is as accurate as ktime_get() is.
713  *
714  * This function returns -1 if NOHZ is not enabled.
715  */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)716 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
717 {
718 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
719 	ktime_t now, iowait;
720 
721 	if (!tick_nohz_active)
722 		return -1;
723 
724 	now = ktime_get();
725 	if (last_update_time) {
726 		update_ts_time_stats(cpu, ts, now, last_update_time);
727 		iowait = ts->iowait_sleeptime;
728 	} else {
729 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
730 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
731 
732 			iowait = ktime_add(ts->iowait_sleeptime, delta);
733 		} else {
734 			iowait = ts->iowait_sleeptime;
735 		}
736 	}
737 
738 	return ktime_to_us(iowait);
739 }
740 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
741 
tick_nohz_restart(struct tick_sched * ts,ktime_t now)742 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
743 {
744 	hrtimer_cancel(&ts->sched_timer);
745 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
746 
747 	/* Forward the time to expire in the future */
748 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
749 
750 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
751 		hrtimer_start_expires(&ts->sched_timer,
752 				      HRTIMER_MODE_ABS_PINNED_HARD);
753 	} else {
754 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
755 	}
756 
757 	/*
758 	 * Reset to make sure next tick stop doesn't get fooled by past
759 	 * cached clock deadline.
760 	 */
761 	ts->next_tick = 0;
762 }
763 
local_timer_softirq_pending(void)764 static inline bool local_timer_softirq_pending(void)
765 {
766 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
767 }
768 
tick_nohz_next_event(struct tick_sched * ts,int cpu)769 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
770 {
771 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
772 	unsigned long basejiff;
773 	unsigned int seq;
774 
775 	/* Read jiffies and the time when jiffies were updated last */
776 	do {
777 		seq = read_seqcount_begin(&jiffies_seq);
778 		basemono = last_jiffies_update;
779 		basejiff = jiffies;
780 	} while (read_seqcount_retry(&jiffies_seq, seq));
781 	ts->last_jiffies = basejiff;
782 	ts->timer_expires_base = basemono;
783 
784 	/*
785 	 * Keep the periodic tick, when RCU, architecture or irq_work
786 	 * requests it.
787 	 * Aside of that check whether the local timer softirq is
788 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
789 	 * because there is an already expired timer, so it will request
790 	 * immediate expiry, which rearms the hardware timer with a
791 	 * minimal delta which brings us back to this place
792 	 * immediately. Lather, rinse and repeat...
793 	 */
794 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
795 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
796 		next_tick = basemono + TICK_NSEC;
797 	} else {
798 		/*
799 		 * Get the next pending timer. If high resolution
800 		 * timers are enabled this only takes the timer wheel
801 		 * timers into account. If high resolution timers are
802 		 * disabled this also looks at the next expiring
803 		 * hrtimer.
804 		 */
805 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
806 		ts->next_timer = next_tmr;
807 		/* Take the next rcu event into account */
808 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
809 	}
810 
811 	/*
812 	 * If the tick is due in the next period, keep it ticking or
813 	 * force prod the timer.
814 	 */
815 	delta = next_tick - basemono;
816 	if (delta <= (u64)TICK_NSEC) {
817 		/*
818 		 * Tell the timer code that the base is not idle, i.e. undo
819 		 * the effect of get_next_timer_interrupt():
820 		 */
821 		timer_clear_idle();
822 		/*
823 		 * We've not stopped the tick yet, and there's a timer in the
824 		 * next period, so no point in stopping it either, bail.
825 		 */
826 		if (!ts->tick_stopped) {
827 			ts->timer_expires = 0;
828 			goto out;
829 		}
830 	}
831 
832 	/*
833 	 * If this CPU is the one which had the do_timer() duty last, we limit
834 	 * the sleep time to the timekeeping max_deferment value.
835 	 * Otherwise we can sleep as long as we want.
