1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  * Copyright (c) Nokia Corporation, 2006, 2007
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * This file includes volume table manipulation code. The volume table is an
11  * on-flash table containing volume meta-data like name, number of reserved
12  * physical eraseblocks, type, etc. The volume table is stored in the so-called
13  * "layout volume".
14  *
15  * The layout volume is an internal volume which is organized as follows. It
16  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
17  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
18  * other. This redundancy guarantees robustness to unclean reboots. The volume
19  * table is basically an array of volume table records. Each record contains
20  * full information about the volume and protected by a CRC checksum. Note,
21  * nowadays we use the atomic LEB change operation when updating the volume
22  * table, so we do not really need 2 LEBs anymore, but we preserve the older
23  * design for the backward compatibility reasons.
24  *
25  * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
26  * erased, and the updated volume table is written back to LEB 0. Then same for
27  * LEB 1. This scheme guarantees recoverability from unclean reboots.
28  *
29  * In this UBI implementation the on-flash volume table does not contain any
30  * information about how much data static volumes contain.
31  *
32  * But it would still be beneficial to store this information in the volume
33  * table. For example, suppose we have a static volume X, and all its physical
34  * eraseblocks became bad for some reasons. Suppose we are attaching the
35  * corresponding MTD device, for some reason we find no logical eraseblocks
36  * corresponding to the volume X. According to the volume table volume X does
37  * exist. So we don't know whether it is just empty or all its physical
38  * eraseblocks went bad. So we cannot alarm the user properly.
39  *
40  * The volume table also stores so-called "update marker", which is used for
41  * volume updates. Before updating the volume, the update marker is set, and
42  * after the update operation is finished, the update marker is cleared. So if
43  * the update operation was interrupted (e.g. by an unclean reboot) - the
44  * update marker is still there and we know that the volume's contents is
45  * damaged.
46  */
47 
48 #ifndef __UBOOT__
49 #include <log.h>
50 #include <dm/devres.h>
51 #include <linux/crc32.h>
52 #include <linux/err.h>
53 #include <linux/slab.h>
54 #include <asm/div64.h>
55 #include <u-boot/crc.h>
56 #else
57 #include <ubi_uboot.h>
58 #include <linux/bug.h>
59 #endif
60 
61 #include <linux/err.h>
62 #include "ubi.h"
63 
64 static void self_vtbl_check(const struct ubi_device *ubi);
65 
66 /* Empty volume table record */
67 static struct ubi_vtbl_record empty_vtbl_record;
68 
69 /**
70  * ubi_update_layout_vol - helper for updatting layout volumes on flash
71  * @ubi: UBI device description object
72  */
ubi_update_layout_vol(struct ubi_device * ubi)73 static int ubi_update_layout_vol(struct ubi_device *ubi)
74 {
75 	struct ubi_volume *layout_vol;
76 	int i, err;
77 
78 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
79 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
80 		err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
81 						ubi->vtbl_size);
82 		if (err)
83 			return err;
84 	}
85 
86 	return 0;
87 }
88 
89 /**
90  * ubi_change_vtbl_record - change volume table record.
91  * @ubi: UBI device description object
92  * @idx: table index to change
93  * @vtbl_rec: new volume table record
94  *
95  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
96  * volume table record is written. The caller does not have to calculate CRC of
97  * the record as it is done by this function. Returns zero in case of success
98  * and a negative error code in case of failure.
99  */
ubi_change_vtbl_record(struct ubi_device * ubi,int idx,struct ubi_vtbl_record * vtbl_rec)100 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
101 			   struct ubi_vtbl_record *vtbl_rec)
102 {
103 	int err;
104 	uint32_t crc;
105 
106 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
107 
108 	if (!vtbl_rec)
109 		vtbl_rec = &empty_vtbl_record;
110 	else {
111 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
112 		vtbl_rec->crc = cpu_to_be32(crc);
113 	}
114 
115 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
116 	err = ubi_update_layout_vol(ubi);
117 
118 	self_vtbl_check(ubi);
119 	return err ? err : 0;
120 }
121 
122 /**
123  * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
124  * @ubi: UBI device description object
125  * @rename_list: list of &struct ubi_rename_entry objects
126  *
127  * This function re-names multiple volumes specified in @req in the volume
128  * table. Returns zero in case of success and a negative error code in case of
129  * failure.