836 	 */
837 	delta = timekeeping_max_deferment();
838 	if (cpu != tick_do_timer_cpu &&
839 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
840 		delta = KTIME_MAX;
841 
842 	/* Calculate the next expiry time */
843 	if (delta < (KTIME_MAX - basemono))
844 		expires = basemono + delta;
845 	else
846 		expires = KTIME_MAX;
847 
848 	ts->timer_expires = min_t(u64, expires, next_tick);
849 
850 out:
851 	return ts->timer_expires;
852 }
853 
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)854 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
855 {
856 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
857 	u64 basemono = ts->timer_expires_base;
858 	u64 expires = ts->timer_expires;
859 	ktime_t tick = expires;
860 
861 	/* Make sure we won't be trying to stop it twice in a row. */
862 	ts->timer_expires_base = 0;
863 
864 	/*
865 	 * If this CPU is the one which updates jiffies, then give up
866 	 * the assignment and let it be taken by the CPU which runs
867 	 * the tick timer next, which might be this CPU as well. If we
868 	 * don't drop this here the jiffies might be stale and
869 	 * do_timer() never invoked. Keep track of the fact that it
870 	 * was the one which had the do_timer() duty last.
871 	 */
872 	if (cpu == tick_do_timer_cpu) {
873 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
874 		ts->do_timer_last = 1;
875 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
876 		ts->do_timer_last = 0;
877 	}
878 
879 	/* Skip reprogram of event if its not changed */
880 	if (ts->tick_stopped && (expires == ts->next_tick)) {
881 		/* Sanity check: make sure clockevent is actually programmed */
882 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
883 			return;
884 
885 		WARN_ON_ONCE(1);
886 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
887 			    basemono, ts->next_tick, dev->next_event,
888 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
889 	}
890 
891 	/*
892 	 * nohz_stop_sched_tick can be called several times before
893 	 * the nohz_restart_sched_tick is called. This happens when
894 	 * interrupts arrive which do not cause a reschedule. In the
895 	 * first call we save the current tick time, so we can restart
896 	 * the scheduler tick in nohz_restart_sched_tick.
897 	 */
898 	if (!ts->tick_stopped) {
899 		calc_load_nohz_start();
900 		quiet_vmstat();
901 
902 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
903 		ts->tick_stopped = 1;
904 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
905 	}
906 
907 	ts->next_tick = tick;
908 
909 	/*
910 	 * If the expiration time == KTIME_MAX, then we simply stop
911 	 * the tick timer.
912 	 */
913 	if (unlikely(expires == KTIME_MAX)) {
914 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
915 			hrtimer_cancel(&ts->sched_timer);
916 		return;
917 	}
918 
919 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
920 		hrtimer_start(&ts->sched_timer, tick,
921 			      HRTIMER_MODE_ABS_PINNED_HARD);
922 	} else {
923 		hrtimer_set_expires(&ts->sched_timer, tick);
924 		tick_program_event(tick, 1);
925 	}
926 }
927 
tick_nohz_retain_tick(struct tick_sched * ts)928 static void tick_nohz_retain_tick(struct tick_sched *ts)
929 {
930 	ts->timer_expires_base = 0;
931 }
932 
933 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_stop_sched_tick(struct tick_sched * ts,int cpu)934 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
935 {
936 	if (tick_nohz_next_event(ts, cpu))
937 		tick_nohz_stop_tick(ts, cpu);
938 	else
939 		tick_nohz_retain_tick(ts);
940 }
941 #endif /* CONFIG_NO_HZ_FULL */
942 
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)943 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
944 {
945 	/* Update jiffies first */
946 	tick_do_update_jiffies64(now);
947 
948 	/*
949 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
950 	 * the clock forward checks in the enqueue path:
951 	 */
952 	timer_clear_idle();
953 
954 	calc_load_nohz_stop();
955 	touch_softlockup_watchdog_sched();
956 	/*
957 	 * Cancel the scheduled timer and restore the tick
958 	 */
959 	ts->tick_stopped  = 0;
960 	tick_nohz_restart(ts, now);
961 }
962 
__tick_nohz_full_update_tick(struct tick_sched * ts,ktime_t now)963 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
964 					 ktime_t now)
965 {
966 #ifdef CONFIG_NO_HZ_FULL
967 	int cpu = smp_processor_id();
968 
969 	if (can_stop_full_tick(cpu, ts))
970 		tick_nohz_stop_sched_tick(ts, cpu);
971 	else if (ts->tick_stopped)
972 		tick_nohz_restart_sched_tick(ts, now);
973 #endif
974 }
975 
tick_nohz_full_update_tick(struct tick_sched * ts)976 static void tick_nohz_full_update_tick(struct tick_sched *ts)
977 {
978 	if (!tick_nohz_full_cpu(smp_processor_id()))
979 		return;
980 
981 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
982 		return;
983 
984 	__tick_nohz_full_update_tick(ts, ktime_get());
985 }
986 
can_stop_idle_tick(int cpu,struct tick_sched * ts)987 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
988 {
989 	/*
990 	 * If this CPU is offline and it is the one which updates
991 	 * jiffies, then give up the assignment and let it be taken by
992 	 * the CPU which runs the tick timer next. If we don't drop
993 	 * this here the jiffies might be stale and do_timer() never
994 	 * invoked.
995 	 */
996 	if (unlikely(!cpu_online(cpu))) {
997 		if (cpu == tick_do_timer_cpu)
998 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
999 		/*
1000 		 * Make sure the CPU doesn't get fooled by obsolete tick
1001 		 * deadline if it comes back online later.
1002 		 */
1003 		ts->next_tick = 0;
1004 		return false;
1005 	}
1006 
1007 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1008 		return false;
1009 
1010 	if (need_resched())
1011 		return false;
1012 
1013 	if (unlikely(local_softirq_pending())) {
1014 		static int ratelimit;
1015 
1016 		if (ratelimit < 10 && !local_bh_blocked() &&
1017 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
1018 			pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
1019 				(unsigned int) local_softirq_pending());
1020 			ratelimit++;
1021 		}
1022 		return false;
1023 	}
1024 
1025 	if (tick_nohz_full_enabled()) {
1026 		/*
1027 		 * Keep the tick alive to guarantee timekeeping progression
1028 		 * if there are full dynticks CPUs around
1029 		 */
1030 		if (tick_do_timer_cpu == cpu)
1031 			return false;
1032 
1033 		/* Should not happen for nohz-full */
1034 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1035 			return false;
1036 	}
1037 
1038 	return true;
1039 }
1040 
__tick_nohz_idle_stop_tick(struct tick_sched * ts)1041 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1042 {
1043 	ktime_t expires;
1044 	int cpu = smp_processor_id();
1045 
1046 	/*
1047 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1048 	 * tick timer expiration time is known already.
1049 	 */
1050 	if (ts->timer_expires_base)
1051 		expires = ts->timer_expires;
1052 	else if (can_stop_idle_tick(cpu, ts))
1053 		expires = tick_nohz_next_event(ts, cpu);
1054 	else
1055 		return;
1056 
1057 	ts->idle_calls++;
1058 
1059 	if (expires > 0LL) {
1060 		int was_stopped = ts->tick_stopped;
1061 
1062 		tick_nohz_stop_tick(ts, cpu);
1063 
1064 		ts->idle_sleeps++;
1065 		ts->idle_expires = expires;
1066 
1067 		if (!was_stopped && ts->tick_stopped) {
1068 			ts->idle_jiffies = ts->last_jiffies;
1069 			nohz_balance_enter_idle(cpu);
1070 		}
1071 	} else {
1072 		tick_nohz_retain_tick(ts);
1073 	}
1074 }
1075 
1076 /**
1077  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1078  *
1079  * When the next event is more than a tick into the future, stop the idle tick
1080  */
tick_nohz_idle_stop_tick(void)1081 void tick_nohz_idle_stop_tick(void)
1082 {
1083 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1084 }
1085 
tick_nohz_idle_retain_tick(void)1086 void tick_nohz_idle_retain_tick(void)
1087 {
1088 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1089 	/*
1090 	 * Undo the effect of get_next_timer_interrupt() called from
1091 	 * tick_nohz_next_event().
1092 	 */
1093 	timer_clear_idle();
1094 }
1095 
1096 /**
1097  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1098  *
1099  * Called when we start the idle loop.
1100  */
tick_nohz_idle_enter(void)1101 void tick_nohz_idle_enter(void)
1102 {
1103 	struct tick_sched *ts;
1104 
1105 	lockdep_assert_irqs_enabled();
1106 
1107 	local_irq_disable();
1108 
1109 	ts = this_cpu_ptr(&tick_cpu_sched);
1110 
1111 	WARN_ON_ONCE(ts->timer_expires_base);
1112 
1113 	ts->inidle = 1;
1114 	tick_nohz_start_idle(ts);
1115 
1116 	local_irq_enable();
1117 }
1118 
1119 /**
1120  * tick_nohz_irq_exit - update next tick event from interrupt exit
1121  *
1122  * When an interrupt fires while we are idle and it doesn't cause
1123  * a reschedule, it may still add, modify or delete a timer, enqueue
1124  * an RCU callback, etc...
1125  * So we need to re-calculate and reprogram the next tick event.