130  */
ubi_vtbl_rename_volumes(struct ubi_device * ubi,struct list_head * rename_list)131 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
132 			    struct list_head *rename_list)
133 {
134 	struct ubi_rename_entry *re;
135 
136 	list_for_each_entry(re, rename_list, list) {
137 		uint32_t crc;
138 		struct ubi_volume *vol = re->desc->vol;
139 		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
140 
141 		if (re->remove) {
142 			memcpy(vtbl_rec, &empty_vtbl_record,
143 			       sizeof(struct ubi_vtbl_record));
144 			continue;
145 		}
146 
147 		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
148 		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
149 		memset(vtbl_rec->name + re->new_name_len, 0,
150 		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
151 		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
152 			    UBI_VTBL_RECORD_SIZE_CRC);
153 		vtbl_rec->crc = cpu_to_be32(crc);
154 	}
155 
156 	return ubi_update_layout_vol(ubi);
157 }
158 
159 /**
160  * vtbl_check - check if volume table is not corrupted and sensible.
161  * @ubi: UBI device description object
162  * @vtbl: volume table
163  *
164  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
165  * and %-EINVAL if it contains inconsistent data.
166  */
vtbl_check(const struct ubi_device * ubi,const struct ubi_vtbl_record * vtbl)167 static int vtbl_check(const struct ubi_device *ubi,
168 		      const struct ubi_vtbl_record *vtbl)
169 {
170 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
171 	int upd_marker, err;
172 	uint32_t crc;
173 	const char *name;
174 
175 	for (i = 0; i < ubi->vtbl_slots; i++) {
176 		cond_resched();
177 
178 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
179 		alignment = be32_to_cpu(vtbl[i].alignment);
180 		data_pad = be32_to_cpu(vtbl[i].data_pad);
181 		upd_marker = vtbl[i].upd_marker;
182 		vol_type = vtbl[i].vol_type;
183 		name_len = be16_to_cpu(vtbl[i].name_len);
184 		name = &vtbl[i].name[0];
185 
186 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
187 		if (be32_to_cpu(vtbl[i].crc) != crc) {
188 			ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
189 				 i, crc, be32_to_cpu(vtbl[i].crc));
190 			ubi_dump_vtbl_record(&vtbl[i], i);
191 			return 1;
192 		}
193 
194 		if (reserved_pebs == 0) {
195 			if (memcmp(&vtbl[i], &empty_vtbl_record,
196 						UBI_VTBL_RECORD_SIZE)) {
197 				err = 2;
198 				goto bad;
199 			}
200 			continue;
201 		}
202 
203 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
204 		    name_len < 0) {
205 			err = 3;
206 			goto bad;
207 		}
208 
209 		if (alignment > ubi->leb_size || alignment == 0) {
210 			err = 4;
211 			goto bad;
212 		}
213 
214 		n = alignment & (ubi->min_io_size - 1);
215 		if (alignment != 1 && n) {
216 			err = 5;
217 			goto bad;
218 		}
219 
220 		n = ubi->leb_size % alignment;
221 		if (data_pad != n) {
222 			ubi_err(ubi, "bad data_pad, has to be %d", n);
223 			err = 6;
224 			goto bad;
225 		}
226 
227 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
228 			err = 7;
229 			goto bad;
230 		}
231 
232 		if (upd_marker != 0 && upd_marker != 1) {
233 			err = 8;
234 			goto bad;
235 		}
236 
237 		if (reserved_pebs > ubi->good_peb_count) {
238 			ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
239 				reserved_pebs, ubi->good_peb_count);
240 			err = 9;
241 			goto bad;
242 		}
243 
244 		if (name_len > UBI_VOL_NAME_MAX) {
245 			err = 10;
246 			goto bad;
247 		}
248 
249 		if (name[0] == '\0') {
250 			err = 11;
251 			goto bad;
252 		}
253 
254 		if (name_len != strnlen(name, name_len + 1)) {