1126  */
tick_nohz_irq_exit(void)1127 void tick_nohz_irq_exit(void)
1128 {
1129 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1130 
1131 	if (ts->inidle)
1132 		tick_nohz_start_idle(ts);
1133 	else
1134 		tick_nohz_full_update_tick(ts);
1135 }
1136 
1137 /**
1138  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1139  */
tick_nohz_idle_got_tick(void)1140 bool tick_nohz_idle_got_tick(void)
1141 {
1142 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1143 
1144 	if (ts->got_idle_tick) {
1145 		ts->got_idle_tick = 0;
1146 		return true;
1147 	}
1148 	return false;
1149 }
1150 
1151 /**
1152  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1153  * or the tick, whatever that expires first. Note that, if the tick has been
1154  * stopped, it returns the next hrtimer.
1155  *
1156  * Called from power state control code with interrupts disabled
1157  */
tick_nohz_get_next_hrtimer(void)1158 ktime_t tick_nohz_get_next_hrtimer(void)
1159 {
1160 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1161 }
1162 
1163 /**
1164  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1165  * @delta_next: duration until the next event if the tick cannot be stopped
1166  *
1167  * Called from power state control code with interrupts disabled.
1168  *
1169  * The return value of this function and/or the value returned by it through the
1170  * @delta_next pointer can be negative which must be taken into account by its
1171  * callers.
1172  */
tick_nohz_get_sleep_length(ktime_t * delta_next)1173 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1174 {
1175 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1176 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1177 	int cpu = smp_processor_id();
1178 	/*
1179 	 * The idle entry time is expected to be a sufficient approximation of
1180 	 * the current time at this point.
1181 	 */
1182 	ktime_t now = ts->idle_entrytime;
1183 	ktime_t next_event;
1184 
1185 	WARN_ON_ONCE(!ts->inidle);
1186 
1187 	*delta_next = ktime_sub(dev->next_event, now);
1188 
1189 	if (!can_stop_idle_tick(cpu, ts))
1190 		return *delta_next;
1191 
1192 	next_event = tick_nohz_next_event(ts, cpu);
1193 	if (!next_event)
1194 		return *delta_next;
1195 
1196 	/*
1197 	 * If the next highres timer to expire is earlier than next_event, the
1198 	 * idle governor needs to know that.
1199 	 */
1200 	next_event = min_t(u64, next_event,
1201 			   hrtimer_next_event_without(&ts->sched_timer));
1202 
1203 	return ktime_sub(next_event, now);
1204 }
1205 
1206 /**
1207  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1208  * for a particular CPU.
1209  *
1210  * Called from the schedutil frequency scaling governor in scheduler context.
1211  */
tick_nohz_get_idle_calls_cpu(int cpu)1212 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1213 {
1214 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1215 
1216 	return ts->idle_calls;
1217 }
1218 
1219 /**
1220  * tick_nohz_get_idle_calls - return the current idle calls counter value
1221  *
1222  * Called from the schedutil frequency scaling governor in scheduler context.
1223  */
tick_nohz_get_idle_calls(void)1224 unsigned long tick_nohz_get_idle_calls(void)
1225 {
1226 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1227 
1228 	return ts->idle_calls;
1229 }
1230 
tick_nohz_account_idle_time(struct tick_sched * ts,ktime_t now)1231 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1232 					ktime_t now)
1233 {
1234 	unsigned long ticks;
1235 
1236 	ts->idle_exittime = now;
1237 
1238 	if (vtime_accounting_enabled_this_cpu())
1239 		return;
1240 	/*
1241 	 * We stopped the tick in idle. Update process times would miss the
1242 	 * time we slept as update_process_times does only a 1 tick
1243 	 * accounting. Enforce that this is accounted to idle !
1244 	 */
1245 	ticks = jiffies - ts->idle_jiffies;
1246 	/*
1247 	 * We might be one off. Do not randomly account a huge number of ticks!
1248 	 */
1249 	if (ticks && ticks < LONG_MAX)
1250 		account_idle_ticks(ticks);
1251 }
1252 
tick_nohz_idle_restart_tick(void)1253 void tick_nohz_idle_restart_tick(void)
1254 {
1255 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1256 
1257 	if (ts->tick_stopped) {
1258 		ktime_t now = ktime_get();
1259 		tick_nohz_restart_sched_tick(ts, now);
1260 		tick_nohz_account_idle_time(ts, now);
1261 	}
1262 }
1263 
tick_nohz_idle_update_tick(struct tick_sched * ts,ktime_t now)1264 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1265 {
1266 	if (tick_nohz_full_cpu(smp_processor_id()))
1267 		__tick_nohz_full_update_tick(ts, now);
1268 	else
1269 		tick_nohz_restart_sched_tick(ts, now);
1270 
1271 	tick_nohz_account_idle_time(ts, now);
1272 }
1273 
1274 /**
1275  * tick_nohz_idle_exit - restart the idle tick from the idle task
1276  *
1277  * Restart the idle tick when the CPU is woken up from idle
1278  * This also exit the RCU extended quiescent state. The CPU
1279  * can use RCU again after this function is called.