255 			err = 12;
256 			goto bad;
257 		}
258 	}
259 
260 	/* Checks that all names are unique */
261 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
262 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
263 			int len1 = be16_to_cpu(vtbl[i].name_len);
264 			int len2 = be16_to_cpu(vtbl[n].name_len);
265 
266 			if (len1 > 0 && len1 == len2 &&
267 #ifndef __UBOOT__
268 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
269 #else
270 			    !strncmp((char *)vtbl[i].name, vtbl[n].name, len1)) {
271 #endif
272 				ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
273 					i, n, vtbl[i].name);
274 				ubi_dump_vtbl_record(&vtbl[i], i);
275 				ubi_dump_vtbl_record(&vtbl[n], n);
276 				return -EINVAL;
277 			}
278 		}
279 	}
280 
281 	return 0;
282 
283 bad:
284 	ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
285 	ubi_dump_vtbl_record(&vtbl[i], i);
286 	return -EINVAL;
287 }
288 
289 /**
290  * create_vtbl - create a copy of volume table.
291  * @ubi: UBI device description object
292  * @ai: attaching information
293  * @copy: number of the volume table copy
294  * @vtbl: contents of the volume table
295  *
296  * This function returns zero in case of success and a negative error code in
297  * case of failure.
298  */
299 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
300 		       int copy, void *vtbl)
301 {
302 	int err, tries = 0;
303 	struct ubi_vid_hdr *vid_hdr;
304 	struct ubi_ainf_peb *new_aeb;
305 
306 	dbg_gen("create volume table (copy #%d)", copy + 1);
307 
308 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
309 	if (!vid_hdr)
310 		return -ENOMEM;
311 
312 retry:
313 	new_aeb = ubi_early_get_peb(ubi, ai);
314 	if (IS_ERR(new_aeb)) {
315 		err = PTR_ERR(new_aeb);
316 		goto out_free;
317 	}
318 
319 	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
320 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
321 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
322 	vid_hdr->data_size = vid_hdr->used_ebs =
323 			     vid_hdr->data_pad = cpu_to_be32(0);
324 	vid_hdr->lnum = cpu_to_be32(copy);
325 	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
326 
327 	/* The EC header is already there, write the VID header */
328 	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
329 	if (err)
330 		goto write_error;
331 
332 	/* Write the layout volume contents */
333 	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
334 	if (err)
335 		goto write_error;
336 
337 	/*
338 	 * And add it to the attaching information. Don't delete the old version
339 	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
340 	 */
341 	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
342 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
343 	ubi_free_vid_hdr(ubi, vid_hdr);
344 	return err;
345 
346 write_error:
347 	if (err == -EIO && ++tries <= 5) {
348 		/*
349 		 * Probably this physical eraseblock went bad, try to pick
350 		 * another one.
351 		 */
352 		list_add(&new_aeb->u.list, &ai->erase);
353 		goto retry;
354 	}
355 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
356 out_free:
357 	ubi_free_vid_hdr(ubi, vid_hdr);
358 	return err;
359 
360 }
361 
362 /**
363  * process_lvol - process the layout volume.
364  * @ubi: UBI device description object
365  * @ai: attaching information
366  * @av: layout volume attaching information
367  *
368  * This function is responsible for reading the layout volume, ensuring it is
369  * not corrupted, and recovering from corruptions if needed. Returns volume
370  * table in case of success and a negative error code in case of failure.
371  */
372 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
373 					    struct ubi_attach_info *ai,
374 					    struct ubi_ainf_volume *av)
375 {
376 	int err;
377 	struct rb_node *rb;
378 	struct ubi_ainf_peb *aeb;
379 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
380 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
381 
382 	/*
383 	 * UBI goes through the following steps when it changes the layout
384 	 * volume:
385 	 * a. erase LEB 0;
386 	 * b. write new data to LEB 0;
387 	 * c. erase LEB 1;
388 	 * d. write new data to LEB 1.
389 	 *
390 	 * Before the change, both LEBs contain the same data.
391 	 *
392 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
393 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
394 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
395 	 * finally, unclean reboots may result in a situation when neither LEB
396 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
397 	 * 0 contains more recent information.
398 	 *
399 	 * So the plan is to first check LEB 0. Then
400 	 * a. if LEB 0 is OK, it must be containing the most recent data; then
401 	 *    we compare it with LEB 1, and if they are different, we copy LEB
402 	 *    0 to LEB 1;
403 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
404 	 *    to LEB 0.
405 	 */
406 
407 	dbg_gen("check layout volume");
408 
409 	/* Read both LEB 0 and LEB 1 into memory */
410 	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
411 		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
412 		if (!leb[aeb->lnum]) {
413 			err = -ENOMEM;
414 			goto out_free;
415 		}
416 
417 		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
418 				       ubi->vtbl_size);
419 		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
420 			/*
421 			 * Scrub the PEB later. Note, -EBADMSG indicates an
422 			 * uncorrectable ECC error, but we have our own CRC and
423 			 * the data will be checked later. If the data is OK,
424 			 * the PEB will be scrubbed (because we set
425 			 * aeb->scrub). If the data is not OK, the contents of
426 			 * the PEB will be recovered from the second copy, and
427 			 * aeb->scrub will be cleared in
428 			 * 'ubi_add_to_av()'.
429 			 */
430 			aeb->scrub = 1;
431 		else if (err)
432 			goto out_free;
433 	}
434 
435 	err = -EINVAL;
436 	if (leb[0]) {
437 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
438 		if (leb_corrupted[0] < 0)
439 			goto out_free;
440 	}
441 
442 	if (!leb_corrupted[0]) {
443 		/* LEB 0 is OK */
444 		if (leb[1])
445 			leb_corrupted[1] = memcmp(leb[0], leb[1],
446 						  ubi->vtbl_size);
447 		if (leb_corrupted[1]) {
448 			ubi_warn(ubi, "volume table copy #2 is corrupted");
449 			err = create_vtbl(ubi, ai, 1, leb[0]);
450 			if (err)
451 				goto out_free;
452 			ubi_msg(ubi, "volume table was restored");
453 		}
454 
455 		/* Both LEB 1 and LEB 2 are OK and consistent */
456 		vfree(leb[1]);
457 		return leb[0];
458 	} else {
459 		/* LEB 0 is corrupted or does not exist */
460 		if (leb[1]) {
461 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
462 			if (leb_corrupted[1] < 0)
463 				goto out_free;
464 		}
465 		if (leb_corrupted[1]) {
466 			/* Both LEB 0 and LEB 1 are corrupted */
467 			ubi_err(ubi, "both volume tables are corrupted");
468 			goto out_free;
469 		}
470 
471 		ubi_warn(ubi, "volume table copy #1 is corrupted");
472 		err = create_vtbl(ubi, ai, 0, leb[1]);
473 		if (err)
474 			goto out_free;
475 		ubi_msg(ubi, "volume table was restored");
476 
477 		vfree(leb[0]);
478 		return leb[1];
479 	}
480 
481 out_free:
482 	vfree(leb[0]);
483 	vfree(leb[1]);
484 	return ERR_PTR(err);
485 }
486 
487 /**
488  * create_empty_lvol - create empty layout volume.