1280  */
tick_nohz_idle_exit(void)1281 void tick_nohz_idle_exit(void)
1282 {
1283 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1284 	bool idle_active, tick_stopped;
1285 	ktime_t now;
1286 
1287 	local_irq_disable();
1288 
1289 	WARN_ON_ONCE(!ts->inidle);
1290 	WARN_ON_ONCE(ts->timer_expires_base);
1291 
1292 	ts->inidle = 0;
1293 	idle_active = ts->idle_active;
1294 	tick_stopped = ts->tick_stopped;
1295 
1296 	if (idle_active || tick_stopped)
1297 		now = ktime_get();
1298 
1299 	if (idle_active)
1300 		tick_nohz_stop_idle(ts, now);
1301 
1302 	if (tick_stopped)
1303 		tick_nohz_idle_update_tick(ts, now);
1304 
1305 	local_irq_enable();
1306 }
1307 
1308 /*
1309  * The nohz low res interrupt handler
1310  */
tick_nohz_handler(struct clock_event_device * dev)1311 static void tick_nohz_handler(struct clock_event_device *dev)
1312 {
1313 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1314 	struct pt_regs *regs = get_irq_regs();
1315 	ktime_t now = ktime_get();
1316 
1317 	dev->next_event = KTIME_MAX;
1318 
1319 	tick_sched_do_timer(ts, now);
1320 	tick_sched_handle(ts, regs);
1321 
1322 	/* No need to reprogram if we are running tickless  */
1323 	if (unlikely(ts->tick_stopped))
1324 		return;
1325 
1326 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1327 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1328 }
1329 
tick_nohz_activate(struct tick_sched * ts,int mode)1330 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1331 {
1332 	if (!tick_nohz_enabled)
1333 		return;
1334 	ts->nohz_mode = mode;
1335 	/* One update is enough */
1336 	if (!test_and_set_bit(0, &tick_nohz_active))
1337 		timers_update_nohz();
1338 }
1339 
1340 /**
1341  * tick_nohz_switch_to_nohz - switch to nohz mode
1342  */
tick_nohz_switch_to_nohz(void)1343 static void tick_nohz_switch_to_nohz(void)
1344 {
1345 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1346 	ktime_t next;
1347 
1348 	if (!tick_nohz_enabled)
1349 		return;
1350 
1351 	if (tick_switch_to_oneshot(tick_nohz_handler))
1352 		return;
1353 
1354 	/*
1355 	 * Recycle the hrtimer in ts, so we can share the
1356 	 * hrtimer_forward with the highres code.
1357 	 */
1358 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1359 	/* Get the next period */
1360 	next = tick_init_jiffy_update();
1361 
1362 	hrtimer_set_expires(&ts->sched_timer, next);
1363 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1364 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1365 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1366 }
1367 
tick_nohz_irq_enter(void)1368 static inline void tick_nohz_irq_enter(void)
1369 {
1370 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1371 	ktime_t now;
1372 
1373 	if (!ts->idle_active && !ts->tick_stopped)
1374 		return;
1375 	now = ktime_get();
1376 	if (ts->idle_active)
1377 		tick_nohz_stop_idle(ts, now);
1378 	/*
1379 	 * If all CPUs are idle. We may need to update a stale jiffies value.
1380 	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1381 	 * alive but it might be busy looping with interrupts disabled in some
1382 	 * rare case (typically stop machine). So we must make sure we have a
1383 	 * last resort.
1384 	 */
1385 	if (ts->tick_stopped)
1386 		tick_nohz_update_jiffies(now);
1387 }
1388 
1389 #else
1390 
tick_nohz_switch_to_nohz(void)1391 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1392 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts,int mode)1393 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1394 
1395 #endif /* CONFIG_NO_HZ_COMMON */
1396 
1397 /*
1398  * Called from irq_enter to notify about the possible interruption of idle()
1399  */
tick_irq_enter(void)1400 void tick_irq_enter(void)
1401 {
1402 	tick_check_oneshot_broadcast_this_cpu();
1403 	tick_nohz_irq_enter();
1404 }
1405 
1406 /*
1407  * High resolution timer specific code
1408  */
1409 #ifdef CONFIG_HIGH_RES_TIMERS
1410 /*
1411  * We rearm the timer until we get disabled by the idle code.