489  * @ubi: UBI device description object
490  * @ai: attaching information
491  *
492  * This function returns volume table contents in case of success and a
493  * negative error code in case of failure.
494  */
495 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
496 						 struct ubi_attach_info *ai)
497 {
498 	int i;
499 	struct ubi_vtbl_record *vtbl;
500 
501 	vtbl = vzalloc(ubi->vtbl_size);
502 	if (!vtbl)
503 		return ERR_PTR(-ENOMEM);
504 
505 	for (i = 0; i < ubi->vtbl_slots; i++)
506 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
507 
508 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
509 		int err;
510 
511 		err = create_vtbl(ubi, ai, i, vtbl);
512 		if (err) {
513 			vfree(vtbl);
514 			return ERR_PTR(err);
515 		}
516 	}
517 
518 	return vtbl;
519 }
520 
521 /**
522  * init_volumes - initialize volume information for existing volumes.
523  * @ubi: UBI device description object
524  * @ai: scanning information
525  * @vtbl: volume table
526  *
527  * This function allocates volume description objects for existing volumes.
528  * Returns zero in case of success and a negative error code in case of
529  * failure.
530  */
531 static int init_volumes(struct ubi_device *ubi,
532 			const struct ubi_attach_info *ai,
533 			const struct ubi_vtbl_record *vtbl)
534 {
535 	int i, reserved_pebs = 0;
536 	struct ubi_ainf_volume *av;
537 	struct ubi_volume *vol;
538 
539 	for (i = 0; i < ubi->vtbl_slots; i++) {
540 		cond_resched();
541 
542 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
543 			continue; /* Empty record */
544 
545 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
546 		if (!vol)
547 			return -ENOMEM;
548 
549 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
550 		vol->alignment = be32_to_cpu(vtbl[i].alignment);
551 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
552 		vol->upd_marker = vtbl[i].upd_marker;
553 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
554 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
555 		vol->name_len = be16_to_cpu(vtbl[i].name_len);
556 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
557 		memcpy(vol->name, vtbl[i].name, vol->name_len);
558 		vol->name[vol->name_len] = '\0';
559 		vol->vol_id = i;
560 
561 		if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG)
562 			vol->skip_check = 1;
563 
564 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
565 			/* Auto re-size flag may be set only for one volume */
566 			if (ubi->autoresize_vol_id != -1) {
567 				ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
568 					ubi->autoresize_vol_id, i);
569 				kfree(vol);
570 				return -EINVAL;
571 			}
572 
573 			ubi->autoresize_vol_id = i;
574 		}
575 
576 		ubi_assert(!ubi->volumes[i]);
577 		ubi->volumes[i] = vol;
578 		ubi->vol_count += 1;
579 		vol->ubi = ubi;
580 		reserved_pebs += vol->reserved_pebs;
581 
582 		/*
583 		 * In case of dynamic volume UBI knows nothing about how many
584 		 * data is stored there. So assume the whole volume is used.
585 		 */
586 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
587 			vol->used_ebs = vol->reserved_pebs;
588 			vol->last_eb_bytes = vol->usable_leb_size;
589 			vol->used_bytes =
590 				(long long)vol->used_ebs * vol->usable_leb_size;
591 			continue;
592 		}
593 
594 		/* Static volumes only */
595 		av = ubi_find_av(ai, i);
596 		if (!av || !av->leb_count) {
597 			/*
598 			 * No eraseblocks belonging to this volume found. We
599 			 * don't actually know whether this static volume is
600 			 * completely corrupted or just contains no data. And
601 			 * we cannot know this as long as data size is not
602 			 * stored on flash. So we just assume the volume is
603 			 * empty. FIXME: this should be handled.
604 			 */
605 			continue;
606 		}
607 
608 		if (av->leb_count != av->used_ebs) {
609 			/*
610 			 * We found a static volume which misses several
611 			 * eraseblocks. Treat it as corrupted.
612 			 */
613 			ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
614 				 av->vol_id, av->used_ebs - av->leb_count);
615 			vol->corrupted = 1;
616 			continue;
617 		}
618 
619 		vol->used_ebs = av->used_ebs;
620 		vol->used_bytes =
621 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
622 		vol->used_bytes += av->last_data_size;
623 		vol->last_eb_bytes = av->last_data_size;
624 	}
625 
626 	/* And add the layout volume */
627 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
628 	if (!vol)
629 		return -ENOMEM;
630 
631 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
632 	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
633 	vol->vol_type = UBI_DYNAMIC_VOLUME;
634 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
635 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
636 	vol->usable_leb_size = ubi->leb_size;
637 	vol->used_ebs = vol->reserved_pebs;
638 	vol->last_eb_bytes = vol->reserved_pebs;
639 	vol->used_bytes =
640 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
641 	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
642 	vol->ref_count = 1;
643 
644 	ubi_assert(!ubi->volumes[i]);
645 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
646 	reserved_pebs += vol->reserved_pebs;
647 	ubi->vol_count += 1;
648 	vol->ubi = ubi;
649 
650 	if (reserved_pebs > ubi->avail_pebs) {
651 		ubi_err(ubi, "not enough PEBs, required %d, available %d",
652 			reserved_pebs, ubi->avail_pebs);
653 		if (ubi->corr_peb_count)
654 			ubi_err(ubi, "%d PEBs are corrupted and not used",
655 				ubi->corr_peb_count);
656 	}
657 	ubi->rsvd_pebs += reserved_pebs;
658 	ubi->avail_pebs -= reserved_pebs;
659 
660 	return 0;
661 }
662 
663 /**
664  * check_av - check volume attaching information.
665  * @vol: UBI volume description object
666  * @av: volume attaching information
667  *
668  * This function returns zero if the volume attaching information is consistent
669  * to the data read from the volume tabla, and %-EINVAL if not.
670  */
671 static int check_av(const struct ubi_volume *vol,
672 		    const struct ubi_ainf_volume *av)
673 {
674 	int err;
675 
676 	if (av->highest_lnum >= vol->reserved_pebs) {
677 		err = 1;
678 		goto bad;
679 	}
680 	if (av->leb_count > vol->reserved_pebs) {
681 		err = 2;
682 		goto bad;
683 	}
684 	if (av->vol_type != vol->vol_type) {
685 		err = 3;
686 		goto bad;
687 	}
688 	if (av->used_ebs > vol->reserved_pebs) {
689 		err = 4;
690 		goto bad;
691 	}
692 	if (av->data_pad != vol->data_pad) {
693 		err = 5;
694 		goto bad;
695 	}
696 	return 0;
697 
698 bad:
699 	ubi_err(vol->ubi, "bad attaching information, error %d", err);
700 	ubi_dump_av(av);
701 	ubi_dump_vol_info(vol);
702 	return -EINVAL;
703 }
704 
705 /**
706  * check_attaching_info - check that attaching information.
707  * @ubi: UBI device description object
708  * @ai: attaching information
709  *
710  * Even though we protect on-flash data by CRC checksums, we still don't trust
711  * the media. This function ensures that attaching information is consistent to
712  * the information read from the volume table. Returns zero if the attaching
713  * information is OK and %-EINVAL if it is not.