1412  * Called with interrupts disabled.
1413  */
tick_sched_timer(struct hrtimer * timer)1414 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1415 {
1416 	struct tick_sched *ts =
1417 		container_of(timer, struct tick_sched, sched_timer);
1418 	struct pt_regs *regs = get_irq_regs();
1419 	ktime_t now = ktime_get();
1420 
1421 	tick_sched_do_timer(ts, now);
1422 
1423 	/*
1424 	 * Do not call, when we are not in irq context and have
1425 	 * no valid regs pointer
1426 	 */
1427 	if (regs)
1428 		tick_sched_handle(ts, regs);
1429 	else
1430 		ts->next_tick = 0;
1431 
1432 	/* No need to reprogram if we are in idle or full dynticks mode */
1433 	if (unlikely(ts->tick_stopped))
1434 		return HRTIMER_NORESTART;
1435 
1436 	hrtimer_forward(timer, now, TICK_NSEC);
1437 
1438 	return HRTIMER_RESTART;
1439 }
1440 
1441 static int sched_skew_tick;
1442 
skew_tick(char * str)1443 static int __init skew_tick(char *str)
1444 {
1445 	get_option(&str, &sched_skew_tick);
1446 
1447 	return 0;
1448 }
1449 early_param("skew_tick", skew_tick);
1450 
1451 /**
1452  * tick_setup_sched_timer - setup the tick emulation timer
1453  */
tick_setup_sched_timer(void)1454 void tick_setup_sched_timer(void)
1455 {
1456 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1457 	ktime_t now = ktime_get();
1458 
1459 	/*
1460 	 * Emulate tick processing via per-CPU hrtimers:
1461 	 */
1462 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1463 	ts->sched_timer.function = tick_sched_timer;
1464 
1465 	/* Get the next period (per-CPU) */
1466 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1467 
1468 	/* Offset the tick to avert jiffies_lock contention. */
1469 	if (sched_skew_tick) {
1470 		u64 offset = TICK_NSEC >> 1;
1471 		do_div(offset, num_possible_cpus());
1472 		offset *= smp_processor_id();
1473 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1474 	}
1475 
1476 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1477 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1478 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1479 }
1480 #endif /* HIGH_RES_TIMERS */
1481 
1482 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)1483 void tick_cancel_sched_timer(int cpu)
1484 {
1485 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1486 
1487 # ifdef CONFIG_HIGH_RES_TIMERS
1488 	if (ts->sched_timer.base)
1489 		hrtimer_cancel(&ts->sched_timer);
1490 # endif
1491 
1492 	memset(ts, 0, sizeof(*ts));
1493 }
1494 #endif
1495 
1496 /**
1497  * Async notification about clocksource changes
1498  */
tick_clock_notify(void)1499 void tick_clock_notify(void)
1500 {
1501 	int cpu;
1502 
1503 	for_each_possible_cpu(cpu)
1504 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1505 }
1506 
1507 /*
1508  * Async notification about clock event changes
1509  */
tick_oneshot_notify(void)1510 void tick_oneshot_notify(void)
1511 {
1512 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1513 
1514 	set_bit(0, &ts->check_clocks);
1515 }
1516 
1517 /**
1518  * Check, if a change happened, which makes oneshot possible.
1519  *
1520  * Called cyclic from the hrtimer softirq (driven by the timer
1521  * softirq) allow_nohz signals, that we can switch into low-res nohz
1522  * mode, because high resolution timers are disabled (either compile
1523  * or runtime). Called with interrupts disabled.
1524  */
tick_check_oneshot_change(int allow_nohz)1525 int tick_check_oneshot_change(int allow_nohz)
1526 {
1527 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1528 
1529 	if (!test_and_clear_bit(0, &ts->check_clocks))
1530 		return 0;
1531 
1532 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1533 		return 0;
1534 
1535 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1536 		return 0;
1537 
1538 	if (!allow_nohz)
1539 		return 1;
1540 
1541 	tick_nohz_switch_to_nohz();
1542 	return 0;
1543 }
1544