714  */
715 static int check_attaching_info(const struct ubi_device *ubi,
716 			       struct ubi_attach_info *ai)
717 {
718 	int err, i;
719 	struct ubi_ainf_volume *av;
720 	struct ubi_volume *vol;
721 
722 	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
723 		ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
724 			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
725 		return -EINVAL;
726 	}
727 
728 	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
729 	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
730 		ubi_err(ubi, "too large volume ID %d found",
731 			ai->highest_vol_id);
732 		return -EINVAL;
733 	}
734 
735 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
736 		cond_resched();
737 
738 		av = ubi_find_av(ai, i);
739 		vol = ubi->volumes[i];
740 		if (!vol) {
741 			if (av)
742 				ubi_remove_av(ai, av);
743 			continue;
744 		}
745 
746 		if (vol->reserved_pebs == 0) {
747 			ubi_assert(i < ubi->vtbl_slots);
748 
749 			if (!av)
750 				continue;
751 
752 			/*
753 			 * During attaching we found a volume which does not
754 			 * exist according to the information in the volume
755 			 * table. This must have happened due to an unclean
756 			 * reboot while the volume was being removed. Discard
757 			 * these eraseblocks.
758 			 */
759 			ubi_msg(ubi, "finish volume %d removal", av->vol_id);
760 			ubi_remove_av(ai, av);
761 		} else if (av) {
762 			err = check_av(vol, av);
763 			if (err)
764 				return err;
765 		}
766 	}
767 
768 	return 0;
769 }
770 
771 /**
772  * ubi_read_volume_table - read the volume table.
773  * @ubi: UBI device description object
774  * @ai: attaching information
775  *
776  * This function reads volume table, checks it, recover from errors if needed,
777  * or creates it if needed. Returns zero in case of success and a negative
778  * error code in case of failure.
779  */
780 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
781 {
782 	int i, err;
783 	struct ubi_ainf_volume *av;
784 
785 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
786 
787 	/*
788 	 * The number of supported volumes is limited by the eraseblock size
789 	 * and by the UBI_MAX_VOLUMES constant.
790 	 */
791 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
792 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
793 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
794 
795 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
796 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
797 
798 	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
799 	if (!av) {
800 		/*
801 		 * No logical eraseblocks belonging to the layout volume were
802 		 * found. This could mean that the flash is just empty. In
803 		 * this case we create empty layout volume.
804 		 *
805 		 * But if flash is not empty this must be a corruption or the
806 		 * MTD device just contains garbage.
807 		 */
808 		if (ai->is_empty) {
809 			ubi->vtbl = create_empty_lvol(ubi, ai);
810 			if (IS_ERR(ubi->vtbl))
811 				return PTR_ERR(ubi->vtbl);
812 		} else {
813 			ubi_err(ubi, "the layout volume was not found");
814 			return -EINVAL;
815 		}
816 	} else {
817 		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
818 			/* This must not happen with proper UBI images */
819 			ubi_err(ubi, "too many LEBs (%d) in layout volume",
820 				av->leb_count);
821 			return -EINVAL;
822 		}
823 
824 		ubi->vtbl = process_lvol(ubi, ai, av);
825 		if (IS_ERR(ubi->vtbl))
826 			return PTR_ERR(ubi->vtbl);
827 	}
828 
829 	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
830 
831 	/*
832 	 * The layout volume is OK, initialize the corresponding in-RAM data
833 	 * structures.
834 	 */
835 	err = init_volumes(ubi, ai, ubi->vtbl);
836 	if (err)
837 		goto out_free;
838 
839 	/*
840 	 * Make sure that the attaching information is consistent to the
841 	 * information stored in the volume table.
842 	 */
843 	err = check_attaching_info(ubi, ai);
844 	if (err)
845 		goto out_free;
846 
847 	return 0;
848 
849 out_free:
850 	vfree(ubi->vtbl);
851 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
852 		kfree(ubi->volumes[i]);
853 		ubi->volumes[i] = NULL;
854 	}
855 	return err;
856 }
857 
858 /**
859  * self_vtbl_check - check volume table.
860  * @ubi: UBI device description object
861  */
862 static void self_vtbl_check(const struct ubi_device *ubi)
863 {
864 	if (!ubi_dbg_chk_gen(ubi))
865 		return;
866 
867 	if (vtbl_check(ubi, ubi->vtbl)) {
868 		ubi_err(ubi, "self-check failed");
869 		BUG();
870 	}
871 }
872